1
|
Raggi A, Leonardi M, Arruda M, Caponnetto V, Castaldo M, Coppola G, Della Pietra A, Fan X, Garcia-Azorin D, Gazerani P, Grangeon L, Grazzi L, Hsiao FJ, Ihara K, Labastida-Ramirez A, Lange KS, Lisicki M, Marcassoli A, Montisano DA, Onan D, Onofri A, Pellesi L, Peres M, Petrušić I, Raffaelli B, Rubio-Beltran E, Straube A, Straube S, Takizawa T, Tana C, Tinelli M, Valeriani M, Vigneri S, Vuralli D, Waliszewska-Prosół M, Wang W, Wang Y, Wells-Gatnik W, Wijeratne T, Martelletti P. Hallmarks of primary headache: part 1 - migraine. J Headache Pain 2024; 25:189. [PMID: 39482575 PMCID: PMC11529271 DOI: 10.1186/s10194-024-01889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND AND AIM Migraine is a common disabling conditions which, globally, affects 15.2% of the population. It is the second cause of health loss in terms of years lived with disability, the first among women. Despite being so common, it is poorly recognised and too often undertreated. Specialty centres and neurologists with specific expertise on headache disorders have the knowledge to provide specific care: however, those who do not regularly treat patients with migraine will benefit from a synopsis on the most relevant and updated information about this condition. This paper presents a comprehensive view on the hallmarks of migraine, from genetics and diagnostic markers, up to treatments and societal impact, and reports the elements that identify migraine specific features. MAIN RESULTS The most relevant hallmark of migraine is that it has common and individual features together. Besides the known clinical manifestations, migraine presentation is heterogeneous with regard to frequency of attacks, presence of aura, response to therapy, associated comorbidities or other symptoms, which likely reflect migraine heterogeneous genetic and molecular basis. The amount of therapies for acute and for prophylactic treatment is really wide, and one of the difficulties is with finding the best treatment for the single patient. In addition to this, patients carry out different daily life activities, and might show lifestyle habits which are not entirely adequate to manage migraine day by day. Education will be more and more important as a strategy of brain health promotion, because this will enable reducing the amount of subjects needing specialty care, thus leaving it to those who require it in reason of refractory condition or presence of comorbidities. CONCLUSIONS Recognizing the hallmarks of migraine and the features of single patients enables prescribing specific pharmacological and non-pharmacological treatments. Medical research on headaches today particularly suffers from the syndrome of single-disease approach, but it is important to have a cross-sectional and joint vision with other close specialties, in order to treat our patients with a comprehensive approach that a heterogeneous condition like migraine requires.
Collapse
Affiliation(s)
- Alberto Raggi
- Neurology, Public Health and Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy.
| | - Matilde Leonardi
- Neurology, Public Health and Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Marco Arruda
- Department of Neuroscience, Glia Institute, Ribeirão Preto, Brazil
| | - Valeria Caponnetto
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Matteo Castaldo
- Department of Health Science and Technology, Faculty of Medicine, CNAP, Center for Sensory-Motor Interaction (SMI), Aalborg University, Gistrup, Denmark
- Department of Medicine and Surgery, Clinical Psychophysiology and Clinical Neuropsychology Labs, Parma University, Parma, Italy
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Adriana Della Pietra
- Dept. Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xiangning Fan
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - David Garcia-Azorin
- Department of Medicine, Toxicology and Dermatology, Faculty of Medicine, University of Valladolid, Valladolid, Spain
- Department of Neurology, Hospital Universitario Río Hortega, Valladolid, Spain
| | - Parisa Gazerani
- Department of Health Science and Technology, Faculty of Medicine, CNAP, Center for Sensory-Motor Interaction (SMI), Aalborg University, Gistrup, Denmark
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Lou Grangeon
- Neurology Department, CHU de Rouen, Rouen, France
| | - Licia Grazzi
- Neuroalgology Unit and Headache Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Fu-Jung Hsiao
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Keiko Ihara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
- Japanese Red Cross Ashikaga Hospital, Tochigi, Japan
| | - Alejandro Labastida-Ramirez
- Division of Neuroscience, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Kristin Sophie Lange
- Department of Neurology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Marco Lisicki
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alessia Marcassoli
- Neurology, Public Health and Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Danilo Antonio Montisano
- Neuroalgology Unit and Headache Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Dilara Onan
- Department of Physiotherapy and Rehabilitation, Faculty of Heath Sciences, Yozgat Bozok University, Yozgat, Turkey
| | - Agnese Onofri
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Lanfranco Pellesi
- Department of Public Health Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - Mario Peres
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Instituto de Psiquiatria; Hospital das Clínicas da Faculdade de Medicina da USP, Sao Paulo, Brazil
| | - Igor Petrušić
- Laboratory for Advanced Analysis of Neuroimages, Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Bianca Raffaelli
- Department of Neurology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Eloisa Rubio-Beltran
- Headache Group, Wolfson SPaRC, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Andreas Straube
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Straube
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Tsubasa Takizawa
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Claudio Tana
- Center of Excellence On Headache and Geriatrics Clinic, SS Annunziata Hospital of Chieti, Chieti, Italy
| | - Michela Tinelli
- Care Policy Evaluation Centre (CPEC), London School of Economics and Political Science, London, UK
| | - Massimiliano Valeriani
- Systems Medicine Department, University of Tor Vergata, Rome, Italy
- Developmental Neurology Unit, IRCSS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Simone Vigneri
- Neurology and Neurophysiology Service - Pain Medicine Unit, Santa Maria Maddalena Hospital, Occhiobello, Italy
| | - Doga Vuralli
- Department of Neurology and Algology, Neuropsychiatry Center, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University Faculty of Medicine, Ankara, Türkiye
| | | | - Wei Wang
- Department of Neurology, Headache Center, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Department of Neurology, Headache Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yonggang Wang
- Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
| | | | - Tissa Wijeratne
- Department of Neurology, Sunshine Hospital, St Albans, VIC, Australia
- Australian Institute of Migraine, Pascoe Vale South, VIC, Australia
| | | |
Collapse
|
2
|
Indelicato E, Nachbauer W, Amprosi MS, Maier S, Unterberger I, Delazer M, Kaltseis K, Kiechl S, Broessner G, Baumann M, Boesch S. Natural history of non-polyglutamine CACNA1A disease in Austria. J Neurol 2024; 271:6618-6627. [PMID: 39110218 PMCID: PMC11446988 DOI: 10.1007/s00415-024-12602-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/20/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND AND OBJECTIVES Non-polyglutamine CACNA1A variants underlie an extremely variable phenotypic spectrum encompassing developmental delay, hemiplegic migraine, epilepsy, psychiatric symptoms, episodic and chronic cerebellar signs. We provide our experience with the long-term follow-up of CACNA1A patients and their response to interval therapy. METHODS Patients with genetically confirmed non-polyglutamine CACNA1A disease were prospectively followed at the Center for Rare Movement Disorders of the Medical University of Innsbruck from 2004 to 2024. RESULTS We recruited 41 subjects with non-polyglutamine CACNA1A disease, of which 38 (93%) familial cases. The mean age at the first examination was 35 ± 22 years. Disease onset was in the childhood/adolescence in 31/41 patients (76%). Developmental delay and episodic symptoms were the first disease manifestation in 9/41 (22%) and 32/41 (78%) patients respectively. Chronic neurological signs encompassed a cerebellar syndrome in 35/41 (85%), which showed almost no progression during the observation period, as well as cognitive deficits in 9/20 (45%, MOCA test score < 26), psychiatric and behavioral symptoms in 11/41(27%). Seizures occurred in two patients concomitant to severe hemiplegic migraine. At the last visit, 27/41 patients (66%) required an interval prophylaxis (including acetazolamide, flunarizine, 4-aminopyridine, topiramate), which was efficacious in reducing the frequency and severity of episodic symptoms in all cases. In one patient in his 70ies with progressively therapy resistant hemiplegic migraine, treatment with the anti-CGRP antibody galcanezumab successfully reduced the frequency of migraine days from 4 to 1/month. CONCLUSIONS Non-polyglutamine CACNA1A disease show an evolving age-dependent presentation. Interval prophylaxis is effective in reducing the burden of episodic symptoms.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Wolfgang Nachbauer
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Matthias S Amprosi
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Sarah Maier
- Public Health, Health Economics, Medical Statistics and Informatics, Institute of Clinical Epidemiology, Innsbruck, Austria
| | - Iris Unterberger
- Epilepsy Center, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Margarete Delazer
- Neuropsychology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Kaltseis
- Headache Outpatient Clinic, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Kiechl
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
- VASCage, Centre on Clinical Stroke Research, Innsbruck, Austria
| | - Gregor Broessner
- Headache Outpatient Clinic, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Baumann
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
3
|
Kim S, Choi JY, Kim JS, Kim HJ. Torsional saccadic palsy in episodic ataxia type 2. J Neurol 2024; 271:7039-7041. [PMID: 39242370 DOI: 10.1007/s00415-024-12636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/09/2024]
Affiliation(s)
- Seoyeon Kim
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
| | - Jeong-Yoon Choi
- Dizziness Center, Clinical Neuroscience Center, Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| | - Ji-Soo Kim
- Dizziness Center, Clinical Neuroscience Center, Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyo-Jung Kim
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, Korea.
| |
Collapse
|
4
|
Chichorro JG, Gambeta E, Baggio DF, Zamponi GW. Voltage-gated Calcium Channels as Potential Therapeutic Targets in Migraine. THE JOURNAL OF PAIN 2024; 25:104514. [PMID: 38522594 DOI: 10.1016/j.jpain.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024]
Abstract
Migraine is a complex and highly incapacitating neurological disorder that affects around 15% of the general population with greater incidence in women, often at the most productive age of life. Migraine physiopathology is still not fully understood, but it involves multiple mediators and events in the trigeminovascular system and the central nervous system. The identification of calcitonin gene-related peptide as a key mediator in migraine physiopathology has led to the development of effective and highly selective antimigraine therapies. However, this treatment is neither accessible nor effective for all migraine sufferers. Thus, a better understanding of migraine mechanisms and the identification of potential targets are still clearly warranted. Voltage-gated calcium channels (VGCCs) are widely distributed in the trigeminovascular system, and there is accumulating evidence of their contribution to the mechanisms associated with headache pain. Several drugs used in migraine abortive or prophylactic treatment target VGCCs, which probably contributes to their analgesic effect. This review aims to summarize the current evidence of VGGC contribution to migraine physiopathology and to discuss how current pharmacological options for migraine treatment interfere with VGGC function. PERSPECTIVE: Calcitonin gene-related peptide (CGRP) represents a major migraine mediator, but few studies have investigated the relationship between CGRP and VGCCs. CGRP release is calcium channel-dependent and VGGCs are key players in familial migraine. Further studies are needed to determine whether VGCCs are suitable molecular targets for treating migraine.
Collapse
Affiliation(s)
- Juliana G Chichorro
- Biological Sciences Sector, Department of Pharmacology, Federal University of Parana, Curitiba, Parana, Brazil.
| | - Eder Gambeta
- Cumming School of Medicine, Department of Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Darciane F Baggio
- Biological Sciences Sector, Department of Pharmacology, Federal University of Parana, Curitiba, Parana, Brazil
| | - Gerald W Zamponi
- Cumming School of Medicine, Department of Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Goel K, Chhetri A, Ludhiadch A, Munshi A. Current Update on Categorization of Migraine Subtypes on the Basis of Genetic Variation: a Systematic Review. Mol Neurobiol 2024; 61:4804-4833. [PMID: 38135854 DOI: 10.1007/s12035-023-03837-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Migraine is a complex neurovascular disorder that is characterized by severe behavioral, sensory, visual, and/or auditory symptoms. It has been labeled as one of the ten most disabling medical illnesses in the world by the World Health Organization (Aagaard et al Sci Transl Med 6(237):237ra65, 2014). According to a recent report by the American Migraine Foundation (Shoulson et al Ann Neurol 25(3):252-9, 1989), around 148 million people in the world currently suffer from migraine. On the basis of presence of aura, migraine is classified into two major subtypes: migraine with aura (Aagaard et al Sci Transl Med 6(237):237ra65, 2014) and migraine without aura. (Aagaard K et al Sci Transl Med 6(237):237ra65, 2014) Many complex genetic mechanisms have been proposed in the pathophysiology of migraine but specific pathways associated with the different subtypes of migraine have not yet been explored. Various approaches including candidate gene association studies (CGAS) and genome-wide association studies (Fan et al Headache: J Head Face Pain 54(4):709-715, 2014). have identified the genetic markers associated with migraine and its subtypes. Several single nucleotide polymorphisms (Kaur et al Egyp J Neurol, Psychiatry Neurosurg 55(1):1-7, 2019) within genes involved in ion homeostasis, solute transport, synaptic transmission, cortical excitability, and vascular function have been associated with the disorder. Currently, the diagnosis of migraine is majorly behavioral with no focus on the genetic markers and thereby the therapeutic intervention specific to subtypes. Therefore, there is a need to explore genetic variants significantly associated with MA and MO as susceptibility markers in the diagnosis and targets for therapeutic interventions in the specific subtypes of migraine. Although the proper characterization of pathways based on different subtypes is yet to be studied, this review aims to make a first attempt to compile the information available on various genetic variants and the molecular mechanisms involved with the development of MA and MO. An attempt has also been made to suggest novel candidate genes based on their function to be explored by future research.
