1
|
Bowman DM, Meenderink LM, Thomas KS, Manning EH, Tyska MJ, Goldenring JR. Microvillus inclusion disease-causing MYO5B point mutations exert differential effects on motor function. J Biol Chem 2025; 301:108328. [PMID: 39978676 PMCID: PMC11964754 DOI: 10.1016/j.jbc.2025.108328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/12/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
Microvillus inclusion disease (MVID) is a rare congenital diarrheal disorder typically caused by loss of function mutations in the unconventional myosin, myosin 5b (MYO5B), which leads to the mistrafficking of apical components in enterocytes. MVID can manifest in two phenotypes: in both the intestine and liver or the liver alone. Although previous studies seeking to understand MVID disease pathology used MYO5B KO models, many patients have point mutations and thus express a dysfunctional MYO5B. How these point mutations lead to a broad spectrum of disease severity and the development of two distinct disease phenotypes is still not known. Here, we investigate the effect of MVID patient mutations on the function of the MYO5B motor domain, independent of cargo binding, using confocal imaging and fluorescence recovery after photobleaching. Patient mutations demonstrated a range of effects in these assays, from rigor-like behavior to loss of actin binding. Additionally, analysis of fluorescence recovery after photobleaching turnover kinetics suggests that some mutations negatively impact the ability of MYO5B to stay bound to actin. Collectively, our findings indicate that patient mutations affect the MYO5B motor domain in diverse ways, consistent with the spectrum of phenotypes observed in patients.
Collapse
Affiliation(s)
- Deanna M Bowman
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Leslie M Meenderink
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Veterans Affairs Tennessee Valley Health Care System, Nashville, Tennessee, USA
| | - Kyra S Thomas
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Section of Surgical Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Elizabeth H Manning
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Veterans Affairs Tennessee Valley Health Care System, Nashville, Tennessee, USA; Section of Surgical Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James R Goldenring
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Veterans Affairs Tennessee Valley Health Care System, Nashville, Tennessee, USA; Section of Surgical Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
2
|
Sun S, Lu YN, Li XD. Structure of the Inhibited Smooth Muscle Myosin and Its Implications on the Regulation of Insect Striated Muscle Myosin. Life (Basel) 2025; 15:379. [PMID: 40141724 PMCID: PMC11944230 DOI: 10.3390/life15030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/07/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Class II myosin (myosin-2) is an actin-based motor protein found in nearly all eukaryotes. One critical question is how the motor function of myosin-2 is regulated. Vertebrate myosin-2 comprises non-muscle myosin, smooth muscle myosin and striated muscle myosin. Recent studies have shown that smooth muscle myosin, in its inhibited state, adopts a folded conformation in which the two heads interact with each other asymmetrically, and the tail is folded into three segments that wrap around the two heads. It has been proposed that the asymmetric head-to-head interaction is a conserved, fundamental structure essential for the regulation of all types of myosin-2. Nearly all insects have only a single striated muscle myosin heavy chain (MHC) gene, which produces all MHC isoforms through alternative splicing of mutually exclusive exons. Most of the alternative exon-encoded regions in insect MHC are located in the motor domain and are critical for generating isoform-specific contraction velocity and force production. However, it remains unclear whether these alternative exon-encoded regions participate in the regulation of insect striated muscle myosin. Here, we review the recently resolved structure of the inhibited state of smooth muscle myosin and discuss its implications on the regulation of insect striated muscle myosin. We propose that the alternative exon-encoded regions in insect MHC not only affect motor properties but also contribute to stabilizing the folded conformation and play a crucial role in regulating insect striated muscle myosin.
Collapse
Affiliation(s)
- Shaopeng Sun
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.S.); (Y.-N.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Ning Lu
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.S.); (Y.-N.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-dong Li
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.S.); (Y.-N.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
4
|
Zhou Z, Wang D, Luo D, Zhou Z, Liu W, Zeng W, Dinnyés A, Xiong YL, Sun Q. Non-covalent binding of chlorogenic acid to myofibrillar protein improved its bio-functionality properties and metabolic fate. Food Chem 2024; 440:138208. [PMID: 38159322 DOI: 10.1016/j.foodchem.2023.138208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
As natural antioxidants added to meat products, polyphenols can interact with proteins, and the acid-base environment influenced the extent of non-covalent and covalent interactions between them. This study compared the bio-functional characteristics and metabolic outcomes of the myofibrillar protein-chlorogenic acid (MP-CGA) complexes binding in different environments (pH 6.0 and 8.5). The results showed that CGA bound with MP significantly enhanced its antioxidant activity and inhibitory effect on metabolism enzymes. CGA bound deeply into the MP structure hydrophobic cavity at pH 6.0, which reduced its degradation by digestive enzymes, thus increasing its bio-accessibility from 59.5% to 71.6%. The digestion products of the two complexes exhibited significant differences, with the non-covalent MP-CGA complexes formed at pH 6.0 showing significantly higher concentrations of rhetsinine and piplartine, two well-known compounds to modulate diabetes. This study demonstrated that non-covalent binding between protein and polyphenol in the acidic environment held greater promising prospects for improving health.
Collapse
Affiliation(s)
- Zhiwei Zhou
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China.
| | - Dan Wang
- School of Biomedical Sciences and Technology, Chengdu Medical College, Sichuan 610500, PR China
| | - Dongmei Luo
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China.
| | - Zhiqiang Zhou
- Department of Food Engineering, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Wei Liu
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Weicai Zeng
- Department of Food Engineering, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - András Dinnyés
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China; BioTalentum Ltd., Aulich Lajos str. 26., 2100 Gödöllő, Hungary; Department of Cell Biology and Molecular Medicine, University of Szeged, H-6720 Szeged, Hungary.
| | - Youling L Xiong
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Qun Sun
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China.
| |
Collapse
|
5
|
Jansen M, de Brouwer R, Hassanzada F, Schoemaker AE, Schmidt AF, Kooijman-Reumerman MD, Bracun V, Slieker MG, Dooijes D, Vermeer AMC, Wilde AAM, Amin AS, Lekanne Deprez RH, Herkert JC, Christiaans I, de Boer RA, Jongbloed JDH, van Tintelen JP, Asselbergs FW, Baas AF. Penetrance and Prognosis of MYH7 Variant-Associated Cardiomyopathies: Results From a Dutch Multicenter Cohort Study. JACC. HEART FAILURE 2024; 12:134-147. [PMID: 37565978 DOI: 10.1016/j.jchf.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND MYH7 variants cause hypertrophic cardiomyopathy (HCM), noncompaction cardiomyopathy (NCCM), and dilated cardiomyopathy (DCM). Screening of relatives of patients with genetic cardiomyopathy is recommended from 10 to 12 years of age onward, irrespective of the affected gene. OBJECTIVES This study sought to study the penetrance and prognosis of MYH7 variant-associated cardiomyopathies. METHODS In this multicenter cohort study, penetrance and major cardiomyopathy-related events (MCEs) were assessed in carriers of (likely) pathogenic MYH7 variants by using Kaplan-Meier curves and log-rank tests. Prognostic factors were evaluated using Cox regression with time-dependent coefficients. RESULTS In total, 581 subjects (30.1% index patients, 48.4% male, median age 37.0 years [IQR: 19.5-50.2 years]) were included. HCM was diagnosed in 226 subjects, NCCM in 70, and DCM in 55. Early penetrance and MCEs (age <12 years) were common among NCCM-associated variant carriers (21.2% and 12.0%, respectively) and DCM-associated variant carriers (15.3% and 10.0%, respectively), compared with HCM-associated variant carriers (2.9% and 2.1%, respectively). Penetrance was significantly increased in carriers of converter region variants (adjusted HR: 1.87; 95% CI: 1.15-3.04; P = 0.012) and at age ≤1 year in NCCM-associated or DCM-associated variant carriers (adjusted HR: 21.17; 95% CI: 4.81-93.20; P < 0.001) and subjects with a family history of early MCEs (adjusted HR: 2.45; 95% CI: 1.09-5.50; P = 0.030). The risk of MCE was increased in subjects with a family history of early MCEs (adjusted HR: 1.82; 95% CI: 1.15-2.87; P = 0.010) and at age ≤5 years in NCCM-associated or DCM-associated variant carriers (adjusted HR: 38.82; 95% CI: 5.16-291.88; P < 0.001). CONCLUSIONS MYH7 variants can cause cardiomyopathies and MCEs at a young age. Screening at younger ages may be warranted, particularly in carriers of NCCM- or DCM-associated variants and/or with a family history of MCEs at <12 years.
Collapse
Affiliation(s)
- Mark Jansen
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Cardiology, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart).
| | - Remco de Brouwer
- Netherlands Heart Institute, Utrecht, the Netherlands; Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Fahima Hassanzada
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Angela E Schoemaker
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Amand F Schmidt
- Department of Cardiology, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart); Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom; Department of Cardiology, University Medical Centre Amsterdam, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, University Medical Centre Amsterdam, Amsterdam, the Netherlands
| | - Maria D Kooijman-Reumerman
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Valentina Bracun
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Martijn G Slieker
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart); Department of Pediatric Cardiology, University Medical Centre Utrecht, Utrecht University, the Netherlands
| | - Dennis Dooijes
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Alexa M C Vermeer
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart); Department of Human Genetics, University Medical Centre Amsterdam Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Arthur A M Wilde
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart); Department of Cardiology, University Medical Centre Amsterdam, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, University Medical Centre Amsterdam, Amsterdam, the Netherlands
| | - Ahmad S Amin
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart); Department of Cardiology, University Medical Centre Amsterdam, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, University Medical Centre Amsterdam, Amsterdam, the Netherlands
| | - Ronald H Lekanne Deprez
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart); Department of Human Genetics, University Medical Centre Amsterdam Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Johanna C Herkert
- Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Imke Christiaans
- Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Rudolf A de Boer
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart); Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands; Department of Cardiology, Thorax Center, Erasmus University Medical Center, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Jan D H Jongbloed
- Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - J Peter van Tintelen
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Folkert W Asselbergs
- Department of Cardiology, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart); Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom; Department of Cardiology, University Medical Centre Amsterdam, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, University Medical Centre Amsterdam, Amsterdam, the Netherlands; Health Data Research UK and Institute of Health Informatics, University College London, London, United Kingdom
| | - Annette F Baas
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
| |
Collapse
|
6
|
Sun B, Kekenes-Huskey PM. Myofilament-associated proteins with intrinsic disorder (MAPIDs) and their resolution by computational modeling. Q Rev Biophys 2023; 56:e2. [PMID: 36628457 PMCID: PMC11070111 DOI: 10.1017/s003358352300001x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cardiac sarcomere is a cellular structure in the heart that enables muscle cells to contract. Dozens of proteins belong to the cardiac sarcomere, which work in tandem to generate force and adapt to demands on cardiac output. Intriguingly, the majority of these proteins have significant intrinsic disorder that contributes to their functions, yet the biophysics of these intrinsically disordered regions (IDRs) have been characterized in limited detail. In this review, we first enumerate these myofilament-associated proteins with intrinsic disorder (MAPIDs) and recent biophysical studies to characterize their IDRs. We secondly summarize the biophysics governing IDR properties and the state-of-the-art in computational tools toward MAPID identification and characterization of their conformation ensembles. We conclude with an overview of future computational approaches toward broadening the understanding of intrinsic disorder in the cardiac sarcomere.
