1
|
Vishnivetskiy SA, Gurevich EV, Gurevich VV. The role of arrestin-1 N-edge in rhodopsin binding. Cell Signal 2025; 134:111935. [PMID: 40505845 DOI: 10.1016/j.cellsig.2025.111935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2025] [Revised: 06/03/2025] [Accepted: 06/08/2025] [Indexed: 06/16/2025]
Abstract
Arrestin-1, in contrast to other subtypes, demonstrates exquisite selectivity for the active phosphorylated form of its cognate receptor, rhodopsin. The loop between β-strands IX and X, termed N-edge because it is located on the distal tip of the N-domain in the folded arrestin molecule, was implicated in the binding of arrestin-1 and -2 to their cognate receptors. We performed alanine scanning and charge reversal mutagenesis of all twelve residues in this element of bovine arrestin-1. The mutants were tested for the binding to phosphorylated and unphosphorylated light-activated rhodopsin in the context of wild type and "enhanced" in terms of receptor binding C-terminally truncated arrestin-1-(1-378). The data identified two phosphate-binding lysines and seven other residues enhancing arrestin-1 preference for phosphorylated rhodopsin over unphosphorylated. We deleted three of these that are absent in the other mammalian arrestins and found that this insert is generally important for rhodopsin binding, not for enhanced selectivity. Eleven out of nineteen mutations differentially affected the binding of wild type arrestin-1 and its enhanced mutant, suggesting that the prevalent form of the complex of these two arrstin-1 variants with rhodopsin is different.
Collapse
Affiliation(s)
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
2
|
Salom D, Palczewski K. Structure and self-association of Arrestin-1. J Struct Biol 2025; 217:108173. [PMID: 39880147 PMCID: PMC11981688 DOI: 10.1016/j.jsb.2025.108173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/04/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Arrestins halt cell signaling by binding to phosphorylated activated G protein-coupled receptors. Arrestin-1 binds to rhodopsin, arrestin-4 binds to cone opsins, and arrestins-2,3 bind to the rest of GPCRs. In addition, it has been reported that arrestin-1 is functionally expressed in mouse cone photoreceptors. The structural characterization of arrestins was spearheaded by the elucidation of the crystal structure of bovine arrestin-1. Further progress in arrestin structural biology showed that the general fold of the four vertebrate arrestin subtypes is conserved and that self-association seems to play important physiological roles. In solution, mammalian arrestin-1 has been proposed to exist in a species-dependent equilibrium between monomers, dimers, and tetramers, the activated monomer being the form that binds to photo-activated phosphorylated rhodopsin. However, the nature and function of the oligomers of the different arrestin subtypes are still under debate. This article reviews several structural aspects of arrestin-1 in light of two recent crystal structures of Xenopus arrestin-1, which have provided insights on the structure, self-association, activation, and evolution of arrestins in general, and of arrestin-1 in particular.
Collapse
Affiliation(s)
- David Salom
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA 92697, USA.
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA 92697, USA; Department of Chemistry, University of California, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
3
|
Salom D, Kiser PD, Palczewski K. Insights into the Activation and Self-Association of Arrestin-1. Biochemistry 2025; 64:364-376. [PMID: 39704710 PMCID: PMC11784764 DOI: 10.1021/acs.biochem.4c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Arrestins halt signal transduction by binding to the phosphorylated C-termini of activated G protein-coupled receptors. Arrestin-1, the first subtype discovered, binds to rhodopsin in rod cells. Mutations in SAG, the gene encoding Arrestin-1, are linked to Oguchi disease, characterized by delayed dark adaptation. Since the discovery of Arrestin-1, substantial progress has been made in understanding the role of these regulatory proteins in phototransduction, including the characterization of visual phenotypes of animals and humans lacking this protein, discovery of splice variants, and documentation of its binding to inositol-polyphosphates. Arrestin-1 was one of the first structurally characterized proteins in the phototransduction cascade. However, there are knowledge gaps regarding the conformational intermediates leading to its binding to phosphorylated rhodopsin. Among various mammalian Arrestin-1 conformations captured via crystallography, the preactivated state is represented by the mutant R175E-Arrestin-1 and by a C-terminally truncated splice variant (p44). This report describes a novel purification method of Arrestin-1 from bovine retinas followed by limited proteolysis to obtain a protein resembling p44. We solved the crystal structure of this preactivated, shortened 3-367Arrestin-1 at a resolution of 1.40 Å. The structure reveals a more complete picture of the finger loop structure and of the role of the polar core in the activation of Arrestin-1. The structure of 3-367Arrestin-1 captures an intermediate form halfway between the inactive and fully activated conformations of Arrestin-1. Finally, we addressed the question of Arrestin-1 oligomerization by comparing the packing interfaces in different Arrestin-1 crystals and dimer models predicted by AlphaFold 3.
Collapse
Affiliation(s)
- David Salom
- Gavin Herbert Eye Institute – Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, CA 92697, USA
| | - Philip D. Kiser
- Gavin Herbert Eye Institute – Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, CA 92697, USA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
- Research Service, VA Long Beach Healthcare System, Long Beach, CA, USA
- Department of Clinical Pharmacy Practice, University of Irvine School of Pharmacy and Pharmaceutical Sciences, Irvine, CA 92697, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute – Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, CA 92697, USA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
4
|
Vishnivetskiy SA, Paul T, Gurevich EV, Gurevich VV. The Role of Individual Residues in the N-Terminus of Arrestin-1 in Rhodopsin Binding. Int J Mol Sci 2025; 26:715. [PMID: 39859432 PMCID: PMC11765510 DOI: 10.3390/ijms26020715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Sequences and three-dimensional structures of the four vertebrate arrestins are very similar, yet in sharp contrast to other subtypes, arrestin-1 demonstrates exquisite selectivity for the active phosphorylated form of its cognate receptor, rhodopsin. The N-terminus participates in receptor binding and serves as the anchor of the C-terminus, the release of which facilitates arrestin transition into a receptor-binding state. We tested the effects of substitutions of fourteen residues in the N-terminus of arrestin-1 on the binding to phosphorylated and unphosphorylated light-activated rhodopsin of wild-type protein and its enhanced mutant with C-terminal deletion that demonstrates higher binding to both functional forms of rhodopsin. Profound effects of mutations identified lysine-15 as the main phosphate sensor and phenylalanine-13 as the key anchor of the C-terminus. These residues are conserved in all arrestin subtypes. Substitutions of five other residues reduced arrestin-1 selectivity for phosphorylated rhodopsin, indicating that wild-type residues participate in fine-tuning of arrestin-1 binding. Differential effects of numerous substitutions in wild-type and an enhanced mutant arrestin-1 suggest that these two proteins bind rhodopsin differently.
Collapse
Affiliation(s)
- Sergey A. Vishnivetskiy
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (S.A.V.); (E.V.G.)
| | - Trishita Paul
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA;
| | - Eugenia V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (S.A.V.); (E.V.G.)
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (S.A.V.); (E.V.G.)
| |
Collapse
|
5
|
Barnes CL, Salom D, Namitz KEW, Smith WC, Knutson BA, Cosgrove MS, Kiser PD, Calvert PD. Mechanisms of amphibian arrestin 1 self-association and dynamic distribution in retinal photoreceptors. J Biol Chem 2024; 300:107966. [PMID: 39510183 PMCID: PMC11652889 DOI: 10.1016/j.jbc.2024.107966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/15/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024] Open
Abstract
Visual arrestin 1 (Arr1) is an essential protein for termination of the light response in photoreceptors. While mammalian Arr1s form dimers and tetramers at physiological concentrations in vitro, oligomerization in other vertebrates has not been studied. Here we examine self-association of Arr1 from two amphibian species, Xenopus laevis (xArr1) and Ambystoma tigrinum (salArr1). Sedimentation velocity analytical ultracentrifugation showed that xArr1 and salArr1 oligomerization is limited to dimers. The KD for dimer formation was 53 μM for xArr1 and 44 μM for salArr1, similar to the 69 μM KD for bovine Arr1 (bArr1) dimers. Mutations of orthologous amino acids important for mammalian Arr1 oligomerization had no impact on xArr1 dimerization. Crystallography showed that the fold of xArr1 closely resembles that of bArr1 and crystal structures in different space groups revealed two potential xArr1 dimer forms: a symmetric dimer with a C-domain interface (CC dimer), resembling the bArr1 solution dimer, and an asymmetric dimer with an N-domain/C-domain interface. Mutagenesis of residues predicted to interact in either of these two dimer forms yielded modest reduction in dimer affinity, suggesting that the dimer interfaces compete or are not unique. Indeed, small-angle X-ray scattering and protein painting data were consistent with a symmetric anti-parallel solution dimer (AP dimer) distinct from the assemblies observed by crystallography. Finally, a computational model evaluating xArr1 binding to compartment-specific partners and partitioning based on heterogeneity of available cytoplasmic spaces shows that Arr1 distribution in dark-adapted photoreceptors is largely explained by the excluded volume effect together with tuning by oligomerization.
Collapse
Affiliation(s)
- Cassandra L Barnes
- Center for Vision Research and the Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute - Center for Translational Vision Research, University of California, Irvine, California, USA
| | - Kevin E W Namitz
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - W Clay Smith
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Bruce A Knutson
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Michael S Cosgrove
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Philip D Kiser
- Department of Ophthalmology, Gavin Herbert Eye Institute - Center for Translational Vision Research, University of California, Irvine, California, USA; Department of Physiology & Biophysics, University of California, Irvine, California, USA; Research Service, VA Long Beach Medical Center, Long Beach, California, USA.
| | - Peter D Calvert
- Center for Vision Research and the Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
6
|
Kim K, Chung KY. Molecular mechanism of β-arrestin-2 pre-activation by phosphatidylinositol 4,5-bisphosphate. EMBO Rep 2024; 25:4190-4205. [PMID: 39242774 PMCID: PMC11467438 DOI: 10.1038/s44319-024-00239-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/09/2024] [Accepted: 08/09/2024] [Indexed: 09/09/2024] Open
Abstract
Phosphorylated residues of G protein-coupled receptors bind to the N-domain of arrestin, resulting in the release of its C-terminus. This induces further allosteric conformational changes, such as polar core disruption, alteration of interdomain loops, and domain rotation, which transform arrestins into the receptor-activated state. It is widely accepted that arrestin activation occurs by conformational changes propagated from the N- to the C-domain. However, recent studies have revealed that binding of phosphatidylinositol 4,5-bisphosphate (PIP2) to the C-domain transforms arrestins into a pre-active state. Here, we aimed to elucidate the mechanisms underlying PIP2-induced arrestin pre-activation. We compare the conformational changes of β-arrestin-2 upon binding of PIP2 or phosphorylated C-tail peptide of vasopressin receptor type 2 using hydrogen/deuterium exchange mass spectrometry (HDX-MS). Introducing point mutations on the potential routes of the allosteric conformational changes and analyzing these mutant constructs with HDX-MS reveals that PIP2-binding at the C-domain affects the back loop, which destabilizes the gate loop and βXX to transform β-arrestin-2 into the pre-active state.
