1
|
Adhab M, Schoelz JE. Influence of the P6 effector protein of Cauliflower mosaic virus (CaMV) on the sustained expression and subcellular localization of the CaMV movement protein. Virology 2024; 600:110240. [PMID: 39278104 DOI: 10.1016/j.virol.2024.110240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
The P6 protein of cauliflower mosaic virus (CaMV) is a multifunctional protein that forms the electron dense, amorphous inclusion bodies that accumulate in the cytoplasm and has been shown to physically interact with all other CaMV proteins, including the CaMV movement protein (P1). In this study, we have investigated the subcellular localization of the P6 and P1 proteins in transient expression assays in Nicotiana benthamiana, as well as the influence of P6 on the expression and subcellular localization of P1. A version of P6 tagged with RFP was shown to envelop the endoplasmic reticulum (ER), whereas P1 tagged with RFP was shown to induce the fragmentation of the ER. Co-expression of P6 with P1 led to an enhancement of the spatial and temporal expression of P1, with a shift from expression through the plasma membrane and interior of the cell to punctate spots associated with the cell wall.
Collapse
Affiliation(s)
- Mustafa Adhab
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - James E Schoelz
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
2
|
Ji J, Du S, Wang K, Qi Z, Zhang C, Wang R, Bruening G, Wang P, Duanmu D, Fan Q. Cowpea lipid transfer protein 1 regulates plant defense by inhibiting the cysteine protease of cowpea mosaic virus. Proc Natl Acad Sci U S A 2024; 121:e2403424121. [PMID: 39159367 PMCID: PMC11363299 DOI: 10.1073/pnas.2403424121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/28/2024] [Indexed: 08/21/2024] Open
Abstract
Many virus genomes encode proteases that facilitate infection. The molecular mechanism of plant recognition of viral proteases is largely unexplored. Using the system of Vigna unguiculata and cowpea mosaic virus (CPMV), we identified a cowpea lipid transfer protein (LTP1) which interacts with CPMV-encoded 24KPro, a cysteine protease, but not with the enzymatically inactive mutant 24KPro(C166A). Biochemical assays showed that LTP1 inhibited 24KPro proteolytic cleavage of the coat protein precursor large coat protein-small coat protein. Transient overexpression of LTP1 in cowpea reduced CPMV infection, whereas RNA interference-mediated LTP1 silencing increased CPMV accumulation in cowpea. LTP1 is mainly localized in the apoplast of uninfected plant cells, and after CPMV infection, most of the LTP1 is relocated to intracellular compartments, including chloroplast. Moreover, in stable LTP1-transgenic Nicotiana benthamiana plants, LTP1 repressed soybean mosaic virus (SMV) nuclear inclusion a protease activity, and accumulation of SMV was significantly reduced. We propose that cowpea LTP1 suppresses CPMV and SMV accumulation by directly inhibiting viral cysteine protease activity.