Collapse
Affiliation(s)
- Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | | |
Collapse
|
7
|
Bader I, Freilinger M, Landauer F, Waldmüller S, Mueller-Felber W, Rauscher C, Sperl W, Bittner RE, Schmidt WM, Mayr JA. A recurrent single-amino acid deletion (p.Glu500del) in the head domain of ß-cardiac myosin in two unrelated boys presenting with polyhydramnios, congenital axial stiffness and skeletal myopathy. Orphanet J Rare Dis 2022; 17:279. [PMID: 35854315 PMCID: PMC9295345 DOI: 10.1186/s13023-022-02421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alterations in the MYH7 gene can cause cardiac and skeletal myopathies. MYH7-related skeletal myopathies are extremely rare, and the vast majority of causal variants in the MYH7 gene are predicted to alter the rod domain of the of ß-cardiac myosin molecule, resulting in distal muscle weakness as the predominant manifestation. Here we describe two unrelated patients harboring an in-frame deletion in the MYH7 gene that is predicted to result in deletion of a single amino acid (p.Glu500del) in the head domain of ß-cardiac myosin. Both patients display an unusual skeletal myopathy phenotype with congenital axial stiffness and muscular hypertonus, but no cardiac involvement. RESULTS Clinical data, MRI results and histopathological data were collected retrospectively in two unrelated boys (9 and 3.5 years old). Exome sequencing uncovered the same 3-bp in-frame deletion in exon 15 (c.1498_1500delGAG) of the MYH7 gene of both patients, a mutation which deletes a highly conserved glutamate residue (p.Glu500del) in the relay loop of the head domain of the ß-cardiac myosin heavy chain. The mutation occurred de novo in one patient, whereas mosaicism was detected in blood of the father of the second patient. Both boys presented with an unusual phenotype of prenatal polyhydramnios, congenital axial stiffness and muscular hypertonus. In one patient the phenotype evolved into an axial/proximal skeletal myopathy without distal involvement or cardiomyopathy, whereas the other patient exhibited predominantly stiffness and respiratory involvement. We review and compare all patients described in the literature who possess a variant predicted to alter the p.Glu500 residue in the ß-cardiac myosin head domain, and we provide in-silico analyses of potential effects on polypeptide function. CONCLUSION The data presented here expand the phenotypic spectrum of mutations in the MYH7 gene and have implications for future diagnostics and therapeutic approaches.
Collapse
Affiliation(s)
- Ingrid Bader
- Clinical Genetics Unit, University Hospital, Salzburger Landeskliniken and Paracelsus Medical University Salzburg, 5020, Salzburg, Austria.
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University Salzburg, 5020, Salzburg, Austria.
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstr. 7, 72076, Tübingen, Germany.
| | - M Freilinger
- Universitätsklinik Für Kinder- Und Jugendheilkunde, Medical University of Vienna, 1090, Vienna, Austria
| | - F Landauer
- University Clinic of Orthopaedic and Trauma Surgery, SALK and Paracelsus Medical University Salzburg, 5020, Salzburg, Austria
| | - S Waldmüller
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstr. 7, 72076, Tübingen, Germany
| | - W Mueller-Felber
- Dr. V. Hauner Children's Hospital, Ludwig-Maximilian University of Munich, Munich, Germany
| | - C Rauscher
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University Salzburg, 5020, Salzburg, Austria
| | - W Sperl
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University Salzburg, 5020, Salzburg, Austria
| | - R E Bittner
- Neuromuscular Research Department, Center of Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - W M Schmidt
- Neuromuscular Research Department, Center of Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - J A Mayr
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University Salzburg, 5020, Salzburg, Austria
| |
Collapse
|
8
|
Zheng Y, Peng Y, Zhang S, Zhao H, Chen W, Yang Y, Hu Z, Yin Q, Peng Y. Case Report: MYO5B Homozygous Variant c.2090+3A>T Causes Intron Retention Related to Chronic Cholestasis and Diarrhea. Front Genet 2022; 13:872836. [PMID: 35706451 PMCID: PMC9189387 DOI: 10.3389/fgene.2022.872836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Biallelically mutated MYO5B is associated with microvillus inclusion disease (MVID, MIM: 251850), cholestasis, or both. This study aims at validating the splicing alteration and clinical features of an intron variant for diagnosis.Case Presentation: A homozygous variant of MYO5B, NM_001080467.2:c.2090+3A > T (NP_001073936.1:p.?) in intron 17, was identified in a patient suffering from chronic cholestasis and diarrhea. Functional validation showed that this variant caused 185 bp of intron retention in its mRNA and was predicted to present a premature translation termination site for myoVb (p.Arg697fs*47) in the head motor domain. In addition, bowel biopsy revealed decreased microvilli and local lesions of microvillus inclusion in the duodena of the patient. The patient was presented with neonatal cholestasis leading to cirrhosis, intractable diarrhea, cholelithiasis, hepatic cyst, corneal opacity, and failure to thrive.Conclusion: Our study demonstrated an intronic homozygous variant of MYO5B that affected an intron, subsequently altering splicing and leading to combined cholestasis and MVID. Our results further supported the underlying genotype–phenotype correlations and extended clinical practices toward its diagnosis and management.
Collapse
Affiliation(s)
- Yu Zheng
- First Department of General Surgery & Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, China
| | - Yuming Peng
- First Department of General Surgery & Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, China
| | - Shuju Zhang
- First Department of General Surgery & Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, China
| | - Hongmei Zhao
- Department of Gastroenterology and Nutrition, Hunan Children’s Hospital, Changsha, China
| | - Weijian Chen
- Department of Pathology, Hunan Children’s Hospital, Changsha, China
| | - Yongjia Yang
- First Department of General Surgery & Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, China
| | - Zhengmao Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Qiang Yin
- First Department of General Surgery & Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, China
- *Correspondence: Qiang Yin, ; Yu Peng,
| | - Yu Peng
- First Department of General Surgery & Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, China
- *Correspondence: Qiang Yin, ; Yu Peng,
| |
Collapse
|
9
|
Kim DI, Han SJ, Lim YB. Unique behaviour of α-helix in bending deformation. Chem Commun (Camb) 2022; 58:4368-4371. [DOI: 10.1039/d2cc00008c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Maximum degree of bending that can be tolerated by the rigid rod-like α-helix remains unknown; however, it should be very difficult or even impossible to make α-helices with varying degrees...
Collapse
|
10
|
Pepper I, Galkin VE. Actomyosin Complex. Subcell Biochem 2022; 99:421-470. [PMID: 36151385 PMCID: PMC9710302 DOI: 10.1007/978-3-031-00793-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Formation of cross-bridges between actin and myosin occurs ubiquitously in eukaryotic cells and mediates muscle contraction, intracellular cargo transport, and cytoskeletal remodeling. Myosin motors repeatedly bind to and dissociate from actin filaments in a cycle that transduces the chemical energy from ATP hydrolysis into mechanical force generation. While the general layout of surface elements within the actin-binding interface is conserved among myosin classes, sequence divergence within these motifs alters the specific contacts involved in the actomyosin interaction as well as the kinetics of mechanochemical cycle phases. Additionally, diverse lever arm structures influence the motility and force production of myosin molecules during their actin interactions. The structural differences generated by myosin's molecular evolution have fine-tuned the kinetics of its isoforms and adapted them for their individual cellular roles. In this chapter, we will characterize the structural and biochemical basis of the actin-myosin interaction and explain its relationship with myosin's cellular roles, with emphasis on the structural variation among myosin isoforms that enables their functional specialization. We will also discuss the impact of accessory proteins, such as the troponin-tropomyosin complex and myosin-binding protein C, on the formation and regulation of actomyosin cross-bridges.
Collapse
Affiliation(s)
- Ian Pepper
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA.
| |
Collapse
|
11
|
Modulation of post-powerstroke dynamics in myosin II by 2'-deoxy-ADP. Arch Biochem Biophys 2020; 699:108733. [PMID: 33388313 DOI: 10.1016/j.abb.2020.108733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 01/10/2023]
Abstract
Muscle myosins are molecular motors that hydrolyze ATP and generate force through coordinated interactions with actin filaments, known as cross-bridge cycling. During the cross-bridge cycle, functional sites in myosin 'sense' changes in interactions with actin filaments and the nucleotide binding region, resulting in allosteric transmission of information throughout the structure. We investigated whether the dynamics of the post-powerstroke state of the cross-bridge cycle are modulated in a nucleotide-dependent fashion. We compared molecular dynamics simulations of the myosin II motor domain (M) from Dictyostelium discoideum in the presence of ADP (M.ADP) versus 2'-deoxy-ADP bound myosin (M.dADP). We found that dADP was more flexible than ADP and the two nucleotides interacted with myosin in different ways. Replacement of ADP with dADP in the post-powerstroke state also altered the conformation of the actin binding region in myosin heads. Our results provide atomic level insights into allosteric communication networks in myosin that provide insight into the nucleotide-dependent dynamics of the cross-bridge cycle.