Collapse
Affiliation(s)
- Kashish Goel
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Aakash Chhetri
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Abhilash Ludhiadch
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Anjana Munshi
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401.
| |
Collapse
|
6
|
Alshareet M, Alakkas A, Alsinaidi OA, Bawazeer S, Peer-Zada AA. Novel de novo heterozygous CACNA1A gene variant in generalised dystonia: a case report. BMJ Neurol Open 2024; 6:e000710. [PMID: 38912174 PMCID: PMC11191759 DOI: 10.1136/bmjno-2024-000710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2024] [Indexed: 06/25/2024] Open
Abstract
Background Dystonia is a genetic or non-genetic movement disorder with typical patterned and twisting movements due to abnormal muscle contractions that may be associated with tremor. Genetic and phenotypic heterogeneity leads to variable clinical presentation. Methodology Next-generation sequencing technologies are being currently used in the workup of patients with inherited dystonia to determine the specific cause in the individuals with autosomal dominant, recessive, X-linked or mitochondrial inheritance patterns. Calcium voltage-gated channel subunit alpha1 A (CACNA1A) gene variants are rare in dystonias. Results We here present a 20-year-old man with a history of delayed milestones, flexor posturing, dysarthria, dysphagia and a negative family history from consanguineous parents. Neurological examination revealed right lateral scoliosis of the neck and generalised dystonic posturing affecting both upper and lower limbs. MRI of the brain was unremarkable. Molecular genetic results revealed a heterozygous variant in the CACNA1A gene (CHR19: NM_023035.2, c. 1602G>A; p. Met534Ile). Segregation analyses in both the parents revealed wild-type CACNA1A gene suggesting de novo nature of the variant with a likely pathogenic classification. Conclusion Dystonia is one of the clinical phenotypes that can be associated with CACNA1A gene mutations and we recommend that this gene either be included in the dystonia panel offered or tested when the initial primary genetic result is negative.
Collapse
Affiliation(s)
- Mohammed Alshareet
- Department of Neurology, National Neuroscience Institute, KFMC, Riyadh, Saudi Arabia
| | - Aljoharah Alakkas
- Movement Disorders Division, Department of Neurology, National Neuroscience Institute, KFMC, Riyadh, Saudi Arabia
| | - Omar A Alsinaidi
- Movement Disorders Division, Department of Neurology, National Neuroscience Institute, KFMC, Riyadh, Saudi Arabia
| | | | - Abdul Ali Peer-Zada
- Molecular Pathology, Pathology and Clinical Laboratory Medicine Administration, KFMC, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Schaare D, Lusk L, Karlin A, Kaufman MC, Magielski J, Sarasua SM, Allison K, Boccuto L, Helbig I. A Longitudinal Exploration of CACNA1A -related Hemiplegic Migraine in Children. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.14.24308953. [PMID: 38946946 PMCID: PMC11213092 DOI: 10.1101/2024.06.14.24308953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Introduction Since the initial description of CACNA1A- related hemiplegic migraine (HM), the phenotypic spectrum has expanded from mild episodes in neurotypical individuals to potentially life-threatening events frequently seen in individuals with developmental and epileptic encephalopathies. However, the overall longitudinal course throughout childhood remains unknown. Methods We analyzed HM and seizure history in individuals with CACNA1A -related HM, delineating frequency and severity of events in monthly increments through a standardized approach. Combining these data with medication prescription information, we assessed the response of HM to different agents. Results Our cohort involved 15 individuals between 3 and 29 years (163 patient years) and included 11 unique and two recurrent variants (p.R1349Q and p.V1393M; both n= 2). The age of first confirmed HM ranged from 14 months to 13 years (average 3 years). 25% of all HM events were severe (lasting >3 days) and 73% of individuals had at least 1 severe occurrence. Spacing of HM events ranged from 1 month to 14 years and changes in HM severity over time of showed increases or decreases of >2 severity levels in 12/122 events. Eight individuals had epilepsy, but severity of epilepsy did not correlate with frequency and severity of HM events. While levetiracetam ( n= 6) and acetazolamide ( n= 5) were the most frequently used medications, they did not show efficacy in HM prevention or HM severity reduction. However, verapamil ( n= 3) showed efficacy in preventing HM episodes (OR 2.68, CI 1.39-5.67). Significance The longitudinal course of CACNA1A -related HM lacks recognizable patterns for timing and severity of HM events or correlation with seizure patterns. Our data underscores the unpredictability of CACNA1A -related HM, highlighting the need for close surveillance for reoccurring HM events even in individuals with symptom-free periods. Key points 24% of hemiplegic migraines (HM) in CACNA1A- related disorders are severe, involving cerebral edema and greater than 4 days to recover Timing and severity of HM are unpredictable, with large changes in severity between events, and age of onset ranging from 1-13 yearsEpilepsy occurred in 53% of individuals, with neither the timing nor severity of seizures correlated with HM.
Collapse
|
8
|
Szymanowicz O, Drużdż A, Słowikowski B, Pawlak S, Potocka E, Goutor U, Konieczny M, Ciastoń M, Lewandowska A, Jagodziński PP, Kozubski W, Dorszewska J. A Review of the CACNA Gene Family: Its Role in Neurological Disorders. Diseases 2024; 12:90. [PMID: 38785745 PMCID: PMC11119137 DOI: 10.3390/diseases12050090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Calcium channels are specialized ion channels exhibiting selective permeability to calcium ions. Calcium channels, comprising voltage-dependent and ligand-gated types, are pivotal in neuronal function, with their dysregulation is implicated in various neurological disorders. This review delves into the significance of the CACNA genes, including CACNA1A, CACNA1B, CACNA1C, CACNA1D, CACNA1E, CACNA1G, and CACNA1H, in the pathogenesis of conditions such as migraine, epilepsy, cerebellar ataxia, dystonia, and cerebellar atrophy. Specifically, variants in CACNA1A have been linked to familial hemiplegic migraine and epileptic seizures, underscoring its importance in neurological disease etiology. Furthermore, different genetic variants of CACNA1B have been associated with migraine susceptibility, further highlighting the role of CACNA genes in migraine pathology. The complex relationship between CACNA gene variants and neurological phenotypes, including focal seizures and ataxia, presents a variety of clinical manifestations of impaired calcium channel function. The aim of this article was to explore the role of CACNA genes in various neurological disorders, elucidating their significance in conditions such as migraine, epilepsy, and cerebellar ataxias. Further exploration of CACNA gene variants and their interactions with molecular factors, such as microRNAs, holds promise for advancing our understanding of genetic neurological disorders.
Collapse
Affiliation(s)
- Oliwia Szymanowicz
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.S.); (S.P.); (E.P.); (U.G.); (M.K.); (M.C.); (A.L.)
| | - Artur Drużdż
- Department of Neurology, Municipal Hospital in Poznan, 61-285 Poznan, Poland;
| | - Bartosz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (B.S.); (P.P.J.)
| | - Sandra Pawlak
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.S.); (S.P.); (E.P.); (U.G.); (M.K.); (M.C.); (A.L.)
| | - Ewelina Potocka
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.S.); (S.P.); (E.P.); (U.G.); (M.K.); (M.C.); (A.L.)
| | - Ulyana Goutor
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.S.); (S.P.); (E.P.); (U.G.); (M.K.); (M.C.); (A.L.)
| | - Mateusz Konieczny
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.S.); (S.P.); (E.P.); (U.G.); (M.K.); (M.C.); (A.L.)
| | - Małgorzata Ciastoń
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.S.); (S.P.); (E.P.); (U.G.); (M.K.); (M.C.); (A.L.)
| | - Aleksandra Lewandowska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.S.); (S.P.); (E.P.); (U.G.); (M.K.); (M.C.); (A.L.)
| | - Paweł P. Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (B.S.); (P.P.J.)
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.S.); (S.P.); (E.P.); (U.G.); (M.K.); (M.C.); (A.L.)
| |
Collapse
|
9
|
Zalaquett NG, Salameh E, Kim JM, Ghanbarian E, Tawk K, Abouzari M. The Dawn and Advancement of the Knowledge of the Genetics of Migraine. J Clin Med 2024; 13:2701. [PMID: 38731230 PMCID: PMC11084801 DOI: 10.3390/jcm13092701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Migraine is a prevalent episodic brain disorder known for recurrent attacks of unilateral headaches, accompanied by complaints of photophobia, phonophobia, nausea, and vomiting. Two main categories of migraine are migraine with aura (MA) and migraine without aura (MO). Main body: Early twin and population studies have shown a genetic basis for these disorders, and efforts have been invested since to discern the genes involved. Many techniques, including candidate-gene association studies, loci linkage studies, genome-wide association, and transcription studies, have been used for this goal. As a result, several genes were pinned with concurrent and conflicting data among studies. It is important to understand the evolution of techniques and their findings. Conclusions: This review provides a chronological understanding of the different techniques used from the dawn of migraine genetic investigations and the genes linked with the migraine subtypes.
Collapse
Affiliation(s)
- Nader G. Zalaquett
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Elio Salameh
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Jonathan M. Kim
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| | - Elham Ghanbarian
- Department of Neurology, University of California, Irvine, CA 92617, USA
| | - Karen Tawk
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| | - Mehdi Abouzari
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| |
Collapse
|
10
|
Feil K, Rattay TW, Adeyemi AK, Goldschagg N, Strupp ML. [What's behind cerebellar dizziness? - News on diagnosis and therapy]. Laryngorhinootologie 2024; 103:337-343. [PMID: 37989215 DOI: 10.1055/a-2192-7278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Vertigo and dizziness comprise a multisensory and multidisciplinary syndrome of different etiologies. The term "cerebellar vertigo and dizziness" comprises a heterogenous group of disorders with clinical signs of cerebellar dysfunction and is caused by vestibulo-cerebellar, vestibulo-spinal or cerebellar systems. About 10 % of patients in an outpatient clinic for vertigo and balance disorders suffer from cerebellar vertigo and dizziness. According to the course of the symptoms, one can considers 3 types: permanent complaints, recurrent episodes of vertigo and balance disorders, or an acute onset of complaints. The most common diagnoses in patients with cerebellar vertigo and dizziness were as follows: degenerative disease, hereditary forms and acquired forms. In a subgroup of patients with cerebellar vertigo, central cerebellar oculomotor dysfunction is indeed the only clinical correlate of the described symptoms. 81 % of patients with cerebellar vertigo suffer from permanent, persistent vertigo and dizziness, 31 % from vertigo attacks, and 21 % from both. Typical clinical cerebellar signs, including gait and limb ataxia or dysarthria, were found less frequently. Key to diagnosis is a focused history as well as a thorough clinical examination with particular attention to oculomotor function. Regarding oculomotor examination, the most common findings were saccadic smooth pursuit, gaze-evoked nystagmus, provocation nystagmus, rebound nystagmus, central fixation nystagmus, most commonly downbeat nystagmus, and disturbances of saccades. Thus, oculomotor examination is very sensitive in diagnosing cerebellar vertigo and dizziness, but not specific in distinguishing different etiologies. Laboratory examinations using posturography and a standardized gait analysis can support the diagnosis, but also help to estimate the risk of falls and to quantify the course and possible symptomatic treatment effects. Patients with cerebellar vertigo and dizziness should receive multimodal treatment.
Collapse
Affiliation(s)
- Katharina Feil
- Schwerpunkt neurovaskuläre Erkrankungen, Neurologische Universitätsklinik, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Tim W Rattay
- Schwerpunkt neurodegenerative Erkrankungen, Neurologische Universitätsklinik, Universitätsklinikum Tübingen, Tübingen, Germany
- Hertie-Institut für klinische Hirnforschung, Universitätsklinikum Tübingen, Tübingen
| | - Adedolapo Kamaldeen Adeyemi
- Schwerpunkt neurovaskuläre Erkrankungen, Neurologische Universitätsklinik, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Nicolina Goldschagg
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München, München, Germany
- Deutsches Schwindel- und Gleichgewichtszentrum, DSGZ, Ludwig-Maximilians-Universität München, München, Germany
| | - Michael Leo Strupp
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München, München, Germany
- Deutsches Schwindel- und Gleichgewichtszentrum, DSGZ, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
11
|
Sutherland HG, Jenkins B, Griffiths LR. Genetics of migraine: complexity, implications, and potential clinical applications. Lancet Neurol 2024; 23:429-446. [PMID: 38508838 DOI: 10.1016/s1474-4422(24)00026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 03/22/2024]
Abstract
Migraine is a common neurological disorder with large burden in terms of disability for individuals and costs for society. Accurate diagnosis and effective treatments remain priorities. Understanding the genetic factors that contribute to migraine risk and symptom manifestation could improve individual management. Migraine has a strong genetic basis that includes both monogenic and polygenic forms. Some distinct, rare, familial migraine subtypes are caused by pathogenic variants in genes involved in ion transport and neurotransmitter release, suggesting an underlying vulnerability of the excitatory-inhibitory balance in the brain, which might be exacerbated by disruption of homoeostasis and lead to migraine. For more prevalent migraine subtypes, genetic studies have identified many susceptibility loci, implicating genes involved in both neuronal and vascular pathways. Genetic factors can also reveal the nature of relationships between migraine and its associated biomarkers and comorbidities and could potentially be used to identify new therapeutic targets and predict treatment response.
Collapse
Affiliation(s)
- Heidi G Sutherland
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Bronwyn Jenkins
- Department of Neurology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Lyn R Griffiths
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
12
|
Alfayyadh MM, Maksemous N, Sutherland HG, Lea RA, Griffiths LR. Unravelling the Genetic Landscape of Hemiplegic Migraine: Exploring Innovative Strategies and Emerging Approaches. Genes (Basel) 2024; 15:443. [PMID: 38674378 PMCID: PMC11049430 DOI: 10.3390/genes15040443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Migraine is a severe, debilitating neurovascular disorder. Hemiplegic migraine (HM) is a rare and debilitating neurological condition with a strong genetic basis. Sequencing technologies have improved the diagnosis and our understanding of the molecular pathophysiology of HM. Linkage analysis and sequencing studies in HM families have identified pathogenic variants in ion channels and related genes, including CACNA1A, ATP1A2, and SCN1A, that cause HM. However, approximately 75% of HM patients are negative for these mutations, indicating there are other genes involved in disease causation. In this review, we explored our current understanding of the genetics of HM. The evidence presented herein summarises the current knowledge of the genetics of HM, which can be expanded further to explain the remaining heritability of this debilitating condition. Innovative bioinformatics and computational strategies to cover the entire genetic spectrum of HM are also discussed in this review.