Collapse
Affiliation(s)
- Kiae Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.
| |
Collapse
|
7
|
Gurevich VV, Gurevich EV. GPCR-dependent and -independent arrestin signaling. Trends Pharmacol Sci 2024; 45:639-650. [PMID: 38906769 PMCID: PMC11227395 DOI: 10.1016/j.tips.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/23/2024]
Abstract
Biological activity of free arrestins is often overlooked. Based on available data, we compare arrestin-mediated signaling that requires and does not require binding to G-protein-coupled receptors (GPCRs). Receptor-bound arrestins activate ERK1/2, Src, and focal adhesion kinase (FAK). Yet, arrestin-3 regulation of Src family member Fgr does not appear to involve receptors. Free arrestin-3 facilitates the activation of JNK family kinases, preferentially binds E3 ubiquitin ligases Mdm2 and parkin, and facilitates parkin-dependent mitophagy. The binding of arrestins to microtubules and calmodulin and their function in focal adhesion disassembly and apoptosis also do not involve receptors. Biased GPCR ligands and the phosphorylation barcode can only affect receptor-dependent arrestin signaling. Thus, elucidation of receptor dependence or independence of arrestin functions has important scientific and therapeutic implications.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 27232, USA.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 27232, USA
| |
Collapse
|
8
|
Gurevich VV. Arrestins: A Small Family of Multi-Functional Proteins. Int J Mol Sci 2024; 25:6284. [PMID: 38892473 PMCID: PMC11173308 DOI: 10.3390/ijms25116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The first member of the arrestin family, visual arrestin-1, was discovered in the late 1970s. Later, the other three mammalian subtypes were identified and cloned. The first described function was regulation of G protein-coupled receptor (GPCR) signaling: arrestins bind active phosphorylated GPCRs, blocking their coupling to G proteins. It was later discovered that receptor-bound and free arrestins interact with numerous proteins, regulating GPCR trafficking and various signaling pathways, including those that determine cell fate. Arrestins have no enzymatic activity; they function by organizing multi-protein complexes and localizing their interaction partners to particular cellular compartments. Today we understand the molecular mechanism of arrestin interactions with GPCRs better than the mechanisms underlying other functions. However, even limited knowledge enabled the construction of signaling-biased arrestin mutants and extraction of biologically active monofunctional peptides from these multifunctional proteins. Manipulation of cellular signaling with arrestin-based tools has research and likely therapeutic potential: re-engineered proteins and their parts can produce effects that conventional small-molecule drugs cannot.
Collapse
|
9
|
Gurevich VV, Gurevich EV. Dynamic Nature of Proteins is Critically Important for Their Function: GPCRs and Signal Transducers. APPLIED MAGNETIC RESONANCE 2024; 55:11-25. [DOI: 10.1007/s00723-023-01561-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 02/03/2025]
|
10
|
Kee TR, Khan SA, Neidhart MB, Masters BM, Zhao VK, Kim YK, McGill Percy KC, Woo JAA. The multifaceted functions of β-arrestins and their therapeutic potential in neurodegenerative diseases. Exp Mol Med 2024; 56:129-141. [PMID: 38212557 PMCID: PMC10834518 DOI: 10.1038/s12276-023-01144-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 01/13/2024] Open
Abstract
Arrestins are multifunctional proteins that regulate G-protein-coupled receptor (GPCR) desensitization, signaling, and internalization. The arrestin family consists of four subtypes: visual arrestin1, β-arrestin1, β-arrestin2, and visual arrestin-4. Recent studies have revealed the multifunctional roles of β-arrestins beyond GPCR signaling, including scaffolding and adapter functions, and physically interacting with non-GPCR receptors. Increasing evidence suggests that β-arrestins are involved in the pathogenesis of a variety of neurodegenerative diseases, including Alzheimer's disease (AD), frontotemporal dementia (FTD), and Parkinson's disease (PD). β-arrestins physically interact with γ-secretase, leading to increased production and accumulation of amyloid-beta in AD. Furthermore, β-arrestin oligomers inhibit the autophagy cargo receptor p62/SQSTM1, resulting in tau accumulation and aggregation in FTD. In PD, β-arrestins are upregulated in postmortem brain tissue and an MPTP model, and the β2AR regulates SNCA gene expression. In this review, we aim to provide an overview of β-arrestin1 and β-arrestin2, and describe their physiological functions and roles in neurodegenerative diseases. The multifaceted roles of β-arrestins and their involvement in neurodegenerative diseases suggest that they may serve as promising therapeutic targets.
Collapse
Affiliation(s)
- Teresa R Kee
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
- Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, 33613, USA
| | - Sophia A Khan
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | - Maya B Neidhart
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | - Brianna M Masters
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | - Victoria K Zhao
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | - Yenna K Kim
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | | | - Jung-A A Woo
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
11
|
Yun Y, Yoon HJ, Jeong Y, Choi Y, Jang S, Chung KY, Lee HH. GPCR targeting of E3 ubiquitin ligase MDM2 by inactive β-arrestin. Proc Natl Acad Sci U S A 2023; 120:e2301934120. [PMID: 37399373 PMCID: PMC10334748 DOI: 10.1073/pnas.2301934120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/18/2023] [Indexed: 07/05/2023] Open
Abstract
E3 ubiquitin ligase Mdm2 facilitates β-arrestin ubiquitination, leading to the internalization of G protein-coupled receptors (GPCRs). In this process, β-arrestins bind to Mdm2 and recruit it to the receptor; however, the molecular architecture of the β-arrestin-Mdm2 complex has not been elucidated yet. Here, we identified the β-arrestin-binding region (ABR) on Mdm2 and solved the crystal structure of β-arrestin1 in complex with Mdm2ABR peptide. The acidic residues of Mdm2ABR bind to the positively charged concave side of the β-arrestin1 N-domain. The C-tail of β-arrestin1 is still bound to the N-domain, indicating that Mdm2 binds to the inactive state of β-arrestin1, whereas the phosphorylated C-terminal tail of GPCRs binds to activate β-arrestins. The overlapped binding site of Mdm2 and GPCR C-tails on β-arrestin1 suggests that the binding of GPCR C-tails might trigger the release of Mdm2. Moreover, hydrogen/deuterium exchange experiments further show that Mdm2ABR binding to β-arrestin1 induces the interdomain interface to be more dynamic and uncouples the IP6-induced oligomer of β-arrestin1. These results show how the E3 ligase, Mdm2, interacts with β-arrestins to promote the internalization of GPCRs.
Collapse
Affiliation(s)
- Yaejin Yun
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul08826, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul08826, Republic of Korea
| | - Yejin Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Yuri Choi
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul08826, Republic of Korea
| | - Soonmin Jang
- Department of Chemistry, Sejong University, Seoul05006, Republic of Korea
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul08826, Republic of Korea
| |
Collapse
|
12
|
Zheng C, Weinstein LD, Nguyen KK, Grewal A, Gurevich EV, Gurevich VV. GPCR Binding and JNK3 Activation by Arrestin-3 Have Different Structural Requirements. Cells 2023; 12:1563. [PMID: 37371033 PMCID: PMC10296906 DOI: 10.3390/cells12121563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Arrestins bind active phosphorylated G protein-coupled receptors (GPCRs). Among the four mammalian subtypes, only arrestin-3 facilitates the activation of JNK3 in cells. In available structures, Lys-295 in the lariat loop of arrestin-3 and its homologue Lys-294 in arrestin-2 directly interact with the activator-attached phosphates. We compared the roles of arrestin-3 conformational equilibrium and Lys-295 in GPCR binding and JNK3 activation. Several mutants with enhanced ability to bind GPCRs showed much lower activity towards JNK3, whereas a mutant that does not bind GPCRs was more active. The subcellular distribution of mutants did not correlate with GPCR recruitment or JNK3 activation. Charge neutralization and reversal mutations of Lys-295 differentially affected receptor binding on different backgrounds but had virtually no effect on JNK3 activation. Thus, GPCR binding and arrestin-3-assisted JNK3 activation have distinct structural requirements, suggesting that facilitation of JNK3 activation is the function of arrestin-3 that is not bound to a GPCR.
Collapse
Affiliation(s)
| | | | | | | | | | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (C.Z.); (L.D.W.); (K.K.N.); (A.G.); (E.V.G.)
| |
Collapse
|
13
|
Vishnivetskiy SA, Weinstein LD, Zheng C, Gurevich EV, Gurevich VV. Functional Role of Arrestin-1 Residues Interacting with Unphosphorylated Rhodopsin Elements. Int J Mol Sci 2023; 24:8903. [PMID: 37240250 PMCID: PMC10219436 DOI: 10.3390/ijms24108903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Arrestin-1, or visual arrestin, exhibits an exquisite selectivity for light-activated phosphorylated rhodopsin (P-Rh*) over its other functional forms. That selectivity is believed to be mediated by two well-established structural elements in the arrestin-1 molecule, the activation sensor detecting the active conformation of rhodopsin and the phosphorylation sensor responsive to the rhodopsin phosphorylation, which only active phosphorylated rhodopsin can engage simultaneously. However, in the crystal structure of the arrestin-1-rhodopsin complex there are arrestin-1 residues located close to rhodopsin, which do not belong to either sensor. Here we tested by site-directed mutagenesis the functional role of these residues in wild type arrestin-1 using a direct binding assay to P-Rh* and light-activated unphosphorylated rhodopsin (Rh*). We found that many mutations either enhanced the binding only to Rh* or increased the binding to Rh* much more than to P-Rh*. The data suggest that the native residues in these positions act as binding suppressors, specifically inhibiting the arrestin-1 binding to Rh* and thereby increasing arrestin-1 selectivity for P-Rh*. This calls for the modification of a widely accepted model of the arrestin-receptor interactions.