Collapse
|
12
|
Costa AR, Sousa MM. Non-Muscle Myosin II in Axonal Cell Biology: From the Growth Cone to the Axon Initial Segment. Cells 2020; 9:cells9091961. [PMID: 32858875 PMCID: PMC7563147 DOI: 10.3390/cells9091961] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
By binding to actin filaments, non-muscle myosin II (NMII) generates actomyosin networks that hold unique contractile properties. Their dynamic nature is essential for neuronal biology including the establishment of polarity, growth cone formation and motility, axon growth during development (and axon regeneration in the adult), radial and longitudinal axonal tension, and synapse formation and function. In this review, we discuss the current knowledge on the spatial distribution and function of the actomyosin cytoskeleton in different axonal compartments. We highlight some of the apparent contradictions and open questions in the field, including the role of NMII in the regulation of axon growth and regeneration, the possibility that NMII structural arrangement along the axon shaft may control both radial and longitudinal contractility, and the mechanism and functional purpose underlying NMII enrichment in the axon initial segment. With the advances in live cell imaging and super resolution microscopy, it is expected that in the near future the spatial distribution of NMII in the axon, and the mechanisms by which it participates in axonal biology will be further untangled.
Collapse
|
13
|
Abstract
Directed movements on actin filaments within the cell are powered by molecular motors of the myosin superfamily. On actin filaments, myosin motors convert the energy from ATP into force and movement. Myosin motors power such diverse cellular functions as cytokinesis, membrane trafficking, organelle movements, and cellular migration. Myosin generates force and movement via a number of structural changes associated with hydrolysis of ATP, binding to actin, and release of the ATP hydrolysis products while bound to actin. Herein we provide an overview of those structural changes and how they relate to the actin-myosin ATPase cycle. These structural changes are the basis of chemo-mechanical transduction by myosin motors.
Collapse
|
14
|
Robert-Paganin J, Pylypenko O, Kikuti C, Sweeney HL, Houdusse A. Force Generation by Myosin Motors: A Structural Perspective. Chem Rev 2019; 120:5-35. [PMID: 31689091 DOI: 10.1021/acs.chemrev.9b00264] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Generating force and movement is essential for the functions of cells and organisms. A variety of molecular motors that can move on tracks within cells have evolved to serve this role. How these motors interact with their tracks and how that, in turn, leads to the generation of force and movement is key to understanding the cellular roles that these motor-track systems serve. This review is focused on the best understood of these systems, which is the molecular motor myosin that moves on tracks of filamentous (F-) actin. The review highlights both the progress and the limits of our current understanding of how force generation can be controlled by F-actin-myosin interactions. What has emerged are insights they may serve as a framework for understanding the design principles of a number of types of molecular motors and their interactions with their tracks.
Collapse
Affiliation(s)
- Julien Robert-Paganin
- Structural Motility , UMR 144 CNRS/Curie Institute , 26 rue d'ulm , 75258 Paris cedex 05 , France
| | - Olena Pylypenko
- Structural Motility , UMR 144 CNRS/Curie Institute , 26 rue d'ulm , 75258 Paris cedex 05 , France
| | - Carlos Kikuti
- Structural Motility , UMR 144 CNRS/Curie Institute , 26 rue d'ulm , 75258 Paris cedex 05 , France
| | - H Lee Sweeney
- Department of Pharmacology & Therapeutics and the Myology Institute , University of Florida College of Medicine , PO Box 100267, Gainesville , Florida 32610-0267 , United States
| | - Anne Houdusse
- Structural Motility , UMR 144 CNRS/Curie Institute , 26 rue d'ulm , 75258 Paris cedex 05 , France
| |
Collapse
|
15
|
Caremani M, Brunello E, Linari M, Fusi L, Irving TC, Gore D, Piazzesi G, Irving M, Lombardi V, Reconditi M. Low temperature traps myosin motors of mammalian muscle in a refractory state that prevents activation. J Gen Physiol 2019; 151:1272-1286. [PMID: 31554652 PMCID: PMC6829559 DOI: 10.1085/jgp.201912424] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
The active force of mammalian skeletal muscle is reduced at low temperatures. Caremani et al. reveal that this is due to the rise of a population of myosin motors captured in a refractory state insensitive to muscle activation. Myosin motors in the thick filament of resting striated (skeletal and cardiac) muscle are trapped in an OFF state, in which the motors are packed in helical tracks on the filament surface, inhibiting their interactions with actin and utilization of ATP. To investigate the structural changes induced in the thick filament of mammalian skeletal muscle by changes in temperature, we collected x-ray diffraction patterns from the fast skeletal muscle extensor digitorum longus of the mouse in the temperature range from near physiological (35°C) to 10°C, in which the maximal isometric force (T0) shows a threefold decrease. In resting muscle, x-ray reflections signaling the OFF state of the thick filament indicate that cooling produces a progressive disruption of the OFF state with motors moving away from the ordered helical tracks on the surface of the thick filament. We find that the number of myosin motors in the OFF state at 10°C is half of that at 35°C. At T0, changes in the x-ray signals that report the fraction and conformation of actin-attached motors can be explained if the threefold decrease in force associated with lowering temperature is due not only to a decrease in the force-generating transition in the actin-attached motors but also to a twofold decrease in the number of such motors. Thus, lowering the temperature reduces to the same extent the fraction of motors in the OFF state at rest and the fraction of motors attached to actin at T0, suggesting that motors that leave the OFF state accumulate in a disordered refractory state that makes them unavailable for interaction with actin upon stimulation. This regulatory effect of temperature on the thick filament of mammalian skeletal muscle could represent an energetically convenient mechanism for hibernating animals.
Collapse
Affiliation(s)
| | | | - Marco Linari
- PhysioLab, University of Florence, Florence, Italy.,Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Firenze, Italy
| | - Luca Fusi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Thomas C Irving
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | - David Gore
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | | | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | | | - Massimo Reconditi
- PhysioLab, University of Florence, Florence, Italy.,Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Firenze, Italy
| |
Collapse
|
16
|
|
17
|
Gargey A, Ge J, Tkachev YV, Nesmelov YE. Electrostatic interactions in the force-generating region of the human cardiac myosin modulate ADP dissociation from actomyosin. Biochem Biophys Res Commun 2019; 509:978-982. [PMID: 30654937 DOI: 10.1016/j.bbrc.2019.01.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/08/2019] [Indexed: 10/27/2022]
Abstract
Human cardiac myosin has two isoforms, alpha and beta, sharing significant sequence similarity, but different in kinetics: ADP release from actomyosin is an order of magnitude faster in the alpha myosin isoform. Apparently, small differences in the sequence are responsible for distinct local inter-residue interactions within alpha and beta isoforms, leading to such a dramatic difference in the rate of ADP release. Our analysis of structural kinetics of alpha and beta isoforms using molecular dynamics simulations revealed distinct dynamics of SH1:SH2 helix within the force-generation region of myosin head. The simulations showed that the residue R694 of the helix forms two permanent salt bridges in the beta isoform, which are not present in the alpha isoform. We hypothesized that the isoform-specific electrostatic interactions play a role in the difference of kinetic properties of myosin isoforms. We prepared R694N mutant in the beta isoform background to destabilize electrostatic interactions in the force-generating region of the myosin head. Our experimental data confirm faster ADP release from R694N actomyosin mutant, but is not as dramatic as the difference of kinetics of ADP release in the alpha and beta isoforms.
Collapse
Affiliation(s)
- Akhil Gargey
- Department of Physics and Optical Science, University of North Carolina Charlotte, Charlotte, NC, 28223, USA; Department of Biological Science, University of North Carolina Charlotte, Charlotte, NC, 28223, USA
| | - Jinghua Ge
- Department of Physics and Optical Science, University of North Carolina Charlotte, Charlotte, NC, 28223, USA
| | - Yaroslav V Tkachev
- Department of Physics and Optical Science, University of North Carolina Charlotte, Charlotte, NC, 28223, USA
| | - Yuri E Nesmelov
- Department of Physics and Optical Science, University of North Carolina Charlotte, Charlotte, NC, 28223, USA; Center for Biomedical Engineering and Science, University of North Carolina, Charlotte, NC, 28223, USA.
| |
Collapse
|
18
|
Kobayashi M, Ramirez BE, Warren CM. Interplay of actin, ADP and Mg 2+ interactions with striated muscle myosin: Implications of their roles in ATPase. Arch Biochem Biophys 2018; 662:101-110. [PMID: 30529103 DOI: 10.1016/j.abb.2018.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/25/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022]
Abstract
The effects of Mg2+ on the interaction between ADP, a product of the ATPase reaction, and striated muscle myosin-subfragment 1 (S1) were investigated with both functional and spectroscopic methods. Mg2+ inhibited striated muscle myosin ATPase in the presence of F-actin. Significant effects of Mg2+ were observed in both rate constants of NOE build-up and maximal intensities in WaterLOGSY NMR experiments as F-actin concentration increased. In the absence of F-actin, myosin S1 with Mg2+ bound to a fluorescent ADP analog about five-times tighter than without Mg2+. In the presence of F-actin, the affinity of myosin S1 toward the ADP analog significantly decreased both with and without Mg2+. The equilibrium titration of myosin-S1 into F-actin revealed that in the presence of ADP the apparent dissociation constant (Kd) without Mg2+ was more than five-fold smaller than with Mg2+. Further, we examined effects of F-actin, ADP and Mg2+ binding to myosin on the tertiary structure of myosin-S1 using near UV circular dichroism (CD) spectroscopy. Both in the presence and absence of ADP, there was a Mg2+-dependent difference in the near UV CD spectra of actomyosin. Our results show that Mg2+ affects myosin-ADP and actin-myosin interactions which may be reflected in myosin ATPase activity.
