1
|
Ando R, Shimozono S, Ago H, Takagi M, Sugiyama M, Kurokawa H, Hirano M, Niino Y, Ueno G, Ishidate F, Fujiwara T, Okada Y, Yamamoto M, Miyawaki A. StayGold variants for molecular fusion and membrane-targeting applications. Nat Methods 2024; 21:648-656. [PMID: 38036853 PMCID: PMC11009113 DOI: 10.1038/s41592-023-02085-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/12/2023] [Indexed: 12/02/2023]
Abstract
Although StayGold is a bright and highly photostable fluorescent protein, its propensity for obligate dimer formation may hinder applications in molecular fusion and membrane targeting. To attain monovalent as well as bright and photostable labeling, we engineered tandem dimers of StayGold to promote dispersibility. On the basis of the crystal structure of this fluorescent protein, we disrupted the dimerization to generate a monomeric variant that offers improved photostability and brightness compared to StayGold. We applied the new monovalent StayGold tools to live-cell imaging experiments using spinning-disk laser-scanning confocal microscopy or structured illumination microscopy. We achieved cell-wide, high-spatiotemporal resolution and sustained imaging of dynamic subcellular events, including the targeting of endogenous condensin I to mitotic chromosomes, the movement of the Golgi apparatus and its membranous derivatives along microtubule networks, the distribution of cortical filamentous actin and the remolding of cristae membranes within mobile mitochondria.
Collapse
Affiliation(s)
- Ryoko Ando
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako-city, Japan
- Biotechnological Optics Research Team, RIKEN Center for Advanced Photonics, Wako-city, Japan
- Department of Optical Biomedical Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Satoshi Shimozono
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako-city, Japan
| | - Hideo Ago
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Japan
| | - Masatoshi Takagi
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research (CPR), Saitama, Japan
| | - Mayu Sugiyama
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako-city, Japan
| | - Hiroshi Kurokawa
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako-city, Japan
| | - Masahiko Hirano
- Biotechnological Optics Research Team, RIKEN Center for Advanced Photonics, Wako-city, Japan
| | - Yusuke Niino
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako-city, Japan
| | - Go Ueno
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Japan
| | - Fumiyoshi Ishidate
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Takahiro Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yasushi Okada
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research, Suita, Japan
- Department of Cell Biology, Department of Physics, UBI and WPI-IRCN, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masaki Yamamoto
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako-city, Japan.
- Biotechnological Optics Research Team, RIKEN Center for Advanced Photonics, Wako-city, Japan.
- Laboratory of Bioresponse Analysis, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
2
|
Hirano M, Yonemaru Y, Shimozono S, Sugiyama M, Ando R, Okada Y, Fujiwara T, Miyawaki A. StayGold photostability under different illumination modes. Sci Rep 2024; 14:5541. [PMID: 38448511 PMCID: PMC10918099 DOI: 10.1038/s41598-024-55213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
StayGold is a bright fluorescent protein (FP) that is over one order of magnitude more photostable than any of the currently available FPs across the full range of illumination intensities used in widefield microscopy and structured illumination microscopy, the latter of which is a widefield illumination-based technique. To compare the photostability of StayGold under other illumination modes with that of three other green-emitting FPs, namely EGFP, mClover3, and mNeonGreen, we expressed all four FPs as fusions to histone 2B in HeLa cells. Unlike the case of widefield microscopy, the photobleaching behavior of these FPs in laser scanning confocal microscopy (LSCM) is complicated. The outstanding photostability of StayGold observed in multi-beam LSCM was variably attenuated in single-beam LSCM, which produces intermittent and instantaneously strong illumination. We systematically examined the effects of different single-beam LSCM beam-scanning patterns on the photostability of the FPs in living HeLa cells. This study offers relevant guidelines for researchers who aim to achieve sustainable live cell imaging by resolving problems related to FP photostability. We also provide evidence for measurable sensitivity of the photostability of StayGold to chemical fixation.
Collapse
Affiliation(s)
- Masahiko Hirano
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-City, Saitama, 351-0198, Japan
- Biotechnological Optics Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako-City, Saitama, 351-0198, Japan
| | - Yasuo Yonemaru
- Evident Corporation, 67-4 Takakura-Machi, Hachioji-City, Tokyo, 190-0033, Japan
- RIKEN CBS-EVIDENT Open Collaboration Center, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-City, Saitama, 351-0198, Japan
| | - Satoshi Shimozono
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-City, Saitama, 351-0198, Japan
| | - Mayu Sugiyama
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-City, Saitama, 351-0198, Japan
| | - Ryoko Ando
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-City, Saitama, 351-0198, Japan
- Department of Optical Biomedical Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Yasushi Okada
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, 565-0874, Japan
- Department of Cell Biology, Department of Physics, UBI and WPI-IRCN, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Takahiro Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-City, Saitama, 351-0198, Japan.
- Biotechnological Optics Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako-City, Saitama, 351-0198, Japan.
- RIKEN CBS-EVIDENT Open Collaboration Center, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-City, Saitama, 351-0198, Japan.
- Laboratory of Bioresponse Analysis, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
3
|
Regnault R, Klupsch F, El-Bouazzati H, Magnez R, Le Biannic R, Leleu-Chavain N, Ahouari H, Vezin H, Millet R, Goossens JF, Thuru X, Bailly C. Novel PD-L1-Targeted Phenyl-Pyrazolone Derivatives with Antioxidant Properties. Molecules 2023; 28:molecules28083491. [PMID: 37110727 PMCID: PMC10144346 DOI: 10.3390/molecules28083491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Orally-active anticancer small molecules targeting the PD-1/PD-L1 immune checkpoint are actively searched. Phenyl-pyrazolone derivatives with a high affinity for PD-L1 have been designed and characterized. In addition, the phenyl-pyrazolone unit acts as a scavenger of oxygen free radicals, providing antioxidant effects. The mechanism is known for the drug edaravone (1) which is also an aldehyde-reactive molecule. The present study reports the synthesis and functional characterization of new molecules (2-5) with an improved anti-PD-L1 activity. The leading fluorinated molecule 5 emerges as a potent checkpoint inhibitor, avidly binding to PD-L1, inducing its dimerization, blocking PD-1/PD-L1 signaling mediated by phosphatase SHP-2 and reactivating the proliferation of CTLL-2 cells in the presence of PD-L1. In parallel, the compound maintains a significant antioxidant activity, characterized using electron paramagnetic resonance (EPR)-based free radical scavenging assays with the probes DPPH and DMPO. The aldehyde reactivity of the molecules was investigated using 4-hydroxynonenal (4-HNE), which is a major lipid peroxidation product. The formation of drug-HNE adducts, monitored by high resolution mass spectrometry (HRMS), was clearly identified and compared for each compound. The study leads to the selection of compound 5 and the dichlorophenyl-pyrazolone unit as a scaffold for the design of small molecule PD-L1 inhibitors endowed with antioxidant properties.
Collapse
Affiliation(s)
- Romain Regnault
- ULR 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, CHU Lille, University Lille, F-59000 Lille, France
| | - Frédérique Klupsch
- U1286-INFINITE-Institute for Translational Research in Inflammation, ICPAL, Inserm, University Lille, F-59000 Lille, France
| | - Hassiba El-Bouazzati
- UMR9020-UMR1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Inserm, CNRS, CHU Lille, University Lille, F-59000 Lille, France
| | - Romain Magnez
- UMR9020-UMR1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Inserm, CNRS, CHU Lille, University Lille, F-59000 Lille, France
| | - Raphaël Le Biannic
- U1286-INFINITE-Institute for Translational Research in Inflammation, ICPAL, Inserm, University Lille, F-59000 Lille, France
| | - Natascha Leleu-Chavain
- U1286-INFINITE-Institute for Translational Research in Inflammation, ICPAL, Inserm, University Lille, F-59000 Lille, France
| | - Hania Ahouari
- LASIRE Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement, F-59655 Villeneuve d'Ascq, France
- FR 2638-IMEC-Institut Michel-Eugène Chevreul, University Lille, F-59655 Lille, France
| | - Hervé Vezin
- LASIRE Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement, F-59655 Villeneuve d'Ascq, France
| | - Régis Millet
- U1286-INFINITE-Institute for Translational Research in Inflammation, ICPAL, Inserm, University Lille, F-59000 Lille, France
| | - Jean-François Goossens
- ULR 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, CHU Lille, University Lille, F-59000 Lille, France
| | - Xavier Thuru
- UMR9020-UMR1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Inserm, CNRS, CHU Lille, University Lille, F-59000 Lille, France
| | - Christian Bailly
- UMR9020-UMR1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Inserm, CNRS, CHU Lille, University Lille, F-59000 Lille, France
- Oncowitan, Scientific Consulting Office, Wasquehal, F-59290 Lille, France
| |
Collapse
|
4
|
Jimenez-Moreno N, Salomo-Coll C, Murphy LC, Wilkinson S. Signal-Retaining Autophagy Indicator as a Quantitative Imaging Method for ER-Phagy. Cells 2023; 12:1134. [PMID: 37190043 PMCID: PMC10136497 DOI: 10.3390/cells12081134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Autophagy is an intracellular lysosomal degradation pathway by which cytoplasmic cargoes are removed to maintain cellular homeostasis. Monitoring autophagy flux is crucial to understand the autophagy process and its biological significance. However, assays to measure autophagy flux are either complex, low throughput or not sensitive enough for reliable quantitative results. Recently, ER-phagy has emerged as a physiologically relevant pathway to maintain ER homeostasis but the process is poorly understood, highlighting the need for tools to monitor ER-phagy flux. In this study, we validate the use of the signal-retaining autophagy indicator (SRAI), a fixable fluorescent probe recently generated and described to detect mitophagy, as a versatile, sensitive and convenient probe for monitoring ER-phagy. This includes the study of either general selective degradation of the endoplasmic reticulum (ER-phagy) or individual forms of ER-phagy involving specific cargo receptors (e.g., FAM134B, FAM134C, TEX264 and CCPG1). Crucially, we present a detailed protocol for the quantification of autophagic flux using automated microscopy and high throughput analysis. Overall, this probe provides a reliable and convenient tool for the measurement of ER-phagy.