Collapse
Affiliation(s)
- Jie Ji
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Shengli Du
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Kun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Ziyan Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Chunyang Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Rui Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - George Bruening
- Department of Plant Pathology, University of California, Davis, CA95616
| | - Pengwei Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Deqiang Duanmu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Qiuling Fan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| |
Collapse
|
3
|
Marmisolle FE, Borniego MB, Cambiagno DA, Gonzalo L, García ML, Manavella PA, Hernández C, Reyes CA. Citrus psorosis virus 24K protein inhibits the processing of miRNA precursors by interacting with components of the biogenesis machinery. Microbiol Spectr 2024; 12:e0351323. [PMID: 38785434 PMCID: PMC11218507 DOI: 10.1128/spectrum.03513-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Sweet orange (Citrus sinensis) is one of the most important fruit crops worldwide. Virus infections in this crop can interfere with cellular processes, causing dramatic economic losses. By performing RT-qPCR analyses, we demonstrated that citrus psorosis virus (CPsV)-infected orange plants exhibited higher levels of unprocessed microRNA (miRNA) precursors than healthy plants. This result correlated with the reported reduction of mature miRNAs species. The protein 24K, the CPsV suppressor of RNA silencing (VSR), interacts with miRNA precursors in vivo. Thus, this protein becomes a candidate responsible for the increased accumulation of unprocessed miRNAs. We analyzed 24K RNA-binding and protein-protein interaction domains and described patterns of its subcellular localization. We also showed that 24K colocalizes within nuclear D-bodies with the miRNA biogenesis proteins DICER-LIKE 1 (DCL1), HYPONASTIC LEAVES 1 (HYL1), and SERRATE (SE). According to the results of bimolecular fluorescence complementation and co-immunoprecipitation assays, the 24K protein interacts with HYL1 and SE. Thus, 24K may inhibit miRNA processing in CPsV-infected citrus plants by direct interaction with the miRNA processing complex. This work contributes to the understanding of how a virus can alter the regulatory mechanisms of the host, particularly miRNA biogenesis and function.IMPORTANCESweet oranges can suffer from disease symptoms induced by virus infections, thus resulting in drastic economic losses. In sweet orange plants, CPsV alters the accumulation of some precursors from the regulatory molecules called miRNAs. This alteration leads to a decreased level of mature miRNA species. This misregulation may be due to a direct association of one of the viral proteins (24K) with miRNA precursors. On the other hand, 24K may act with components of the cell miRNA processing machinery through a series of predicted RNA-binding and protein-protein interaction domains.
Collapse
Affiliation(s)
- Facundo E. Marmisolle
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - María B. Borniego
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Damián A. Cambiagno
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Lucia Gonzalo
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María L. García
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Pablo A. Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Carmen Hernández
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain
| | - Carina A. Reyes
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| |
Collapse
|
4
|
Szydło W, Wosula EN, Knoell E, Hein GL, Mondal S, Tatineni S. Helper Component-Proteinase of Triticum Mosaic Virus Is a Viral Determinant of Wheat Curl Mite Transmission. PHYTOPATHOLOGY 2024; 114:1672-1679. [PMID: 38579745 DOI: 10.1094/phyto-02-24-0073-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Triticum mosaic virus (TriMV; genus Poacevirus; family Potyviridae) is an economically important virus in the Great Plains region of the United States. TriMV is transmitted by the wheat curl mite (Aceria tosichella) Type 2 genotype but not by Type 1. Helper component-proteinase (HC-Pro) is a vector transmission determinant for several potyvirids, but the role of HC-Pro in TriMV transmission is unknown. In this study, we examined the requirement of the HC-Pro cistron of TriMV for wheat curl mite (Type 2) transmission through deletion and point mutations and constructing TriMV chimeras with heterologous HC-Pros from other potyvirids. TriMV with complete deletion of HC-Pro failed to be transmitted by wheat curl mites at detectable levels. Furthermore, TriMV chimeras with heterologous HC-Pros from aphid-transmitted turnip mosaic virus and tobacco etch virus, or wheat curl mite-transmitted wheat streak mosaic virus, failed to be transmitted by wheat curl mites. These data suggest that heterologous HC-Pros did not complement TriMV for wheat curl mite transmission. A decreasing series of progressive nested in-frame deletions at the N-terminal region of HC-Pro comprising amino acids 3 to 125, 3 to 50, 3 to 25, 3 to 15, 3 to 8, and 3 and 4 abolished TriMV transmission by wheat curl mites. Additionally, mutation of conserved His20, Cys49, or Cys52 to Ala in HC-Pro abolished TriMV transmissibility by wheat curl mites. These data suggest that the N-terminal region of HC-Pro is crucial for TriMV transmission by wheat curl mites. Collectively, these data demonstrate that the HC-Pro cistron of TriMV is a viral determinant for wheat curl mite transmission.