Collapse
Affiliation(s)
| | | | | | | | - Lyn R. Griffiths
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; (M.M.A.); (N.M.); (H.G.S.); (R.A.L.)
| |
Collapse
|
13
|
Spekker E, Fejes-Szabó A, Nagy-Grócz G. Models of Trigeminal Activation: Is There an Animal Model of Migraine? Brain Sci 2024; 14:317. [PMID: 38671969 PMCID: PMC11048078 DOI: 10.3390/brainsci14040317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Migraine, recognized as a severe headache disorder, is widely prevalent, significantly impacting the quality of life for those affected. This article aims to provide a comprehensive review of the application of animal model technologies in unraveling the pathomechanism of migraine and developing more effective therapies. It introduces a variety of animal experimental models used in migraine research, emphasizing their versatility and importance in simulating various aspects of the condition. It details the benefits arising from the utilization of these models, emphasizing their role in elucidating pain mechanisms, clarifying trigeminal activation, as well as replicating migraine symptoms and histological changes. In addition, the article consciously acknowledges the inherent limitations and challenges associated with the application of animal experimental models. Recognizing these constraints is a fundamental step toward fine-tuning and optimizing the models for a more accurate reflection of and translatability to the human environment. Overall, a detailed and comprehensive understanding of migraine animal models is crucial for navigating the complexity of the disease. These findings not only provide a deeper insight into the multifaceted nature of migraine but also serve as a foundation for developing effective therapeutic strategies that specifically address the unique challenges arising from migraine pathology.
Collapse
Affiliation(s)
- Eleonóra Spekker
- Interdisciplinary Research Development and Innovation, Center of Excellence, University of Szeged, H-6725 Szeged, Hungary
| | - Annamária Fejes-Szabó
- HUN-REN–SZTE Neuroscience Research Group, University of Szeged, H-6725 Szeged, Hungary;
| | - Gábor Nagy-Grócz
- Department of Theoretical Health Sciences and Health Management, Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári Krt. 31., H-6726 Szeged, Hungary;
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
14
|
Di Marco S, Pilati L, Torrente A, Maccora S, Santangelo A, Cosentino G, Correnti E, Raieli V, Fierro B, Brighina F. Pediatric Migraine and Visual Cortical Excitability: A Prospective Observational Study with Sound-Induced Flash Illusions. CHILDREN (BASEL, SWITZERLAND) 2024; 11:394. [PMID: 38671611 PMCID: PMC11049238 DOI: 10.3390/children11040394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024]
Abstract
The pathophysiological mechanisms underlying migraine are more difficult to investigate in children than in the adult population. Abnormal cortical excitability turns out to be one of the most peculiar aspects of migraine, accounting for the manifestations of migraine attacks. Recently, visual cortical excitability has been explored effectively in adult migraineurs with a technique based on cross-modal audio-visual illusions (with sound-induced flash illusions (SIFIs) being reduced in migraineurs compared to non-migraineur subjects). On such a basis, in this study, we investigated visual cortical excitability in children with migraine using SIFIs using combinations of visual and sound stimuli presented randomly. We evaluated 26 children with migraine without aura and 16 healthy children. Migraineurs did not differ from the age-matched healthy subjects regarding fission or fusion illusions but perceived more flashes in trials of multiple flashes with or without beeps. The higher number of SIFIs in migraineur children compared to adults may be due to a greater propensity of visual stimulation to be driven by auditory stimuli (i.e., acoustic dominance). The increased ability to perceive flashes reveals a hyperfunctional visual cortex, demonstrating that the use of SIFIs is a valid tool for assessing visual cortical responsiveness even in pediatric migraine.
Collapse
Affiliation(s)
- Salvatore Di Marco
- Department of Biomedicine, Neuroscience and advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (S.D.M.); (L.P.); (A.T.); (S.M.); (B.F.); (F.B.)
- Neurology and Stroke Unit, P.O. “S. Antonio Abate”, 91016 Trapani, Italy
| | - Laura Pilati
- Department of Biomedicine, Neuroscience and advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (S.D.M.); (L.P.); (A.T.); (S.M.); (B.F.); (F.B.)
- Neurology and Stroke Unit, P.O. “S. Antonio Abate”, 91016 Trapani, Italy
| | - Angelo Torrente
- Department of Biomedicine, Neuroscience and advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (S.D.M.); (L.P.); (A.T.); (S.M.); (B.F.); (F.B.)
| | - Simona Maccora
- Department of Biomedicine, Neuroscience and advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (S.D.M.); (L.P.); (A.T.); (S.M.); (B.F.); (F.B.)
- Neurology Unit, ARNAS Civico di Cristina and Benfratelli Hospitals, 90127 Palermo, Italy
| | - Andrea Santangelo
- Pediatrics Department, AOUP Santa Chiara Hospital, 56126 Pisa, Italy;
| | - Giuseppe Cosentino
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy;
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Edvige Correnti
- Child Neurology and Psychiatry Unit—ISMEP, “G. Di Cristina” Children’s Hospital—ARNAS Civico, 90127 Palermo, Italy;
| | - Vincenzo Raieli
- Child Neurology and Psychiatry Unit—ISMEP, “G. Di Cristina” Children’s Hospital—ARNAS Civico, 90127 Palermo, Italy;
| | - Brigida Fierro
- Department of Biomedicine, Neuroscience and advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (S.D.M.); (L.P.); (A.T.); (S.M.); (B.F.); (F.B.)
| | - Filippo Brighina
- Department of Biomedicine, Neuroscience and advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (S.D.M.); (L.P.); (A.T.); (S.M.); (B.F.); (F.B.)
| |
Collapse
|
15
|
Walkley SU, Molholm S, Jordan B, Marion RW, Wasserstein M. Using team-based precision medicine to advance understanding of rare genetic brain disorders. J Neurodev Disord 2024; 16:10. [PMID: 38491427 PMCID: PMC10941544 DOI: 10.1186/s11689-024-09518-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/07/2024] [Indexed: 03/18/2024] Open
Abstract
We describe a multidisciplinary teamwork approach known as "Operation IDD Gene Team" developed by the Rose F. Kennedy Intellectual and Developmental Disabilities Research Center (RFK IDDRC) at the Albert Einstein College of Medicine. This initiative brings families affected by rare genetic diseases that cause intellectual and developmental disability together with physicians, basic scientists, and their trainees. At team meetings, family members share their child's medical and personal history, physicians describe the broader clinical consequences of the condition, and scientists provide accessible tutorials focused on the fundamental biology of relevant genes. When appropriate, possible treatment approaches are also discussed. The outcomes of team meetings have been overwhelmingly positive, with families not only expressing deep gratitude, but also becoming empowered to establish foundations dedicated to their child's specific condition. Physicians, and in particular the scientists and their trainees, have gained a deeper understanding of challenges faced by affected families, broadening their perspective on how their research can extend beyond the laboratory. Remarkably, research by the scientists following the Gene Team meetings have often included focus on the actual gene variants exhibited by the participating children. As these investigations progress and newly created foundations expand their efforts, national as well as international collaborations are forged. These developments emphasize the importance of rare diseases as windows into previously unexplored molecular and cellular processes, which can offer fresh insights into both normal function as well as more common diseases. Elucidating the mechanisms of and treatments for rare and ultra-rare diseases thus has benefits for all involved-families, physicians, and scientists and their trainees, as well as the broader medical community. While the RFK IDDRC's Operation IDD Gene Team program has focused on intellectual disabilities affecting children, we believe it has the potential to be applied to rare genetic diseases impacting individuals of any age and encompassing a wide variety of developmental disorders affecting multiple organ systems.
Collapse
Affiliation(s)
- Steven U Walkley
- Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Neuroscience, Albert Einstein College of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Sophie Molholm
- Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Bryen Jordan
- Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Robert W Marion
- Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Melissa Wasserstein
- Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
16
|
Pietrobon D, Conti F. Astrocytic Na +, K + ATPases in physiology and pathophysiology. Cell Calcium 2024; 118:102851. [PMID: 38308916 DOI: 10.1016/j.ceca.2024.102851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
The Na+, K+ ATPases play a fundamental role in the homeostatic functions of astrocytes. After a brief historic prologue and discussion of the subunit composition and localization of the astrocytic Na+, K+ ATPases, the review focuses on the role of the astrocytic Na+, K+ pumps in extracellular K+ and glutamate homeostasis, intracellular Na+ and Ca2+ homeostasis and signaling, regulation of synaptic transmission and neurometabolic coupling between astrocytes and neurons. Loss-of-function mutations in the gene encoding the astrocytic α2 Na+, K+ ATPase cause a rare monogenic form of migraine with aura (familial hemiplegic migraine type 2). On the other hand, the α2 Na+, K+ ATPase is upregulated in spinal cord and brain samples from amyotrophic lateral sclerosis and Alzheimer disease patients, respectively. In the last part, the review focuses on i) the migraine relevant phenotypes shown by familial hemiplegic migraine type 2 knock-in mice with 50 % reduced expression of the astrocytic α2 Na+, K+ ATPase and the insights into the pathophysiology of migraine obtained from these genetic mouse models, and ii) the evidence that upregulation of the astrocytic α2 Na+, K+ ATPase in mouse models of amyotrophic lateral sclerosis and Alzheimer disease promotes neuroinflammation and contributes to progressive neurodegeneration.
Collapse
Affiliation(s)
- Daniela Pietrobon
- Department of Biomedical Sciences and Padova Neuroscience Center (PNC), University of Padova, Padova 35131, Italy.
| | - Fiorenzo Conti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy.
| |
Collapse
|
17
|
Loonen ICM, Voskuyl RA, Schenke M, van Heiningen SH, van den Maagdenberg AMJM, Tolner EA. Spontaneous and optogenetically induced cortical spreading depolarization in familial hemiplegic migraine type 1 mutant mice. Neurobiol Dis 2024; 192:106405. [PMID: 38211710 DOI: 10.1016/j.nbd.2024.106405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Mechanisms underlying the migraine aura are incompletely understood, which to large extent is related to a lack of models in which cortical spreading depolarization (CSD), the correlate of the aura, occurs spontaneously. Here, we investigated electrophysiological and behavioural CSD features in freely behaving mice expressing mutant CaV2.1 Ca2+ channels, either with the milder R192Q or the severer S218L missense mutation in the α1 subunit, known to cause familial hemiplegic migraine type 1 (FHM1) in patients. Very rarely, spontaneous CSDs were observed in mutant but never in wildtype mice. In homozygous Cacna1aR192Q mice exclusively single-wave CSDs were observed whereas heterozygous Cacna1aS218L mice displayed multiple-wave events, seemingly in line with the more severe clinical phenotype associated with the S218L mutation. Spontaneous CSDs were associated with body stretching, one-directional slow head turning, and rotating movement of the body. Spontaneous CSD events were compared with those induced in a controlled manner using minimally invasive optogenetics. Also in the optogenetic experiments single-wave CSDs were observed in Cacna1aR192Q and Cacna1aS218L mice (whereas the latter also showed multiple-wave events) with movements similar to those observed with spontaneous events. Compared to wildtype mice, FHM1 mutant mice exhibited a reduced threshold and an increased propagation speed for optogenetically induced CSD with a more profound CSD-associated dysfunction, as indicated by a prolonged suppression of transcallosal evoked potentials and a reduction of unilateral forepaw grip performance. When induced during sleep, the optogenetic CSD threshold was particularly lowered, which may explain why spontaneous CSD events predominantly occurred during sleep. In conclusion, our data show that key neurophysiological and behavioural features of optogenetically induced CSDs mimic those of rare spontaneous events in FHM1 R192Q and S218L mutant mice with differences in severity in line with FHM1 clinical phenotypes seen with these mutations.
Collapse
Affiliation(s)
- Inge C M Loonen
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333 RC, the Netherlands
| | - Rob A Voskuyl
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333 RC, the Netherlands
| | - Maarten Schenke
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333 RC, the Netherlands
| | - Sandra H van Heiningen
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333 RC, the Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333 RC, the Netherlands; Department of Neurology, Leiden University Medical Center, Leiden 2333 RC, the Netherlands
| | - Else A Tolner
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333 RC, the Netherlands; Department of Neurology, Leiden University Medical Center, Leiden 2333 RC, the Netherlands.
| |
Collapse
|
18
|
Zhang H, Jiang L, Xian Y, Yang S. Familial hemiplegic migraine type 2: a case report of an adolescent with ATP1A2 mutation. Front Neurol 2024; 15:1339642. [PMID: 38379707 PMCID: PMC10876848 DOI: 10.3389/fneur.2024.1339642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
This study presents a case report of a male adolescent diagnosed with familial hemiplegic migraine type 2 (FHM2), an autosomal dominant inheritance disorder caused by ATP1A2 mutation. We report the patient who presented with headache, aphasia, and left-sided weakness. Cerebrovascular disease and various infectious agents were unremarkable during the patient's extended hospital stay. Our case revealed that brain hyperperfusion in familial hemiplegic migraine (FHM) persists over an extended duration, and despite the disease being in a state of recovery, enhanced brain magnetic resonance imaging (MRI) continues to exhibit hyperperfusion. A genetic testing was performed which revealed a mutation in the FHM2 gene (c.1133C > T). The patient has been followed for 3 years after hospital discharge. The boy suffered four episodes of hemiplegia and multiple episodes of headaches, and gradually developed seizures and cognitive impairment. It is advisable to consider FHM as a potential diagnosis for patients presenting with typical symptoms such as recurrent paroxysmal headaches and limb activity disorders.