Collapse
Affiliation(s)
| | | | | | | | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (S.A.V.); (L.D.W.); (C.Z.); (E.V.G.)
| |
Collapse
|
14
|
Zheng C, Weinstein LD, Nguyen KK, Grewal A, Gurevich EV, Gurevich VV. GPCR binding and JNK3 activation by arrestin-3 have different structural requirements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538990. [PMID: 37205393 PMCID: PMC10187157 DOI: 10.1101/2023.05.01.538990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Arrestins bind active phosphorylated G protein-coupled receptors (GPCRs). Among the four mammalian subtypes, only arrestin-3 facilitates the activation of JNK3 in cells. In available structures, Lys-295 in the lariat loop of arrestin-3 and its homologue Lys-294 in arrestin-2 directly interact with the activator-attached phosphates. We compared the role of arrestin-3 conformational equilibrium and of Lys-295 in GPCR binding and JNK3 activation. Several mutants with enhanced ability to bind GPCRs showed much lower activity towards JNK3, whereas a mutant that does not bind GPCRs was more active. Subcellular distribution of mutants did not correlate with GPCR recruitment or JNK3 activation. Charge neutralization and reversal mutations of Lys-295 differentially affected receptor binding on different backgrounds, but had virtually no effect on JNK3 activation. Thus, GPCR binding and arrestin-3-assisted JNK3 activation have distinct structural requirements, suggesting that facilitation of JNK3 activation is the function of arrestin-3 that is not bound to a GPCR.
Collapse
|
15
|
Role of Monomer/Tetramer Equilibrium of Rod Visual Arrestin in the Interaction with Phosphorylated Rhodopsin. Int J Mol Sci 2023; 24:ijms24054963. [PMID: 36902393 PMCID: PMC10003454 DOI: 10.3390/ijms24054963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
The phototransduction cascade in vertebrate rod visual cells is initiated by the photoactivation of rhodopsin, which enables the activation of the visual G protein transducin. It is terminated by the phosphorylation of rhodopsin, followed by the binding of arrestin. Here we measured the solution X-ray scattering of nanodiscs containing rhodopsin in the presence of rod arrestin to directly observe the formation of the rhodopsin/arrestin complex. Although arrestin self-associates to form a tetramer at physiological concentrations, it was found that arrestin binds to phosphorylated and photoactivated rhodopsin at 1:1 stoichiometry. In contrast, no complex formation was observed for unphosphorylated rhodopsin upon photoactivation, even at physiological arrestin concentrations, suggesting that the constitutive activity of rod arrestin is sufficiently low. UV-visible spectroscopy demonstrated that the rate of the formation of the rhodopsin/arrestin complex well correlates with the concentration of arrestin monomer rather than the tetramer. These findings indicate that arrestin monomer, whose concentration is almost constant due to the equilibrium with the tetramer, binds to phosphorylated rhodopsin. The arrestin tetramer would act as a reservoir of monomer to compensate for the large changes in arrestin concentration in rod cells caused by intense light or adaptation.
Collapse
|
16
|
Aydin Y, Böttke T, Lam JH, Ernicke S, Fortmann A, Tretbar M, Zarzycka B, Gurevich VV, Katritch V, Coin I. Structural details of a Class B GPCR-arrestin complex revealed by genetically encoded crosslinkers in living cells. Nat Commun 2023; 14:1151. [PMID: 36859440 PMCID: PMC9977954 DOI: 10.1038/s41467-023-36797-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Understanding the molecular basis of arrestin-mediated regulation of GPCRs is critical for deciphering signaling mechanisms and designing functional selectivity. However, structural studies of GPCR-arrestin complexes are hampered by their highly dynamic nature. Here, we dissect the interaction of arrestin-2 (arr2) with the secretin-like parathyroid hormone 1 receptor PTH1R using genetically encoded crosslinking amino acids in live cells. We identify 136 intermolecular proximity points that guide the construction of energy-optimized molecular models for the PTH1R-arr2 complex. Our data reveal flexible receptor elements missing in existing structures, including intracellular loop 3 and the proximal C-tail, and suggest a functional role of a hitherto overlooked positively charged region at the arrestin N-edge. Unbiased MD simulations highlight the stability and dynamic nature of the complex. Our integrative approach yields structural insights into protein-protein complexes in a biologically relevant live-cell environment and provides information inaccessible to classical structural methods, while also revealing the dynamics of the system.
Collapse
Affiliation(s)
- Yasmin Aydin
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Bruederstr. 34, 04103, Leipzig, Germany
| | - Thore Böttke
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Bruederstr. 34, 04103, Leipzig, Germany
| | - Jordy Homing Lam
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Stefan Ernicke
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Bruederstr. 34, 04103, Leipzig, Germany
| | - Anna Fortmann
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Bruederstr. 34, 04103, Leipzig, Germany
| | - Maik Tretbar
- Medical Faculty, Institute for Drug Discovery, Leipzig University, Bruederstr. 34, 04103, Leipzig, Germany
| | - Barbara Zarzycka
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Vsevolod V Gurevich
- Department of Phar-macology, Vanderbilt University, Nashville, TN, 37232-0146, USA
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.
- Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.
| | - Irene Coin
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Bruederstr. 34, 04103, Leipzig, Germany.
| |
Collapse
|
17
|
Hofmann KP, Lamb TD. Rhodopsin, light-sensor of vision. Prog Retin Eye Res 2023; 93:101116. [PMID: 36273969 DOI: 10.1016/j.preteyeres.2022.101116] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
The light sensor of vertebrate scotopic (low-light) vision, rhodopsin, is a G-protein-coupled receptor comprising a polypeptide chain with bound chromophore, 11-cis-retinal, that exhibits remarkable physicochemical properties. This photopigment is extremely stable in the dark, yet its chromophore isomerises upon photon absorption with 70% efficiency, enabling the activation of its G-protein, transducin, with high efficiency. Rhodopsin's photochemical and biochemical activities occur over very different time-scales: the energy of retinaldehyde's excited state is stored in <1 ps in retinal-protein interactions, but it takes milliseconds for the catalytically active state to form, and many tens of minutes for the resting state to be restored. In this review, we describe the properties of rhodopsin and its role in rod phototransduction. We first introduce rhodopsin's gross structural features, its evolution, and the basic mechanisms of its activation. We then discuss light absorption and spectral sensitivity, photoreceptor electrical responses that result from the activity of individual rhodopsin molecules, and recovery of rhodopsin and the visual system from intense bleaching exposures. We then provide a detailed examination of rhodopsin's molecular structure and function, first in its dark state, and then in the active Meta states that govern its interactions with transducin, rhodopsin kinase and arrestin. While it is clear that rhodopsin's molecular properties are exquisitely honed for phototransduction, from starlight to dawn/dusk intensity levels, our understanding of how its molecular interactions determine the properties of scotopic vision remains incomplete. We describe potential future directions of research, and outline several major problems that remain to be solved.
Collapse
Affiliation(s)
- Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik (CC2), Charité, and, Zentrum für Biophysik und Bioinformatik, Humboldt-Unversität zu Berlin, Berlin, 10117, Germany.
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
18
|
Wei X, Li H, Wu S, Zhu T, Sui R. Genetic analysis and clinical features of three Chinese patients with Oguchi disease. Doc Ophthalmol 2023; 146:17-32. [PMID: 36417138 DOI: 10.1007/s10633-022-09910-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Oguchi disease is a rare autosomal recessive form of congenital stationary night blindness caused by disease-causing variants in the rhodopsin kinase gene (GRK1) or the arrestin gene (SAG). Our study aims to describe the clinical features and identify the genetic defects for three Chinese patients with Oguchi disease. METHODS We conducted detailed ophthalmologic examinations for three patients from three unrelated non-consanguineous Chinese families. Targeted next-generation sequencing (targeted NGS) and copy number variations (CNVs) analysis were applied to screen pathogenic variants. Sanger sequencing validation, quantitative real-time PCR (qPCR), and segregation analysis were further performed for confirmation. Subsequently, a combined genetic and structural biology approach was used to infer the likely functional consequences of novel variants. RESULTS All three patients presented with typical clinical features of Oguchi disease, including night blindness, characteristic fundus appearance (Mizuo-Nakamura phenomenon), attenuated rod responses, and negative ERG waveforms. Their visual acuity and visual field were normal. Genetic analysis revealed two pathogenic variants in SAG and four pathogenic variants in GRK1. Patient 1 was identified to harbor compound heterozygous SAG variants c.874C > T (p.R292*) and exon2 deletion. Compound heterozygous GRK1 variants c.55C > T (p.R19*) and c.1412delC (p.P471Lfs*52) were found in patient 2. In patient 3, compound heterozygous GRK1 variants c.946C > A (p.R316S) and c.1388 T > C (p. L463P) were detected. CONCLUSIONS We reported the first two Chinese Oguchi patients with novel GRK1 pathogenic variants (P471Lfs*52, R316S, L463P) and one Oguchi case with SAG, indicating both GRK1 and SAG are important causative genes in Chinese Oguchi patients.
Collapse
Affiliation(s)
- Xing Wei
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1, Shuai Fu Yuan, Beijing, 100730, People's Republic of China
| | - Hui Li
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1, Shuai Fu Yuan, Beijing, 100730, People's Republic of China
| | - Shijing Wu
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1, Shuai Fu Yuan, Beijing, 100730, People's Republic of China
| | - Tian Zhu
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1, Shuai Fu Yuan, Beijing, 100730, People's Republic of China
| | - Ruifang Sui
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1, Shuai Fu Yuan, Beijing, 100730, People's Republic of China.
| |
Collapse
|
19
|
Zysset-Burri DC, Morandi S, Herzog EL, Berger LE, Zinkernagel MS. The role of the gut microbiome in eye diseases. Prog Retin Eye Res 2023; 92:101117. [PMID: 36075807 DOI: 10.1016/j.preteyeres.2022.101117] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 02/01/2023]
Abstract
The gut microbiome is a complex ecosystem of microorganisms and their genetic entities colonizing the gastrointestinal tract. When in balanced composition, the gut microbiome is in symbiotic interaction with its host and maintains intestinal homeostasis. It is involved in essential functions such as nutrient metabolism, inhibition of pathogens and regulation of immune function. Through translocation of microbes and their metabolites along the epithelial barrier, microbial dysbiosis induces systemic inflammation that may lead to tissue destruction and promote the onset of various diseases. Using whole-metagenome shotgun sequencing, several studies have shown that the composition and associated functional capacities of the gut microbiome are associated with age-related macular degeneration, retinal artery occlusion, central serous chorioretinopathy and uveitis. In this review, we provide an overview of the current knowledge about the gut microbiome in eye diseases, with a focus on interactions between the microbiome, specific microbial-derived metabolites and the immune system. We explain how these interactions may be involved in the pathogenesis of age-related macular degeneration, retinal artery occlusion, central serous chorioretinopathy and uveitis and guide the development of new therapeutic approaches by microbiome-altering interventions for these diseases.