Collapse
Affiliation(s)
- Natalia Jimenez-Moreno
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK; (C.S.-C.); (S.W.)
| | - Carla Salomo-Coll
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK; (C.S.-C.); (S.W.)
| | - Laura C. Murphy
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK;
| | - Simon Wilkinson
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK; (C.S.-C.); (S.W.)
| |
Collapse
|
5
|
Hirano M, Ando R, Shimozono S, Sugiyama M, Takeda N, Kurokawa H, Deguchi R, Endo K, Haga K, Takai-Todaka R, Inaura S, Matsumura Y, Hama H, Okada Y, Fujiwara T, Morimoto T, Katayama K, Miyawaki A. A highly photostable and bright green fluorescent protein. Nat Biotechnol 2022; 40:1132-1142. [PMID: 35468954 PMCID: PMC9287174 DOI: 10.1038/s41587-022-01278-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 03/14/2022] [Indexed: 12/20/2022]
Abstract
The low photostability of fluorescent proteins is a limiting factor in many applications of fluorescence microscopy. Here we present StayGold, a green fluorescent protein (GFP) derived from the jellyfish Cytaeis uchidae. StayGold is over one order of magnitude more photostable than any currently available fluorescent protein and has a cellular brightness similar to mNeonGreen. We used StayGold to image the dynamics of the endoplasmic reticulum (ER) with high spatiotemporal resolution over several minutes using structured illumination microscopy (SIM) and observed substantially less photobleaching than with a GFP variant optimized for stability in the ER. Using StayGold fusions and SIM, we also imaged the dynamics of mitochondrial fusion and fission and mapped the viral spike proteins in fixed cells infected with severe acute respiratory syndrome coronavirus 2. As StayGold is a dimer, we created a tandem dimer version that allowed us to observe the dynamics of microtubules and the excitatory post-synaptic density in neurons. StayGold will substantially reduce the limitations imposed by photobleaching, especially in live cell or volumetric imaging.
Collapse
Affiliation(s)
- Masahiko Hirano
- Biotechnological Optics Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Ryoko Ando
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Satoshi Shimozono
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Mayu Sugiyama
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Noriyo Takeda
- Asamushi Research Center for Marine Biology, Tohoku University, Aomori, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Kurokawa
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Ryusaku Deguchi
- Department of Biology, Miyagi University of Education, Sendai, Japan
| | - Kazuki Endo
- Department of Biology, Miyagi University of Education, Sendai, Japan
- Narita Elementary School, Miyagi, Japan
| | - Kei Haga
- Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
| | - Reiko Takai-Todaka
- Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
| | | | - Yuta Matsumura
- Safety Science Laboratories, Kao Corporation, Tokyo, Japan
| | - Hiroshi Hama
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Yasushi Okada
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
- Department of Cell Biology and Department of Physics, UBI and WPI-IRCN, The University of Tokyo, Tokyo, Japan
| | - Takahiro Fujiwara
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | | | - Kazuhiko Katayama
- Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan.
| | - Atsushi Miyawaki
- Biotechnological Optics Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan.
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Saitama, Japan.
| |
Collapse
|
6
|
An anchoring complex recruits katanin for microtubule severing at the plant cortical nucleation sites. Nat Commun 2021; 12:3687. [PMID: 34140499 PMCID: PMC8211667 DOI: 10.1038/s41467-021-24067-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Microtubules are severed by katanin at distinct cellular locations to facilitate reorientation or amplification of dynamic microtubule arrays, but katanin targeting mechanisms are poorly understood. Here we show that a centrosomal microtubule-anchoring complex is used to recruit katanin in acentrosomal plant cells. The conserved protein complex of Msd1 (also known as SSX2IP) and Wdr8 is localized at microtubule nucleation sites along the microtubule lattice in interphase Arabidopsis cells. Katanin is recruited to these sites for efficient release of newly formed daughter microtubules. Our cell biological and genetic studies demonstrate that Msd1-Wdr8 acts as a specific katanin recruitment factor to cortical nucleation sites (but not to microtubule crossover sites) and stabilizes the association of daughter microtubule minus ends to their nucleation sites until they become severed by katanin. Molecular coupling of sequential anchoring and severing events by the evolutionarily conserved complex renders microtubule release under tight control of katanin activity.
Collapse
|
7
|
Abstract
The impacts of linkers on dynamics, expression, and activity of biomacromolecules are often overlooked. This may be due, in part, to the lack of facile methods for incorporation and analysis of linkers that vary iteratively in both length and sequence composition. The protaTETHER method addresses this gap by enabling the incorporation of focused linker libraries at potentially any region in a protein sequence. In this chapter, we describe the generation and incorporation of linkers in a PKAc-GFP fusion protein and provide methods for the application and evaluation of the protaTETHER process.
Collapse
|
8
|
Liu L, He F, Yu Y, Wang Y. Application of FRET Biosensors in Mechanobiology and Mechanopharmacological Screening. Front Bioeng Biotechnol 2020; 8:595497. [PMID: 33240867 PMCID: PMC7680962 DOI: 10.3389/fbioe.2020.595497] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
Extensive studies have shown that cells can sense and modulate the biomechanical properties of the ECM within their resident microenvironment. Thus, targeting the mechanotransduction signaling pathways provides a promising way for disease intervention. However, how cells perceive these mechanical cues of the microenvironment and transduce them into biochemical signals remains to be answered. Förster or fluorescence resonance energy transfer (FRET) based biosensors are a powerful tool that can be used in live-cell mechanotransduction imaging and mechanopharmacological drug screening. In this review, we will first introduce FRET principle and FRET biosensors, and then, recent advances on the integration of FRET biosensors and mechanobiology in normal and pathophysiological conditions will be discussed. Furthermore, we will summarize the current applications and limitations of FRET biosensors in high-throughput drug screening and the future improvement of FRET biosensors. In summary, FRET biosensors have provided a powerful tool for mechanobiology studies to advance our understanding of how cells and matrices interact, and the mechanopharmacological screening for disease intervention.
Collapse
Affiliation(s)
| | | | | | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
9
|
Katayama H, Hama H, Nagasawa K, Kurokawa H, Sugiyama M, Ando R, Funata M, Yoshida N, Homma M, Nishimura T, Takahashi M, Ishida Y, Hioki H, Tsujihata Y, Miyawaki A. Visualizing and Modulating Mitophagy for Therapeutic Studies of Neurodegeneration. Cell 2020; 181:1176-1187.e16. [DOI: 10.1016/j.cell.2020.04.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/06/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022]
|
10
|
Ems-McClung SC, Walczak CE. In Vitro FRET- and Fluorescence-Based Assays to Study Protein Conformation and Protein-Protein Interactions in Mitosis. Methods Mol Biol 2020; 2101:93-122. [PMID: 31879900 PMCID: PMC7189611 DOI: 10.1007/978-1-0716-0219-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Proper cell division and the equal segregation of genetic material are essential for life. Cell division is mediated by the mitotic spindle, which is composed of microtubules (MTs) and MT-associated proteins that help align and segregate the chromosomes. The localization and characterization of many spindle proteins have been greatly aided by using GFP-tagged proteins in vivo, but these tools typically do not allow for understanding how their activity is regulated biochemically. With the recent explosion of the pallet of GFP-derived fluorescent proteins, fluorescence-based biosensors are becoming useful tools for the quantitative analysis of protein activity and protein-protein interactions. Here, we describe solution-based Förster resonance energy transfer (FRET) and fluorescence assays that can be used to quantify protein-protein interactions and to characterize protein conformations of MT-associated proteins involved in mitosis.