Collapse
Affiliation(s)
- Hui Zhang
- The Fifth People’s Hospital of Chengdu, Chengdu, China
- The Fifth People’s Hospital Affiliated to Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Jiang
- The Fifth People’s Hospital of Chengdu, Chengdu, China
- The Fifth People’s Hospital Affiliated to Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuqi Xian
- The Fifth People’s Hospital of Chengdu, Chengdu, China
- The Fifth People’s Hospital Affiliated to Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sen Yang
- The Fifth People’s Hospital of Chengdu, Chengdu, China
- The Fifth People’s Hospital Affiliated to Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Paungarttner J, Quartana M, Patti L, Sklenárová B, Farham F, Jiménez IH, Soylu MG, Vlad IM, Tasdelen S, Mateu T, Marsico O, Reina F, Tischler V, Lampl C. Migraine - a borderland disease to epilepsy: near it but not of it. J Headache Pain 2024; 25:11. [PMID: 38273253 PMCID: PMC10811828 DOI: 10.1186/s10194-024-01719-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Migraine and epilepsy are two paroxysmal chronic neurological disorders affecting a high number of individuals and being responsible for a high individual and socioeconomic burden. The link between these disorders has been of interest for decades and innovations concerning diagnosing and treatment enable new insights into their relationship. FINDINGS Although appearing to be distinct at first glance, both diseases exhibit a noteworthy comorbidity, shared pathophysiological pathways, and significant overlaps in characteristics like clinical manifestation or prophylactic treatment. This review aims to explore the intricate relationship between these two conditions, shedding light on shared pathophysiological foundations, genetic interdependencies, common and distinct clinical features, clinically overlapping syndromes, and therapeutic similarities. There are several shared pathophysiological mechanisms, like CSD, the likely underlying cause of migraine aura, or neurotransmitters, mainly Glutamate and GABA, which represent important roles in triggering migraine attacks and seizures. The genetic interrelations between the two disorders can be observed by taking a closer look at the group of familial hemiplegic migraines, which are caused by mutations in genes like CACNA1A, ATP1A2, or SCN1A. The intricate relationship is further underlined by the high number of shared clinical features, which can be observed over the entire course of migraine attacks and epileptic seizures. While the variety of the clinical manifestation of an epileptic seizure is naturally higher than that of a migraine attack, a distinction can indeed be difficult in some cases, e.g. in occipital lobe epilepsy. Moreover, triggering factors like sleep deprivation or alcohol consumption play an important role in both diseases. In the period after the seizure or migraine attack, symptoms like speech difficulties, tiredness, and yawning occur. While the actual attack of the disease usually lasts for a limited time, research indicates that individuals suffering from migraine and/or epilepsy are highly affected in their daily life, especially regarding cognitive and social aspects, a burden that is even worsened using antiseizure medication. This medication allows us to reveal further connections, as certain antiepileptics are proven to have beneficial effects on the frequency and severity of migraine and have been used as a preventive drug for both diseases over many years. CONCLUSION Migraine and epilepsy show a high number of similarities in their mechanisms and clinical presentation. A deeper understanding of the intricate relationship will positively advance patient-oriented research and clinical work.
Collapse
Affiliation(s)
| | - Martina Quartana
- Department of Sciences for Health Promotion and Mother-and Childcare "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Lucrezia Patti
- Department of Sciences for Health Promotion and Mother-and Childcare "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Barbora Sklenárová
- St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Fatemeh Farham
- Headache Department, Iranian Center of Neurological Researchers, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - M Gokcen Soylu
- Department of Neurology, Bakırköy Prof. Dr. Mazhar Osman Mental Health and Neurological Diseases Education and Research Hospital, Istanbul, Turkey
| | - Irina Maria Vlad
- Department of Neurosciences, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Semih Tasdelen
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Teresa Mateu
- Department of Neurology, Vall d'Hebron University Hospital, Barcelona, Spain
- Department of Neurology, Fundació Sanitària Mollet, Mollet del Vallès, Barcelona, Spain
| | - Oreste Marsico
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
- Regional Epilepsy Centre, Great Metropolitan "Bianchi-Melacrino-Morelli Hospitall", Reggio Calabria, Italy
| | - Federica Reina
- NeuroTeam Life&Science, Spin-off University of Palermo, Palermo, Italy
| | - Viktoria Tischler
- Headache Medical Center Linz, Linz, Austria
- Department of Neurology and Stroke Unit, Konventhospital Barmherzige Brüder Linz, Linz, Austria
| | - Christian Lampl
- Headache Medical Center Linz, Linz, Austria.
- Department of Neurology and Stroke Unit, Konventhospital Barmherzige Brüder Linz, Linz, Austria.
| |
Collapse
|
20
|
Azzarà A, Cassano I, Lintas C, Bernardini L, Pilato F, Capone F, Di Lazzaro V, Gurrieri F. A new gene for autosomal dominant facial palsy/migraine identified in a family by whole exome sequencing. Eur J Neurol 2024; 31:e16088. [PMID: 37823721 PMCID: PMC11235676 DOI: 10.1111/ene.16088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Facial palsy manifests as unilateral or bilateral weakness and inability to move some of the facial muscles. The aetiology may be different including idiopathic, trauma, infections or brain tumours or it can be associated with chronic neurological diseases. For instance, in recurrent migraine, an increased risk of idiopathic facial palsy (often unilateral) has been observed. Migraine is a neurovascular disorder characterized by mild to severe intensity of headaches, often associated with neuro-ophthalmological symptoms. METHODS A family is reported where five members were affected by facial palsy associated with other clinical features including migraine, diplopia, facial swelling, eye conjunctivitis following a vertical transmission. Whole exome sequencing was performed in three members (two affected and one healthy) in order to identify potential variants causative of their phenotype. RESULTS A missense variant c.304G>A was found leading to the p.(Ala102Thr) substitution in the TRPM8 gene, previously related to migraine by genome wide association studies. This variant was classified as deleterious by several predictor tools, and the mutant residue was predicted to alter the protein structure in terms of flexibility and interactions with the surrounding residues. CONCLUSION These findings suggest that TRPM8 could be a new causative gene further linking migraine and recurrent facial palsy.
Collapse
Affiliation(s)
- Alessia Azzarà
- Research Unit of Medical Genetics, Department of Medicine and SurgeryUniversità Campus Bio‐Medico di RomaRomeItaly
| | - Ilaria Cassano
- Research Unit of Medical Genetics, Department of Medicine and SurgeryUniversità Campus Bio‐Medico di RomaRomeItaly
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine and SurgeryUniversità Campus Bio‐Medico di RomaRomeItaly
- Operative Research Unit of Medical GeneticsFondazione Policlinico Universitario Campus Bio‐MedicoRomeItaly
| | | | - Fabio Pilato
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and PsichiatryUniversità Campus Bio‐Medico di RomaRomaItaly
- Fondazione Policlinico Universitario Campus Bio‐MedicoRomaItaly
| | - Fioravante Capone
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and PsichiatryUniversità Campus Bio‐Medico di RomaRomaItaly
- Fondazione Policlinico Universitario Campus Bio‐MedicoRomaItaly
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and PsichiatryUniversità Campus Bio‐Medico di RomaRomaItaly
- Fondazione Policlinico Universitario Campus Bio‐MedicoRomaItaly
| | - Fiorella Gurrieri
- Research Unit of Medical Genetics, Department of Medicine and SurgeryUniversità Campus Bio‐Medico di RomaRomeItaly
- Operative Research Unit of Medical GeneticsFondazione Policlinico Universitario Campus Bio‐MedicoRomeItaly
| |
Collapse
|
21
|
Peall KJ, Owen MJ, Hall J. Rare genetic brain disorders with overlapping neurological and psychiatric phenotypes. Nat Rev Neurol 2024; 20:7-21. [PMID: 38001363 DOI: 10.1038/s41582-023-00896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
Understanding rare genetic brain disorders with overlapping neurological and psychiatric phenotypes is of increasing importance given the potential for developing disease models that could help to understand more common, polygenic disorders. However, the traditional clinical boundaries between neurology and psychiatry result in frequent segregation of these disorders into distinct silos, limiting cross-specialty understanding that could facilitate clinical and biological advances. In this Review, we highlight multiple genetic brain disorders in which neurological and psychiatric phenotypes are observed, but for which in-depth, cross-spectrum clinical phenotyping is rarely undertaken. We describe the combined phenotypes observed in association with genetic variants linked to epilepsy, dystonia, autism spectrum disorder and schizophrenia. We also consider common underlying mechanisms that centre on synaptic plasticity, including changes to synaptic and neuronal structure, calcium handling and the balance of excitatory and inhibitory neuronal activity. Further investigation is needed to better define and replicate these phenotypes in larger cohorts, which would help to gain greater understanding of the pathophysiological mechanisms and identify common therapeutic targets.
Collapse
Affiliation(s)
- Kathryn J Peall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK.
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| | - Michael J Owen
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
22
|
Fox PM, Malepati S, Manaster L, Rossignol E, Noebels JL. Developing a pathway to clinical trials for CACNA1A-related epilepsies: A patient organization perspective. THERAPEUTIC ADVANCES IN RARE DISEASE 2024; 5:26330040241245725. [PMID: 38681799 PMCID: PMC11047245 DOI: 10.1177/26330040241245725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/15/2024] [Indexed: 05/01/2024]
Abstract
CACNA1A-related disorders are rare neurodevelopmental disorders linked to variants in the CACNA1A gene. This gene encodes the α1 subunit of the P/Q-type calcium channel Cav2.1, which is globally expressed in the brain and crucial for fast synaptic neurotransmission. The broad spectrum of CACNA1A-related neurological disorders includes developmental and epileptic encephalopathies, familial hemiplegic migraine type 1, episodic ataxia type 2, spinocerebellar ataxia type 6, together with unclassified presentations with developmental delay, ataxia, intellectual disability, autism spectrum disorder, and language impairment. The severity of each disorder is also highly variable. The spectrum of CACNA1A-related seizures is broad across both loss-of-function and gain-of-function variants and includes absence seizures, focal seizures with altered consciousness, generalized tonic-clonic seizures, tonic seizures, status epilepticus, and infantile spasms. Furthermore, over half of CACNA1A-related epilepsies are refractory to current therapies. To date, almost 1700 CACNA1A variants have been reported in ClinVar, with over 400 listed as Pathogenic or Likely Pathogenic, but with limited-to-no clinical or functional data. Robust genotype-phenotype studies and impacts of variants on protein structure and function have also yet to be established. As a result, there are few definitive treatment options for CACNA1A-related epilepsies. The CACNA1A Foundation has set out to change the landscape of available and effective treatments and improve the quality of life for those living with CACNA1A-related disorders, including epilepsy. Established in March 2020, the Foundation has built a robust preclinical toolbox that includes patient-derived induced pluripotent stem cells and novel disease models, launched clinical trial readiness initiatives, and organized a global CACNA1A Research Network. This Research Network is currently composed of over 60 scientists and clinicians committed to collaborating to accelerate the path to CACNA1A-specific treatments and one day, a cure.
Collapse
Affiliation(s)
- Pangkong M. Fox
- CACNA1A Foundation, Inc., 31 Pt Road, Norwalk, CT 06854, USA
| | | | | | - Elsa Rossignol
- CACNA1A Foundation, Inc., Norwalk, CT, USA
- CHU Sainte-Justine Research Center, Departments of Neurosciences and Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Jeffrey L. Noebels
- CACNA1A Foundation, Inc., Norwalk, CT, USA
- Blue Bird Circle Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| |
Collapse
|
23
|
Pinto SN, Lerner A, Phung D, Barisano G, Chou B, Xu W, Sheikh-Bahaei N. Arterial Spin Labeling in Migraine: A Review of Migraine Categories and Mimics. J Cent Nerv Syst Dis 2023. [DOI: 10.1177/11795735231160032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Migraine is a complex headache characterized by changes in functional connectivity and cerebral perfusion. The perfusion changes represent a valuable domain for targeted drug therapy. Arterial spin labeling is a noncontrast imaging technique of quantifying cerebral perfusion changes in the migraine setting. In this narrative review, we will discuss the pathophysiology of the different categories of migraine, as defined by the International Classification of Headache Disorders-3 and describe a category-based approach to delineating perfusion changes in migraine on arterial spin labeling images. We will also discuss the use of arterial spin labeling to differentiate migraine from stroke and/or seizures in the adult and pediatric populations. Our systematic approach will help improve the understanding of the complicated vascular changes that occur during migraines and identify potential areas of future research.
Collapse
Affiliation(s)
- Soniya N Pinto
- Department of Diagnostic Imaging, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Alexander Lerner
- University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Daniel Phung
- University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Giuseppe Barisano
- University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Brendon Chou
- University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Wilson Xu
- University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Nasim Sheikh-Bahaei
- University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
24
|
Felício D, du Mérac TR, Amorim A, Martins S. Functional implications of paralog genes in polyglutamine spinocerebellar ataxias. Hum Genet 2023; 142:1651-1676. [PMID: 37845370 PMCID: PMC10676324 DOI: 10.1007/s00439-023-02607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 10/18/2023]
Abstract
Polyglutamine (polyQ) spinocerebellar ataxias (SCAs) comprise a group of autosomal dominant neurodegenerative disorders caused by (CAG/CAA)n expansions. The elongated stretches of adjacent glutamines alter the conformation of the native proteins inducing neurotoxicity, and subsequent motor and neurological symptoms. Although the etiology and neuropathology of most polyQ SCAs have been extensively studied, only a limited selection of therapies is available. Previous studies on SCA1 demonstrated that ATXN1L, a human duplicated gene of the disease-associated ATXN1, alleviated neuropathology in mice models. Other SCA-associated genes have paralogs (i.e., copies at different chromosomal locations derived from duplication of the parental gene), but their functional relevance and potential role in disease pathogenesis remain unexplored. Here, we review the protein homology, expression pattern, and molecular functions of paralogs in seven polyQ dominant ataxias-SCA1, SCA2, MJD/SCA3, SCA6, SCA7, SCA17, and DRPLA. Besides ATXN1L, we highlight ATXN2L, ATXN3L, CACNA1B, ATXN7L1, ATXN7L2, TBPL2, and RERE as promising functional candidates to play a role in the neuropathology of the respective SCA, along with the parental gene. Although most of these duplicates lack the (CAG/CAA)n region, if functionally redundant, they may compensate for a partial loss-of-function or dysfunction of the wild-type genes in SCAs. We aim to draw attention to the hypothesis that paralogs of disease-associated genes may underlie the complex neuropathology of dominant ataxias and potentiate new therapeutic strategies.