Collapse
Affiliation(s)
- Minae Kobayashi
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA; Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA.
| | - Benjamin E Ramirez
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Chad M Warren
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA; Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
19
|
The basic mechanical structure of the skeletal muscle machinery: One model for linking microscopic and macroscopic scales. J Theor Biol 2018; 456:137-167. [DOI: 10.1016/j.jtbi.2018.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 06/18/2018] [Accepted: 07/19/2018] [Indexed: 11/19/2022]
|
20
|
Rao DS, Kronert WA, Guo Y, Hsu KH, Sarsoza F, Bernstein SI. Reductions in ATPase activity, actin sliding velocity, and myofibril stability yield muscle dysfunction in Drosophila models of myosin-based Freeman-Sheldon syndrome. Mol Biol Cell 2018; 30:30-41. [PMID: 30379605 PMCID: PMC6337914 DOI: 10.1091/mbc.e18-08-0526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Using Drosophila melanogaster, we created the first animal models for myosin-based Freeman–Sheldon syndrome (FSS), a dominant form of distal arthrogryposis defined by congenital facial and distal skeletal muscle contractures. Electron microscopy of homozygous mutant indirect flight muscles showed normal (Y583S) or altered (T178I, R672C) myofibril assembly followed by progressive disruption of the myofilament lattice. In contrast, all alleles permitted normal myofibril assembly in the heterozygous state but caused myofibrillar disruption during aging. The severity of myofibril defects in heterozygotes correlated with the level of flight impairment. Thus our Drosophila models mimic the human condition in that FSS mutations are dominant and display varied degrees of phenotypic severity. Molecular modeling indicates that the mutations disrupt communication between the nucleotide-binding site of myosin and its lever arm that drives force production. Each mutant myosin showed reduced in vitro actin sliding velocity, with the two more severe alleles significantly decreasing the catalytic efficiency of actin-activated ATP hydrolysis. The observed reductions in actin motility and catalytic efficiency may serve as the mechanistic basis of the progressive myofibrillar disarray observed in the Drosophila models as well as the prolonged contractile activity responsible for skeletal muscle contractures in FSS patients.
Collapse
Affiliation(s)
- Deepti S Rao
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA 92182-4614
| | - William A Kronert
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA 92182-4614
| | - Yiming Guo
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA 92182-4614
| | - Karen H Hsu
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA 92182-4614
| | - Floyd Sarsoza
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA 92182-4614
| | - Sanford I Bernstein
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA 92182-4614
| |
Collapse
|
21
|
Structural and mechanistic insights into the function of the unconventional class XIV myosin MyoA from Toxoplasma gondii. Proc Natl Acad Sci U S A 2018; 115:E10548-E10555. [PMID: 30348763 DOI: 10.1073/pnas.1811167115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Parasites of the phylum Apicomplexa are responsible for significant morbidity and mortality on a global scale. Central to the virulence of these pathogens are the phylum-specific, unconventional class XIV myosins that power the essential processes of parasite motility and host cell invasion. Notably, class XIV myosins differ from human myosins in key functional regions, yet they are capable of fast movement along actin filaments with kinetics rivaling previously studied myosins. Toward establishing a detailed molecular mechanism of class XIV motility, we determined the 2.6-Å resolution crystal structure of the Toxoplasma gondii MyoA (TgMyoA) motor domain. Structural analysis reveals intriguing strategies for force transduction and chemomechanical coupling that rely on a divergent SH1/SH2 region, the class-defining "HYAG"-site polymorphism, and the actin-binding surface. In vitro motility assays and hydrogen-deuterium exchange coupled with MS further reveal the mechanistic underpinnings of phosphorylation-dependent modulation of TgMyoA motility whereby localized regions of increased stability and order correlate with enhanced motility. Analysis of solvent-accessible pockets reveals striking differences between apicomplexan class XIV and human myosins. Extending these analyses to high-confidence homology models of Plasmodium and Cryptosporidium MyoA motor domains supports the intriguing potential of designing class-specific, yet broadly active, apicomplexan myosin inhibitors. The successful expression of the functional TgMyoA complex combined with our crystal structure of the motor domain provides a strong foundation in support of detailed structure-function studies and enables the development of small-molecule inhibitors targeting these devastating global pathogens.
Collapse
|
22
|
Labyntsevа R, Yavorovska V, Bevza O, Drapaylo A, Kalchenko V, Kosterin S. Thiacalix[4]arenes Remove the Inhibitory Effects of Zn Cations on the Myosin ATPase Activity. NANOSCALE RESEARCH LETTERS 2018; 13:224. [PMID: 30047045 PMCID: PMC6060203 DOI: 10.1186/s11671-018-2630-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Numerous female reproductive abnormalities are caused by uterine smooth muscle (myometrium) disorders. Heavy metals have an adverse effect on the contractility of the uterine smooth muscle. Although zinc is an essential biogenic element for most of the organisms, high doses of this element are toxic. The study of 0.5-5 mM Zn2+ effect on myosin S1 ATPase activity from the uterus found that 5 mM Zn2+ cations have the most pronounced inhibitory effect. The calculation of the kinetic parameters (Km and Vmax, ATP) revealed that the apparent maximum velocity of the hydrolysis ATP catalyzed by myosin in the presence of 5 mM Zn2+ decreased by 1.6 times. The value of Кm for ATP hydrolysis by myosin S1 in the presence of Zn2+ does not change statistically, although it tends to decrease. It was determined that uterine myosin S1 ATPase activity does not depend on the concentration of Mg2+ in the presence of 5 mM Zn2+. Also, it was demonstrated that tetrahydroxythiacalix[4]arene-tetrasulfosphonate (C-798) and tetrahydroxythiacalix[4]arene-tetraphosphonate (C-800) restored myosin S1 ATPase activity to the control level in the presence of 5 mM Zn2+. One of the most probable mechanisms of restoring the action of these thiacalix[4]arenes protective effect is based on its ability to chelate heavy metal cations from the incubation medium. The molecular docking of C-798 and C-800 into the myosin S1 region showed that these thiacalix[4]arenes could interact with Zn cation bond by myosin amino acid residues near the ATPase active site. Therefore, thiacalix[4]arenes may weaken the interaction between this cation and myosin S1. It was speculated that the obtained results could be used for further research with the aim of using this thiacalix[4]arenes as pharmacological compounds in the case of poisoning with high concentrations of zinc.
Collapse
Affiliation(s)
- Raisa Labyntsevа
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Viktoriia Yavorovska
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olexander Bevza
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Andriy Drapaylo
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Vitaly Kalchenko
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Sergiy Kosterin
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
23
|
Abstract
( S)-Blebbistatin, a chiral tetrahydropyrroloquinolinone, is a widely used and well-characterized ATPase inhibitor selective for myosin II. The central role of myosin II in many normal and pathological biological processes has been revealed with the aid of this small molecule. The first part of this manuscript provides a summary of myosin II and ( S)-blebbistatin literature from a medicinal chemist's perspective. The second part of this perspective deals with the physicochemical deficiencies that trouble the use of ( S)-blebbistatin in advanced biological settings: low potency and solubility, fluorescence interference, (photo)toxicity, and stability issues. A large toolbox of analogues has been developed in which particular shortcomings have been addressed. This perspective provides a necessary overview of these developments and presents guidelines for selecting the best available analogue for a given application. As the unmet need for high-potency analogues remains, we also propose starting points for medicinal chemists in search of nanomolar myosin II inhibitors.
Collapse
|
24
|
Sato T, Ohnuki J, Takano M. Long-range coupling between ATP-binding and lever-arm regions in myosin via dielectric allostery. J Chem Phys 2018; 147:215101. [PMID: 29221399 DOI: 10.1063/1.5004809] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A protein molecule is a dielectric substance, so the binding of a ligand is expected to induce dielectric response in the protein molecule, considering that ligands are charged or polar in general. We previously reported that binding of adenosine triphosphate (ATP) to molecular motor myosin actually induces such a dielectric response in myosin due to the net negative charge of ATP. By this dielectric response, referred to as "dielectric allostery," spatially separated two regions in myosin, the ATP-binding region and the actin-binding region, are allosterically coupled. In this study, from the statistically stringent analyses of the extensive molecular dynamics simulation data obtained in the ATP-free and the ATP-bound states, we show that there exists the dielectric allostery that transmits the signal of ATP binding toward the distant lever-arm region. The ATP-binding-induced electrostatic potential change observed on the surface of the main domain induced a movement of the converter subdomain from which the lever arm extends. The dielectric response was found to be caused by an underlying large-scale concerted rearrangement of the electrostatic bond network, in which highly conserved charged/polar residues are involved. Our study suggests the importance of the dielectric property for molecular machines in exerting their function.