Collapse
Affiliation(s)
| | - Claire E Walczak
- Indiana University School of Medicine-Bloomington, Medical Sciences, Bloomington, IN, USA.
| |
Collapse
|
11
|
Bidaux G, Le Nézet C, Pisfil MG, Henry M, Furlan A, Bensaude O, Vandenbunder B, Héliot L. FRET Image Correlation Spectroscopy Reveals RNAPII-Independent P-TEFb Recruitment on Chromatin. Biophys J 2019; 114:522-533. [PMID: 29414698 DOI: 10.1016/j.bpj.2017.11.3783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 11/24/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022] Open
Abstract
Biochemical studies have revealed that the RNA Polymerase II (RNAPII) pause release is triggered by phosphorylation of the transcription machinery by the positive transcription elongation factor b (P-TEFb). However, there are no direct report that P-TEFb and RNA polymerase II interact in single living cells and the biophysical mechanisms mediating this association are still unclear. Förster resonance energy transfer (FRET) detects molecular interactions at the subcellular level. Time domain fluorescence lifetime imaging provides an accurate quantification of FRET efficiency, EFRET, because it is fluorochrome concentration-independent and insensitive to fluorescence bleed-through. However, the way FRET signal is usually analyzed does not provide information about the areas where protein-protein interactions take place. In this work, we developed a method, dubbed FRET image correlation spectroscopy (FICS), which relied on FRET fluorescence lifetime imaging image acquisition and image correlation spectroscopy of EFRET clusters to quantify the spatial distribution of interaction clusters in the nucleus. The combination of high content FRET microscopy with batch image analysis allowed a robust statistical analysis. By applying FICS, we characterized the area and density of interaction clusters between P-TEFb and RNAPII or histone H2A in single living cells. The FICS method applied to cells expressing genetically engineered mutated proteins confirmed that the histidine-rich domain of P-TEFb is required for its interaction with RNAPII. Furthermore, it demonstrated that P-TEFb was also located in close vicinity to histone H2A, independently of its interactions with RNAPII. These results support the hypothesis that P-TEFb dynamics on chromatin regulate its recruitment on RNAPII.
Collapse
Affiliation(s)
- Gabriel Bidaux
- CNRS UMR 8523, Laboratoire de Physique des Lasers, Atomes et Molécules, University Lille, Lille, France.
| | - Corentin Le Nézet
- CNRS UMR 8523, Laboratoire de Physique des Lasers, Atomes et Molécules, University Lille, Lille, France
| | - Mariano Gonzalez Pisfil
- CNRS UMR 8523, Laboratoire de Physique des Lasers, Atomes et Molécules, University Lille, Lille, France
| | - Mélanie Henry
- CNRS UMR 8523, Laboratoire de Physique des Lasers, Atomes et Molécules, University Lille, Lille, France
| | - Alessandro Furlan
- CNRS UMR 8523, Laboratoire de Physique des Lasers, Atomes et Molécules, University Lille, Lille, France
| | - Oliver Bensaude
- S-2 Génomique Fonctionnelle, IBENS, CNRS UMR 8197, INSERM U1024, Ecole Normale Supérieure, Paris, France
| | - Bernard Vandenbunder
- CNRS UMR 8523, Laboratoire de Physique des Lasers, Atomes et Molécules, University Lille, Lille, France
| | - Laurent Héliot
- CNRS UMR 8523, Laboratoire de Physique des Lasers, Atomes et Molécules, University Lille, Lille, France.
| |
Collapse
|
12
|
Fukuda M, Sakaue-Sawano A, Shimura C, Tachibana M, Miyawaki A, Shinkai Y. G9a-dependent histone methylation can be induced in G1 phase of cell cycle. Sci Rep 2019; 9:956. [PMID: 30700744 PMCID: PMC6354049 DOI: 10.1038/s41598-018-37507-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/07/2018] [Indexed: 12/19/2022] Open
Abstract
Epigenetic information (epigenome) on chromatin is crucial for the determination of cellular identity and for the expression of cell type-specific biological functions. The cell type-specific epigenome is maintained beyond replication and cell division. Nucleosomes of chromatin just after DNA replication are a mixture of old histones with the parental epigenome and newly synthesized histones without such information. The diluted epigenome is mostly restored within one cell cycle using the epigenome on the parental DNA and nucleosomes as replication templates. However, many important questions about the epigenome replication process remain to be clarified. In this study, we investigated the model system comprising of dimethylated histone H3 lysine 9 (H3K9me2) and its regulation by the lysine methyltransferase G9a. Using this epigenome model system, we addressed whether H3K9me2 can be induced in specific cell cycle stages, especially G1. Using cell cycle-specific degrons, we achieved G1 or late G1-to M phases specific accumulation of exogenous G9a in G9a deficient cells. Importantly, global levels of H3K9me2 were significantly recovered by both cell types. These data indicate that H3K9me2 may be plastic and inducible, even in the long-living, terminally-differentiated, post-mitotic, G0-G1 cell population in vivo. This knowledge is valuable in designing epigenome-manipulation-based treatments for diseases.
Collapse
Affiliation(s)
- Mikiko Fukuda
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Asako Sakaue-Sawano
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Chikako Shimura
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Makoto Tachibana
- Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.,Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin, Kawara-cho, Sakyo-ku, Kyoto, 606-8597, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
13
|
Parashuraman S, D’Angelo G. Visualizing sphingolipid biosynthesis in cells. Chem Phys Lipids 2019; 218:103-111. [DOI: 10.1016/j.chemphyslip.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/11/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022]
|
14
|
Lim WM, Ito Y, Sakata-Sogawa K, Tokunaga M. CLIP-170 is essential for MTOC repositioning during T cell activation by regulating dynein localisation on the cell surface. Sci Rep 2018; 8:17447. [PMID: 30487641 PMCID: PMC6261991 DOI: 10.1038/s41598-018-35593-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/06/2018] [Indexed: 02/02/2023] Open
Abstract
The microtubule-organizing centre (MTOC) is repositioned to the centre of the contacted cell surface, the immunological synapse, during T cell activation. However, our understanding of its molecular mechanism remains limited. Here, we found that the microtubule plus-end tracking cytoplasmic linker protein 170 (CLIP-170) plays a novel role in MTOC repositioning using fluorescence imaging. Inhibition of CLIP-170 phosphorylation impaired both MTOC repositioning and interleukin-2 (IL-2) expression. T cell stimulation induced some fraction of dynein to colocalise with CLIP-170 and undergo plus-end tracking. Concurrently, it increased dynein in minus-end-directed movement. It also increased dynein relocation to the centre of the contact surface. Dynein not colocalised with CLIP-170 showed both an immobile state and minus-end-directed movement at a velocity in good agreement with the velocity of MTOC repositioning, which suggests that dynein at the immunological synapse may pull the microtubules and the MTOC. Although CLIP-170 is phosphorylated by AMP-activated protein kinase (AMPK) irrespective of stimulation, phosphorylated CLIP-170 is essential for dynein recruitment to plus-end tracking and for dynein relocation. This indicates that dynein relocation results from coexistence of plus-end- and minus-end-directed translocation. In conclusion, CLIP-170 plays an indispensable role in MTOC repositioning and full activation of T cells by regulating dynein localisation.
Collapse
Affiliation(s)
- Wei Ming Lim
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori, Yokohama, Kanagawa, 226-8501, Japan
| | - Yuma Ito
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori, Yokohama, Kanagawa, 226-8501, Japan
| | - Kumiko Sakata-Sogawa
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori, Yokohama, Kanagawa, 226-8501, Japan.
| | - Makio Tokunaga
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
15
|
Nagel G, Tschiche HR, Wedepohl S, Calderón M. Modular approach for theranostic polymer conjugates with activatable fluorescence: Impact of linker design on the stimuli-induced release of doxorubicin. J Control Release 2018; 285:200-211. [DOI: 10.1016/j.jconrel.2018.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/29/2018] [Accepted: 07/09/2018] [Indexed: 01/22/2023]
|
16
|
Mastop M, Bindels DS, Shaner NC, Postma M, Gadella TWJ, Goedhart J. Characterization of a spectrally diverse set of fluorescent proteins as FRET acceptors for mTurquoise2. Sci Rep 2017; 7:11999. [PMID: 28931898 PMCID: PMC5607329 DOI: 10.1038/s41598-017-12212-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/05/2017] [Indexed: 01/13/2023] Open
Abstract
The performance of Förster Resonance Energy Transfer (FRET) biosensors depends on brightness and photostability, which are dependent on the characteristics of the fluorescent proteins that are employed. Yellow fluorescent protein (YFP) is often used as an acceptor but YFP is prone to photobleaching and pH changes. In this study, we evaluated the properties of a diverse set of acceptor fluorescent proteins in combination with the optimized CFP variant mTurquoise2 as the donor. To determine the theoretical performance of acceptors, the Förster radius was determined. The practical performance was determined by measuring FRET efficiency and photostability of tandem fusion proteins in mammalian cells. Our results show that mNeonGreen is the most efficient acceptor for mTurquoise2 and that the photostability is better than SYFP2. The non-fluorescent YFP variant sREACh is an efficient acceptor, which is useful in lifetime-based FRET experiments. Among the orange and red fluorescent proteins, mCherry and mScarlet-I are the best performing acceptors. Several new pairs were applied in a multimolecular FRET based sensor for detecting activation of a heterotrimeric G-protein by G-protein coupled receptors. Overall, the sensor with mNeonGreen as acceptor and mTurquoise2 as donor showed the highest dynamic range in ratiometric FRET imaging experiments with the G-protein sensor.