Collapse
Affiliation(s)
- Daniela Felício
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313, Porto, Portugal
| | - Tanguy Rubat du Mérac
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Faculty of Science, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - António Amorim
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Sandra Martins
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal.
| |
Collapse
|
25
|
Bortolami A, Sesti F. Ion channels in neurodevelopment: lessons from the Integrin-KCNB1 channel complex. Neural Regen Res 2023; 18:2365-2369. [PMID: 37282454 PMCID: PMC10360111 DOI: 10.4103/1673-5374.371347] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Ion channels modulate cellular excitability by regulating ionic fluxes across biological membranes. Pathogenic mutations in ion channel genes give rise to epileptic disorders that are among the most frequent neurological diseases affecting millions of individuals worldwide. Epilepsies are triggered by an imbalance between excitatory and inhibitory conductances. However, pathogenic mutations in the same allele can give rise to loss-of-function and/or gain-of-function variants, all able to trigger epilepsy. Furthermore, certain alleles are associated with brain malformations even in the absence of a clear electrical phenotype. This body of evidence argues that the underlying epileptogenic mechanisms of ion channels are more diverse than originally thought. Studies focusing on ion channels in prenatal cortical development have shed light on this apparent paradox. The picture that emerges is that ion channels play crucial roles in landmark neurodevelopmental processes, including neuronal migration, neurite outgrowth, and synapse formation. Thus, pathogenic channel mutants can not only cause epileptic disorders by altering excitability, but further, by inducing morphological and synaptic abnormalities that are initiated during neocortex formation and may persist into the adult brain.
Collapse
Affiliation(s)
- Alessandro Bortolami
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, West Piscataway, NJ, USA
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, West Piscataway, NJ, USA
| |
Collapse
|
26
|
Tian E, Li F, Liu D, Wang J, Guo Z, Chen J, Guo J, Zhang S. Dispelling Mist That Obscures Positional Vertigo in Vestibular Migraine. Brain Sci 2023; 13:1487. [PMID: 37891854 PMCID: PMC10605638 DOI: 10.3390/brainsci13101487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Patients with vestibular migraine (VM) often present with positional vertigo. A portion of these patients have features of benign paroxysmal positional vertigo (BPPV). It is a challenge to rapidly identify the BPPV component of VM associated with positional vertigo. (2) Methods: Retrospective data collected from 60 VM and 47 VM + BPPV patients were used to build a diagnostic model, and then prospective data from 47 patients were used for the external validation. All patients had VM manifesting as positional vertigo, with or without accompanying BPPV. The clinical manifestations and the results of vestibular function tests were comprehensively analyzed using logistic regression. (3) Results: The univariate and multivariate analyses showed that the age, symptom duration, tinnitus, ear fullness, nausea, head shaking nystagmus, the direction of the Dix-Hallpike and roll tests, and horizontal gain could help differentiate between the two groups. A nomogram and an online calculator were generated. The C-index was 0.870. The diagnostic model showed good discriminative power and calibration performance during internal and external validation. (4) Conclusions: This study provided a new perspective for diagnosing VM with positional vertigo by identifying the BPPV component and, for the first time, offers a prediction model integrating multiple predictors.
Collapse
Affiliation(s)
- E Tian
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (E.T.); (D.L.); (J.W.); (Z.G.); (J.C.); (J.G.)
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fei Li
- Department of Neurology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China;
| | - Dan Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (E.T.); (D.L.); (J.W.); (Z.G.); (J.C.); (J.G.)
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (E.T.); (D.L.); (J.W.); (Z.G.); (J.C.); (J.G.)
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhaoqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (E.T.); (D.L.); (J.W.); (Z.G.); (J.C.); (J.G.)
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingyu Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (E.T.); (D.L.); (J.W.); (Z.G.); (J.C.); (J.G.)
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiaqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (E.T.); (D.L.); (J.W.); (Z.G.); (J.C.); (J.G.)
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sulin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (E.T.); (D.L.); (J.W.); (Z.G.); (J.C.); (J.G.)
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
27
|
Szymanowicz O, Korczowska-Łącka I, Słowikowski B, Wiszniewska M, Piotrowska A, Goutor U, Jagodziński PP, Kozubski W, Dorszewska J. Headache and NOTCH3 Gene Variants in Patients with CADASIL. Neurol Int 2023; 15:1238-1252. [PMID: 37873835 PMCID: PMC10594416 DOI: 10.3390/neurolint15040078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023] Open
Abstract
Autosomal dominant cerebral arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited vascular disease characterized by recurrent strokes, cognitive impairment, psychiatric symptoms, apathy, and migraine. Approximately 40% of patients with CADASIL experience migraine with aura (MA). In addition to MA, CADASIL patients are described in the literature as having migraine without aura (MO) and other types of headaches. Mutations in the NOTCH3 gene cause CADASIL. This study investigated NOTCH3 genetic variants in CADASIL patients and their potential association with headache types. Genetic tests were performed on 30 patients with CADASIL (20 women aged 43.6 ± 11.5 and 10 men aged 39.6 ± 15.8). PCR-HRM and sequencing methods were used in the genetic study. We described three variants as pathogenic/likely pathogenic (p.Tyr189Cys, p.Arg153Cys, p.Cys144Arg) and two benign variants (p.Ala202=, p.Thr101=) in the NOTCH3 gene and also presented the NOTCH3 gene variant (chr19:15192258 G>T), which has not been previously described in the literature. Patients with pathogenic/likely pathogenic variants had similar headache courses. People with benign variants showed a more diverse clinical picture. It seems that different NOTCH3 variants may contribute to the differential presentation of a CADASIL headache, highlighting the diagnostic and prognostic value of headache characteristics in this disease.
Collapse
Affiliation(s)
- Oliwia Szymanowicz
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.S.); (I.K.-Ł.); (U.G.)
| | - Izabela Korczowska-Łącka
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.S.); (I.K.-Ł.); (U.G.)
| | - Bartosz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (B.S.); (P.P.J.)
| | - Małgorzata Wiszniewska
- Faculty of Health Care, Stanislaw Staszic University of Applied Sciences in Pila, 64-920 Pila, Poland;
- Department of Neurology, Specialistic Hospital in Pila, 64-920 Pila, Poland
| | - Ada Piotrowska
- Chair and Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.P.); (W.K.)
| | - Ulyana Goutor
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.S.); (I.K.-Ł.); (U.G.)
| | - Paweł P. Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (B.S.); (P.P.J.)
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.P.); (W.K.)
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.S.); (I.K.-Ł.); (U.G.)
| |
Collapse
|
28
|
Olszewska DA, Shetty A, Rajalingam R, Rodriguez-Antiguedad J, Hamed M, Huang J, Breza M, Rasheed A, Bahr N, Madoev H, Westenberger A, Trinh J, Lohmann K, Klein C, Marras C, Waln O. Genotype-phenotype relations for episodic ataxia genes: MDSGene systematic review. Eur J Neurol 2023; 30:3377-3393. [PMID: 37422902 DOI: 10.1111/ene.15969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Most episodic ataxias (EA) are autosomal dominantly inherited and characterized by recurrent attacks of ataxia and other paroxysmal and non-paroxysmal features. EA is often caused by pathogenic variants in the CACNA1A, KCNA1, PDHA1, and SLC1A3 genes, listed as paroxysmal movement disorders (PxMD) by the MDS Task Force on the Nomenclature of Genetic Movement Disorders. Little is known about the genotype-phenotype correlation of the different genetic EA forms. METHODS We performed a systematic review of the literature to identify individuals affected by an episodic movement disorder harboring pathogenic variants in one of the four genes. We applied the standardized MDSGene literature search and data extraction protocol to summarize the clinical and genetic features. All data are available via the MDSGene protocol and platform on the MDSGene website (https://www.mdsgene.org/). RESULTS Information on 717 patients (CACNA1A: 491, KCNA1: 125, PDHA1: 90, and SLC1A3: 11) carrying 287 different pathogenic variants from 229 papers was identified and summarized. We show the profound phenotypic variability and overlap leading to the absence of frank genotype-phenotype correlation aside from a few key 'red flags'. CONCLUSION Given this overlap, a broad approach to genetic testing using a panel or whole exome or genome approach is most practical in most circumstances.
Collapse
Affiliation(s)
- Diana Angelika Olszewska
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Aakash Shetty
- Department of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Rajasumi Rajalingam
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Jon Rodriguez-Antiguedad
- Movement Disorders Unit and Institut d'Investigacions Biomediques-Sant Pau, Hospital Sant Pau, Barcelona, Spain
| | - Moath Hamed
- Department of Neurosciences, NYP Brooklyn Methodist Hospital, Brooklyn, New York, USA
| | - Jana Huang
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | | | - Ashar Rasheed
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Natascha Bahr
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Harutyan Madoev
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Connie Marras
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Olga Waln
- Houston Methodist Neurological Institute, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
29
|
Dias A, Santos M, Carvalho E, Felício D, Silva P, Alves I, Pinho T, Sousa A, Alves-Ferreira M, Lemos C. Functional characterization of a novel PRRT2 variant found in a Portuguese patient with hemiplegic migraine. Clin Genet 2023; 104:479-485. [PMID: 37243399 DOI: 10.1111/cge.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Familial hemiplegic migraine (FHM) is a rare autosomal-dominant form of migraine with aura. Three disease-causing genes have been identified for FHM: CACNA1A, ATP1A2 and SCN1A. However, not all families are linked to one of these three genes.PRRT2 variants were also commonly associated with HM symptoms; therefore, PRRT2 is hypothesized as the fourth gene causing FHM. PRRT2 plays an important role in neuronal migration, spinogenesis, and synapse mechanisms during development and calcium-dependent neurotransmitter release. We performed exome sequencing to unravel the genetic cause of migraine in one family, and a novel PRRT2 variant (c.938C > T;p.Ala313Val) was identified with further functional studies to confirm its pathogenicity. PRRT2-A313V reduced protein stability, led to protein premature degradation by the proteasome and altered the subcellular localization of PRRT2 from the plasma membrane (PM) to the cytoplasm. We identified and characterized for the first time in a Portuguese patient, a novel heterozygous missense variant in PRRT2 associated with HM symptoms. We suggest that PRRT2 should be included in the diagnosis of HM.
Collapse
Affiliation(s)
- Andreia Dias
- UnIGENe, IBMC - Instituto de Biologia Celular e Molecular, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Mariana Santos
- UnIGENe, IBMC - Instituto de Biologia Celular e Molecular, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Estefânia Carvalho
- UnIGENe, IBMC - Instituto de Biologia Celular e Molecular, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Daniela Felício
- UnIGENe, IBMC - Instituto de Biologia Celular e Molecular, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Paulo Silva
- UnIGENe, IBMC - Instituto de Biologia Celular e Molecular, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- CGPP, Centro de Genética Preditiva e Preventiva, IBMC - Instituto de Biologia Celular e Molecular, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ivânia Alves
- Serviço de Neurologia, Centro Hospitalar Tâmega e Sousa, Penafiel, Portugal
| | - Teresa Pinho
- UnIGENe, IBMC - Instituto de Biologia Celular e Molecular, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
| | - Alda Sousa
- UnIGENe, IBMC - Instituto de Biologia Celular e Molecular, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Miguel Alves-Ferreira
- UnIGENe, IBMC - Instituto de Biologia Celular e Molecular, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- CGPP, Centro de Genética Preditiva e Preventiva, IBMC - Instituto de Biologia Celular e Molecular, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Carolina Lemos
- UnIGENe, IBMC - Instituto de Biologia Celular e Molecular, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
30
|
Gosalia H, Karsan N, Goadsby PJ. Genetic Mechanisms of Migraine: Insights from Monogenic Migraine Mutations. Int J Mol Sci 2023; 24:12697. [PMID: 37628876 PMCID: PMC10454024 DOI: 10.3390/ijms241612697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Migraine is a disabling neurological disorder burdening patients globally. Through the increasing development of preclinical and clinical experimental migraine models, advancing appreciation of the extended clinical phenotype, and functional neuroimaging studies, we can further our understanding of the neurobiological basis of this highly disabling condition. Despite increasing understanding of the molecular and chemical architecture of migraine mechanisms, many areas require further investigation. Research over the last three decades has suggested that migraine has a strong genetic basis, based on the positive family history in most patients, and this has steered exploration into possibly implicated genes. In recent times, human genome-wide association studies and rodent genetic migraine models have facilitated our understanding, but most migraine seems polygenic, with the monogenic migraine mutations being considerably rarer, so further large-scale studies are required to elucidate fully the genetic underpinnings of migraine and the translation of these to clinical practice. The monogenic migraine mutations cause severe aura phenotypes, amongst other symptoms, and offer valuable insights into the biology of aura and the relationship between migraine and other conditions, such as vascular disease and sleep disorders. This review will provide an outlook of what is known about some monogenic migraine mutations, including familial hemiplegic migraine, familial advanced sleep-phase syndrome, and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy.
Collapse
Affiliation(s)
- Helin Gosalia
- Headache Group, The Wolfson Sensory, Pain and Rehabilitation Centre, NIHR King’s Clinical Research Facility, & SLaM Biomedical Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (H.G.); (N.K.)
| | - Nazia Karsan
- Headache Group, The Wolfson Sensory, Pain and Rehabilitation Centre, NIHR King’s Clinical Research Facility, & SLaM Biomedical Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (H.G.); (N.K.)
| | - Peter J. Goadsby
- Headache Group, The Wolfson Sensory, Pain and Rehabilitation Centre, NIHR King’s Clinical Research Facility, & SLaM Biomedical Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (H.G.); (N.K.)