Collapse
Affiliation(s)
- Wiktoria Szydło
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68503, U.S.A
- Center for Advanced Technology and Population Ecology Lab, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Everlyne N Wosula
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68503, U.S.A
| | - Elliot Knoell
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68503, U.S.A
| | - Gary L Hein
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68503, U.S.A
| | - Shaonpius Mondal
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68503, U.S.A
| | - Satyanarayana Tatineni
- U.S. Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| |
Collapse
|
5
|
Hu WC, Tsai JC, Cheng HW, Huang CH, Raja JAJ, Chang FY, Chen CC, Chiang CH, Yeh SD. The Fifth Residue of the Coat Protein of Turnip Mosaic Virus Is Responsible for Long-Distance Movement in a Local-Lesion Host and Aphid Transmissibility in a Systemic Host. PHYTOPATHOLOGY 2024; 114:1689-1700. [PMID: 38451704 DOI: 10.1094/phyto-08-23-0287-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
HC-Pro and coat protein (CP) genes of a potyvirus facilitate cell-to-cell movement and are involved in the systemic movement of the viruses. The interaction between HC-Pro and CP is mandatory for aphid transmission. Two turnip mosaic virus (TuMV) isolates, RC4 and YC5, were collected from calla lily plants in Taiwan. The virus derived from the infectious clone pYC5 cannot move systemically in Chenopodium quinoa plants and loses aphid transmissibility in Nicotiana benthamiana plants, like the initially isolated virus. Sequence analysis revealed that two amino acids, P5 and A206, of YC5 CP uniquely differ from RC4 and other TuMV strains. Recombination assay and site-directed mutagenesis revealed that the fifth residue of leucine (L) at the N-terminal region of the CP (TuMV-RC4), rather than proline (P) (TuMV-YC5), is critical to permit the systemic spread in C. quinoa plants. Moreover, the single substitution mutant YC5-CPP5L became aphid transmissible, similar to RC4. Fluorescence microscopy revealed that YC5-GFP was restricted in the petioles of inoculated leaves, whereas YC5-CPP5L-GFP translocated through the petioles of inoculated leaves, the main stem, and the petioles of the upper uninoculated leaves of C. quinoa plants. In addition, YC5-GUS was blocked at the basal part of the petiole connecting to the main stem of the inoculated C. quinoa plants, whereas YC5-CPP5L-GFP translocated to the upper leaves. Thus, a single amino acid, the residue L5 at the N-terminal region right before the 6DAG8 motif, is critical for the systemic translocation ability of TuMV in a local lesion host and for aphid transmissibility in a systemic host.
Collapse
Affiliation(s)
- Wen-Chi Hu
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Jui-Chi Tsai
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hao-Wen Cheng
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chung-Hao Huang
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Joseph A J Raja
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Fang-Yu Chang
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chin-Chih Chen
- Plant Pathology Division, Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, Taichung 41362, Taiwan
| | - Chu-Hui Chiang
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Shyi-Dong Yeh
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
6
|
Kwon J, Hu R, Penicks AK, Zhang C, Wang Y, Lohry D, Fernandez EJ, Domier LL, Hajimorad MR. Replacement of P1 of soybean mosaic virus with P1 of clover yellow vein virus has no impact on virus viability and host specificity. Arch Virol 2024; 169:143. [PMID: 38864946 DOI: 10.1007/s00705-024-06071-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/02/2024] [Indexed: 06/13/2024]
Abstract
Potyvirus genomes are expressed as polyproteins that are autocatalytically cleaved to produce 10 to 12 multifunctional proteins, among which P1 is the most variable. It has long been hypothesized that P1 plays role(s) in host adaptation and host specificity. We tested this hypothesis using two phylogenetically distinct potyviruses: soybean mosaic virus (SMV), with a narrow host range, and clover yellow vein virus (ClYVV), with a broader host range. When the full-length P1 cistron of SMV-N was replaced with P1 from ClYVV-No.30, the chimera systemically infected only SMV-N-permissive hosts. Hence, there were no changes in the host range or host specificity of the chimeric viruses. Despite sharing only 20.3% amino acid sequence identity, predicted molecular models of P1 proteins from SMV-N and ClYVV-No.30 showed analogous topologies. These observations suggest that P1 of ClYVV-No.30 can functionally replace P1 of SMV-N. However, the P1 proteins of these two potyviruses are not determinants of host specificity and host range.