Collapse
Affiliation(s)
- Denise C Zysset-Burri
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland; Department for BioMedical Research, University of Bern, Murtenstrasse 24, CH-3008, Bern, Switzerland.
| | - Sophia Morandi
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland; Department for BioMedical Research, University of Bern, Murtenstrasse 24, CH-3008, Bern, Switzerland.
| | - Elio L Herzog
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland; Department for BioMedical Research, University of Bern, Murtenstrasse 24, CH-3008, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, CH-3012, Bern, Switzerland.
| | - Lieselotte E Berger
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland; Department for BioMedical Research, University of Bern, Murtenstrasse 24, CH-3008, Bern, Switzerland.
| | - Martin S Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland; Department for BioMedical Research, University of Bern, Murtenstrasse 24, CH-3008, Bern, Switzerland.
| |
Collapse
|
20
|
Smylla TK, Wagner K, Huber A. The Role of Reversible Phosphorylation of Drosophila Rhodopsin. Int J Mol Sci 2022; 23:ijms232314674. [PMID: 36499010 PMCID: PMC9740569 DOI: 10.3390/ijms232314674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Vertebrate and fly rhodopsins are prototypical GPCRs that have served for a long time as model systems for understanding GPCR signaling. Although all rhodopsins seem to become phosphorylated at their C-terminal region following activation by light, the role of this phosphorylation is not uniform. Two major functions of rhodopsin phosphorylation have been described: (1) inactivation of the activated rhodopsin either directly or by facilitating binding of arrestins in order to shut down the visual signaling cascade and thus eventually enabling a high-temporal resolution of the visual system. (2) Facilitating endocytosis of activated receptors via arrestin binding that in turn recruits clathrin to the membrane for clathrin-mediated endocytosis. In vertebrate rhodopsins the shutdown of the signaling cascade may be the main function of rhodopsin phosphorylation, as phosphorylation alone already quenches transducin activation and, in addition, strongly enhances arrestin binding. In the Drosophila visual system rhodopsin phosphorylation is not needed for receptor inactivation. Its role here may rather lie in the recruitment of arrestin 1 and subsequent endocytosis of the activated receptor. In this review, we summarize investigations of fly rhodopsin phosphorylation spanning four decades and contextualize them with regard to the most recent insights from vertebrate phosphorylation barcode theory.
Collapse
|
21
|
Vishnivetskiy SA, Huh EK, Karnam PC, Oviedo S, Gurevich EV, Gurevich VV. The Role of Arrestin-1 Middle Loop in Rhodopsin Binding. Int J Mol Sci 2022; 23:13887. [PMID: 36430370 PMCID: PMC9694801 DOI: 10.3390/ijms232213887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Arrestins preferentially bind active phosphorylated G protein-coupled receptors (GPCRs). The middle loop, highly conserved in all arrestin subtypes, is localized in the central crest on the GPCR-binding side. Upon receptor binding, it directly interacts with bound GPCR and demonstrates the largest movement of any arrestin element in the structures of the complexes. Comprehensive mutagenesis of the middle loop of rhodopsin-specific arrestin-1 suggests that it primarily serves as a suppressor of binding to non-preferred forms of the receptor. Several mutations in the middle loop increase the binding to unphosphorylated light-activated rhodopsin severalfold, which makes them candidates for improving enhanced phosphorylation-independent arrestins. The data also suggest that enhanced forms of arrestin do not bind GPCRs exactly like the wild-type protein. Thus, the structures of the arrestin-receptor complexes, in all of which different enhanced arrestin mutants and reengineered receptors were used, must be interpreted with caution.
Collapse
Affiliation(s)
| | - Elizabeth K. Huh
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Preethi C. Karnam
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Samantha Oviedo
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | |
Collapse
|
22
|
Jiang H, Galtes D, Wang J, Rockman HA. G protein-coupled receptor signaling: transducers and effectors. Am J Physiol Cell Physiol 2022; 323:C731-C748. [PMID: 35816644 PMCID: PMC9448338 DOI: 10.1152/ajpcell.00210.2022] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 07/10/2022] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are of considerable interest due to their importance in a wide range of physiological functions and in a large number of Food and Drug Administration (FDA)-approved drugs as therapeutic entities. With continued study of their function and mechanism of action, there is a greater understanding of how effector molecules interact with a receptor to initiate downstream effector signaling. This review aims to explore the signaling pathways, dynamic structures, and physiological relevance in the cardiovascular system of the three most important GPCR signaling effectors: heterotrimeric G proteins, GPCR kinases (GRKs), and β-arrestins. We will first summarize their prominent roles in GPCR pharmacology before transitioning into less well-explored areas. As new technologies are developed and applied to studying GPCR structure and their downstream effectors, there is increasing appreciation for the elegance of the regulatory mechanisms that mediate intracellular signaling and function.
Collapse
Affiliation(s)
- Haoran Jiang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Daniella Galtes
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Jialu Wang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Howard A Rockman
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
23
|
Chen Q, Tesmer JJG. G protein-coupled receptor interactions with arrestins and GPCR kinases: The unresolved issue of signal bias. J Biol Chem 2022; 298:102279. [PMID: 35863432 PMCID: PMC9418498 DOI: 10.1016/j.jbc.2022.102279] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 12/25/2022] Open
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) and arrestins interact with agonist-bound GPCRs to promote receptor desensitization and downregulation. They also trigger signaling cascades distinct from those of heterotrimeric G proteins. Biased agonists for GPCRs that favor either heterotrimeric G protein or GRK/arrestin signaling are of profound pharmacological interest because they could usher in a new generation of drugs with greatly reduced side effects. One mechanism by which biased agonism might occur is by stabilizing receptor conformations that preferentially bind to GRKs and/or arrestins. In this review, we explore this idea by comparing structures of GPCRs bound to heterotrimeric G proteins with those of the same GPCRs in complex with arrestins and GRKs. The arrestin and GRK complexes all exhibit high conformational heterogeneity, which is likely a consequence of their unusual ability to adapt and bind to hundreds of different GPCRs. This dynamic behavior, along with the experimental tactics required to stabilize GPCR complexes for biophysical analysis, confounds these comparisons, but some possible molecular mechanisms of bias are beginning to emerge. We also examine if and how the recent structures advance our understanding of how arrestins parse the "phosphorylation barcodes" installed in the intracellular loops and tails of GPCRs by GRKs. In the future, structural analyses of arrestins in complex with intact receptors that have well-defined native phosphorylation barcodes, such as those installed by the two nonvisual subfamilies of GRKs, will be particularly illuminating.
Collapse
Affiliation(s)
- Qiuyan Chen
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - John J G Tesmer
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
24
|
Gurevich VV, Gurevich EV. Solo vs. Chorus: Monomers and Oligomers of Arrestin Proteins. Int J Mol Sci 2022; 23:7253. [PMID: 35806256 PMCID: PMC9266314 DOI: 10.3390/ijms23137253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023] Open
Abstract
Three out of four subtypes of arrestin proteins expressed in mammals self-associate, each forming oligomers of a distinct kind. Monomers and oligomers have different subcellular localization and distinct biological functions. Here we summarize existing evidence regarding arrestin oligomerization and discuss specific functions of monomeric and oligomeric forms, although too few of the latter are known. The data on arrestins highlight biological importance of oligomerization of signaling proteins. Distinct modes of oligomerization might be an important contributing factor to the functional differences among highly homologous members of the arrestin protein family.
Collapse
|
25
|
Emerging structural insights into GPCR-β-arrestin interaction and functional outcomes. Curr Opin Struct Biol 2022; 75:102406. [PMID: 35738165 PMCID: PMC7614528 DOI: 10.1016/j.sbi.2022.102406] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022]
Abstract
Agonist-induced recruitment of β-arrestins (βarrs) to G protein-coupled receptors (GPCRs) plays a central role in regulating the spatio-temporal aspects of GPCR signaling. Several recent studies have provided novel structural and functional insights into our understanding of GPCR-βarr interaction, subsequent βarr activation and resulting functional outcomes. In this review, we discuss these recent advances with a particular emphasis on recognition of receptor-bound phosphates by βarrs, the emerging concept of spatial positioning of key phosphorylation sites, the conformational transition in βarrs during partial to full-engagement, and structural differences driving functional outcomes of βarr isoforms. We also highlight the key directions that require further investigation going forward to fully understand the structural mechanisms driving βarr activation and functional responses.
Collapse
|
26
|
Asher WB, Terry DS, Gregorio GGA, Kahsai AW, Borgia A, Xie B, Modak A, Zhu Y, Jang W, Govindaraju A, Huang LY, Inoue A, Lambert NA, Gurevich VV, Shi L, Lefkowitz RJ, Blanchard SC, Javitch JA. GPCR-mediated β-arrestin activation deconvoluted with single-molecule precision. Cell 2022; 185:1661-1675.e16. [PMID: 35483373 PMCID: PMC9191627 DOI: 10.1016/j.cell.2022.03.042] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/11/2022] [Accepted: 03/29/2022] [Indexed: 01/14/2023]
Abstract
β-arrestins bind G protein-coupled receptors to terminate G protein signaling and to facilitate other downstream signaling pathways. Using single-molecule fluorescence resonance energy transfer imaging, we show that β-arrestin is strongly autoinhibited in its basal state. Its engagement with a phosphopeptide mimicking phosphorylated receptor tail efficiently releases the β-arrestin tail from its N domain to assume distinct conformations. Unexpectedly, we find that β-arrestin binding to phosphorylated receptor, with a phosphorylation barcode identical to the isolated phosphopeptide, is highly inefficient and that agonist-promoted receptor activation is required for β-arrestin activation, consistent with the release of a sequestered receptor C tail. These findings, together with focused cellular investigations, reveal that agonism and receptor C-tail release are specific determinants of the rate and efficiency of β-arrestin activation by phosphorylated receptor. We infer that receptor phosphorylation patterns, in combination with receptor agonism, synergistically establish the strength and specificity with which diverse, downstream β-arrestin-mediated events are directed.