Collapse
Affiliation(s)
- Marieke Mastop
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE, Amsterdam, The Netherlands
| | - Daphne S Bindels
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE, Amsterdam, The Netherlands
| | - Nathan C Shaner
- Department of Photobiology and Bioimaging, The Scintillon Institute, San Diego, California, United States of America
| | - Marten Postma
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE, Amsterdam, The Netherlands
| | - Theodorus W J Gadella
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE, Amsterdam, The Netherlands
| | - Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Liu K, Li Y, Zhou B, Wang F, Huan B, Shao D, Wei J, Qiu Y, Li B, Qian Y, Jung YS, Miao D, Tong G, Ma Z. A conjugate protein containing HIV TAT, ISG20, and a PRRSV polymerase binding inhibits PRRSV replication and may be a novel therapeutic platform. Res Vet Sci 2017; 113:13-20. [PMID: 28818749 DOI: 10.1016/j.rvsc.2017.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
Abstract
Porcine Reproductive and Respiratory Syndrome (PRRS), which is caused by Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) infection, has caused substantial economic losses for the global swine industry. To date, there are limited commercially available measures to control the spread of PRRSV. The available vaccines are unstable and there is no anti-PRRSV therapeutic available. Therefore, this study designed a novel recombinant antiviral protein that included a novel polypeptide that binds to the PRRSV polymerase (p9), the transduction ability of the HIV TAT, and the nucleotide degradation activity of interferon stimulated gene 20 (ISG20). The recombinant proteins TAT-p9-ISG20 and p9-ISG20 were expressed in MARC-145 cells by transient transfection and then tested for antiviral activity and entry efficiency. The p9-ISG20 construct had greater antiviral activity than either p9 alone (1.37-fold) or ISG20 alone (1.9-fold). Addition of the HIV TAT protein increased the entry efficiency of p9-ISG20 by 1.57-fold, which was associated with increased anti-viral activity (1.52-fold) compared to P9-ISG20. In summary, TAT-p9-ISG20 achieved a synergistic effect by combining three different antiviral proteins and may be a novel PRRSV therapeutic platform.
Collapse
Affiliation(s)
- Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Yuming Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Bin Zhou
- Key Laboratory of Animal Disease Diagnostic & Immunology, Department of Veterinary Medicine College, Nanjing Agricultural University, YiFu 4037, Nanjing, Jiangsu 210095, PR China
| | - Feifei Wang
- Key Laboratory of Animal Disease Diagnostic & Immunology, Department of Veterinary Medicine College, Nanjing Agricultural University, YiFu 4037, Nanjing, Jiangsu 210095, PR China
| | - Beili Huan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Yingjuan Qian
- Key Laboratory of Animal Disease Diagnostic & Immunology, Department of Veterinary Medicine College, Nanjing Agricultural University, YiFu 4037, Nanjing, Jiangsu 210095, PR China
| | - Yong-Sam Jung
- Key Laboratory of Animal Disease Diagnostic & Immunology, Department of Veterinary Medicine College, Nanjing Agricultural University, YiFu 4037, Nanjing, Jiangsu 210095, PR China
| | - Denian Miao
- Shanghai Academy of Agricultural Sciences, PR China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, PR China.
| |
Collapse
|
18
|
Tippmann S, Anfelt J, David F, Rand JM, Siewers V, Uhlén M, Nielsen J, Hudson EP. Affibody Scaffolds Improve Sesquiterpene Production in Saccharomyces cerevisiae. ACS Synth Biol 2017; 6:19-28. [PMID: 27560952 DOI: 10.1021/acssynbio.6b00109] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Enzyme fusions have been widely used as a tool in metabolic engineering to increase pathway efficiency by reducing substrate loss and accumulation of toxic intermediates. Alternatively, enzymes can be colocalized through attachment to a synthetic scaffold via noncovalent interactions. Here we describe the use of affibodies for enzyme tagging and scaffolding. The scaffolding is based on the recognition of affibodies to their anti-idiotypic partners in vivo, and was first employed for colocalization of farnesyl diphosphate synthase and farnesene synthase in S. cerevisiae. Different parameters were modulated to improve the system, and the enzyme:scaffold ratio was most critical for its functionality. Ultimately, the yield of farnesene on glucose YSFar could be improved by 135% in fed-batch cultivations using a 2-site affibody scaffold. The scaffolding strategy was then extended to a three-enzyme polyhydroxybutyrate (PHB) pathway, heterologously expressed in E. coli. Within a narrow range of enzyme and scaffold induction, the affibody tagging and scaffolding increased PHB production 7-fold. This work demonstrates how the versatile affibody can be used for metabolic engineering purposes.
Collapse
Affiliation(s)
- Stefan Tippmann
- Department
of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Josefine Anfelt
- Division
of Proteomics and Nanobiotechnology, School of Biotechnology, Royal Institute of Technology (KTH), Science for Life Laboratory, SE171 21 Stockholm, Sweden
| | - Florian David
- Department
of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Jacqueline M. Rand
- Department
of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
- Department
of Chemical and Biological Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Verena Siewers
- Department
of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Mathias Uhlén
- Division
of Proteomics and Nanobiotechnology, School of Biotechnology, Royal Institute of Technology (KTH), Science for Life Laboratory, SE171 21 Stockholm, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2970 Hørsholm, Denmark
| | - Jens Nielsen
- Department
of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2970 Hørsholm, Denmark
| | - Elton P. Hudson
- Division
of Proteomics and Nanobiotechnology, School of Biotechnology, Royal Institute of Technology (KTH), Science for Life Laboratory, SE171 21 Stockholm, Sweden
| |
Collapse
|
19
|
Wilmes S, Beutel O, Li Z, Francois-Newton V, Richter CP, Janning D, Kroll C, Hanhart P, Hötte K, You C, Uzé G, Pellegrini S, Piehler J. Receptor dimerization dynamics as a regulatory valve for plasticity of type I interferon signaling. ACTA ACUST UNITED AC 2015; 209:579-93. [PMID: 26008745 PMCID: PMC4442803 DOI: 10.1083/jcb.201412049] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Type I interferons (IFNs) activate differential cellular responses through a shared cell surface receptor composed of the two subunits, IFNAR1 and IFNAR2. We propose here a mechanistic model for how IFN receptor plasticity is regulated on the level of receptor dimerization. Quantitative single-molecule imaging of receptor assembly in the plasma membrane of living cells clearly identified IFN-induced dimerization of IFNAR1 and IFNAR2. The negative feedback regulator ubiquitin-specific protease 18 (USP18) potently interferes with the recruitment of IFNAR1 into the ternary complex, probably by impeding complex stabilization related to the associated Janus kinases. Thus, the responsiveness to IFNα2 is potently down-regulated after the first wave of gene induction, while IFNβ, due to its ∼100-fold higher binding affinity, is still able to efficiently recruit IFNAR1. Consistent with functional data, this novel regulatory mechanism at the level of receptor assembly explains how signaling by IFNβ is maintained over longer times compared with IFNα2 as a temporally encoded cause of functional receptor plasticity.
Collapse
Affiliation(s)
- Stephan Wilmes
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Oliver Beutel
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Zhi Li
- Institut Pasteur, Cytokine Signaling Unit, Centre National de la Recherche Scientifique URA1961, 75724 Paris, France
| | - Véronique Francois-Newton
- Institut Pasteur, Cytokine Signaling Unit, Centre National de la Recherche Scientifique URA1961, 75724 Paris, France
| | - Christian P Richter
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Dennis Janning
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Cindy Kroll
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Patrizia Hanhart
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Katharina Hötte
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Changjiang You
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Gilles Uzé
- Centre National de la Recherche Scientifique Montpellier, 34095 Montpellier, France
| | - Sandra Pellegrini
- Institut Pasteur, Cytokine Signaling Unit, Centre National de la Recherche Scientifique URA1961, 75724 Paris, France
| | - Jacob Piehler
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| |
Collapse
|
20
|
Tsutsui H, Jinno Y, Shoda K, Tomita A, Matsuda M, Yamashita E, Katayama H, Nakagawa A, Miyawaki A. A Diffraction-Quality Protein Crystal Processed as an Autophagic Cargo. Mol Cell 2015; 58:186-93. [DOI: 10.1016/j.molcel.2015.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/17/2014] [Accepted: 02/03/2015] [Indexed: 11/26/2022]
|
21
|
Iyama T, Lee SY, Berquist BR, Gileadi O, Bohr VA, Seidman MM, McHugh PJ, Wilson DM. CSB interacts with SNM1A and promotes DNA interstrand crosslink processing. Nucleic Acids Res 2014; 43:247-58. [PMID: 25505141 PMCID: PMC4288174 DOI: 10.1093/nar/gku1279] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cockayne syndrome (CS) is a premature aging disorder characterized by photosensitivity, impaired development and multisystem progressive degeneration, and consists of two strict complementation groups, A and B. Using a yeast two-hybrid approach, we identified the 5′-3′ exonuclease SNM1A as one of four strong interacting partners of CSB. This direct interaction was confirmed using purified recombinant proteins—with CSB able to modulate the exonuclease activity of SNM1A on oligonucleotide substrates in vitro—and the two proteins were shown to exist in a common complex in human cell extracts. CSB and SNM1A were also found, using fluorescently tagged proteins in combination with confocal microscopy and laser microirradiation, to be recruited to localized trioxsalen-induced ICL damage in human cells, with accumulation being suppressed by transcription inhibition. Moreover, SNM1A recruitment was significantly reduced in CSB-deficient cells, suggesting coordination between the two proteins in vivo. CSB-deficient neural cells exhibited increased sensitivity to DNA crosslinking agents, particularly, in a non-cycling, differentiated state, as well as delayed ICL processing as revealed by a modified Comet assay and γ-H2AX foci persistence. The results indicate that CSB coordinates the resolution of ICLs, possibly in a transcription-associated repair mechanism involving SNM1A, and that defects in the process could contribute to the post-mitotic degenerative pathologies associated with CS.