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
31
|
Vitale M, Tottene A, Zarin Zadeh M, Brennan KC, Pietrobon D. Mechanisms of initiation of cortical spreading depression. J Headache Pain 2023; 24:105. [PMID: 37553625 PMCID: PMC10408042 DOI: 10.1186/s10194-023-01643-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND There is increasing evidence from human and animal studies that cortical spreading depression (CSD) is the neurophysiological correlate of migraine aura and a trigger of migraine pain mechanisms. The mechanisms of initiation of CSD in the brain of migraineurs remain unknown, and the mechanisms of initiation of experimentally induced CSD in normally metabolizing brain tissue remain incompletely understood and controversial. Here, we investigated the mechanisms of CSD initiation by focal application of KCl in mouse cerebral cortex slices. METHODS High KCl puffs of increasing duration up to the threshold duration eliciting a CSD were applied on layer 2/3 whilst the membrane potential of a pyramidal neuron located very close to the site of KCl application and the intrinsic optic signal were simultaneously recorded. This was done before and after the application of a specific blocker of either NMDA or AMPA glutamate receptors (NMDARs, AMPARs) or voltage-gated Ca2+ (CaV) channels. If the drug blocked CSD, stimuli up to 12-15 times the threshold were applied. RESULTS Blocking either NMDARs with MK-801 or CaV channels with Ni2+ completely inhibited CSD initiation by both CSD threshold and largely suprathreshold KCl stimuli. Inhibiting AMPARs with NBQX was without effect on the CSD threshold and velocity. Analysis of the CSD subthreshold and threshold neuronal depolarizations in control conditions and in the presence of MK-801 or Ni2+ revealed that the mechanism underlying ignition of CSD by a threshold stimulus (and not by a just subthreshold stimulus) is the CaV-dependent activation of a threshold level of NMDARs (and/or of channels whose opening depends on the latter). The delay of several seconds with which this occurs underlies the delay of CSD initiation relative to the rapid neuronal depolarization produced by KCl. CONCLUSIONS Both NMDARs and CaV channels are necessary for CSD initiation, which is not determined by the extracellular K+ or neuronal depolarization levels per se, but requires the CaV-dependent activation of a threshold level of NMDARs. This occurs with a delay of several seconds relative to the rapid depolarization produced by the KCl stimulus. Our data give insights into potential mechanisms of CSD initiation in migraine.
Collapse
Affiliation(s)
- Marina Vitale
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Angelita Tottene
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Maral Zarin Zadeh
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - K C Brennan
- Department of Neurology, University of Utah School of Medicine, UT, 84108, Salt Lake City, USA
| | - Daniela Pietrobon
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy.
- Padova Neuroscience Center (PNC), University of Padova, 35131, Padova, Italy.
| |
Collapse
|
32
|
Kalkman DN, Couturier EGM, El Bouziani A, Dahdal J, Neefs J, Woudstra J, Vogel B, Trabattoni D, MaassenVanDenBrink A, Mehran R, de Winter RJ, Appelman Y. Migraine and cardiovascular disease: what cardiologists should know. Eur Heart J 2023; 44:2815-2828. [PMID: 37345664 DOI: 10.1093/eurheartj/ehad363] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/06/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Migraine is a chronic neurovascular disease with a complex, not fully understood pathophysiology with multiple causes. People with migraine suffer from recurrent moderate to severe headache attacks varying from 4 to 72 h. The prevalence of migraine is two to three times higher in women compared with men. Importantly, it is the most disabling disease in women <50 years of age due to a high number of years lived with disability, resulting in a very high global socioeconomic burden. Robust evidence exists on the association between migraine with aura and increased incidence of cardiovascular disease (CVD), in particular ischaemic stroke. People with migraine with aura have an increased risk of atrial fibrillation, myocardial infarction, and cardiovascular death compared with those without migraine. Ongoing studies investigate the relation between migraine and angina with non-obstructive coronary arteries and migraine patients with patent foramen ovale. Medication for the treatment of migraine can be preventative medication, such as beta-blockers, angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, antiepileptics, antidepressants, some of the long-acting calcitonin gene-related peptide receptor antagonists, or monoclonal antibodies against calcitonin gene-related peptide or its receptor, or acute medication, such as triptans and calcitonin gene-related peptide receptor antagonists. However, these medications might raise concerns when migraine patients also have CVD due to possible (coronary) side effects. Specifically, knowledge gaps remain for the contraindication to newer treatments for migraine. All cardiologists will encounter patients with CVD and migraine. This state-of-the-art review will outline the basic pathophysiology of migraine and the associations between migraine and CVD, discuss current therapies, and propose future directions for research.
Collapse
Affiliation(s)
- Deborah N Kalkman
- Department of Clinical and Experimental Cardiology, Heart Center; Amsterdam Cardiovascular Sciences, Amsterdam UMC-University of Amsterdam, Amsterdam, The Netherlands
| | - Emile G M Couturier
- Department of Neurology, Boerhaave Medisch Centrum, Amsterdam, The Netherlands
| | - Abdelhak El Bouziani
- Department of Clinical and Experimental Cardiology, Heart Center; Amsterdam Cardiovascular Sciences, Amsterdam UMC-University of Amsterdam, Amsterdam, The Netherlands
| | - Jorge Dahdal
- Department of Cardiology, Heart Center, Amsterdam UMC-Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Jolien Neefs
- Department of Clinical and Experimental Cardiology, Heart Center; Amsterdam Cardiovascular Sciences, Amsterdam UMC-University of Amsterdam, Amsterdam, The Netherlands
| | - Janneke Woudstra
- Department of Cardiology, Heart Center, Amsterdam UMC-Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Birgit Vogel
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Roxana Mehran
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robbert J de Winter
- Department of Clinical and Experimental Cardiology, Heart Center; Amsterdam Cardiovascular Sciences, Amsterdam UMC-University of Amsterdam, Amsterdam, The Netherlands
| | - Yolande Appelman
- Department of Cardiology, Heart Center, Amsterdam UMC-Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Azzarà A, Cassano I, Lintas C, Pilato F, Capone F, Di Lazzaro V, Gurrieri F. Melkersson-Rosenthal Syndrome and Migraine: A New Phenotype Associated with SCN1A Variants? Genes (Basel) 2023; 14:1482. [PMID: 37510386 PMCID: PMC10378782 DOI: 10.3390/genes14071482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Peripheral facial palsy rarely occurs as part of Melkersson-Rosenthal syndrome (MRS), which is characterized by the classical triad of tongue cheilitis, recurrent episodes of orofacial swelling, and palsy. MRS is a disorder with variable expressivity and clinical as well as genetic heterogeneity; however, the causative gene remains to be identified. Migraine is a common neurological disorder, presenting with or without aura, which may be associated with neurological symptoms. The classical example of monogenic migraine is familial hemiplegic migraine (FHM), which has phenotypic variability in carriers of variants in the same gene or even carriers of the same variant. We present a family in which two sisters displayed recurrent migraines, one of which presented recurrent facial palsy and had clinical diagnosis of MRS. We performed WES and Sanger sequencing for segregation analysis in the available family members. We identified a c.3521C>G missense heterozygous variant in SCN1A carried only by the affected sister. Variants in the SCN1A gene can cause a spectrum of early-onset epileptic encephalopathies, in addition to FHM; therefore, our finding reasonably explains the proband phenotype, in which the main symptom was recurrent facial palsy. This report also adds knowledge to the clinical spectrum of SCN1A alterations and suggests a potential overlap between MRS and FHM.
Collapse
Affiliation(s)
- Alessia Azzarà
- Research Unit of Medical Genetics, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Ilaria Cassano
- Research Unit of Medical Genetics, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Fabio Pilato
- Research Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Operative Research Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Fioravante Capone
- Research Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Operative Research Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Vincenzo Di Lazzaro
- Research Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Operative Research Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Fiorella Gurrieri
- Research Unit of Medical Genetics, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| |
Collapse
|
34
|
Jicha CJ, Alex A, Herskovitz S, Haut SR, Lipton R. Migraine with prolonged aphasic aura associated with a CACNA1A mutation: A case report and narrative review. Headache 2023; 63:975-980. [PMID: 37366229 DOI: 10.1111/head.14594] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
OBJECTIVE To demonstrate that a known CACNA1A variant is associated with a phenotype of prolonged aphasic aura without hemiparesis. BACKGROUND The usual differential diagnosis of prolonged aphasia without hemiparesis includes vascular disease, seizure, metabolic derangements, and migraine. Genetic mutations in the CACNA1A gene can lead to a myriad of phenotypes, including familial hemiplegic migraine (FHM) type 1, an autosomal dominant disorder characterized by an aura of unilateral, sometimes prolonged weakness. Though aphasia is a common feature of migraine aura, with or without hemiparesis, aphasia without hemiparesis has not been reported with CACNA1A mutations. METHODS We report the case of a 51-year-old male who presented with a history of recurrent episodes of aphasia without hemiparesis lasting days to weeks. His headache was left sided and was heralded by what his family described as "confusion." On examination, he had global aphasia without other focal findings. Family history revealed several relatives with a history of severe headaches with neurologic deficits including aphasia and/or weakness. Imaging revealed T2 hyperintensities in the left parietal/temporal/occipital regions on MRI scan with corresponding hyperperfusion on SPECT. Genetic testing revealed a missense mutation in the CACNA1A gene. CONCLUSIONS This case expands the phenotypic spectrum of the CACNA1A mutation and FHM to include prolonged aphasic aura without hemiparesis. Our patient's SPECT imaging demonstrated hyperperfusion in areas correlating with aura symptoms which can occur in prolonged aura.
Collapse
Affiliation(s)
- Crystal J Jicha
- Department of Neurology, University of California Irvine, Irvine, California, USA
| | - Ashley Alex
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, The State University of New York, Buffalo, New York, USA
| | - Steven Herskovitz
- Department of Neurology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York, USA
| | - Sheryl R Haut
- Saul R. Korey Department of Neurology, Montefiore Epilepsy Center, Bronx, New York, USA
| | - Richard Lipton
- Department of Neurology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York, USA
| |
Collapse
|
35
|
Al-Hassany L, Boucherie DM, Creeney H, van Drie RWA, Farham F, Favaretto S, Gollion C, Grangeon L, Lyons H, Marschollek K, Onan D, Pensato U, Stanyer E, Waliszewska-Prosół M, Wiels W, Chen HZ, Amin FM. Future targets for migraine treatment beyond CGRP. J Headache Pain 2023; 24:76. [PMID: 37370051 DOI: 10.1186/s10194-023-01567-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/14/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Migraine is a disabling and chronic neurovascular headache disorder. Trigeminal vascular activation and release of calcitonin gene-related peptide (CGRP) play a pivotal role in the pathogenesis of migraine. This knowledge has led to the development of CGRP(-receptor) therapies. Yet, a substantial proportion of patients do not respond to these treatments. Therefore, alternative targets for future therapies are warranted. The current narrative review provides a comprehensive overview of the pathophysiological role of these possible non-CGRP targets in migraine. FINDINGS We covered targets of the metabotropic receptors (pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal peptide (VIP), amylin, and adrenomedullin), intracellular targets (nitric oxide (NO), phosphodiesterase-3 (PDE3) and -5 (PDE5)), and ion channels (potassium, calcium, transient receptor potential (TRP), and acid-sensing ion channels (ASIC)). The majority of non-CGRP targets were able to induce migraine-like attacks, except for (i) calcium channels, as it is not yet possible to directly target channels to elucidate their precise involvement in migraine; (ii) TRP channels, activation of which can induce non-migraine headache; and (iii) ASICs, as their potential in inducing migraine attacks has not been investigated thus far. Drugs that target its receptors exist for PACAP, NO, and the potassium, TRP, and ASIC channels. No selective drugs exist for the other targets, however, some existing (migraine) treatments appear to indirectly antagonize responses to amylin, adrenomedullin, and calcium channels. Drugs against PACAP, NO, potassium channels, TRP channels, and only a PAC1 antibody have been tested for migraine treatment, albeit with ambiguous results. CONCLUSION While current research on these non-CGRP drug targets has not yet led to the development of efficacious therapies, human provocation studies using these targets have provided valuable insight into underlying mechanisms of migraine headaches and auras. Further studies are needed on these alternative therapies in non-responders of CGRP(-receptor) targeted therapies with the ultimate aim to pave the way towards a headache-free future for all migraine patients.
Collapse
Affiliation(s)
- Linda Al-Hassany
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Deirdre M Boucherie
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hannah Creeney
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Ruben W A van Drie
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Cardiology, Division of Experimental Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Fatemeh Farham
- Department of Headache, Iranian Centre of Neurological Researchers, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Silvia Favaretto
- Headache Center, Neurology Clinic, University Hospital of Padua, Padua, Italy
| | - Cédric Gollion
- Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Lou Grangeon
- Neurology Department, Rouen University Hospital, Rouen, France
| | - Hannah Lyons
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Karol Marschollek
- Department of Neurology, Wroclaw Medical University, Wrocław, Poland
| | - Dilara Onan
- Spine Health Unit, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Umberto Pensato
- Neurology and Stroke Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Humanitas University, Pieve Emanuele, Milan, Italy
| | - Emily Stanyer
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | | | - Wietse Wiels
- Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hui Zhou Chen
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Faisal Mohammad Amin
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark.
- Department of Neurorehabilitation/Traumatic Brain Injury, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
36
|
Antunes FTT, Campos MM, Carvalho VDPR, da Silva Junior CA, Magno LAV, de Souza AH, Gomez MV. Current Drug Development Overview: Targeting Voltage-Gated Calcium Channels for the Treatment of Pain. Int J Mol Sci 2023; 24:ijms24119223. [PMID: 37298174 DOI: 10.3390/ijms24119223] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 06/12/2023] Open
Abstract
Voltage-gated calcium channels (VGCCs) are targeted to treat pain conditions. Since the discovery of their relation to pain processing control, they are investigated to find new strategies for better pain control. This review provides an overview of naturally based and synthetic VGCC blockers, highlighting new evidence on the development of drugs focusing on the VGCC subtypes as well as mixed targets with pre-clinical and clinical analgesic effects.