Collapse
Affiliation(s)
- Wesley B Asher
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - G Glenn A Gregorio
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alem W Kahsai
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Alessandro Borgia
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Bing Xie
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Arnab Modak
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ying Zhu
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Wonjo Jang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alekhya Govindaraju
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Li-Yin Huang
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | | | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Robert J Lefkowitz
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA; Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Jonathan A Javitch
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
27
|
Tawfik CA, Elbagoury NM, Khater NI, Essawi ML. Mutation analysis reveals novel and known mutations in SAG gene in first two Egyptian families with Oguchi disease. BMC Ophthalmol 2022; 22:217. [PMID: 35549688 PMCID: PMC9103117 DOI: 10.1186/s12886-022-02444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022] Open
Abstract
Background Oguchi disease is a rare type of congenital stationary night blindness associated with an abnormal fundus appearance. It is inherited in an autosomal recessive manner where two types exist according to the gene affected; type 1 associated with S-antigen (SAG) gene mutations and type 2 associated with rhodopsin kinase (GRK1) gene mutations. Purpose The aim of this work was to describe the clinical and genetic findings of the first two reported families of Oguchi disease in Egypt and African region. Methods Four members of two consanguineous Egyptian families with history of night blindness since childhood underwent complete ophthalmological examination, standard automated static perimetry, fundus color photography, fundus autofluorescence (FAF), fundus fluorescein angiography (FFA) in light-adapted state and spectral-domain optical coherence tomography (SD-OCT) of both the macula and the optic nerve head as well as central corneal thickness with repeated fundus photography following prolonged dark adaptation. Mutation screening of 7 coding exons of GRK1 gene and 15 coding exons of SAG gene as well as some flanking regions were performed using Sanger sequencing technique. The variants were tested for pathogenicity using different in silico functional analysis tools. Results The clinical examination and investigations confirmed Oguchi disease phenotype. One patient showed p.R193* (c.577C > T) which is a previously reported SAG gene mutation in a homozygous form. The other three patients from a different family showed (c.649–1 G > C), a novel canonical splice site SAG gene mutation in a homozygous form. Conclusion The identification of the novel canonical splice site SAG gene variant in three members of the same family with clinically confirmed Oguchi disease reinforces its pathogenicity. A fourth patient from another family carried a previously reported mutation in the same gene. SAG gene variants may be the underlying genetic cause for Oguchi disease in Egypt. Our findings have expanded the spectrum of Oguchi disease-associated mutations in SAG gene and may serve as a basis for genetic diagnosis for Oguchi disease.
Collapse
Affiliation(s)
- Caroline Atef Tawfik
- Department of Ophthalmology, Ain Shams University, 38 Abbasseya, Nour Mosque, El-Mohamady, Al Waili, Cairo, 11566, Egypt.
| | - Nagham Maher Elbagoury
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.,Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - Noha Ibrahim Khater
- Department of Ophthalmology, Cairo University, Giza, Egypt.,Al Mouneer Diabetic Eye Center, Dokki, Giza, Egypt
| | - Mona Lotfi Essawi
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.,Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| |
Collapse
|
28
|
Jean-Charles PY, Rajiv V, Sarker S, Han S, Bai Y, Masoudi A, Shenoy SK. A single phenylalanine residue in β-arrestin2 critically regulates its binding to G protein-coupled receptors. J Biol Chem 2022; 298:101837. [PMID: 35307348 PMCID: PMC9052155 DOI: 10.1016/j.jbc.2022.101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/05/2022] Open
Abstract
Arrestins and their yeast homologs, arrestin-related trafficking adaptors (ARTs), share a stretch of 29 amino acids called the ART motif. However, the functionality of that motif is unknown. We now report that deleting this motif prevents agonist-induced ubiquitination of β-arrestin2 (β-arr2) and blocks its association with activated G protein–coupled receptors (GPCRs). Within the ART motif, we have identified a conserved phenylalanine residue, Phe116, that is critical for the formation of β-arr2–GPCR complexes. β-arr2 Phe116Ala mutant has negligible effect on blunting β2-adrenergic receptor–induced cAMP generation unlike β-arr2, which promotes rapid desensitization. Furthermore, available structures for inactive and inositol hexakisphosphate 6–activated forms of bovine β-arr2 revealed that Phe116 is ensconced in a hydrophobic pocket, whereas the adjacent Phe117 and Phe118 residues are not. Mutagenesis of Phe117 and Phe118, but not Phe116, preserves GPCR interaction of β-arr2. Surprisingly, Phe116 is dispensable for the association of β-arr2 with its non-GPCR partners. β-arr2 Phe116Ala mutant presents a significantly reduced protein half-life compared with β-arr2 and undergoes constitutive Lys-48-linked polyubiquitination, which tags proteins for proteasomal degradation. We also found that Phe116 is critical for agonist-dependent β-arr2 ubiquitination with Lys-63-polyubiquitin linkages that are known mediators of protein scaffolding and signal transduction. Finally, we have shown that β-arr2 Phe116Ala interaction with activated β2-adrenergic receptor can be rescued with an in-frame fusion of ubiquitin. Taken together, we conclude that Phe116 preserves structural stability of β-arr2, regulates the formation of β-arr2–GPCR complexes that inhibit G protein signaling, and promotes subsequent ubiquitin-dependent β-arr2 localization and trafficking.
Collapse
Affiliation(s)
- Pierre-Yves Jean-Charles
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Vishwaesh Rajiv
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Subhodeep Sarker
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Sangoh Han
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Yushi Bai
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Ali Masoudi
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Sudha K Shenoy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
29
|
Deng Z, Fan F, Tang D, Wu Y, Shu Y, Wu K. A compound heterozygous mutation in the S-Antigen Visual Arrestin SAG gene in a Chinese patient with Oguchi type one: a case report. BMC Ophthalmol 2022; 22:99. [PMID: 35246075 PMCID: PMC8895538 DOI: 10.1186/s12886-022-02307-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 02/08/2022] [Indexed: 11/21/2022] Open
Abstract
Background Oguchi disease is a rare autosomal recessive form of congenital quiescent night blindness. Oguchi disease has been found to be associated with gene mutations in SAG and GRK1, which are vital factors in the recovery phase of phototransduction after light stimuli. We report a case of Oguchi disease with novel heterozygous mutations in SAG. Case presentation A 7-year-old girl with a history of night blindness since childhood, was referred to our hospital. Ophthalmologic examinations included visual acuity, fundus examinations, fundus photography, spectral-domain optical coherence tomography, electroretinographic (ERG). Mutation screening of the SAG and GRK1 genes was performed. This patient exhibited typical clinical characteristics of Oguchi disease, including night blindness, golden fundus with the Mizuo–Nakamura phenomenon, packed structure of the parafovea in optical coherence tomography and reduced a-waves and b-waves in scotopic 3.0 ERG. Genetic testing revealed a heterozygous change in nucleotide c.72_75+15delATCGGTGAGTGGTGCACAA in exon 2 of the SAG gene in this patient, her unaffected mother and younger brother. A splicing alteration of nucleotide c.376-2A>C was identified in exon 6 of the SAG gene with heterozygous status in this patient and her unaffected father. Conclusions Compound heterozygosity of a nonsense p.S25X mutation in exon 2 and a splicing alteration in exon 6 of the SAG gene is the cause of this patient with Oguchi type 1 disease in China.
Collapse
Affiliation(s)
- Zhen Deng
- Eye Center, First People's Hospital of Linping District, No.369 Yingbin Rd, Hangzhou, 311100, China
| | - Fangli Fan
- Eye Center, First People's Hospital of Linping District, No.369 Yingbin Rd, Hangzhou, 311100, China.
| | - Danyan Tang
- Eye Center, First People's Hospital of Linping District, No.369 Yingbin Rd, Hangzhou, 311100, China
| | - Yifeng Wu
- Eye Center, First People's Hospital of Linping District, No.369 Yingbin Rd, Hangzhou, 311100, China
| | - Yujie Shu
- Eye Center, First People's Hospital of Linping District, No.369 Yingbin Rd, Hangzhou, 311100, China
| | - Kunlin Wu
- Eye Center, First People's Hospital of Linping District, No.369 Yingbin Rd, Hangzhou, 311100, China
| |
Collapse
|
30
|
Sander CL, Luu J, Kim K, Furkert D, Jang K, Reichenwallner J, Kang M, Lee HJ, Eger BT, Choe HW, Fiedler D, Ernst OP, Kim YJ, Palczewski K, Kiser PD. Structural evidence for visual arrestin priming via complexation of phosphoinositols. Structure 2022; 30:263-277.e5. [PMID: 34678158 PMCID: PMC8818024 DOI: 10.1016/j.str.2021.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/06/2021] [Accepted: 09/29/2021] [Indexed: 02/05/2023]
Abstract
Visual arrestin (Arr1) terminates rhodopsin signaling by blocking its interaction with transducin. To do this, Arr1 translocates from the inner to the outer segment of photoreceptors upon light stimulation. Mounting evidence indicates that inositol phosphates (InsPs) affect Arr1 activity, but the Arr1-InsP molecular interaction remains poorly defined. We report the structure of bovine Arr1 in a ligand-free state featuring a near-complete model of the previously unresolved C-tail, which plays a crucial role in regulating Arr1 activity. InsPs bind to the N-domain basic patch thus displacing the C-tail, suggesting that they prime Arr1 for interaction with rhodopsin and help direct Arr1 translocation. These structures exhibit intact polar cores, suggesting that C-tail removal by InsP binding is insufficient to activate Arr1. These results show how Arr1 activity can be controlled by endogenous InsPs in molecular detail.