Collapse
Affiliation(s)
- Teruaki Iyama
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sook Y Lee
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | | | - Opher Gileadi
- The Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Peter J McHugh
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
22
|
Agustina L, Hahm SH, Han SH, Tran AHV, Chung JH, Park JH, Park JW, Han YS. Visualization of the physical and functional interaction between hMYH and hRad9 by Dronpa bimolecular fluorescence complementation. BMC Mol Biol 2014; 15:17. [PMID: 25127721 PMCID: PMC4151078 DOI: 10.1186/1471-2199-15-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/04/2014] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Human MutY glycosylase homolog (hMYH), a component of the base excision repair pathway, is responsible for the generation of apurinic/apyrimidinic sites. Rad9-Rad1-Hus1 (9-1-1) is a heterotrimeric protein complex that plays a role in cell cycle checkpoint control and DNA repair. In humans, hMYH and 9-1-1 interact through Hus1 and to a lesser degree with Rad1 in the presence of DNA damage. In Saccharomyces pombe, each component of the 9-1-1 complex interacts directly with SpMYH. The glycosylase activity of hMYH is stimulated by Hus1 and the 9-1-1 complex and enhanced by DNA damage treatment. Cells respond to different stress conditions in different manners. Therefore, we investigated whether Rad9 interacted with hMYH under different stresses. Here, we identified and visualized the interaction between hRad9 and hMYH and investigated the functional consequences of this interaction. RESULTS Co-IP and BiFC indicates that hMYH interacts with hRad9. As shown by GST-pull down assay, this interaction is direct. Furthermore, BiFC with deletion mutants of hMYH showed that hRad9 interacts with N-terminal region of hMYH. The interaction was enhanced by hydroxyurea (HU) treatment. mRNA and protein levels of hMYH and hRad9 were increased following HU treatment. A marked increase in p-Chk1 (S345) and p-Cdk2 (T14, Y15) was observed. But this phosphorylation decreased in siMYH- or siRad9-transfected cells, and more pronounced decrease observed in co-transfected cells. CONCLUSIONS Our data reveal that hRad9 interacts directly with N-terminal region of hMYH. This interaction is enhanced by HU treatment. Knockdown of one or both protein result in decreasing Chk1 and Cdk2 phosphorylation. Since both protein functions in the early detection of DNA damage, we suggest that this interaction occurs early in DNA damage pathway.
Collapse
Affiliation(s)
- Lia Agustina
- Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Soo-Hyun Hahm
- Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Se Hee Han
- Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - An Hue Vy Tran
- Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Ji Hyung Chung
- Department of Applied Bioscience, College of Life Science, CHA University, Gyeonggi-do 463-836, Korea
| | - Jong-Hwa Park
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | - Jin Woo Park
- BioActs, DKC Corporation, 693-2 Gojan-dong, Namdong-gu, Incheon 405-820, Korea
| | - Ye Sun Han
- Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| |
Collapse
|
23
|
Abstract
Histone acetylation is dynamically and reversibly controlled by histone acetyltransferases and deacetylases during cellular events such as cell division and differentiation. However, the dynamics of histone modifications in living cells are poorly understood because of the lack of experimental tools to monitor them in a real-time fashion. Herein, we introduce Förster/fluorescence resonance energy transfer (FRET)-based indicators to visualize acetylation of histone H4, and describe a protocol for live-cell imaging with high spatiotemporal resolution.
Collapse
|
24
|
Lang K, Chin JW. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem Rev 2014; 114:4764-806. [PMID: 24655057 DOI: 10.1021/cr400355w] [Citation(s) in RCA: 801] [Impact Index Per Article: 80.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kathrin Lang
- Medical Research Council Laboratory of Molecular Biology , Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | | |
Collapse
|
25
|
Liang J, Yang Y, Yin P, Ding Y, Shen Y, Qin M, Wang J, Xu Q, Cao Y, Wang W. A yellow fluorescent protein with reduced chloride sensitivity engineered by loop-insertion. Chembiochem 2013; 14:1423-6. [PMID: 23868849 DOI: 10.1002/cbic.201300199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Indexed: 11/06/2022]
Abstract
Light it up! We demonstrate a novel way to reduce the chloride sensitivity of yellow fluorescent protein by inserting glycine residues in its loop region. The length and position for the insertion were optimized experimentally, and a plausible underlying mechanism is proposed.
Collapse
Affiliation(s)
- Junyi Liang
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Jiangsu 210008, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Takamune N, Irisaka Y, Yamamoto M, Harada K, Shoji S, Misumi S. Induction of extremely low protein expression level by fusion of C-terminal region of Nef. Biotechnol Appl Biochem 2013; 59:245-53. [PMID: 23586835 DOI: 10.1002/bab.1021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 04/02/2012] [Indexed: 11/12/2022]
Abstract
Nef is one of the accessory proteins of human immunodeficiency viruses. Here, we noted that the relative expression level of Nef(NL4-3) is much lower than that of NefJR-CSF in HEK293 cells. By evaluating the expression level using a Nef mutant, it was indicated that amino acids 129-206 of Nef(NL4-3), that is, the C-terminal region named NLAA129-206, could contain the region responsible for the induction of the low protein expression level. In addition, the expression levels of the enhanced green fluorescent protein and Renilla luciferase became extremely low with the fusion of NLAA129-206. Interestingly, the NLAA129-206-corresponding sequences of other Nef variants with relatively high expression levels also induced the extremely low protein expression level by fusion. These results suggest that the C-terminal region of Nef can generally induce an extremely low protein expression level. Here, we propose that the C-terminal region of Nef could become an excellent tool for the induction of an extremely low expression level of arbitrary proteins by attachment as fusion proteins.
Collapse
Affiliation(s)
- Nobutoki Takamune
- Department of Pharmaceutical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Stender AS, Marchuk K, Liu C, Sander S, Meyer MW, Smith EA, Neupane B, Wang G, Li J, Cheng JX, Huang B, Fang N. Single cell optical imaging and spectroscopy. Chem Rev 2013; 113:2469-527. [PMID: 23410134 PMCID: PMC3624028 DOI: 10.1021/cr300336e] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Anthony S. Stender
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Kyle Marchuk
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Chang Liu
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Suzanne Sander
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Matthew W. Meyer
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Emily A. Smith
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Bhanu Neupane
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Gufeng Wang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Junjie Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Ji-Xin Cheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Bo Huang
- Department of Pharmaceutical Chemistry and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| | - Ning Fang
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| |
Collapse
|
28
|
Kominami K, Nagai T, Sawasaki T, Tsujimura Y, Yashima K, Sunaga Y, Tsuchimochi M, Nishimura J, Chiba K, Nakabayashi J, Koyamada K, Endo Y, Yokota H, Miyawaki A, Manabe N, Sakamaki K. In vivo imaging of hierarchical spatiotemporal activation of caspase-8 during apoptosis. PLoS One 2012. [PMID: 23185580 PMCID: PMC3503975 DOI: 10.1371/journal.pone.0050218] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Activation of caspases is crucial for the execution of apoptosis. Although the caspase cascade associated with activation of the initiator caspase-8 (CASP8) has been investigated in molecular and biochemical detail, the dynamics of CASP8 activation are not fully understood. Methodology/Principal Findings We have established a biosensor based on fluorescence resonance energy transfer (FRET) for visualizing apoptotic signals associated with CASP8 activation at the single-cell level. Our dual FRET (dual-FRET) system, comprising a triple fusion fluorescent protein, enabled us to simultaneously monitor the activation of CASP8 and its downstream effector, caspase-3 (CASP3) in single live cells. With the dual-FRET-based biosensor, we detected distinct activation patterns of CASP8 and CASP3 in response to various apoptotic stimuli in mammalian cells, resulting in the positive feedback amplification of CASP8 activation. We reproduced these observations by in vitro reconstitution of the cascade, with a recombinant protein mixture that included procaspases. Furthermore, using a plasma membrane-bound FRET-based biosensor, we captured the spatiotemporal dynamics of CASP8 activation by the diffusion process, suggesting the focal activation of CASP8 is sufficient to propagate apoptotic signals through death receptors. Conclusions Our new FRET-based system visualized the activation process of both initiator and effector caspases in a single apoptotic cell and also elucidated the necessity of an amplification loop for full activation of CASP8.