Collapse
Affiliation(s)
- Takato Sato
- Department of Pure and Applied Physics, Waseda University, Tokyo 169-8555, Japan
| | - Jun Ohnuki
- Department of Pure and Applied Physics, Waseda University, Tokyo 169-8555, Japan
| | - Mitsunori Takano
- Department of Pure and Applied Physics, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
25
|
Seki Y, Miyasaka Y, Suzuki S, Wada K, Yasuda SP, Matsuoka K, Ohshiba Y, Endo K, Ishii R, Shitara H, Kitajiri SI, Nakagata N, Takebayashi H, Kikkawa Y. A novel splice site mutation of myosin VI in mice leads to stereociliary fusion caused by disruption of actin networks in the apical region of inner ear hair cells. PLoS One 2017; 12:e0183477. [PMID: 28832620 PMCID: PMC5568226 DOI: 10.1371/journal.pone.0183477] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/04/2017] [Indexed: 01/03/2023] Open
Abstract
An unconventional myosin encoded by the myosin VI gene (MYO6) contributes to hearing loss in humans. Homozygous mutations of MYO6 result in nonsyndromic profound congenital hearing loss, DFNB37. Kumamoto shaker/waltzer (ksv) mice harbor spontaneous mutations, and homozygous mutants exhibit congenital defects in balance and hearing caused by fusion of the stereocilia. We identified a Myo6c.1381G>A mutation that was found to be a p.E461K mutation leading to alternative splicing errors in Myo6 mRNA in ksv mutants. An analysis of the mRNA and protein expression in animals harboring this mutation suggested that most of the abnormal alternatively spliced isoforms of MYO6 are degraded in ksv mice. In the hair cells of ksv/ksv homozygotes, the MYO6 protein levels were significantly decreased in the cytoplasm, including in the cuticular plates. MYO6 and stereociliary taper-specific proteins were mislocalized along the entire length of the stereocilia of ksv/ksv mice, thus suggesting that MYO6 attached to taper-specific proteins at the stereociliary base. Histological analysis of the cochlear hair cells showed that the stereociliary fusion in the ksv/ksv mutants, developed through fusion between stereociliary bundles, raised cuticular plate membranes in the cochlear hair cells and resulted in incorporation of the bundles into the sheaths of the cuticular plates. Interestingly, the expression of the stereociliary rootlet-specific TRIO and F-actin binding protein (TRIOBP) was altered in ksv/ksv mice. The abnormal expression of TRIOBP suggested that the rootlets in the hair cells of ksv/ksv mice had excessive growth. Hence, these data indicated that decreased MYO6 levels in ksv/ksv mutants disrupt actin networks in the apical region of hair cells, thereby maintaining the normal structure of the cuticular plates and rootlets, and additionally provided a cellular basis for stereociliary fusion in Myo6 mutants.
Collapse
Affiliation(s)
- Yuta Seki
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuki Miyasaka
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Division of Experimental Animals, Center for Promotion of Medical Research and Education, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Sari Suzuki
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kenta Wada
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Laboratory of Animal Biotechnology, Department of Bioproduction, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Hokkaido, Japan
| | - Shumpei P Yasuda
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kunie Matsuoka
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yasuhiro Ohshiba
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kentaro Endo
- Histology Laboratory, Advanced Technical Support Department, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Rie Ishii
- Laboratory for Transgenic Technology, Animal Research Division, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiroshi Shitara
- Laboratory for Transgenic Technology, Animal Research Division, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shin-Ichiro Kitajiri
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yoshiaki Kikkawa
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
26
|
Das JK, Das P, Ray KK, Choudhury PP, Jana SS. Mathematical Characterization of Protein Sequences Using Patterns as Chemical Group Combinations of Amino Acids. PLoS One 2016; 11:e0167651. [PMID: 27930687 PMCID: PMC5145171 DOI: 10.1371/journal.pone.0167651] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/17/2016] [Indexed: 01/08/2023] Open
Abstract
Comparison of amino acid sequence similarity is the fundamental concept behind the protein phylogenetic tree formation. By virtue of this method, we can explain the evolutionary relationships, but further explanations are not possible unless sequences are studied through the chemical nature of individual amino acids. Here we develop a new methodology to characterize the protein sequences on the basis of the chemical nature of the amino acids. We design various algorithms for studying the variation of chemical group transitions and various chemical group combinations as patterns in the protein sequences. The amino acid sequence of conventional myosin II head domain of 14 family members are taken to illustrate this new approach. We find two blocks of maximum length 6 aa as 'FPKATD' and 'Y/FTNEKL' without repeating the same chemical nature and one block of maximum length 20 aa with the repetition of chemical nature which are common among all 14 members. We also check commonality with another motor protein sub-family kinesin, KIF1A. Based on our analysis we find a common block of length 8 aa both in myosin II and KIF1A. This motif is located in the neck linker region which could be responsible for the generation of mechanical force, enabling us to find the unique blocks which remain chemically conserved across the family. We also validate our methodology with different protein families such as MYOI, Myosin light chain kinase (MLCK) and Rho-associated protein kinase (ROCK), Na+/K+-ATPase and Ca2+-ATPase. Altogether, our studies provide a new methodology for investigating the conserved amino acids' pattern in different proteins.
Collapse
Affiliation(s)
- Jayanta Kumar Das
- Applied Statistics Unit, Indian Statistical Institute, 203 B.T Road, Kolkata-700108, West Bengal, India
| | - Provas Das
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata-700032, West Bengal, India
| | - Korak Kumar Ray
- Department of Chemistry, Indian Institute of Technology-Bombay, IIT Bombay, Powai, Mumbai-400076, Maharashtra, India
| | - Pabitra Pal Choudhury
- Applied Statistics Unit, Indian Statistical Institute, 203 B.T Road, Kolkata-700108, West Bengal, India
| | - Siddhartha Sankar Jana
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata-700032, West Bengal, India
| |
Collapse
|
27
|
Sato T, Ohnuki J, Takano M. Dielectric Allostery of Protein: Response of Myosin to ATP Binding. J Phys Chem B 2016; 120:13047-13055. [PMID: 28030954 DOI: 10.1021/acs.jpcb.6b10003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein uses allostery to execute biological function. The physical mechanism underlying the allostery has long been studied, with the focus on the mechanical response by ligand binding. Here, we highlight the electrostatic response, presenting an idea of "dielectric allostery". We conducted molecular dynamics simulations of myosin, a motor protein with allostery, and analyzed the response to ATP binding which is a crucial step in force-generating function, forcing myosin to unbind from the actin filament. We found that the net negative charge of ATP causes a large-scale, anisotropic dielectric response in myosin, altering the electrostatic potential in the distant actin-binding region and accordingly retracting a positively charged actin-binding loop. A large-scale rearrangement of electrostatic bond network was found to occur upon ATP binding. Since proteins are dielectric and ligands are charged/polar in general, the dielectric allostery might underlie a wide spectrum of functions by proteins.
Collapse
Affiliation(s)
- Takato Sato
- Department of Pure and Applied Physics, Waseda University , Okubo 3-4-1, Shinjuku-Ku, Tokyo 169-8555, Japan
| | - Jun Ohnuki
- Department of Pure and Applied Physics, Waseda University , Okubo 3-4-1, Shinjuku-Ku, Tokyo 169-8555, Japan
| | - Mitsunori Takano
- Department of Pure and Applied Physics, Waseda University , Okubo 3-4-1, Shinjuku-Ku, Tokyo 169-8555, Japan
| |
Collapse
|
28
|
Highly selective inhibition of myosin motors provides the basis of potential therapeutic application. Proc Natl Acad Sci U S A 2016; 113:E7448-E7455. [PMID: 27815532 DOI: 10.1073/pnas.1609342113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Direct inhibition of smooth muscle myosin (SMM) is a potential means to treat hypercontractile smooth muscle diseases. The selective inhibitor CK-2018571 prevents strong binding to actin and promotes muscle relaxation in vitro and in vivo. The crystal structure of the SMM/drug complex reveals that CK-2018571 binds to a novel allosteric pocket that opens up during the "recovery stroke" transition necessary to reprime the motor. Trapped in an intermediate of this fast transition, SMM is inhibited with high selectivity compared with skeletal muscle myosin (IC50 = 9 nM and 11,300 nM, respectively), although all of the binding site residues are identical in these motors. This structure provides a starting point from which to design highly specific myosin modulators to treat several human diseases. It further illustrates the potential of targeting transition intermediates of molecular machines to develop exquisitely selective pharmacological agents.
Collapse
|
29
|
Myosin S2 origins track evolution of strong binding on actin by azimuthal rolling of motor domain. Biophys J 2016; 108:1495-1502. [PMID: 25809262 DOI: 10.1016/j.bpj.2014.12.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/29/2014] [Indexed: 11/21/2022] Open
Abstract
Myosin crystal structures have given rise to the swinging lever arm hypothesis, which predicts a large axial tilt of the lever arm domain during the actin-attached working stroke. Previous work imaging the working stroke in actively contracting, fast-frozen Lethocerus muscle confirmed the axial tilt; but strongly bound myosin heads also showed an unexpected azimuthal slew of the lever arm around the thin filament axis, which was not predicted from known crystal structures. We hypothesized that an azimuthal reorientation of the myosin motor domain on actin during the weak-binding to strong-binding transition could explain the lever arm slew provided that myosin's α-helical coiled-coil subfragment 2 (S2) domain emerged from the thick filament backbone at a particular location. However, previous studies did not adequately resolve the S2 domain. Here we used electron tomography of rigor muscle swollen by low ionic strength to pull S2 clear of the thick filament backbone, thereby revealing the azimuth of its point of origin. The results show that the azimuth of S2 origins of those rigor myosin heads, bound to the actin target zone of actively contracting muscle, originate from a restricted region of the thick filament. This requires an azimuthal reorientation of the motor domain on actin during the weak to strong transition.
Collapse
|
30
|
Tao L, Fasulo B, Warecki B, Sullivan W. Tum/RacGAP functions as a switch activating the Pav/kinesin-6 motor. Nat Commun 2016; 7:11182. [PMID: 27091402 PMCID: PMC4838857 DOI: 10.1038/ncomms11182] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/26/2016] [Indexed: 11/24/2022] Open
Abstract
Centralspindlin is essential for central spindle and cleavage furrow formation. Drosophila centralspindlin consists of a kinesin-6 motor (Pav/kinesin-6) and a GTPase-activating protein (Tum/RacGAP). Centralspindlin localization to the central spindle is mediated by Pav/kinesin-6. While Tum/RacGAP has well-documented scaffolding functions, whether it influences Pav/kinesin-6 function is less well-explored. Here we demonstrate that both Pav/kinesin-6 and the centralspindlin complex (co-expressed Pav/Tum) have strong microtubule bundling activity. Centralspindlin also has robust plus-end-directed motility. In contrast, Pav/kinesin-6 alone cannot move microtubules. However, the addition of Tum/RacGAP or a 65 amino acid Tum/RacGAP fragment to Pav/kinesin-6 restores microtubule motility. Further, ATPase assays reveal that microtubule-stimulated ATPase activity of centralspindlin is seven times higher than that of Pav/kinesin-6. These findings are supported by in vivo studies demonstrating that in Tum/RacGAP-depleted S2 Drosophila cells, Pav/kinesin-6 exhibits severely reduced localization to the central spindle and an abnormal concentration at the centrosomes. Centralspindlin consists of dimeric kinesin-6 and dimeric RacGAP, and is involved in the organization of anaphase midzone microtubules. Here, the authors show that the RacGAP is needed for motor activity at the plus-end of microtubules, but not for the bundling activity associated with kinesin-6.