Collapse
Affiliation(s)
- Christopher L Sander
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA
| | - Jennings Luu
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA
| | - Kyumhyuk Kim
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Kiyoung Jang
- Department of Lifestyle Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | | | - MinSoung Kang
- Department of Lifestyle Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Daejeon 34114, Republic of Korea
| | - Ho-Jun Lee
- Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA; Research Service, VA Long Beach Healthcare System, Long Beach, CA 90822, USA
| | - Bryan T Eger
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hui-Woog Choe
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yong Ju Kim
- Department of Lifestyle Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; Department of Oriental Medicine Resources, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Krzysztof Palczewski
- Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA; Department of Chemistry and Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California, Irvine, CA 92697, USA
| | - Philip D Kiser
- Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California, Irvine, CA 92697, USA; Research Service, VA Long Beach Healthcare System, Long Beach, CA 90822, USA.
| |
Collapse
|
31
|
Yuan D, Yan T, Luo S, Huang J, Tan J, Zhang J, Zhang VW, Lan Y, Hu T, Guo J, Huang M, Zeng D. Identification and Functional Characterization of a Novel Nonsense Variant in ARR3 in a Southern Chinese Family With High Myopia. Front Genet 2021; 12:765503. [PMID: 34966409 PMCID: PMC8710690 DOI: 10.3389/fgene.2021.765503] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/10/2021] [Indexed: 01/28/2023] Open
Abstract
ARR3 has been associated with X-linked, female-limited, high myopia. However, using exome sequencing (ES), we identified the first high myopia case with hemizygous ARR3-related mutation in a male patient in a Southern Chinese family. This novel truncated mutation (ARR3: c.569C>G, p.S190*) co-segregated with the disease phenotype in affected family members and demonstrated that high myopia caused by ARR3 is not X-linked, female-limited, where a complicated X-linked inheritance pattern may exist. Thus, our case expanded the variant spectrum in ARR3 and provided additional information for genetic counseling, prenatal testing, and diagnosis. Moreover, we characterized the nonsense-mediated decay of the ARR3 mutant mRNA and discussed the possible underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Dejian Yuan
- Department of Medical Genetics, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China.,Liuzhou Key Laboratory of Birth Defects Prevention and Control, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Tizhen Yan
- Department of Medical Genetics, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China.,Liuzhou Key Laboratory of Birth Defects Prevention and Control, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Shiqiang Luo
- Department of Medical Genetics, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China.,Liuzhou Key Laboratory of Birth Defects Prevention and Control, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Jun Huang
- Department of Medical Genetics, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China.,Liuzhou Key Laboratory of Birth Defects Prevention and Control, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Jianqiang Tan
- Department of Medical Genetics, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China.,Liuzhou Key Laboratory of Birth Defects Prevention and Control, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Jianping Zhang
- Department of Ophthalmology, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Victor Wei Zhang
- AmCare Genomics Laboratory, Guangzhou, China.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Yueyuan Lan
- Department of Ophthalmology, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Taobo Hu
- Center of Breast Diseases, Peking University People's Hospital, Beijing, China
| | - Jing Guo
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingwei Huang
- Aegicare (Sheznzhen) Technology Co., Ltd., Shenzhen, China
| | - Dingyuan Zeng
- Department of Gynecology, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China
| |
Collapse
|
32
|
Karnam PC, Vishnivetskiy SA, Gurevich VV. Structural Basis of Arrestin Selectivity for Active Phosphorylated G Protein-Coupled Receptors. Int J Mol Sci 2021; 22:12481. [PMID: 34830362 PMCID: PMC8621391 DOI: 10.3390/ijms222212481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Arrestins are a small family of proteins that bind G protein-coupled receptors (GPCRs). Arrestin binds to active phosphorylated GPCRs with higher affinity than to all other functional forms of the receptor, including inactive phosphorylated and active unphosphorylated. The selectivity of arrestins suggests that they must have two sensors, which detect receptor-attached phosphates and the active receptor conformation independently. Simultaneous engagement of both sensors enables arrestin transition into a high-affinity receptor-binding state. This transition involves a global conformational rearrangement that brings additional elements of the arrestin molecule, including the middle loop, in contact with a GPCR, thereby stabilizing the complex. Here, we review structural and mutagenesis data that identify these two sensors and additional receptor-binding elements within the arrestin molecule. While most data were obtained with the arrestin-1-rhodopsin pair, the evidence suggests that all arrestins use similar mechanisms to achieve preferential binding to active phosphorylated GPCRs.
Collapse
Affiliation(s)
| | | | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (P.C.K.); (S.A.V.)
| |
Collapse
|
33
|
Parichatikanond W, Kyaw ETH, Madreiter-Sokolowski CT, Mangmool S. BRET-based assay to specifically monitor β 2AR/GRK2 interaction and β-arrestin2 conformational change upon βAR stimulation. Methods Cell Biol 2021; 166:67-81. [PMID: 34752340 DOI: 10.1016/bs.mcb.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The β-adrenergic receptors (βARs) are members of G protein-coupled receptor (GPCR) family and have been one of the most important GPCRs for studying receptor endocytosis and signaling pathway. Agonist binding of βARs leads to an activation of G proteins and their canonical effectors. In a parallel way, βAR stimulation triggers the termination of its signals by receptor desensitization. This termination process is initiated by G protein-coupled receptor kinase (GRK)-induced βAR phosphorylation that promotes the recruitment of β-arrestins to phosphorylated βAR. The uncoupled βARs which formed a complex with GRK and β-arrestin subsequently internalize into the cytosol. In addition, GRKs and β-arrestins also act as scaffolding proteins and signal transducers in their own functions to modulate various downstream effectors. Upon translocation to the βAR, β-arrestin is believed to undergo an important conformational change in the structure that is necessary for its signal transduction. The bioluminescence resonance energy transfer (BRET) technique involves the fusion of donor (luciferase) and acceptor (fluorescent) molecules to the interested proteins. Co-expression of these fusion proteins enables direct detection of their interactions in living cells. Here we describe the use of our established BRET technique to track the interaction of βAR with both GRK and β-arrestin. The assay described here allows the measurement of the BRET signal for detecting the interaction of β2AR with GRK2 and the conformational change of β-arrestin2 following βAR stimulation.
Collapse
Affiliation(s)
| | - Ei Thet Htar Kyaw
- Pharmacology and Biomolecular Science Graduate Program, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | | | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
34
|
Wanka L, Behr V, Beck-Sickinger AG. Arrestin-dependent internalization of rhodopsin-like G protein-coupled receptors. Biol Chem 2021; 403:133-149. [PMID: 34036761 DOI: 10.1515/hsz-2021-0128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/28/2021] [Indexed: 01/14/2023]
Abstract
The internalization of G protein-coupled receptors (GPCRs) is an important mechanism regulating the signal strength and limiting the opportunity of receptor activation. Based on the importance of GPCRs, the detailed knowledge about the regulation of signal transduction is crucial. Here, current knowledge about the agonist-induced, arrestin-dependent internalization process of rhodopsin-like GPCRs is reviewed. Arrestins are conserved molecules that act as key players within the internalization process of many GPCRs. Based on highly conserved structural characteristics within the rhodopsin-like GPCRs, the identification of arrestin interaction sites in model systems can be compared and used for the investigation of internalization processes of other receptors. The increasing understanding of this essential regulation mechanism of receptors can be used for drug development targeting rhodopsin-like GPCRs. Here, we focus on the neuropeptide Y receptor family, as these receptors transmit various physiological processes such as food intake, energy homeostasis, and regulation of emotional behavior, and are further involved in pathophysiological processes like cancer, obesity and mood disorders. Hence, this receptor family represents an interesting target for the development of novel therapeutics requiring the understanding of the regulatory mechanisms influencing receptor mediated signaling.
Collapse
Affiliation(s)
- Lizzy Wanka
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| | - Victoria Behr
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| |
Collapse
|
35
|
Vishnivetskiy SA, Huh EK, Gurevich EV, Gurevich VV. The finger loop as an activation sensor in arrestin. J Neurochem 2021; 157:1138-1152. [PMID: 33159335 PMCID: PMC8099931 DOI: 10.1111/jnc.15232] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 11/01/2020] [Indexed: 12/31/2022]
Abstract
The finger loop in the central crest of the receptor-binding site of arrestins engages the cavity between the transmembrane helices of activated G-protein-coupled receptors. Therefore, it was hypothesized to serve as the sensor that detects the activation state of the receptor. We performed comprehensive mutagenesis of the finger loop in bovine visual arrestin-1, generated mutant radiolabeled proteins by cell-free translation, and determined the effects of mutations on the in vitro binding of arrestin-1 to purified phosphorylated light-activated rhodopsin. This interaction is driven by two factors, rhodopsin activation and rhodopsin-attached phosphates. Therefore, the binding of arrestin-1 to light-activated unphosphorylated rhodopsin is low. To evaluate the role of the finger loop specifically in the recognition of the active receptor conformation, we tested the effects of these mutations in the context of truncated arrestin-1 that demonstrates much higher binding to unphosphorylated activated and phosphorylated inactive rhodopsin. The majority of finger loop residues proved important for arrestin-1 binding to light-activated rhodopsin, with six mutations affecting the binding exclusively to this form. Thus, the finger loop is the key element of arrestin-1 activation sensor. The data also suggest that arrestin-1 and its enhanced mutant bind various functional forms of rhodopsin differently.
Collapse
Affiliation(s)
| | - Elizabeth K Huh
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | | | | |
Collapse
|
36
|
Functional compartmentalization of photoreceptor neurons. Pflugers Arch 2021; 473:1493-1516. [PMID: 33880652 DOI: 10.1007/s00424-021-02558-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
Retinal photoreceptors are neurons that convert dynamically changing patterns of light into electrical signals that are processed by retinal interneurons and ultimately transmitted to vision centers in the brain. They represent the essential first step in seeing without which the remainder of the visual system is rendered moot. To support this role, the major functions of photoreceptors are segregated into three main specialized compartments-the outer segment, the inner segment, and the pre-synaptic terminal. This compartmentalization is crucial for photoreceptor function-disruption leads to devastating blinding diseases for which therapies remain elusive. In this review, we examine the current understanding of the molecular and physical mechanisms underlying photoreceptor functional compartmentalization and highlight areas where significant knowledge gaps remain.
Collapse
|
37
|
Purayil HT, Zhang Y, Black JB, Gharaibeh R, Daaka Y. Nuclear βArrestin1 regulates androgen receptor function in castration resistant prostate cancer. Oncogene 2021; 40:2610-2620. [PMID: 33692468 DOI: 10.1038/s41388-021-01730-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 01/31/2023]
Abstract
Progression of prostate cancer (PC) to terminal castration-resistant PC (CRPC) involves a diverse set of intermediates, and androgen receptor (AR) is the key mediator of PC initiation and progression to CRPC. Hence, identification of factors involved in the regulation of AR expression and function is a necessary first-step to improve disease outcome. In this study, we identified ubiquitous βArrestin 1 (βArr1) as a regulator of AR function in CRPC. Unbiased gene expression analysis of public datasets revealed increased levels of ARRB1 (the gene encoding βArr1) in CRPC when compared to normal tissue. Further, βArr1 expression correlated with enhanced AR transcriptional function in these datasets. The βArr1 partitions to both nucleus and cytosol and mechanistic studies showed that nuclear, and not cytosolic, βArr1 formed a complex with AR and AR-coregulator βCatenin and that the heterotrimeric protein complex was recruited to androgen-response elements of AR-regulated genes. Functionally, we demonstrate that depletion of βArr1 attenuates PC cell and tumor growth and metastasis, and rescued expression of nuclear, but not cytosolic, βArr1 restores the PC colony growth and invasion of Matrigel in vitro and tumor growth and metastasis in mice. The targeting of βArr1-regulated AR transcriptional function may be used in the development of new drugs to treat lethal CRPC.