Collapse
Affiliation(s)
- Katsuya Kominami
- Department of Animal Development and Physiology, Kyoto University, Kyoto, Japan
| | - Takeharu Nagai
- Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, Wako, Saitama, Japan
- Laboratory for Nanosystems Physiology, Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tatsuya Sawasaki
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime, Japan
| | - Yuki Tsujimura
- Bio-research Infrastructure Construction Team, Advanced Science Institute, RIKEN, Wako, Saitama, Japan
| | - Kenta Yashima
- Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, Kawasaki, Kanagawa, Japan
| | - Yasuhiro Sunaga
- Cell Scale Team, Computational Science Research Program, RIKEN, Wako, Saitama, Japan
| | - Masateru Tsuchimochi
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime, Japan
| | - Jun Nishimura
- Department of Electrical Engineering, Kyoto University, Kyoto, Japan
| | - Kumiko Chiba
- Department of Animal Development and Physiology, Kyoto University, Kyoto, Japan
| | - Jun Nakabayashi
- Department of Immunology, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Koji Koyamada
- Institute for the Promotion of Excellence in High Education, Kyoto University, Kyoto, Japan
| | - Yaeta Endo
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime, Japan
| | - Hideo Yokota
- Bio-research Infrastructure Construction Team, Advanced Science Institute, RIKEN, Wako, Saitama, Japan
- Cell Scale Team, Computational Science Research Program, RIKEN, Wako, Saitama, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, Wako, Saitama, Japan
| | - Noboru Manabe
- Research Unit for Animal Life Sciences, Animal Resource Science Center, The University of Tokyo, Kasama, Ibaraki, Japan
| | - Kazuhiro Sakamaki
- Department of Animal Development and Physiology, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
29
|
Sochol RD, Li S, Lee LP, Lin L. Continuous flow multi-stage microfluidic reactors via hydrodynamic microparticle railing. LAB ON A CHIP 2012; 12:4168-77. [PMID: 22875202 DOI: 10.1039/c2lc40610a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
"Multi-stage" fluidic reactions are integral to diverse biochemical assays; however, such processes typically require laborious and time-intensive fluidic mixing procedures in which distinct reagents and/or washes must be loaded sequentially and separately (i.e., one-at-a-time). Microfluidic processors that enable multi-stage fluidic reactions with suspended microparticles (e.g., microbeads and cells) to be performed autonomously could greatly extend the efficacy of lab-on-a-chip technologies. Here we present a single-layer microfluidic reactor that utilizes a microfluidic railing methodology to passively transport suspended microbeads and cells into distinct, adjacent laminar flow streams for rapid fluidic mixing and assaying. Four distinct molecular synthesis processes (i.e., consisting of 48 discrete fluidic mixing stages in total) were accomplished on polystyrene microbead substrates (15 μm in diameter) in parallel, without the need for external observation or regulation during device operation. Experimental results also revealed successful railing of suspended bovine aortic endothelial cells (approximately 13 to 17 μm in diameter). The presented railing system provides an effective continuous flow methodology to achieve bead-based and cell-based microfluidic reactors for applications including point-of-care (POC) molecular diagnostics, pharmacological screening, and quantitative cell biology.
Collapse
Affiliation(s)
- Ryan D Sochol
- Department of Mechanical Engineering, University of California, Berkeley, USA.
| | | | | | | |
Collapse
|
30
|
Liu K, Feng X, Ma Z, Luo C, Zhou B, Cao R, Huang L, Miao D, Pang R, He D, Lian X, Chen P. Antiviral activity of phage display selected peptides against Porcine reproductive and respiratory syndrome virus in vitro. Virology 2012; 432:73-80. [PMID: 22743126 DOI: 10.1016/j.virol.2012.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/07/2012] [Accepted: 05/14/2012] [Indexed: 11/18/2022]
Abstract
Porcine reproductive and respiratory syndrome is an important infectious disease of pigs and has a significant harmful effect on the livestock industry, especially in China. PRRSV ORF1b gene encodes primary proteins which play a vital role during PRRSV replication. In this paper, various 12-amino-acid peptides were displayed. These peptides could bind to the polymerase and helicase of PRRSV ORF1b protein, respectively, in which p9 exerted the highest antiviral activity with an IC50 of 56 μM, and the minimum toxicity to cells. It was proved that p9 inhibited PRRSV replication in infected MARC-145 cells in a dose-dependent manner, and the amino acid sequence of HRILMRIR was important for antiviral activity of p9. Also, p9 could bind to the cell membrane and penetrated into cells. These result suggested that p9 might be a potential therapeutic drug for PRRSV infection.
Collapse
Affiliation(s)
- Ke Liu
- Key Laboratory of Animal Disease Diagnostic & Immunology, Department of Veterinary Medicine College, Nanjing Agricultural University, YiFu 4037, Nanjing, Jiangsu 210095, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Disulfide linkages mediating nucleocapsid protein dimerization are not required for porcine arterivirus infectivity. J Virol 2012; 86:4670-81. [PMID: 22301142 DOI: 10.1128/jvi.06709-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The nucleocapsid (N) proteins of the North American (type II) and European (type I) genotypes of porcine reproductive and respiratory syndrome virus (PRRSV) share only approximately 60% genetic identity, and the functionality of N in both genotypes, especially its role in virion assembly, is still poorly understood. In this study, we demonstrated that the ORF7 3' untranslated region or ORF7 of type I is functional in the type II PRRSV background. Based on these results, we postulated that the cysteine at position 90 (Cys90) of the type II N protein, which corresponds to an alanine in the type I protein, is nonessential for virus infectivity. The replacement of Cys90 with alanine confirmed this hypothesis. We then hypothesized that all of the cysteines in the N protein could be replaced by alanines. Mutational analysis revealed that, in contradiction to previously reported findings, the replacement of all of the cysteines, either singly or in combination, did not impair the growth of either type II or type I PRRSV. Treatment with the alkylating agent N-ethylmaleimide inhibited cysteine-mediated N dimerization in living cells but not in released virions. Additionally, bimolecular fluorescence complementation assays revealed noncovalent interactions in living cells among the N and C termini and between the N-terminal and C-terminal regions of the N proteins of both genotypes of PRRSV. These results demonstrate that the disulfide linkages mediating the N dimerization are not required for PRRSV viability and help to promote our understanding of the mechanism underlying arterivirus particle assembly.
Collapse
|
32
|
Grellier E, Lécolle K, Rogée S, Couturier C, D'Halluin JC, Hong SS, Fender P, Boulanger P, Quesnel B, Colin M. A fiber-modified adenoviral vector interacts with immunoevasion molecules of the B7 family at the surface of murine leukemia cells derived from dormant tumors. Mol Cancer 2011; 10:105. [PMID: 21884581 PMCID: PMC3180432 DOI: 10.1186/1476-4598-10-105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 08/31/2011] [Indexed: 12/26/2022] Open
Abstract
Tumor cells can escape the immune system by overexpressing molecules of the B7 family, e.g. B7-H1 (PD-L1 or CD86), which suppresses the anti-tumor T-cell responses through binding to the PD-1 receptor, and similarly for B7.1 (CD80), through binding to CTLA-4. Moreover, direct interactions between B7-H1 and B7.1 molecules are also likely to participate in the immunoevasion mechanism. In this study, we used a mouse model of tumor dormancy, DA1-3b leukemia cells. We previously showed that a minor population of DA1-3b cells persists in equilibrium with the immune system for long periods of time, and that the levels of surface expression of B7-H1 and B7.1 molecules correlates with the dormancy time. We found that leukemia cells DA1-3b/d365 cells, which derived from long-term dormant tumors and overexpressed B7-H1 and B7.1 molecules, were highly permissive to Ad5FB4, a human adenovirus serotype 5 (Ad5) vector pseudotyped with chimeric human-bovine fibers. Both B7-H1 and B7.1 were required for Ad5FB4-cell binding and entry, since (i) siRNA silencing of one or the other B7 gene transcript resulted in a net decrease in the cell binding and Ad5FB4-mediated transduction of DA1-3b/d365; and (ii) plasmid-directed expression of B7.1 and B7-H1 proteins conferred to Ad5FB4-refractory human cells a full permissiveness to this vector. Binding data and flow cytometry analysis suggested that B7.1 and B7-H1 molecules played different roles in Ad5FB4-mediated transduction of DA1-3b/d365, with B7.1 involved in cell attachment of Ad5FB4, and B7-H1 in Ad5FB4 internalization. BRET analysis showed that B7.1 and B7-H1 formed heterodimeric complexes at the cell surface, and that Ad5FB4 penton, the viral capsomere carrying the fiber projection, could negatively interfere with the formation of B7.1/B7-H1 heterodimers, or modify their conformation. As interactors of B7-H1/B7.1 molecules, Ad5FB4 particles and/or their penton capsomeres represent potential therapeutic agents targeting cancer cells that had developed immunoevasion mechanisms.