Collapse
Affiliation(s)
- Flavia Tasmin Techera Antunes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Maria Martha Campos
- Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil
| | | | | | - Luiz Alexandre Viana Magno
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade Ciências Médicas de Minas Gerais (FCMMG), Belo Horizonte 30110-005, MG, Brazil
| | - Alessandra Hubner de Souza
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade Ciências Médicas de Minas Gerais (FCMMG), Belo Horizonte 30110-005, MG, Brazil
| | | |
Collapse
|
37
|
Riant F, Burglen L, Corpechot M, Robert J, Durr A, Solé G, Petit F, Freihuber C, De Marco O, Sarret C, Castelnovo G, Devillard F, Afenjar A, Héron B, Lasserve ET. Characterization of novel CACNA1A splice variants by RNA-sequencing in patients with episodic or congenital ataxia. Clin Genet 2023. [PMID: 37177896 DOI: 10.1111/cge.14358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Loss of function variants in CACNA1A cause a broad spectrum of neurological disorders, including episodic ataxia, congenital or progressive ataxias, epileptic manifestations or developmental delay. Variants located on the AG/GT consensus splice sites are usually considered as responsible of splicing defects, but exonic or intronic variants located outside of the consensus splice site can also lead to abnormal splicing. We investigated the putative consequences on splicing of 11 CACNA1A variants of unknown significance (VUS) identified in patients with episodic ataxia or congenital ataxia. In silico splice predictions were performed and RNA obtained from fibroblasts was analyzed by Sanger sequencing. The presence of abnormal transcripts was confirmed in 10/11 patients, nine of them were considered as deleterious and one remained of unknown significance. Targeted next-generation RNA sequencing was done in a second step to compare the two methods. This method was successful to obtain the full cDNA sequence of CACNA1A. Despite the presence of several isoforms in the fibroblastic cells, it detected most of the abnormally spliced transcripts. In conclusion, RNA sequencing was efficient to confirm the pathogenicity of nine novel CACNA1A variants. Sanger or Next generation methods can be used depending on the facilities and organization of the laboratories.
Collapse
Affiliation(s)
- Florence Riant
- AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France
| | - Lydie Burglen
- Département de Génétique et Embryologie Médicale, APHP, Sorbonne Université, Centre de Référence Malformations et Maladies Congénitales du Cervelet, Hôpital Trousseau, Paris, France
| | - Michaelle Corpechot
- AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France
| | - Julien Robert
- AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Guilhem Solé
- Service de Neurologie, Unité Neuromusculaire, CHU de Bordeaux - Hôpital Pellegrin, Bordeaux, France
| | - Florence Petit
- CHU Lille, Clinique de Génétique Guy Fontaine, Lille, France
| | - Cécile Freihuber
- Service de Neuropédiatrie, APHP, Hôpital Trousseau, Paris, France
| | - Olivier De Marco
- Service de Neurologie, Hôpital de La Roche sur Yon, La Roche sur Yon, France
| | - Catherine Sarret
- Service de Pédiatrie, Hôpital Estaing, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | | | - Françoise Devillard
- Département de Génétique et Procréation, Hôpital Couple-Enfant, CHU de Grenoble, Grenoble, France
| | - Alexandra Afenjar
- Département de Génétique et Embryologie Médicale, APHP, Sorbonne Université, Centre de Référence Malformations et Maladies Congénitales du Cervelet, Hôpital Trousseau, Paris, France
| | - Bénédicte Héron
- Service de Neuropédiatrie, APHP, Hôpital Trousseau, Paris, France
| | | |
Collapse
|
38
|
Conti F, Pietrobon D. Astrocytic Glutamate Transporters and Migraine. Neurochem Res 2023; 48:1167-1179. [PMID: 36583835 DOI: 10.1007/s11064-022-03849-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/07/2022] [Accepted: 12/17/2022] [Indexed: 12/31/2022]
Abstract
Glutamate levels and lifetime in the brain extracellular space are dinamically regulated by a family of Na+- and K+-dependent glutamate transporters, which thereby control numerous brain functions and play a role in numerous neurological and psychiatric diseases. Migraine is a neurological disorder characterized by recurrent attacks of typically throbbing and unilateral headache and by a global dysfunction in multisensory processing. Familial hemiplegic migraine type 2 (FHM2) is a rare monogenic form of migraine with aura caused by loss-of-function mutations in the α2 Na/K ATPase (α2NKA). In the adult brain, this pump is expressed almost exclusively in astrocytes where it is colocalized with glutamate transporters. Knockin mouse models of FHM2 (FHM2 mice) show a reduced density of glutamate transporters in perisynaptic astrocytic processes (mirroring the reduced expression of α2NKA) and a reduced rate of glutamate clearance at cortical synapses during neuronal activity and sensory stimulation. Here we review the migraine-relevant alterations produced by the astrocytic glutamate transport dysfunction in FHM2 mice and their underlying mechanisms, in particular regarding the enhanced brain susceptibility to cortical spreading depression (the phenomenon that underlies migraine aura and can also initiate the headache mechanisms) and the enhanced algesic response to a migraine trigger.
Collapse
Affiliation(s)
- Fiorenzo Conti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy.
| | - Daniela Pietrobon
- Department of Biomedical Sciences and Padova Neuroscience Center (PNC), University of Padova, 35131, Padua, Italy.
- CNR Institute of Neuroscience, 35131, Padua, Italy.
| |
Collapse
|
39
|
Hashimoto Y, Greene C, Munnich A, Campbell M. The CLDN5 gene at the blood-brain barrier in health and disease. Fluids Barriers CNS 2023; 20:22. [PMID: 36978081 PMCID: PMC10044825 DOI: 10.1186/s12987-023-00424-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
The CLDN5 gene encodes claudin-5 (CLDN-5) that is expressed in endothelial cells and forms tight junctions which limit the passive diffusions of ions and solutes. The blood-brain barrier (BBB), composed of brain microvascular endothelial cells and associated pericytes and end-feet of astrocytes, is a physical and biological barrier to maintain the brain microenvironment. The expression of CLDN-5 is tightly regulated in the BBB by other junctional proteins in endothelial cells and by supports from pericytes and astrocytes. The most recent literature clearly shows a compromised BBB with a decline in CLDN-5 expression increasing the risks of developing neuropsychiatric disorders, epilepsy, brain calcification and dementia. The purpose of this review is to summarize the known diseases associated with CLDN-5 expression and function. In the first part of this review, we highlight the recent understanding of how other junctional proteins as well as pericytes and astrocytes maintain CLDN-5 expression in brain endothelial cells. We detail some drugs that can enhance these supports and are being developed or currently in use to treat diseases associated with CLDN-5 decline. We then summarise mutagenesis-based studies which have facilitated a better understanding of the physiological role of the CLDN-5 protein at the BBB and have demonstrated the functional consequences of a recently identified pathogenic CLDN-5 missense mutation from patients with alternating hemiplegia of childhood. This mutation is the first gain-of-function mutation identified in the CLDN gene family with all others representing loss-of-function mutations resulting in mis-localization of CLDN protein and/or attenuated barrier function. Finally, we summarize recent reports about the dosage-dependent effect of CLDN-5 expression on the development of neurological diseases in mice and discuss what cellular supports for CLDN-5 regulation are compromised in the BBB in human diseases.
Collapse
Affiliation(s)
- Yosuke Hashimoto
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin, D02 VF25, Ireland.
| | - Chris Greene
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin, D02 VF25, Ireland
| | - Arnold Munnich
- Institut Imagine, INSERM UMR1163, Université Paris Cité, Paris, F-75015, France
- Departments of Pediatric Neurology and Medical Genetics, Hospital Necker Enfants Malades, Université Paris Cité, Paris, F-75015, France
| | - Matthew Campbell
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin, D02 VF25, Ireland.
| |
Collapse
|
40
|
Hassan A. Episodic Ataxias: Primary and Secondary Etiologies, Treatment, and Classification Approaches. Tremor Other Hyperkinet Mov (N Y) 2023; 13:9. [PMID: 37008993 PMCID: PMC10064912 DOI: 10.5334/tohm.747] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Background Episodic ataxia (EA), characterized by recurrent attacks of cerebellar dysfunction, is the manifestation of a group of rare autosomal dominant inherited disorders. EA1 and EA2 are most frequently encountered, caused by mutations in KCNA1 and CACNA1A. EA3-8 are reported in rare families. Advances in genetic testing have broadened the KCNA1 and CACNA1A phenotypes, and detected EA as an unusual presentation of several other genetic disorders. Additionally, there are various secondary causes of EA and mimicking disorders. Together, these can pose diagnostic challenges for neurologists. Methods A systematic literature review was performed in October 2022 for 'episodic ataxia' and 'paroxysmal ataxia', restricted to publications in the last 10 years to focus on recent clinical advances. Clinical, genetic, and treatment characteristics were summarized. Results EA1 and EA2 phenotypes have further broadened. In particular, EA2 may be accompanied by other paroxysmal disorders of childhood with chronic neuropsychiatric features. New treatments for EA2 include dalfampridine and fampridine, in addition to 4-aminopyridine and acetazolamide. There are recent proposals for EA9-10. EA may also be caused by gene mutations associated with chronic ataxias (SCA-14, SCA-27, SCA-42, AOA2, CAPOS), epilepsy syndromes (KCNA2, SCN2A, PRRT2), GLUT-1, mitochondrial disorders (PDHA1, PDHX, ACO2), metabolic disorders (Maple syrup urine disease, Hartnup disease, type I citrullinemia, thiamine and biotin metabolism defects), and others. Secondary causes of EA are more commonly encountered than primary EA (vascular, inflammatory, toxic-metabolic). EA can be misdiagnosed as migraine, peripheral vestibular disorders, anxiety, and functional symptoms. Primary and secondary EA are frequently treatable which should prompt a search for the cause. Discussion EA may be overlooked or misdiagnosed for a variety of reasons, including phenotype-genotype variability and clinical overlap between primary and secondary causes. EA is highly treatable, so it is important to consider in the differential diagnosis of paroxysmal disorders. Classical EA1 and EA2 phenotypes prompt single gene test and treatment pathways. For atypical phenotypes, next generation genetic testing can aid diagnosis and guide treatment. Updated classification systems for EA are discussed which may assist diagnosis and management.
Collapse
|
41
|
Shin D, Choi Y, Soon ZY, Kim M, Jang MC, Seo JY, Kang JH, Shin K, Jung JH. Chemical hazard of robotic hull in-water cleaning discharge on coastal embryonic fish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114653. [PMID: 36812868 DOI: 10.1016/j.ecoenv.2023.114653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
In-water cleaning (IWC) involves the removal of biofilms and foulants from the hull of a ship using brush or water jet. During IWC, several factors associated with the harmful chemical contaminants release to the marine environment, which can create "hotspots" of chemical contamination in coastal areas. To elucidate the potential toxic effects of IWC discharge, we investigated developmental toxicity in embryonic flounder, which are sensitive life stage to chemical exposure. Zinc and copper were the dominant metals, while zinc pyrithione was the most abundant biocide associated with IWC discharge in two remotely operated IWC. Discharge from IWC carried by both remotely operated vehicles (ROVs) produced developmental malformations including pericardial edema, spinal curvature, and tail-fin defects. In an analyses of differential gene expression profiles (fold-change of genes with a cutoff < 0.05) as assessed by high-throughput RNA sequencing, genes associated with muscle development were commonly and significantly changed. The gene ontology (GO) of embryos exposed to IWC discharge from ROV A activities highly enriched muscle and heart development, while cell signaling and transport were evident in embryos exposed to IWC discharge of ROV B. We analyzed the gene network by significant GO terms. In the network, TTN, MYOM1, CASP3, and CDH2 genes appeared to be key regulators of the toxic effects on muscle development. In embryos exposed to ROV B discharge, HSPG2, VEGFA, and TNF genes related to the nervous system pathway were affected. These results shed light on the potential impacts of muscle and nervous system development in non-target coastal organisms exposed to contaminants found in IWC discharge.
Collapse
Affiliation(s)
- Dongju Shin
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Youmi Choi
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Zhi Yang Soon
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Moonkoo Kim
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Min-Chul Jang
- Ballast Water Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Jin-Young Seo
- Ballast Water Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Jung-Hoon Kang
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Kyungsoon Shin
- Ballast Water Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Jee-Hyun Jung
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
42
|
Involvement of Potassium Channel Signalling in Migraine Pathophysiology. Pharmaceuticals (Basel) 2023; 16:ph16030438. [PMID: 36986537 PMCID: PMC10057509 DOI: 10.3390/ph16030438] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Migraine is a primary headache disorder ranked as the leading cause of years lived with disability among individuals younger than 50 years. The aetiology of migraine is complex and might involve several molecules of different signalling pathways. Emerging evidence implicates potassium channels, predominantly ATP-sensitive potassium (KATP) channels and large (big) calcium-sensitive potassium (BKCa) channels in migraine attack initiation. Basic neuroscience revealed that stimulation of potassium channels activated and sensitized trigeminovascular neurons. Clinical trials showed that administration of potassium channel openers caused headache and migraine attack associated with dilation of cephalic arteries. The present review highlights the molecular structure and physiological function of KATP and BKCa channels, presents recent insights into the role of potassium channels in migraine pathophysiology, and discusses possible complementary effects and interdependence of potassium channels in migraine attack initiation.
Collapse
|
43
|
Grangeon L, Lange KS, Waliszewska-Prosół M, Onan D, Marschollek K, Wiels W, Mikulenka P, Farham F, Gollion C, Ducros A. Genetics of migraine: where are we now? J Headache Pain 2023; 24:12. [PMID: 36800925 PMCID: PMC9940421 DOI: 10.1186/s10194-023-01547-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 02/21/2023] Open
Abstract
Migraine is a complex brain disorder explained by the interaction of genetic and environmental factors. In monogenic migraines, including familial hemiplegic migraine and migraine with aura associated with hereditary small-vessel disorders, the identified genes code for proteins expressed in neurons, glial cells, or vessels, all of which increase susceptibility to cortical spreading depression. The study of monogenic migraines has shown that the neurovascular unit plays a prominent role in migraine. Genome-wide association studies have identified numerous susceptibility variants that each result in only a small increase in overall migraine risk. The more than 180 known variants belong to several complex networks of "pro-migraine" molecular abnormalities, which are mainly neuronal or vascular. Genetics has also highlighted the importance of shared genetic factors between migraine and its major co-morbidities, including depression and high blood pressure. Further studies are still needed to map all of the susceptibility loci for migraine and then to understand how these genomic variants lead to migraine cell phenotypes.