Collapse
Affiliation(s)
- Hamsa Thayele Purayil
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yushan Zhang
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA.,Stephen Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA
| | - Joseph B Black
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Raad Gharaibeh
- Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yehia Daaka
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
38
|
Moo EV, van Senten JR, Bräuner-Osborne H, Møller TC. Arrestin-Dependent and -Independent Internalization of G Protein-Coupled Receptors: Methods, Mechanisms, and Implications on Cell Signaling. Mol Pharmacol 2021; 99:242-255. [PMID: 33472843 DOI: 10.1124/molpharm.120.000192] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/07/2021] [Indexed: 01/05/2023] Open
Abstract
Agonist-induced endocytosis is a key regulatory mechanism for controlling the responsiveness of the cell by changing the density of cell surface receptors. In addition to the role of endocytosis in signal termination, endocytosed G protein-coupled receptors (GPCRs) have been found to signal from intracellular compartments of the cell. Arrestins are generally believed to be the master regulators of GPCR endocytosis by binding to both phosphorylated receptors and adaptor protein 2 (AP-2) or clathrin, thus recruiting receptors to clathrin-coated pits to facilitate the internalization process. However, many other functions have been described for arrestins that do not relate to their role in terminating signaling. Additionally, there are now more than 30 examples of GPCRs that internalize independently of arrestins. Here we review the methods, pharmacological tools, and cellular backgrounds used to determine the role of arrestins in receptor internalization, highlighting their advantages and caveats. We also summarize key examples of arrestin-independent GPCR endocytosis in the literature and their suggested alternative endocytosis pathway (e.g., the caveolae-dependent and fast endophilin-mediated endocytosis pathways). Finally, we consider the possible function of arrestins recruited to GPCRs that are endocytosed independently of arrestins, including the catalytic arrestin activation paradigm. Technological improvements in recent years have advanced the field further, and, combined with the important implications of endocytosis on drug responses, this makes endocytosis an obvious parameter to include in molecular pharmacological characterization of ligand-GPCR interactions. SIGNIFICANCE STATEMENT: G protein-coupled receptor (GPCR) endocytosis is an important means to terminate receptor signaling, and arrestins play a central role in the widely accepted classical paradigm of GPCR endocytosis. In contrast to the canonical arrestin-mediated internalization, an increasing number of GPCRs are found to be endocytosed via alternate pathways, and the process appears more diverse than the previously defined "one pathway fits all."
Collapse
Affiliation(s)
- Ee Von Moo
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jeffrey R van Senten
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Thor C Møller
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
Aydin Y, Coin I. Biochemical insights into structure and function of arrestins. FEBS J 2021; 288:2529-2549. [DOI: 10.1111/febs.15811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Yasmin Aydin
- Institute of Biochemistry Faculty of Life Sciences University of Leipzig Germany
| | - Irene Coin
- Institute of Biochemistry Faculty of Life Sciences University of Leipzig Germany
| |
Collapse
|
40
|
Fanelli F, Felline A, Marigo V. Structural aspects of rod opsin and their implication in genetic diseases. Pflugers Arch 2021; 473:1339-1359. [PMID: 33728518 DOI: 10.1007/s00424-021-02546-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023]
Abstract
Vision in dim-light conditions is triggered by photoactivation of rhodopsin, the visual pigment of rod photoreceptor cells. Rhodopsin is made of a protein, the G protein coupled receptor (GPCR) opsin, and the chromophore 11-cis-retinal. Vertebrate rod opsin is the GPCR best characterized at the atomic level of detail. Since the release of the first crystal structure 20 years ago, a huge number of structures have been released that, in combination with valuable spectroscopic determinations, unveiled most aspects of the photobleaching process. A number of spontaneous mutations of rod opsin have been found linked to vision-impairing diseases like autosomal dominant or autosomal recessive retinitis pigmentosa (adRP or arRP, respectively) and autosomal congenital stationary night blindness (adCSNB). While adCSNB is mainly caused by constitutive activation of rod opsin, RP shows more variegate determinants affecting different aspects of rod opsin function. The vast majority of missense rod opsin mutations affects folding and trafficking and is linked to adRP, an incurable disease that awaits light on its molecular structure determinants. This review article summarizes all major structural information available on vertebrate rod opsin conformational states and the insights gained so far into the structural determinants of adCSNB and adRP linked to rod opsin mutations. Strategies to design small chaperones with therapeutic potential for selected adRP rod opsin mutants will be discussed as well.
Collapse
Affiliation(s)
- Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy. .,Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via Campi 287, Modena, 41125, Italy.
| | - Angelo Felline
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy
| | - Valeria Marigo
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via Campi 287, Modena, 41125, Italy.,Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125, Modena, Italy
| |
Collapse
|
41
|
Chen Q, Zhuo Y, Sharma P, Perez I, Francis DJ, Chakravarthy S, Vishnivetskiy SA, Berndt S, Hanson SM, Zhan X, Brooks EK, Altenbach C, Hubbell WL, Klug CS, Iverson TM, Gurevich VV. An Eight Amino Acid Segment Controls Oligomerization and Preferred Conformation of the two Non-visual Arrestins. J Mol Biol 2021; 433:166790. [PMID: 33387531 PMCID: PMC7870585 DOI: 10.1016/j.jmb.2020.166790] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022]
Abstract
G protein coupled receptors signal through G proteins or arrestins. A long-standing mystery in the field is why vertebrates have two non-visual arrestins, arrestin-2 and arrestin-3. These isoforms are ~75% identical and 85% similar; each binds numerous receptors, and appear to have many redundant functions, as demonstrated by studies of knockout mice. We previously showed that arrestin-3 can be activated by inositol-hexakisphosphate (IP6). IP6 interacts with the receptor-binding surface of arrestin-3, induces arrestin-3 oligomerization, and this oligomer stabilizes the active conformation of arrestin-3. Here, we compared the impact of IP6 on oligomerization and conformational equilibrium of the highly homologous arrestin-2 and arrestin-3 and found that these two isoforms are regulated differently. In the presence of IP6, arrestin-2 forms "infinite" chains, where each promoter remains in the basal conformation. In contrast, full length and truncated arrestin-3 form trimers and higher-order oligomers in the presence of IP6; we showed previously that trimeric state induces arrestin-3 activation (Chen et al., 2017). Thus, in response to IP6, the two non-visual arrestins oligomerize in different ways in distinct conformations. We identified an insertion of eight residues that is conserved across arrestin-2 homologs, but absent in arrestin-3 that likely accounts for the differences in the IP6 effect. Because IP6 is ubiquitously present in cells, this suggests physiological consequences, including differences in arrestin-2/3 trafficking and JNK3 activation. The functional differences between two non-visual arrestins are in part determined by distinct modes of their oligomerization. The mode of oligomerization might regulate the function of other signaling proteins.
Collapse
Affiliation(s)
- Qiuyan Chen
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; The Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ya Zhuo
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pankaj Sharma
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; The Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ivette Perez
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Derek J Francis
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Srinivas Chakravarthy
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Chemical and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | | | - Sandra Berndt
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Susan M Hanson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Xuanzhi Zhan
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Evan K Brooks
- University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Wayne L Hubbell
- University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; The Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA; Department of Biochemistry and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
42
|
Barnes CL, Malhotra H, Calvert PD. Compartmentalization of Photoreceptor Sensory Cilia. Front Cell Dev Biol 2021; 9:636737. [PMID: 33614665 PMCID: PMC7889997 DOI: 10.3389/fcell.2021.636737] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Functional compartmentalization of cells is a universal strategy for segregating processes that require specific components, undergo regulation by modulating concentrations of those components, or that would be detrimental to other processes. Primary cilia are hair-like organelles that project from the apical plasma membranes of epithelial cells where they serve as exclusive compartments for sensing physical and chemical signals in the environment. As such, molecules involved in signal transduction are enriched within cilia and regulating their ciliary concentrations allows adaptation to the environmental stimuli. The highly efficient organization of primary cilia has been co-opted by major sensory neurons, olfactory cells and the photoreceptor neurons that underlie vision. The mechanisms underlying compartmentalization of cilia are an area of intense current research. Recent findings have revealed similarities and differences in molecular mechanisms of ciliary protein enrichment and its regulation among primary cilia and sensory cilia. Here we discuss the physiological demands on photoreceptors that have driven their evolution into neurons that rely on a highly specialized cilium for signaling changes in light intensity. We explore what is known and what is not known about how that specialization appears to have driven unique mechanisms for photoreceptor protein and membrane compartmentalization.
Collapse
Affiliation(s)
| | | | - Peter D. Calvert
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
43
|
Seyedabadi M, Gharghabi M, Gurevich EV, Gurevich VV. Receptor-Arrestin Interactions: The GPCR Perspective. Biomolecules 2021; 11:218. [PMID: 33557162 PMCID: PMC7913897 DOI: 10.3390/biom11020218] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Arrestins are a small family of four proteins in most vertebrates that bind hundreds of different G protein-coupled receptors (GPCRs). Arrestin binding to a GPCR has at least three functions: precluding further receptor coupling to G proteins, facilitating receptor internalization, and initiating distinct arrestin-mediated signaling. The molecular mechanism of arrestin-GPCR interactions has been extensively studied and discussed from the "arrestin perspective", focusing on the roles of arrestin elements in receptor binding. Here, we discuss this phenomenon from the "receptor perspective", focusing on the receptor elements involved in arrestin binding and emphasizing existing gaps in our knowledge that need to be filled. It is vitally important to understand the role of receptor elements in arrestin activation and how the interaction of each of these elements with arrestin contributes to the latter's transition to the high-affinity binding state. A more precise knowledge of the molecular mechanisms of arrestin activation is needed to enable the construction of arrestin mutants with desired functional characteristics.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48471-93698, Iran;
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48167-75952, Iran
| | - Mehdi Gharghabi
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Eugenia V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA;
| | | |
Collapse
|
44
|
Vishnivetskiy SA, Zheng C, May MB, Karnam PC, Gurevich EV, Gurevich VV. Lysine in the lariat loop of arrestins does not serve as phosphate sensor. J Neurochem 2021; 156:435-444. [PMID: 32594524 PMCID: PMC7765740 DOI: 10.1111/jnc.15110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/29/2020] [Accepted: 06/19/2020] [Indexed: 12/23/2022]
Abstract
Arrestins demonstrate strong preference for phosphorylated over unphosphorylated receptors, but how arrestins "sense" receptor phosphorylation is unclear. A conserved lysine in the lariat loop of arrestins directly binds the phosphate in crystal structures of activated arrestin-1, -2, and -3. The lariat loop supplies two negative charges to the central polar core, which must be disrupted for arrestin activation and high-affinity receptor binding. Therefore, we hypothesized that receptor-attached phosphates pull the lariat loop via this lysine, thus removing the negative charges and destabilizing the polar core. We tested the role of this lysine by introducing charge elimination (Lys->Ala) and reversal (Lys->Glu) mutations in arrestin-1, -2, and -3. These mutations in arrestin-1 only moderately reduced phospho-rhodopsin binding and had no detectable effect on arrestin-2 and -3 binding to cognate non-visual receptors in cells. The mutations of Lys300 in bovine and homologous Lys301 in mouse arrestin-1 on the background of pre-activated mutants had variable effects on the binding to light-activated phosphorylated rhodopsin, while affecting the binding to unphosphorylated rhodopsin to a greater extent. Thus, conserved lysine in the lariat loop participates in receptor binding, but does not play a critical role in phosphate-induced arrestin activation.