Collapse
Affiliation(s)
- Joon Kwon
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
- International Research Center for Agricultural & Environmental Biology, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Rongbin Hu
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Amanda K Penicks
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Chunyu Zhang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, China
| | - Yongzhi Wang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, China
| | - David Lohry
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 39316, USA
| | - Elias J Fernandez
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 39316, USA
| | - Leslie L Domier
- Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, USDA-ARS, Urbana, IL, 61801, USA
| | - M R Hajimorad
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
7
|
Lukhovitskaya N, Brown K, Hua L, Pate AE, Carr JP, Firth AE. A novel ilarvirus protein CP-RT is expressed via stop codon readthrough and suppresses RDR6-dependent RNA silencing. PLoS Pathog 2024; 20:e1012034. [PMID: 38814986 PMCID: PMC11166343 DOI: 10.1371/journal.ppat.1012034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Ilarviruses are a relatively understudied but important group of plant RNA viruses that includes a number of crop pathogens. Their genomes comprise three RNA segments encoding two replicase subunits, movement protein, coat protein (CP), and (in some ilarvirus subgroups) a protein that suppresses RNA silencing. Here we report that, in many ilarviruses, RNA3 encodes an additional protein (termed CP-RT) as a result of ribosomal readthrough of the CP stop codon into a short downstream readthrough (RT) ORF. Using asparagus virus 2 as a model, we find that CP-RT is expressed in planta where it functions as a weak suppressor of RNA silencing. CP-RT expression is essential for persistent systemic infection in leaves and shoot apical meristem. CP-RT function is dependent on a putative zinc-finger motif within RT. Replacing the asparagus virus 2 RT with the RT of an ilarvirus from a different subgroup restored the ability to establish persistent infection. These findings open up a new avenue for research on ilarvirus silencing suppression, persistent meristem invasion and vertical transmission.
Collapse
Affiliation(s)
- Nina Lukhovitskaya
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Katherine Brown
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Lei Hua
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Adrienne E. Pate
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Wang J, Zhang Q, Tung J, Zhang X, Liu D, Deng Y, Tian Z, Chen H, Wang T, Yin W, Li B, Lai Z, Dinesh-Kumar SP, Baker B, Li F. High-quality assembled and annotated genomes of Nicotiana tabacum and Nicotiana benthamiana reveal chromosome evolution and changes in defense arsenals. MOLECULAR PLANT 2024; 17:423-437. [PMID: 38273657 DOI: 10.1016/j.molp.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/08/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
Nicotiana tabacum and Nicotiana benthamiana are widely used models in plant biology research. However, genomic studies of these species have lagged. Here we report the chromosome-level reference genome assemblies for N. benthamiana and N. tabacum with an estimated 99.5% and 99.8% completeness, respectively. Sensitive transcription start and termination site sequencing methods were developed and used for accurate gene annotation in N. tabacum. Comparative analyses revealed evidence for the parental origins and chromosome structural changes, leading to hybrid genome formation of each species. Interestingly, the antiviral silencing genes RDR1, RDR6, DCL2, DCL3, and AGO2 were lost from one or both subgenomes in N. benthamiana, while both homeologs were kept in N. tabacum. Furthermore, the N. benthamiana genome encodes fewer immune receptors and signaling components than that of N. tabacum. These findings uncover possible reasons underlying the hypersusceptible nature of N. benthamiana. We developed the user-friendly Nicomics (http://lifenglab.hzau.edu.cn/Nicomics/) web server to facilitate better use of Nicotiana genomic resources as well as gene structure and expression analyses.