Collapse
|
33
|
Miyawaki A. Development of Probes for Cellular Functions Using Fluorescent Proteins and Fluorescence Resonance Energy Transfer. Annu Rev Biochem 2011; 80:357-73. [DOI: 10.1146/annurev-biochem-072909-094736] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, Brain Science Institute, RIKEN, Wako-city, Saitama 351-0198, Japan;
- Life Function and Dynamics, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Wako-city, Saitama 351-0198, Japan
| |
Collapse
|
34
|
Campbell RE. Fluorescent-protein-based biosensors: modulation of energy transfer as a design principle. Anal Chem 2010; 81:5972-9. [PMID: 19552419 DOI: 10.1021/ac802613w] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genetically-encoded biosensors based on FRET between fluorescent proteins of different hues enable quantitative measurement of intracellular enzyme activities and small molecule concentrations. (To listen to a podcast about this feature, please go to the Analytical Chemistry website at pubs.acs.org/journal/ancham.).
Collapse
Affiliation(s)
- Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| |
Collapse
|
35
|
Fridmanis D, Petrovska R, Kalnina I, Slaidina M, Peculis R, Schiöth HB, Klovins J. Identification of domains responsible for specific membrane transport and ligand specificity of the ACTH receptor (MC2R). Mol Cell Endocrinol 2010; 321:175-83. [PMID: 20206229 DOI: 10.1016/j.mce.2010.02.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/23/2010] [Accepted: 02/23/2010] [Indexed: 12/26/2022]
Abstract
The adrenocorticotropic hormone (ACTH) receptor has highly specific membrane expression that is limited to adrenal cells; in other cell types the polypeptide fails to be transported to the cell surface. Unlike other evolutionarily related members of the melanocortin receptor family (MC1R-MC5R) that recognize different melanocortin peptides, ACTHR (MC2R) binds only ACTH. We used a mutagenesis approach involving systematic construction of chimeric ACTHR/MC4R receptors to identify the domains determining the selectivity of ACTHR membrane transport and ACTH binding. In total 15 chimeric receptors were created by replacement of selected domains of human ACTHR with the corresponding regions of human MC4R. We developed an analytical method to accurately quantify cell-membrane localization of recombinant receptors fused with enhanced green fluorescent protein by confocal fluorescence microscopy. The chimeric receptors were also tested for their ability to bind ACTH (1-24) and the melanocyte-stimulating hormone (MSH) analog, Nle4, DPhe7-alpha-MSH, and to induce a cAMP response. Our results indicate that substitution of the MC4R N-terminal segment with the homologous segment of ACTHR significantly decreased membrane transport. We also identified another signal localized in the third and fourth transmembrane regions as the main determinant of ACTHR intracellular retention. In addition, we found that the fourth and fifth transmembrane domains of the ACTHR are involved in ACTH binding selectivity. We discuss the mechanisms involved in bypassing these arrest signals via an interaction with melanocortin 2 receptor accessory protein (MRAP) and the possible mechanisms that determine the high ligand-binding specificity of ACTHR.
Collapse
|
36
|
Kaláb P, Soderholm J. The design of Förster (fluorescence) resonance energy transfer (FRET)-based molecular sensors for Ran GTPase. Methods 2010; 51:220-32. [PMID: 20096786 DOI: 10.1016/j.ymeth.2010.01.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 01/19/2010] [Indexed: 01/01/2023] Open
Abstract
The application of FRET-based molecular biosensors provided confirmation of the central model of Ran GTPase function and led to important new insights into its physiological role. In many fields of cell biology, methods employing FRET are a standard approach that is becoming increasingly accessible due to advances in instrumentation and available fluorophores. However, the optimal design of a FRET sensor remains to be the cornerstone of any successful FRET application. Utilizing the recent literature on FRET applications and our studies on Ran, we outline the basic considerations involved in designing molecular FRET sensors. We point to several broadly applicable principles that were used in many different FRET sensors that can detect a wide range of molecular events. Using the FRET sensors for Ran that we created as examples, we then focus on the practical aspects of FRET assays. We describe the preparation of a bipartite FRET sensor consisting of ECFP-Ran and EYFP-importin beta and its validation as a reporter for FRET-based high throughput screening in small molecule libraries. Finally, we review the design and optimization of monomolecular FRET sensors that monitor the RanGTP-RanBP1 interaction, and of sensors detecting the RanGTP-regulated importin beta cargo release.
Collapse
Affiliation(s)
- Petr Kaláb
- National Cancer Institute, NIH, Bethesda, MD 20892-4256, USA.
| | | |
Collapse
|
37
|
Fluorescence resonance energy transfer analysis of merlin conformational changes. Mol Cell Biol 2010; 30:54-67. [PMID: 19884346 DOI: 10.1128/mcb.00248-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurofibromatosis type 2 is an inherited autosomal disorder caused by biallelic inactivation of the NF2 tumor suppressor gene. The NF2 gene encodes a 70-kDa protein, merlin, which is a member of the ezrin-radixin-moesin (ERM) family. ERM proteins are believed to be regulated by a transition between a closed conformation, formed by binding of their N-terminal FERM domain and C-terminal tail domain (CTD), and an open conformation, in which the two domains do not interact. Previous work suggests that the tumor suppressor function of merlin is similarly regulated and that only the closed form is active. Therefore, understanding the mechanisms that control its conformation is crucial. We have developed a series of probes that measures merlin conformation by fluorescence resonance energy transfer, both as purified protein and in live cells. Using these tools, we find that merlin exists predominately as a monomer in a stable, closed conformation that is mediated by the central alpha-helical domain. The contribution from the FERM-CTD interaction to the closed conformation appears to be less important. Upon phosphorylation or interaction with an effector protein, merlin undergoes a subtle conformational change, suggesting a novel mechanism that modulates the interaction between the FERM domain and the CTD.
Collapse
|
38
|
Abstract
Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) causes mosquito-borne epidemic diseases in humans and livestock. The virus carries three RNA segments, L, M, and S, of negative or ambisense polarity. L protein, an RNA-dependent RNA polymerase, encoded in the L segment, and N protein, encoded in the S segment, exert viral RNA replication and transcription. Coexpression of N, hemagglutinin (HA)-tagged L, and viral minigenome resulted in minigenome replication and transcription, a finding that demonstrated HA-tagged L was biologically active. Likewise L tagged with green fluorescent protein (GFP) was biologically competent. Coimmunoprecipitation analysis using extracts from cells coexpressing HA-tagged L and GFP-tagged L showed the formation of an L oligomer. Bimolecular fluorescence complementation analysis and coimmunoprecipitation studies demonstrated the formation of an intermolecular L-L interaction through its N-terminal and C-terminal regions and also suggested an intramolecular association between the N-terminal and C-terminal regions of L protein. A biologically inactive L mutant, in which the conserved signature SDD motif was replaced by the amino acid residues GNN, exhibited a dominant negative phenotype when coexpressed with wild-type L in the minigenome assay system. Expression of this mutant L also inhibited viral gene expression in virus-infected cells. These data provided compelling evidence for the importance of oligomerization of RVFV L protein for its polymerase activity.
Collapse
|
39
|
Hennigan RF, Chaiken MF, Foster LA, Ip W. A FRET-based approach for studying conformational changes of a cytoskeleton-related tumor suppressor molecule. Methods Mol Biol 2009; 586:143-56. [PMID: 19768428 DOI: 10.1007/978-1-60761-376-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Changes in conformation are an important regulatory mechanism for a wide variety of proteins. Proteins whose activity must change in response to external stimuli often undergo dramatic changes in their tertiary structure in a temporally and spatially coordinated manner, resulting in a change in enzymatic activity or in the profile of binding partners. To understand how these proteins function, it is critically important to be able to monitor the timing and subcellular localization of these conformational changes, preferably in a quantitative manner and in the context of a living cell. Unfortunately, there is a dearth of experimental techniques that can detect changes in conformation directly. In this chapter, we describe an approach that takes advantage of fluorescence resonance energy transfer (FRET), a well-known physical phenomenon between a spectrally compatible pair of fluorescent molecules, which is exquisitely sensitive to the distance between them. Combined with the use of proteins of the green fluorescent protein (GFP) family, this approach can be used to detect changes in protein conformation in vitro and in vivo effectively.