Collapse
Affiliation(s)
| | - Chen Zheng
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Preethi C. Karnam
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | |
Collapse
|
45
|
Kahlhofer J, Leon S, Teis D, Schmidt O. The α-arrestin family of ubiquitin ligase adaptors links metabolism with selective endocytosis. Biol Cell 2021; 113:183-219. [PMID: 33314196 DOI: 10.1111/boc.202000137] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
The regulation of nutrient uptake into cells is important, as it allows to either increase biomass for cell growth or to preserve homoeostasis. A key strategy to adjust cellular nutrient uptake is the reconfiguration of the nutrient transporter repertoire at the plasma membrane by the addition of nutrient transporters through the secretory pathway and by their endocytic removal. In this review, we focus on the mechanisms that regulate selective nutrient transporter endocytosis, which is mediated by the α-arrestin protein family. In the budding yeast Saccharomyces cerevisiae, 14 different α-arrestins (also named arrestin-related trafficking adaptors, ARTs) function as adaptors for the ubiquitin ligase Rsp5. They instruct Rsp5 to ubiquitinate subsets of nutrient transporters to orchestrate their endocytosis. The ART proteins are under multilevel control of the major nutrient sensing systems, including amino acid sensing by the general amino acid control and target of rapamycin pathways, and energy sensing by 5'-adenosine-monophosphate-dependent kinase. The function of the six human α-arrestins is comparably under-characterised. Here, we summarise the current knowledge about the function, regulation and substrates of yeast ARTs and human α-arrestins, and highlight emerging communalities and general principles.
Collapse
Affiliation(s)
- Jennifer Kahlhofer
- Institute for Cell Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Sebastien Leon
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - David Teis
- Institute for Cell Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Oliver Schmidt
- Institute for Cell Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
46
|
Şensoy Ö. The single nucleotide β -arrestin2 variant, A248T, resembles dynamical properties of activated arrestin. Turk J Chem 2021; 44:409-420. [PMID: 33488166 PMCID: PMC7671214 DOI: 10.3906/kim-1910-46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
β -arrestins are responsible for termination of G protein-coupled receptor (GPCR)-mediated signaling. Association of single nucleotide variants with onset of crucial diseases has made this protein family hot targets in the field of GPCR-mediated pharmacology. However, impact of these mutations on function of these variants has remained elusive. In this study, structural and dynamical properties of one of β -arrestin2 (arrestin 3) variants, A248T, which has been identified in some cancer tissue samples, were investigated via molecular dynamics simulations. The results showed that the variant underwent structural rearrangements which are seen in crystal structures of active arrestin. Specifically, the "short helix" unravels and the "gate loop" swings forward as seen in crystal structures of receptor-bound and GPCR phosphopeptide-bound arrestin. Moreover, the "finger loop" samples upward position in the variant. Importantly, these regions harbor crucial residues that are involved in receptor binding interfaces. Cumulatively, these local structural rearrangements help the variant adopt active-like domain angle without perturbing the "polar core". Considering that phosphorylation of the receptor is required for activation of arrestin, A248T might serve as a model system to understand phosphorylation-independent activation mechanism, thus enabling modulation of function of arrestin variants which are activated independent of receptor phosphorylation as seen in cancer.
Collapse
Affiliation(s)
- Özge Şensoy
- Department of Computer Engineering, The School of Engineering and Natural Sciences, İstanbul Medipol University, İstanbul Turkey
| |
Collapse
|
47
|
Dissecting the structural features of β-arrestins as multifunctional proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140603. [PMID: 33421644 DOI: 10.1016/j.bbapap.2021.140603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023]
Abstract
β-arrestins bind active G protein-coupled receptors (GPCRs) and play a crucial role in receptor desensitization and internalization. The classical paradigm of arrestin function has been expanded with the identification of many non-receptor-binding partners, which indicated the multifunctional role of β-arrestins in cellular functions. To elucidate the molecular mechanism of β-arrestin-mediated signaling, the structural features of β-arrestins were investigated using X-ray crystallography and cryogenic electron microscopy (cryo-EM). However, the intrinsic conformational flexibility of β-arrestins hampers the elucidation of structural interactions between β-arrestins and their binding partners using conventional structure determination tools. Therefore, structural information obtained using complementary structure analysis techniques would be necessary in combination with X-ray crystallography and cryo-EM data. In this review, we describe how β-arrestins interact with their binding partners from a structural point of view, as elucidated by both traditional methods (X-ray crystallography and cryo-EM) and complementary structure analysis techniques.
Collapse
|
48
|
Latorraca NR, Masureel M, Hollingsworth SA, Heydenreich FM, Suomivuori CM, Brinton C, Townshend RJL, Bouvier M, Kobilka BK, Dror RO. How GPCR Phosphorylation Patterns Orchestrate Arrestin-Mediated Signaling. Cell 2020; 183:1813-1825.e18. [PMID: 33296703 DOI: 10.1016/j.cell.2020.11.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/26/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023]
Abstract
Binding of arrestin to phosphorylated G-protein-coupled receptors (GPCRs) controls many aspects of cell signaling. The number and arrangement of phosphates may vary substantially for a given GPCR, and different phosphorylation patterns trigger different arrestin-mediated effects. Here, we determine how GPCR phosphorylation influences arrestin behavior by using atomic-level simulations and site-directed spectroscopy to reveal the effects of phosphorylation patterns on arrestin binding and conformation. We find that patterns favoring binding differ from those favoring activation-associated conformational change. Both binding and conformation depend more on arrangement of phosphates than on their total number, with phosphorylation at different positions sometimes exerting opposite effects. Phosphorylation patterns selectively favor a wide variety of arrestin conformations, differently affecting arrestin sites implicated in scaffolding distinct signaling proteins. We also reveal molecular mechanisms of these phenomena. Our work reveals the structural basis for the long-standing "barcode" hypothesis and has important implications for design of functionally selective GPCR-targeted drugs.
Collapse
Affiliation(s)
- Naomi R Latorraca
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Matthieu Masureel
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Scott A Hollingsworth
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Franziska M Heydenreich
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montreal, Montreal, QC, Canada
| | - Carl-Mikael Suomivuori
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Connor Brinton
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Raphael J L Townshend
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michel Bouvier
- Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montreal, Montreal, QC, Canada
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Biophysics Program, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
49
|
Abstract
Heart failure is a major source of morbidity and mortality, driven, in part, by maladaptive sympathetic hyperactivity in response to poor cardiac output. Current therapies target β-adrenergic and angiotensin II G protein-coupled receptors to reduce adverse cardiac remodeling and improve clinical outcomes; however, there is a pressing need for new therapeutic approaches to preserve cardiac function. β-arrestin is a multifunctional protein which has come under analysis in recent years as a key player in G protein-coupled receptor signal transduction and a potential therapeutic target in heart failure. β-arrestin attenuates β-adrenergic and angiotensin II receptor signaling to limit the deleterious response to excessive sympathetic stimulation while simultaneously transactivating cardioprotective signaling cascades that preserve cardiac structure and function in response to injury. β-arrestin signaling may provide unique advantages compared to classic heart failure treatment approaches, but a number of challenges currently limit clinical applications. In this review, we discuss the role and functions of β-arrestin and the current attempts to develop G protein-coupled receptor agonists biased towards β-arrestin activation. Furthermore, we examine the functional diversity of cardiac β-arrestin isotypes to explore key considerations in the promise of β-arrestin as a pharmacotherapeutic target in heart failure.
Collapse
|
50
|
Samaranayake S, Vishnivetskiy SA, Shores CR, Thibeault KC, Kook S, Chen J, Burns ME, Gurevich EV, Gurevich VV. Biological Role of Arrestin-1 Oligomerization. J Neurosci 2020; 40:8055-8069. [PMID: 32948676 PMCID: PMC7574651 DOI: 10.1523/jneurosci.0749-20.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 11/21/2022] Open
Abstract
Members of the arrestin superfamily have great propensity of self-association, but the physiological significance of this phenomenon is unclear. To determine the biological role of visual arrestin-1 oligomerization in rod photoreceptors, we expressed mutant arrestin-1 with severely impaired self-association in mouse rods and analyzed mice of both sexes. We show that the oligomerization-deficient mutant is capable of quenching rhodopsin signaling normally, as judged by electroretinography and single-cell recording. Like wild type, mutant arrestin-1 is largely excluded from the outer segments in the dark, proving that the normal intracellular localization is not due the size exclusion of arrestin-1 oligomers. In contrast to wild type, supraphysiological expression of the mutant causes shortening of the outer segments and photoreceptor death. Thus, oligomerization reduces the cytotoxicity of arrestin-1 monomer, ensuring long-term photoreceptor survival.SIGNIFICANCE STATEMENT Visual arrestin-1 forms dimers and tetramers. The biological role of its oligomerization is unclear. To test the role of arrestin-1 self-association, we expressed oligomerization-deficient mutant in arrestin-1 knock-out mice. The mutant quenches light-induced rhodopsin signaling like wild type, demonstrating that in vivo monomeric arrestin-1 is necessary and sufficient for this function. In rods, arrestin-1 moves from the inner segments and cell bodies in the dark to the outer segments in the light. Nonoligomerizing mutant undergoes the same translocation, demonstrating that the size of the oligomers is not the reason for arrestin-1 exclusion from the outer segments in the dark. High expression of oligomerization-deficient arrestin-1 resulted in rod death. Thus, oligomerization reduces the cytotoxicity of high levels of arrestin-1 monomer.
Collapse
Affiliation(s)
- Srimal Samaranayake
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | | | - Camilla R Shores
- Department Ophthalmology & Vision Science, University of California, Davis, Davis, California 95616
| | | | - Seunghyi Kook
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90089
| | - Marie E Burns
- Department Ophthalmology & Vision Science, University of California, Davis, Davis, California 95616
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|