Collapse
Affiliation(s)
- Lou Grangeon
- grid.41724.340000 0001 2296 5231Neurology Department, CHU de Rouen, Rouen, France
| | - Kristin Sophie Lange
- grid.6363.00000 0001 2218 4662Neurology Department, Charité – Universitätsmedizin Berlin, Berlin, Germany ,grid.6363.00000 0001 2218 4662Center for Stroke Research Berlin (CSB), Charité – Universitätsmedizin, Berlin, Germany
| | - Marta Waliszewska-Prosół
- grid.4495.c0000 0001 1090 049XDepartment of Neurology, Wrocław Medical University, Wrocław, Poland
| | - Dilara Onan
- grid.14442.370000 0001 2342 7339Hacettepe University, Faculty of Physical Therapy and Rehabilitation, Ankara, Turkey
| | - Karol Marschollek
- grid.4495.c0000 0001 1090 049XDepartment of Neurology, Wrocław Medical University, Wrocław, Poland
| | - Wietse Wiels
- grid.8767.e0000 0001 2290 8069Department of Neurology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Petr Mikulenka
- grid.412819.70000 0004 0611 1895Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Fatemeh Farham
- grid.411705.60000 0001 0166 0922Headache Department, Iranian Centre of Neurological Researchers, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Cédric Gollion
- grid.411175.70000 0001 1457 2980Neurology Department, CHU de Toulouse, Toulouse, France
| | - Anne Ducros
- Neurology Department, CHU de Montpellier, 80 avenue Augustin Fliche, 34295, Montpellier, France.
| | | |
Collapse
|
44
|
Exploring Novel Therapeutic Targets in the Common Pathogenic Factors in Migraine and Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24044114. [PMID: 36835524 PMCID: PMC9959352 DOI: 10.3390/ijms24044114] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Migraine and neuropathic pain (NP) are both painful, disabling, chronic conditions which exhibit some symptom similarities and are thus considered to share a common etiology. The calcitonin gene-related peptide (CGRP) has gained credit as a target for migraine management; nevertheless, the efficacy and the applicability of CGRP modifiers warrant the search for more effective therapeutic targets for pain management. This scoping review focuses on human studies of common pathogenic factors in migraine and NP, with reference to available preclinical evidence to explore potential novel therapeutic targets. CGRP inhibitors and monoclonal antibodies alleviate inflammation in the meninges; targeting transient receptor potential (TRP) ion channels may help prevent the release of nociceptive substances, and modifying the endocannabinoid system may open a path toward discovery of novel analgesics. There may exist a potential target in the tryptophan-kynurenine (KYN) metabolic system, which is closely linked to glutamate-induced hyperexcitability; alleviating neuroinflammation may complement a pain-relieving armamentarium, and modifying microglial excitation, which is observed in both conditions, may be a possible approach. Those are several potential analgesic targets which deserve to be explored in search of novel analgesics; however, much evidence remains missing. This review highlights the need for more studies on CGRP modifiers for subtypes, the discovery of TRP and endocannabinoid modulators, knowledge of the status of KYN metabolites, the consensus on cytokines and sampling, and biomarkers for microglial function, in search of innovative pain management methods for migraine and NP.
Collapse
|
45
|
Whole Exome Sequencing of Hemiplegic Migraine Patients Shows an Increased Burden of Missense Variants in CACNA1H and CACNA1I Genes. Mol Neurobiol 2023; 60:3034-3043. [PMID: 36786913 PMCID: PMC10122627 DOI: 10.1007/s12035-023-03255-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
Hemiplegic migraine (HM) is a rare subtype of migraine with aura. Given that causal missense mutations in the voltage-gated calcium channel α1A subunit gene CACNA1A have been identified in a subset of HM patients, we investigated whether HM patients without a mutation have an increased burden of such variants in the "CACNA1x gene family". Whole exome sequencing data of an Australian cohort of unrelated HM patients (n = 184), along with public data from gnomAD, as controls, was used to assess the burden of missense variants in CACNA1x genes. We performed both a variant and a subject burden test. We found a significant burden for the number of variants in CACNA1E (p = 1.3 × 10-4), CACNA1H (p < 2.2 × 10-16) and CACNA1I (p < 2.2 × 10-16). There was also a significant burden of subjects with missense variants in CACNA1E (p = 6.2 × 10-3), CACNA1H (p < 2.2 × 10-16) and CACNA1I (p < 2.2 × 10-16). Both the number of variants and number of subjects were replicated for CACNA1H (p = 3.5 × 10-8; p = 0.012) and CACNA1I (p = 0.019, p = 0.044), respectively, in a Dutch clinical HM cohort (n = 32), albeit that CACNA1I did not remain significant after multiple testing correction. Our data suggest that HM, in the absence of a single causal mutation, is a complex trait, in which an increased burden of missense variants in CACNA1H and CACNA1I may contribute to the risk of disease.
Collapse
|
46
|
Gray MM, Naik A, Ebner TJ, Carter RE. Altered brain state during episodic dystonia in tottering mice decouples primary motor cortex from limb kinematics. DYSTONIA 2023; 2:10974. [PMID: 37800168 PMCID: PMC10554815 DOI: 10.3389/dyst.2023.10974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Episodic Ataxia Type 2 (EA2) is a rare neurological disorder caused by a mutation in the CACNA1A gene, encoding the P/Q-type voltage-gated Ca2+ channel important for neurotransmitter release. Patients with this channelopathy exhibit both cerebellar and cerebral pathologies, suggesting the condition affects both regions. The tottering (tg/tg) mouse is the most commonly used EA2 model due to an orthologous mutation in the cacna1a gene. The tg/tg mouse has three prominent behavioral phenotypes: a dramatic episodic dystonia; absence seizures with generalized spike and wave discharges (GSWDs); and mild ataxia. We previously observed a novel brain state, transient low-frequency oscillations (LFOs) in the cerebellum and cerebral cortex under anesthesia. In this study, we examine the relationships among the dystonic attack, GSWDs, and LFOs in the cerebral cortex. Previous studies characterized LFOs in the motor cortex of anesthetized tg/tg mice using flavoprotein autofluorescence imaging testing the hypothesis that LFOs provide a mechanism for the paroxysmal dystonia. We sought to obtain a more direct understanding of motor cortex (M1) activity during the dystonic episodes. Using two-photon Ca2+ imaging to investigate neuronal activity in M1 before, during, and after the dystonic attack, we show that there is not a significant change in the activity of M1 neurons from baseline through the attack. We also conducted simultaneous, multi-electrode recordings to further understand how M1 cellular activity and local field potentials change throughout the progression of the dystonic attack. Neither putative pyramidal nor inhibitory interneuron firing rate changed during the dystonic attack. However, we did observe a near complete loss of GSWDs during the dystonic attack in M1. Finally, using spike triggered averaging to align simultaneously recorded limb kinematics to the peak Ca2+ response, and vice versa, revealed a reduction in the spike triggered average during the dystonic episodes. Both the loss of GSWDs and the reduction in the coupling suggest that, during the dystonic attack, M1 is effectively decoupled from other structures. Overall, these results indicate that the attack is not initiated or controlled in M1, but elsewhere in the motor circuitry. The findings also highlight that LFOs, GSWDs, and dystonic attacks represent three brain states in tg/tg mice.
Collapse
Affiliation(s)
- Madelyn M Gray
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Anant Naik
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Russell E Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
47
|
Harder AV, Terwindt GM, Nyholt DR, van den Maagdenberg AM. Migraine genetics: Status and road forward. Cephalalgia 2023; 43:3331024221145962. [PMID: 36759319 DOI: 10.1177/03331024221145962] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
BACKGROUND Migraine is considered a multifactorial genetic disorder. Different platforms and methods are used to unravel the genetic basis of migraine. Initially, linkage analysis in multigenerational families followed by Sanger sequencing of protein-coding parts (exons) of genes in the genomic region shared by affected family members identified high-effect risk DNA mutations for rare Mendelian forms of migraine, foremost hemiplegic migraine. More recently, genome-wide association studies testing millions of DNA variants in large groups of patients and controls have proven successful in identifying many dozens of low-effect risk DNA variants for the more common forms of migraine with the number of associated DNA variants increasing steadily with larger sample sizes. Currently, next-generation sequencing, utilising whole exome and whole genome sequence data, and other omics data are being used to facilitate their functional interpretation and the discovery of additional risk factors. Various methods and analysis tools, such as genetic correlation and causality analysis, are used to further characterise genetic risk factors. FINDINGS We describe recent findings in genome-wide association studies and next-generation sequencing analysis in migraine. We show that the combined results of the two most recent and most powerful migraine genome-wide association studies have identified a total of 178 LD-independent (r2 < 0.1) genome-wide significant single nucleotide polymorphisms (SNPs), of which 99 were unique to Hautakangas et al., 11 were unique to Choquet et al., and 68 were identified by both studies. When considering that Choquet et al. also identified three SNPs in a female-specific genome-wide association studies then these two recent studies identified 181 independent SNPs robustly associated with migraine. Cross-trait and causal analyses are beginning to identify and characterise specific biological factors that contribute to migraine risk and its comorbid conditions. CONCLUSION This review provides a timely update and overview of recent genetic findings in migraine.
Collapse
Affiliation(s)
- Aster Ve Harder
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Gisela M Terwindt
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Dale R Nyholt
- School of Biomedical Sciences, Faculty of Health, and Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Australia
| | - Arn Mjm van den Maagdenberg
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
48
|
Folacci M, Estaran S, Ménard C, Bertaud A, Rousset M, Roussel J, Thibaud JB, Vignes M, Chavanieu A, Charnet P, Cens T. Functional Characterization of Four Known Cav2.1 Variants Associated with Neurodevelopmental Disorders. MEMBRANES 2023; 13:96. [PMID: 36676903 PMCID: PMC9864995 DOI: 10.3390/membranes13010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Cav2.1 channels are expressed throughout the brain and are the predominant Ca2+ channels in the Purkinje cells. These cerebellar neurons fire spontaneously, and Cav2.1 channels are involved in the regular pacemaking activity. The loss of precision of the firing pattern of Purkinje cells leads to ataxia, a disorder characterized by poor balance and difficulties in performing coordinated movements. In this study, we aimed at characterizing functional and structural consequences of four variations (p.A405T in I-II loop and p.R1359W, p.R1667W and p.S1799L in IIIS4, IVS4, and IVS6 helices, respectively) identified in patients exhibiting a wide spectrum of disorders including ataxia symptoms. Functional analysis using two major Cav2.1 splice variants (Cav2.1+e47 and Cav2.1-e47) in Xenopus laevis oocytes, revealed a lack of effect upon A405T substitution and a significant loss-of-function caused by R1359W, whereas R1667W and S1799L caused both channel gain-of-function and loss-of-function, in a splice variant-dependent manner. Structural analysis revealed the loss of interactions with S1, S2, and S3 helices upon R1359W and R1667W substitutions, but a lack of obvious structural changes with S1799L. Computational modeling suggests that biophysical changes induced by Cav2.1 pathogenic mutations might affect action potential frequency in Purkinje cells.
Collapse
|
49
|
Giniatullin R, Nistri A. Role of ATP in migraine mechanisms: focus on P2X3 receptors. J Headache Pain 2023; 24:1. [PMID: 36597043 PMCID: PMC9809127 DOI: 10.1186/s10194-022-01535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
Migraine is a major health burden worldwide with complex pathophysiology and multifarious underlying mechanisms. One poorly understood issue concerns the early steps in the generation of migraine pain. To elucidate the basic process of migraine pain further, it seems useful to consider key molecular players that may operate synergistically to evoke headache. While the neuropeptide CGRP is an important contributor, we propose that extracellular ATP (that generally plays a powerful nociceptive role) is also a major component of migraine headache, acting in concert with CGRP to stimulate trigeminal nociceptive neurons. The aim of the present focused review is to highlight the role of ATP activating its P2X3 membrane receptors selectively expressed by sensory neurons including their nerve fiber terminals in the meninges. Specifically, we present data on the homeostasis of ATP and related purines in the trigeminovascular system and in the CNS; the basic properties of ATP signalling at peripheral and central nerve terminals; the characteristics of P2X3 and related receptors in trigeminal neurons; the critical speed and persistence of P2X3 receptor activity; their cohabitation at the so-called meningeal neuro-immune synapse; the identity of certain endogenous agents cooperating with ATP to induce neuronal sensitization in the trigeminal sensory system; the role of P2X3 receptors in familial type migraine; the current state of P2X3 receptor antagonists and their pharmacological perspectives in migraine. It is proposed that the unique kinetic properties of P2X3 receptors activated by ATP offer an interesting translational value to stimulate future studies for innovative treatments of migraine pain.
Collapse
Affiliation(s)
- R. Giniatullin
- grid.9668.10000 0001 0726 2490A.I Virtanen Institute, University of Eastern Finland, 70211 Kuopio, Finland
| | - A. Nistri
- grid.5970.b0000 0004 1762 9868Department of Neuroscience, International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| |
Collapse
|
50
|
Indelicato E, Boesch S. CACNA1A-Related Channelopathies: Clinical Manifestations and Treatment Options. Handb Exp Pharmacol 2023; 279:227-248. [PMID: 36592223 DOI: 10.1007/164_2022_625] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the last decade, variants in the Ca2+ channel gene CACNA1A emerged as a frequent aetiology of rare neurological phenotypes sharing a common denominator of variable paroxysmal manifestations and chronic cerebellar dysfunction. The spectrum of paroxysmal manifestations encompasses migraine with hemiplegic aura, episodic ataxia, epilepsy and paroxysmal non-epileptic movement disorders. Additional chronic neurological symptoms range from severe developmental phenotypes in early-onset cases to neurobehavioural disorders and chronic cerebellar ataxia in older children and adults.In the present review we systematically approach the clinical manifestations of CACNA1A variants, delineate genotype-phenotype correlations and elaborate on the emerging concept of an age-dependent phenotypic spectrum in CACNA1A disease. We furthermore reflect on different therapy options available for paroxysmal symptoms in CACNA1A and address open issues to prioritize in the future clinical research.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|