Collapse
Affiliation(s)
- Li Tao
- Department of Biology, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | - Barbara Fasulo
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | - Brandt Warecki
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | - William Sullivan
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| |
Collapse
|
31
|
|
32
|
The myosin mesa and a possible unifying hypothesis for the molecular basis of human hypertrophic cardiomyopathy. Biochem Soc Trans 2015; 43:64-72. [PMID: 25619247 DOI: 10.1042/bst20140324] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
No matter how many times one explores the structure of the myosin molecule, there is always something new to discover. Here, I describe the myosin mesa, a structural feature of the motor domain that has the characteristics of a binding domain for another protein, possibly myosin-binding protein C (MyBP-C). Interestingly, many well-known hypertrophic cardiomyopathy (HCM) mutations lie along this surface and may affect the putative interactions proposed here. A potential unifying hypothesis for the molecular basis of human hypertrophic cardiomyopathy is discussed here. It involves increased power output of the cardiac muscle as a result of HCM mutations causing the release of inhibition by myosin binding protein C.
Collapse
|
33
|
Winkelmann DA, Forgacs E, Miller MT, Stock AM. Structural basis for drug-induced allosteric changes to human β-cardiac myosin motor activity. Nat Commun 2015; 6:7974. [PMID: 26246073 PMCID: PMC4918383 DOI: 10.1038/ncomms8974] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/01/2015] [Indexed: 11/09/2022] Open
Abstract
Omecamtiv Mecarbil (OM) is a small molecule allosteric effector of cardiac myosin that is in clinical trials for treatment of systolic heart failure. A detailed kinetic analysis of cardiac myosin has shown that the drug accelerates phosphate release by shifting the equilibrium of the hydrolysis step towards products, leading to a faster transition from weak to strong actin-bound states. The structure of the human β-cardiac motor domain (cMD) with OM bound reveals a single OM-binding site nestled in a narrow cleft separating two domains of the human cMD where it interacts with the key residues that couple lever arm movement to the nucleotide state. In addition, OM induces allosteric changes in three strands of the β-sheet that provides the communication link between the actin-binding interface and the nucleotide pocket. The OM-binding interactions and allosteric changes form the structural basis for the kinetic and mechanical tuning of cardiac myosin.
Collapse
Affiliation(s)
- Donald A Winkelmann
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Eva Forgacs
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
| | - Matthew T Miller
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Ann M Stock
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA.,Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
34
|
Colegrave M, Peckham M. Structural implications of β-cardiac myosin heavy chain mutations in human disease. Anat Rec (Hoboken) 2015; 297:1670-80. [PMID: 25125180 DOI: 10.1002/ar.22973] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 12/11/2022]
Abstract
Over 500 disease-causing point mutations have been found in the human β-cardiac myosin heavy chain, many quite recently with modern sequencing techniques. This review shows that clusters of these mutations occur at critical points in the sequence and investigates whether the many studies on these mutants reveal information about the function of this protein.
Collapse
Affiliation(s)
- Melanie Colegrave
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | |
Collapse
|
35
|
Hill TW, Jackson-Hayes L, Wang X, Hoge BL. A mutation in the converter subdomain of Aspergillus nidulans MyoB blocks constriction of the actomyosin ring in cytokinesis. Fungal Genet Biol 2015; 75:72-83. [PMID: 25645080 DOI: 10.1016/j.fgb.2015.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 01/11/2015] [Accepted: 01/22/2015] [Indexed: 12/17/2022]
Abstract
We have identified a mutant allele of the Aspergillus nidulans homologue of myosin II (myoB; AN4706), which prevents normal septum formation. This is the first reported myosin II mutation in a filamentous fungus. Strains expressing the myoB(G843D) allele produce mainly aberrant septa at 30 °C and are completely aseptate at temperatures above 37 °C. Conidium formation is greatly reduced at 30 °C and progressively impaired with increasing temperature. Sequencing of the myoB(G843D) allele identified a point mutation predicted to result in a glycine-to-aspartate amino acid substitution at residue 843 in the myosin II converter domain. This residue is conserved in all fungal, plant, and animal myosin sequences that we have examined. The mutation does not prevent localization of the myoB(G843D) gene product to contractile rings, but it does block ring constriction. MyoB(G843D) rings at sites of abortive septation disassemble after an extended period and dissipate into the cytoplasm. During contractile ring formation, both wild type and mutant MyoB::GFP colocalize with actin--an association that begins at the pre-ring "string" stage. Down-regulation of wild-type myoB expression under control of the alcA promoter blocks septation but does not prevent actin from aggregating at putative septation sites--the actin rings, however, do not fully coalesce. Both septation and targeting of MyoB are blocked by disruption of filamentous actin using latrunculin B. We propose a model in which myosin assembly at septation sites depends upon the presence of F-actin, but assembly of the actin component of contractile rings depends upon normal levels of myosin only for the final stages of ring compaction.
Collapse
Affiliation(s)
- Terry W Hill
- Department of Biology, Rhodes College, Memphis, TN 38112, USA.
| | | | - Xiao Wang
- Department of Biology, Rhodes College, Memphis, TN 38112, USA
| | - Brianna L Hoge
- Department of Biology, Rhodes College, Memphis, TN 38112, USA
| |
Collapse
|
36
|
Spudich JA. Hypertrophic and dilated cardiomyopathy: four decades of basic research on muscle lead to potential therapeutic approaches to these devastating genetic diseases. Biophys J 2014; 106:1236-49. [PMID: 24655499 PMCID: PMC3985504 DOI: 10.1016/j.bpj.2014.02.011] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/30/2014] [Accepted: 02/04/2014] [Indexed: 01/10/2023] Open
Abstract
With the advent of technologies to obtain the complete sequence of the human genome in a cost-effective manner, this decade and those to come will see an exponential increase in our understanding of the underlying genetics that lead to human disease. And where we have a deep understanding of the biochemical and biophysical basis of the machineries and pathways involved in those genetic changes, there are great hopes for the development of modern therapeutics that specifically target the actual machinery and pathways altered by individual mutations. Prime examples of such a genetic disease are those classes of hypertrophic and dilated cardiomyopathy that result from single amino-acid substitutions in one of several of the proteins that make up the cardiac sarcomere or from the truncation of myosin binding protein C. Hypertrophic cardiomyopathy alone affects ∼1 in 500 individuals, and it is the leading cause of sudden cardiac death in young adults. Here I describe approaches to understand the molecular basis of the alterations in power output that result from these mutations. Small molecules binding to the mutant sarcomeric protein complex should be able to mitigate the effects of hypertrophic and dilated cardiomyopathy mutations at their sources, leading to possible new therapeutic approaches for these genetic diseases.
Collapse
Affiliation(s)
- James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
37
|
Katayama E. 3-D structural analysis of the crucial intermediate of skeletal muscle myosin and its role in revised actomyosin cross-bridge cycle. Biophysics (Nagoya-shi) 2014; 10:89-97. [PMID: 27493503 PMCID: PMC4629655 DOI: 10.2142/biophysics.10.89] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/18/2014] [Indexed: 12/01/2022] Open
Abstract
Skeletal myosin S1 consists of two functional segments, a catalytic-domain and a lever-arm. Since the crystal structure of ADP/Vi-bound S1 exhibits a strong intramolecular flexure between two segments, inter-conversion between bent and extended forms; i.e. "tilting of the lever-arm" has been accepted as the established molecular mechanism of skeletal muscle contraction. We utilized quick-freeze deep-etch replica electron microscopy to directly visualize the structure of in vitro actin-sliding myosin, and found the existence of a novel oppositely-bent configuration, instead of the expected ADP/Vi-bound form. We also noticed that SH1-SH2 cross-linked myosin gives an aberrant appearance similar to the above structure. Since SH1-SH2-cross-linked myosin is a well-studied analogue of the transient intermediate of the actomyosin cross-bridge cycle, we devised a new image-processing procedure to define the relative view-angles between the catalytic-domain and the lever-arm from those averaged images, and built a 3-D model of the new conformer. The lever-arm in that model was bent oppositely to the ADP/Vi-bound form, in accordance with observed actin-sliding cross-bridge structure. Introducing this conformer as the crucial intermediate that transiently appears during sliding, we propose a revised scheme of the cross-bridge cycle. In the scenario, the novel conformer keeps actin-binding in two different modes until it forms a primed configuration. The final extension of the lever-arm back to the original rigor-state constitutes the "power-stroke". Various images observed during sliding could be easily interpreted by the new conformer. Even the enigmatic behavior of the cross-bridges reported as "loose chemo-mechanical coupling" might be adequately explained under some assumptions.