Collapse
Affiliation(s)
- Robert F Hennigan
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH, USA
| | | | | | | |
Collapse
|
40
|
Robers M, Pinson P, Leong L, Batchelor RH, Gee KR, Machleidt T. Fluorescent labeling of proteins in living cells using the FKBP12 (F36V) tag. Cytometry A 2009; 75:207-24. [PMID: 18837033 DOI: 10.1002/cyto.a.20649] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Over the past decade live cell imaging has become a key technology to monitor and understand the dynamic behavior of proteins in the physiological context of living cells. The visualization of a protein of interest is most commonly achieved by genetically fusing it to green fluorescent protein (GFP) or one of it variants. Considerable effort has been made to develop alternative methods of protein labeling to overcome the intrinsic limitations of fluorescent proteins. In this report we show the optimization of a live cell labeling technology based on the use of a mutant form of FKBP12 (FKBP12(F36V)) in combination with a synthetic high affinity ligand (SLF') that specifically binds to this mutant. It had been previously shown that the use of a fluorescein-conjugated form of SLF' (5'-fluorescein-SLF') allowed the labeling of proteins genetically fused to FKBP-F36V in living cells. Here we describe the identification of novel fluorescent SLF'dye conjugates that allow specific labeling of FKBP12(F36V) fusion proteins in living cells. To further increase the versatility of this technology we developed a number of technical improvements. We implemented the use of pluronics during the labeling process to facilitate the uptake of the SLF'-dye conjugates and the use suppression dyes to reduce background signal. Furthermore, the time and dose dependency of labeling was investigated in order to determine optimal labeling conditions. Finally, the specificity of the FKBP12(F36V) labeling technology was extensively validated by morphological analysis using a diverse set of FKBP12(F36V) fusions proteins. In addition we show a number of different application examples, such as translocation assays, the generation of biosensors, and multiplex labeling in combination with different labeling technologies, such as FlAsH or GFP. In summary we show that the FKBP12(F36V)/SLF' labeling technology has a broad range of applications and should prove useful for the study of protein function in living cells.
Collapse
Affiliation(s)
- Matt Robers
- Invitrogen Discovery Sciences, Madison, Wisconsin 53719, USA
| | | | | | | | | | | |
Collapse
|
41
|
Hsu STD, Behrens C, Cabrita LD, Dobson CM. 1H, 15N and 13C assignments of yellow fluorescent protein (YFP) Venus. BIOMOLECULAR NMR ASSIGNMENTS 2009; 3:67-72. [PMID: 19636949 DOI: 10.1007/s12104-009-9143-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 12/24/2008] [Indexed: 05/28/2023]
Abstract
We present here the backbone and side-chain NMR assignments of YFP Venus, a 238-residue protein that emits yellow fluorescence in its native state. Venus is a variant of the green fluorescent protein (GFP), which has improved chromophore maturation and brightness, and the photochemistry and photophysics of which are insensitive to experimental conditions, such as the pH value and buffer content, making it a favourable biomarker.
Collapse
Affiliation(s)
- Shang-Te Danny Hsu
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | | | | | | |
Collapse
|
42
|
Spectral unmixing: analysis of performance in the olfactory bulb in vivo. PLoS One 2009; 4:e4418. [PMID: 19198655 PMCID: PMC2635473 DOI: 10.1371/journal.pone.0004418] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 12/23/2008] [Indexed: 11/25/2022] Open
Abstract
Background The generation of transgenic mice expressing combinations of fluorescent proteins has greatly aided the reporting of activity and identification of specific neuronal populations. Methods capable of separating multiple overlapping fluorescence emission spectra, deep in the living brain, with high sensitivity and temporal resolution are therefore required. Here, we investigate to what extent spectral unmixing addresses these issues. Methodology/Principal Findings Using fluorescence resonance energy transfer (FRET)-based reporters, and two-photon laser scanning microscopy with synchronous multichannel detection, we report that spectral unmixing consistently improved FRET signal amplitude, both in vitro and in vivo. Our approach allows us to detect odor-evoked FRET transients 180–250 µm deep in the brain, the first demonstration of in vivo spectral imaging and unmixing of FRET signals at depths greater than a few tens of micrometer. Furthermore, we determine the reporter efficiency threshold for which FRET detection is improved by spectral unmixing. Conclusions/Significance Our method allows the detection of small spectral variations in depth in the living brain, which is essential for imaging efficiently transgenic animals expressing combination of multiple fluorescent proteins.
Collapse
|
43
|
Chapter 12 Reflections on FRET imaging. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s0075-7535(08)00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
44
|
Reporting neural activity with genetically encoded calcium indicators. ACTA ACUST UNITED AC 2008; 36:69-86. [PMID: 18941901 PMCID: PMC2755531 DOI: 10.1007/s11068-008-9029-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/22/2008] [Accepted: 08/06/2008] [Indexed: 10/21/2022]
Abstract
Genetically encoded calcium indicators (GECIs), based on recombinant fluorescent proteins, have been engineered to observe calcium transients in living cells and organisms. Through observation of calcium, these indicators also report neural activity. We review progress in GECI construction and application, particularly toward in vivo monitoring of sparse action potentials (APs). We summarize the extrinsic and intrinsic factors that influence GECI performance. A simple model of GECI response to AP firing demonstrates the relative significance of these factors. We recommend a standardized protocol for evaluating GECIs in a physiologically relevant context. A potential method of simultaneous optical control and recording of neuronal circuits is presented.
Collapse
|
45
|
Calcium imaging in the living brain: prospects for molecular medicine. Trends Mol Med 2008; 14:389-99. [DOI: 10.1016/j.molmed.2008.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/04/2008] [Accepted: 07/04/2008] [Indexed: 01/28/2023]
|
46
|
Ciruela F. Fluorescence-based methods in the study of protein-protein interactions in living cells. Curr Opin Biotechnol 2008; 19:338-43. [PMID: 18602005 DOI: 10.1016/j.copbio.2008.06.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/04/2008] [Accepted: 06/06/2008] [Indexed: 11/29/2022]
Abstract
Multiprotein complexes partake in nearly all cell functions, thus the characterization and visualization of protein-protein interactions in living cells constitute an important step in the study of a large array of cellular mechanisms. Recently, noninvasive fluorescence-based methods using resonance energy transfer (RET), namely bioluminescence-RET (BRET) and fluorescence-RET (FRET), and those centered on protein fragment complementation, such as bimolecular fluorescence complementation (BiFC), have been successfully used in the study of protein interactions. These new technologies are nowadays the most powerful approaches for visualizing the interactions occurring within protein complexes in living cells, thus enabling the investigation of protein behavior in their normal milieu. Here we address the individual strengths and weaknesses of these methods when applied to the study of protein-protein interactions.
Collapse
Affiliation(s)
- Francisco Ciruela
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina (Campus de Bellvitge), IDIBELL-Universitat de Barcelona, 08907 L'Hospitalet del Llobregat, Barcelona, Spain.
| |
Collapse
|
47
|
Kogure T, Kawano H, Abe Y, Miyawaki A. Fluorescence imaging using a fluorescent protein with a large Stokes shift. Methods 2008; 45:223-6. [PMID: 18586106 DOI: 10.1016/j.ymeth.2008.06.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 06/16/2008] [Indexed: 11/24/2022] Open
Abstract
Keima is a far-red fluorescent protein endowed with a large Stokes shift. It absorbs light maximally at around 440nm and emits maximally at around 620nm. While the original Keima is obligately tetrameric (tKeima), the dimeric and monomeric versions (mKeima and dKeima, respectively) have been generated. More recently, a tandem dimer of Keima (tdKeima) has been developed as the brightest version. Here we describe examples, which show the usefulness of Keima for dual-color fluorescence imaging technologies, such as fluorescence cross-correlation spectroscopy (FCCS) and two-photon laser scanning microscopy (TPLSM). Keima can be used in conjunction with existing fluorescent proteins in which the Stokes shift is much smaller, with the idea that while two fluorescent proteins are excited by a single laser each will fluoresce a different color.
Collapse
Affiliation(s)
- Takako Kogure
- Laboratory for Cell Function and Dynamics, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
48
|
Okumoto S, Takanaga H, Frommer WB. Quantitative imaging for discovery and assembly of the metabo-regulome. THE NEW PHYTOLOGIST 2008; 180:271-295. [PMID: 19138219 PMCID: PMC2663047 DOI: 10.1111/j.1469-8137.2008.02611.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Little is known about regulatory networks that control metabolic flux in plant cells. Detailed understanding of regulation is crucial for synthetic biology. The difficulty of measuring metabolites with cellular and subcellular precision is a major roadblock. New tools have been developed for monitoring extracellular, cytosolic, organellar and vacuolar ion and metabolite concentrations with a time resolution of milliseconds to hours. Genetically encoded sensors allow quantitative measurement of steady-state concentrations of ions, signaling molecules and metabolites and their respective changes over time. Fluorescence resonance energy transfer (FRET) sensors exploit conformational changes in polypeptides as a proxy for analyte concentrations. Subtle effects of analyte binding on the conformation of the recognition element are translated into a FRET change between two fused green fluorescent protein (GFP) variants, enabling simple monitoring of analyte concentrations using fluorimetry or fluorescence microscopy. Fluorimetry provides information averaged over cell populations, while microscopy detects differences between cells or populations of cells. The genetically encoded sensors can be targeted to subcellular compartments or the cell surface. Confocal microscopy ultimately permits observation of gradients or local differences within a compartment. The FRET assays can be adapted to high-throughput analysis to screen mutant populations in order to systematically identify signaling networks that control individual steps in metabolic flux.
Collapse
Affiliation(s)
- Sakiko Okumoto
- Plant Pathology, Physiology, and Weed Science Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Hitomi Takanaga
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
| | - Wolf B. Frommer
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
- Joint Bioenergy Institute, Feedstocks Division, Emerystation East, 5885 Hollis Street Emeryville, CA 94608, USA
| |
Collapse
|