Collapse
Affiliation(s)
- Eisaku Katayama
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka-shi, Osaka 558-8585, Japan
| |
Collapse
|
38
|
Thompson JT, Shelton RM, Kier WM. The length-force behavior and operating length range of squid muscle vary as a function of position in the mantle wall. ACTA ACUST UNITED AC 2014; 217:2181-92. [PMID: 24675565 DOI: 10.1242/jeb.083907] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hollow cylindrical muscular organs are widespread in animals and are effective in providing support for locomotion and movement, yet are subject to significant non-uniformities in circumferential muscle strain. During contraction of the mantle of squid, the circular muscle fibers along the inner (lumen) surface of the mantle experience circumferential strains 1.3 to 1.6 times greater than fibers along the outer surface of the mantle. This transmural gradient of strain may require the circular muscle fibers near the inner and outer surfaces of the mantle to operate in different regions of the length-tension curve during a given mantle contraction cycle. We tested the hypothesis that circular muscle contractile properties vary transmurally in the mantle of the Atlantic longfin squid, Doryteuthis pealeii. We found that both the length-twitch force and length-tetanic force relationships of the obliquely striated, central mitochondria-poor (CMP) circular muscle fibers varied with radial position in the mantle wall. CMP circular fibers near the inner surface of the mantle produced higher force relative to maximum isometric tetanic force, P0, at all points along the ascending limb of the length-tension curve than CMP circular fibers near the outer surface of the mantle. The mean ± s.d. maximum isometric tetanic stresses at L₀ (the preparation length that produced the maximum isometric tetanic force) of 212 ± 105 and 290 ± 166 kN m(-2) for the fibers from the outer and inner surfaces of the mantle, respectively, did not differ significantly (P=0.29). The mean twitch:tetanus ratios for the outer and inner preparations, 0.60 ± 0.085 and 0.58 ± 0.10, respectively, did not differ significantly (P=0.67). The circular fibers did not exhibit length-dependent changes in contraction kinetics when given a twitch stimulus. As the stimulation frequency increased, L₀ was approximately 1.06 times longer than LTW, the mean preparation length that yielded maximum isometric twitch force. Sonomicrometry experiments revealed that the CMP circular muscle fibers operated in vivo primarily along the ascending limb of the length-tension curve. The CMP fibers functioned routinely over muscle lengths at which force output ranged from only 85% to 40% of P₀, and during escape jets from 100% to 30% of P₀. Our work shows that the functional diversity of obliquely striated muscles is much greater than previously recognized.
Collapse
Affiliation(s)
- Joseph T Thompson
- Department of Biology, Franklin & Marshall College, PO Box 3003, Lancaster, PA 17604-3003, USA
| | - Ryan M Shelton
- Department of Biology, CB# 3280, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - William M Kier
- Department of Biology, CB# 3280, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
39
|
Sarshad AA, Percipalle P. New Insight into Role of Myosin Motors for Activation of RNA Polymerases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 311:183-230. [DOI: 10.1016/b978-0-12-800179-0.00004-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Al-Khayat HA. Three-dimensional structure of the human myosin thick filament: clinical implications. Glob Cardiol Sci Pract 2013; 2013:280-302. [PMID: 24689030 PMCID: PMC3963759 DOI: 10.5339/gcsp.2013.36] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/11/2013] [Indexed: 11/27/2022] Open
Abstract
High resolution information about the three-dimensional (3D) structure of myosin filaments has always been hard to obtain. Solving the 3D structure of myosin filaments is very important because mutations in human cardiac muscle myosin and its associated proteins (e.g. titin and myosin binding protein C) are known to be associated with a number of familial human cardiomyopathies (e.g. hypertrophic cardiomyopathy and dilated cardiomyopathy). In order to understand how normal heart muscle works and how it fails, as well as the effects of the known mutations on muscle contractility, it is essential to properly understand myosin filament 3D structure and properties in both healthy and diseased hearts. The aim of this review is firstly to provide a general overview of the 3D structure of myosin thick filaments, as studied so far in both vertebrates and invertebrate striated muscles. Knowledge of this 3D structure is the starting point from which myosin filaments isolated from human cardiomyopathic samples, with known mutations in either myosin or its associated proteins (titin or C-protein), can be studied in detail. This should, in turn, enable us to relate the structure of myosin thick filament to its function and to understanding the disease process. A long term objective of this research would be to assist the design of possible therapeutic solutions to genetic myosin-related human cardiomyopathies.
Collapse
Affiliation(s)
- Hind A Al-Khayat
- Qatar Cardiovascular Research Centre, Qatar Foundation, PO Box 5825, Doha, Qatar
| |
Collapse
|
41
|
Kaya M, Higuchi H. Stiffness, working stroke, and force of single-myosin molecules in skeletal muscle: elucidation of these mechanical properties via nonlinear elasticity evaluation. Cell Mol Life Sci 2013; 70:4275-92. [PMID: 23685901 PMCID: PMC11113998 DOI: 10.1007/s00018-013-1353-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/27/2013] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
Abstract
In muscles, the arrays of skeletal myosin molecules interact with actin filaments and continuously generate force at various contraction speeds. Therefore, it is crucial for myosin molecules to generate force collectively and minimize the interference between individual myosin molecules. Knowledge of the elasticity of myosin molecules is crucial for understanding the molecular mechanisms of muscle contractions because elasticity directly affects the working and drag (resistance) force generation when myosin molecules are positively or negatively strained. The working stroke distance is also an important mechanical property necessary for elucidation of the thermodynamic efficiency of muscle contractions at the molecular level. In this review, we focus on these mechanical properties obtained from single-fiber and single-molecule studies and discuss recent findings associated with these mechanical properties. We also discuss the potential molecular mechanisms associated with reduction of the drag effect caused by negatively strained myosin molecules.
Collapse
Affiliation(s)
- Motoshi Kaya
- Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan,
| | | |
Collapse
|
42
|
Cochran JC, Thompson ME, Kull FJ. Metal switch-controlled myosin II from Dictyostelium discoideum supports closure of nucleotide pocket during ATP binding coupled to detachment from actin filaments. J Biol Chem 2013; 288:28312-23. [PMID: 23960071 DOI: 10.1074/jbc.m113.466045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G-proteins, kinesins, and myosins are hydrolases that utilize a common protein fold and divalent metal cofactor (typically Mg(2+)) to coordinate purine nucleotide hydrolysis. The nucleoside triphosphorylase activities of these enzymes are activated through allosteric communication between the nucleotide-binding site and the activator/effector/polymer interface to convert the free energy of nucleotide hydrolysis into molecular switching (G-proteins) or force generation (kinesins and myosin). We have investigated the ATPase mechanisms of wild-type and the S237C mutant of non-muscle myosin II motor from Dictyostelium discoideum. The S237C substitution occurs in the conserved metal-interacting switch-1, and we show that this substitution modulates the actomyosin interaction based on the divalent metal present in solution. Surprisingly, S237C shows rapid basal steady-state Mg(2+)- or Mn(2+)-ATPase kinetics, but upon binding actin, its MgATPase is inhibited. This actin inhibition is relieved by Mn(2+), providing a direct and experimentally reversible linkage of switch-1 and the actin-binding cleft through the swapping of divalent metals in the reaction. Using pyrenyl-labeled F-actin, we demonstrate that acto·S237C undergoes slow and weak MgATP binding, which limits the rate of steady-state catalysis. Mn(2+) rescues this effect to near wild-type activity. 2'(3')-O-(N-Methylanthraniloyl)-ADP release experiments show the need for switch-1 interaction with the metal cofactor for tight ADP binding. Our results are consistent with strong reciprocal coupling of nucleoside triphosphate and F-actin binding and provide additional evidence for the allosteric communication pathway between the nucleotide-binding site and the filament-binding region.
Collapse
Affiliation(s)
- Jared C Cochran
- From the Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | | | | |
Collapse
|
43
|
Preller M, Holmes KC. The myosin start-of-power stroke state and how actin binding drives the power stroke. Cytoskeleton (Hoboken) 2013; 70:651-60. [PMID: 23852739 DOI: 10.1002/cm.21125] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 11/05/2022]
Abstract
We propose that on binding to actin at the start of the power stroke the myosin cross-bridge takes on the rigor configuration at the actin interface. Starting from the prepower stroke state, this can be achieved by a small movement (16° rotation) of the lower 50K domain without twisting the central β-sheet or opening switch-1 or switch-2. The movement of the lower 50K domain puts a strain on the W-helix. This strain tries to twist the β-sheet, which could drive the power stroke. This would provide a coupling between actin binding and the execution of the power stroke. During the power stroke the β-sheet twists, moving the P-loop away from switch-2, which opens the nucleotide binding pocket and separates ADP from Pi . The power stroke is different from the recovery stroke because the upper and lower 50K domains are tethered in the rigor configuration.
Collapse
Affiliation(s)
- Matthias Preller
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany; Centre for Structural Systems Biology (CSSB), German Electron Synchrotron (DESY), Hamburg, Germany
| | | |
Collapse
|
44
|
Novel configuration of a myosin II transient intermediate analogue revealed by quick-freeze deep-etch replica electron microscopy. Biochem J 2013; 450:23-35. [PMID: 23211187 DOI: 10.1042/bj20120412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present paper, we described our attempt to characterize the rough three-dimensional features of the structural analogue of the key intermediate of myosin's cross-bridge cycle. Using quick-freeze deep-etch replica electron microscopy, we observed that actin-attached myosin during in vitro sliding was bent superficially as postulated by the conventional hypothesis, but in the opposite direction of the putative pre-power-stroke configuration, as for ADP·Vi (inorganic vanadate)-bound myosin. We searched for the conformational species with a similar appearance and found that SH1-SH2 (thiols 1 and 2)-cross-linked myosin is a good candidate. To characterize such small asymmetric structures, we employed a new pattern-recognition procedure that accommodates the metal-replicated samples. In this method, the best-matched views of the target microscopic images were selected from a comprehensive set of images simulated from known atomic co-ordinates of relevant proteins. Together with effective morphological filtering, we could define the conformational species and the view angles of the catalytic domain and the lever arm cropped from averaged images of disulfide-cross-linked myosin. Whereas the catalytic domain of the new conformer closely resembled the pPDM (N,N'-p-phenylenedimaleimide)-treated, but SH2 Lys705-cross-linked, structure (PDB code 1L2O), a minor product of the same cross-linking reaction, the lever arm projected differently. Using separately determined view angles of the catalytic domain and the lever arm, we built a model of disulfide-cross-linked myosin. Further combination with the 'displacement-mapping' procedure enabled us to reconstruct the global three-dimensional envelope of the unusual structure whose lever arm orientation is compatible with our reports on the actin-sliding cross-bridge structure. Assuming this conformer as the structural analogue of the transient intermediate during actin sliding, the power stroke of the lever arm might accompany the reversal of the disorganized SH1 helix.
Collapse
|
45
|
O'Neall-Hennessey E, Reshetnikova L, Senthil Kumar VS, Robinson H, Szent-Györgyi AG, Cohen C. Purification, crystallization and preliminary X-ray crystallographic analysis of squid heavy meromyosin. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:248-52. [PMID: 23519797 DOI: 10.1107/s1744309112049925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/05/2012] [Indexed: 11/10/2022]
Abstract
All muscle-based movement is dependent upon carefully choreographed interactions between the two major muscle components, myosin and actin. Regulation of vertebrate smooth and molluscan muscle contraction is myosin based (both are in the myosin II class), and requires the double-headed form of myosin. Removal of Ca2+ from these muscles promotes a relatively compact conformation of the myosin dimer, which inhibits its interaction with actin. Although atomic structures of single myosin heads are available, the structure of any double-headed portion of myosin, including the ∼375 kDa heavy meromyosin (HMM), has only been visualized at low (∼20 Å) resolution by electron microscopy. Here, the growth of three-dimensional crystals of HMM with near-atomic resolution (up to ∼5 Å) and their X-ray diffraction are reported for the first time. These crystals were grown in off-state conditions, that is in the absence of Ca2+ and the presence of nucleotide analogs, using HMM from the funnel retractor muscle of squid. In addition to the crystallization conditions, the techniques used to isolate and purify this HMM are also described. Efforts at phasing and improving the resolution of the data in order to determine the structure are ongoing.
Collapse
Affiliation(s)
- Elizabeth O'Neall-Hennessey
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | | | | | | | | | | |
Collapse
|
46
|
Baumketner A. The mechanism of the converter domain rotation in the recovery stroke of myosin motor protein. Proteins 2012; 80:2701-10. [PMID: 22855405 PMCID: PMC3486948 DOI: 10.1002/prot.24155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 07/06/2012] [Accepted: 07/16/2012] [Indexed: 02/04/2023]
Abstract
Upon ATP binding, myosin motor protein is found in two alternative conformations, prerecovery state M* and postrecovery state M**. The transition from one state to the other, known as the recovery stroke, plays a key role in the myosin functional cycle. Despite much recent research, the microscopic details of this transition remain elusive. A critical step in the recovery stroke is the rotation of the converter domain from "up" position in prerecovery state to "down" position in postrecovery state that leads to the swing of the lever arm attached to it. In this work, we demonstrate that the two rotational states of the converter domain are determined by the interactions within a small structural motif in the force-generating region of the protein that can be accurately modeled on computers using atomic representation and explicit solvent. Our simulations show that the transition between the two states is controlled by a small helix (SH1) located next to the relay helix and relay loop. A small translation in the position of SH1 away from the relay helix is seen to trigger the transition from "up" state to "down" state. The transition is driven by a cluster of hydrophobic residues I687, F487, and F506 that make significant contributions to the stability of both states. The proposed mechanism agrees well with the available structural and mutational studies.
Collapse
Affiliation(s)
- Andrij Baumketner
- Department of Physics and Optical Science, University of North Carolina Charlotte, Charlotte, NC 28262, USA.
| |
Collapse
|
47
|
Koubassova NA, Tsaturyan AK. Molecular mechanism of actin-myosin motor in muscle. BIOCHEMISTRY (MOSCOW) 2012; 76:1484-506. [PMID: 22339600 DOI: 10.1134/s0006297911130086] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The interaction of actin and myosin powers striated and smooth muscles and some other types of cell motility. Due to its highly ordered structure, skeletal muscle is a very convenient object for studying the general mechanism of the actin-myosin molecular motor. The history of investigation of the actin-myosin motor is briefly described. Modern concepts and data obtained with different techniques including protein crystallography, electron microscopy, biochemistry, and protein engineering are reviewed. Particular attention is given to X-ray diffraction studies of intact muscles and single muscle fibers with permeabilized membrane as they give insight into structural changes that underlie force generation and work production by the motor. Time-resolved low-angle X-ray diffraction on contracting muscle fibers using modern synchrotron radiation sources is used to follow movement of myosin heads with unique time and spatial resolution under near physiological conditions.
Collapse
Affiliation(s)
- N A Koubassova
- Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia.
| | | |
Collapse
|
48
|
Three distinct actin-attached structural states of myosin in muscle fibers. Biophys J 2012; 102:1088-96. [PMID: 22404931 DOI: 10.1016/j.bpj.2011.11.4027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 11/09/2011] [Accepted: 11/14/2011] [Indexed: 11/21/2022] Open
Abstract
We have used thiol cross-linking and electron paramagnetic resonance (EPR) to resolve structural transitions of myosin's light chain domain (LCD) and catalytic domain (CD) that are associated with force generation. Spin labels were incorporated into the LCD of muscle fibers by exchanging spin-labeled regulatory light chain for endogenous regulatory light chain, with full retention of function. To trap myosin in a structural state analogous to the elusive posthydrolysis ternary complex A.M'.D.P, we used pPDM to cross-link SH1 (Cys(707)) to SH2 (Cys(697)) on the CD. LCD orientation and dynamics were measured in three biochemical states: relaxation (A.M.T), SH1-SH2 cross-linked (A.M'.D.P analog), and rigor (A.M.D). EPR showed that the LCD of cross-linked fibers has an orientational distribution intermediate between relaxation and rigor, and saturation transfer EPR revealed slow rotational dynamics indistinguishable from that of rigor. Similar results were obtained for the CD using a bifunctional spin label to cross-link SH1-SH2, but the CD was more disordered than the LCD. We conclude that SH1-SH2 cross-linking traps a state in which both the CD and LCD are intermediate between relaxation (highly disordered and microsecond dynamics) and rigor (highly ordered and rigid), supporting the hypothesis that the cross-linked state is an A.M'D.P analog on the force generation pathway.
Collapse
|
49
|
Llinas P, Pylypenko O, Isabet T, Mukherjea M, Sweeney HL, Houdusse AM. How myosin motors power cellular functions: an exciting journey from structure to function: based on a lecture delivered at the 34th FEBS Congress in Prague, Czech Republic, July 2009. FEBS J 2012; 279:551-62. [PMID: 22171985 PMCID: PMC3269445 DOI: 10.1111/j.1742-4658.2011.08449.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular motors such as myosins are allosteric enzymes that power essential motility functions in the cell. Structural biology is an important tool for deciphering how these motors work. Myosins produce force upon the actin-driven conformational changes controlling the sequential release of the hydrolysis products of ATP (Pi followed by ADP). These conformational changes are amplified by a 'lever arm', which includes the region of the motor known as the converter and the adjacent elongated light chain binding region. Analysis of four structural states of the motor provides a detailed understanding of the rearrangements and pathways of communication in the motor that are necessary for detachment from the actin track and repriming of the motor. However, the important part of the cycle in which force is produced remains enigmatic and awaits new high-resolution structures. The value of a structural approach is particularly evident from clues provided by the structural states of the reverse myosin VI motor. Crystallographic structures have revealed that rearrangements within the converter subdomain occur, which explains why this myosin can produce a large stroke in the opposite direction to all other myosins, despite a very short lever arm. By providing a detailed understanding of the motor rearrangements, structural biology will continue to reveal essential information and help solve current enigma, such as how actin promotes force production, how motors are tuned for specific cellular roles or how motor/cargo interactions regulate the function of myosin in the cell.
Collapse
Affiliation(s)
- Paola Llinas
- Structural Motility, Institut Curie CNRS, UMR144, 26 rue d’Ulm, 75248 Paris cedex 05, France
| | - Olena Pylypenko
- Structural Motility, Institut Curie CNRS, UMR144, 26 rue d’Ulm, 75248 Paris cedex 05, France
| | - Tatiana Isabet
- Structural Motility, Institut Curie CNRS, UMR144, 26 rue d’Ulm, 75248 Paris cedex 05, France
| | - Monalisa Mukherjea
- Department of Physiology, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, Philadelphia, PA 19104-6085 USA
| | - H. Lee Sweeney
- Department of Physiology, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, Philadelphia, PA 19104-6085 USA
| | - Anne M. Houdusse
- Structural Motility, Institut Curie CNRS, UMR144, 26 rue d’Ulm, 75248 Paris cedex 05, France
| |
Collapse
|
50
|
Baumann BAJ, Taylor DW, Huang Z, Tama F, Fagnant PM, Trybus KM, Taylor KA. Phosphorylated smooth muscle heavy meromyosin shows an open conformation linked to activation. J Mol Biol 2011; 415:274-87. [PMID: 22079364 DOI: 10.1016/j.jmb.2011.10.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 10/22/2011] [Accepted: 10/27/2011] [Indexed: 11/26/2022]
Abstract
Smooth muscle myosin and smooth muscle heavy meromyosin (smHMM) are activated by regulatory light chain phosphorylation, but the mechanism remains unclear. Dephosphorylated, inactive smHMM assumes a closed conformation with asymmetric intramolecular head-head interactions between motor domains. The "free head" can bind to actin, but the actin binding interface of the "blocked head" is involved in interactions with the free head. We report here a three-dimensional structure for phosphorylated, active smHMM obtained using electron crystallography of two-dimensional arrays. Head-head interactions of phosphorylated smHMM resemble those found in the dephosphorylated state but occur between different molecules, not within the same molecule. The light chain binding domain structure of phosphorylated smHMM differs markedly from that of the "blocked" head of dephosphorylated smHMM. We hypothesize that regulatory light chain phosphorylation opens the inhibited conformation primarily by its effect on the blocked head. Singly phosphorylated smHMM is not compatible with the closed conformation if the blocked head is phosphorylated. This concept has implications for the extent of myosin activation at low levels of phosphorylation in smooth muscle.
Collapse
Affiliation(s)
- Bruce A J Baumann
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | | | | | |
Collapse
|