Collapse
Affiliation(s)
- Jubin Wang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330299, China
| | - Qingling Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Jeffrey Tung
- Plant Gene Expression Center, Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94706, USA
| | - Xi Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dan Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yingtian Deng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhendong Tian
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Huilan Chen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Taotao Wang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Weixiao Yin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bo Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Zhibing Lai
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Barbara Baker
- Plant Gene Expression Center, Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94706, USA.
| | - Feng Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
9
|
Qin L, Liu H, Liu P, Jiang L, Cheng X, Li F, Shen W, Qiu W, Dai Z, Cui H. Rubisco small subunit (RbCS) is co-opted by potyvirids as the scaffold protein in assembling a complex for viral intercellular movement. PLoS Pathog 2024; 20:e1012064. [PMID: 38437247 PMCID: PMC10939294 DOI: 10.1371/journal.ppat.1012064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/14/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Plant viruses must move through plasmodesmata (PD) to complete their life cycles. For viruses in the Potyviridae family (potyvirids), three viral factors (P3N-PIPO, CI, and CP) and few host proteins are known to participate in this event. Nevertheless, not all the proteins engaging in the cell-to-cell movement of potyvirids have been discovered. Here, we found that HCPro2 encoded by areca palm necrotic ring spot virus (ANRSV) assists viral intercellular movement, which could be functionally complemented by its counterpart HCPro from a potyvirus. Affinity purification and mass spectrometry identified several viral factors (including CI and CP) and host proteins that are physically associated with HCPro2. We demonstrated that HCPro2 interacts with both CI and CP in planta in forming PD-localized complexes during viral infection. Further, we screened HCPro2-associating host proteins, and identified a common host protein in Nicotiana benthamiana-Rubisco small subunit (NbRbCS) that mediates the interactions of HCPro2 with CI or CP, and CI with CP. Knockdown of NbRbCS impairs these interactions, and significantly attenuates the intercellular and systemic movement of ANRSV and three other potyvirids (turnip mosaic virus, pepper veinal mottle virus, and telosma mosaic virus). This study indicates that a nucleus-encoded chloroplast-targeted protein is hijacked by potyvirids as the scaffold protein to assemble a complex to facilitate viral movement across cells.
Collapse
Affiliation(s)
- Li Qin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Hongjun Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Peilan Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Lu Jiang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofei Cheng
- College of Plant Protection/Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wentao Shen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenping Qiu
- Center for Grapevine Biotechnology, William H. Darr College of Agriculture, Missouri State University, Mountain Grove, United States of America
| | - Zhaoji Dai
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Hongguang Cui
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
10
|
Tatineni S, Alexander J, Kovacs F. The HC-Pro cistron of Triticum mosaic virus is dispensable for systemic infection in wheat but is required for symptom phenotype and efficient genome amplification. Virus Res 2024; 339:199277. [PMID: 38008221 PMCID: PMC10730876 DOI: 10.1016/j.virusres.2023.199277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
Triticum mosaic virus (TriMV), the type species of the genus Poacevirus in the family Potyviridae, is an economically important wheat curl mite-transmitted wheat-infecting virus in the Great Plains region of the USA. In this study, the functional genomics of helper component-proteinase (HC-Pro) encoded by TriMV was examined using a reverse genetics approach. TriMV with complete deletion of HC-Pro cistron elicited systemic infection in wheat, indicating that HC-Pro cistron is dispensable for TriMV systemic infection. However, TriMV lacking HC-Pro caused delayed systemic infection with mild symptoms that resulted in little or no stunting of plants with a significant reduction in the accumulation of genomic RNA copies and coat protein (CP). Sequential deletion mutagenesis from the 5' end of HC-Pro cistron in the TriMV genome revealed that deletions within amino acids 3 to 25, except for amino acids 3 and 4, elicited mild symptoms with reduced accumulation of genomic RNA and CP. Surprisingly, TriMV with deletion of amino acids 3 to 50 or 3 to 125 in HC-Pro elicited severe symptoms with a substantial increase in genomic RNA copies but a drastic reduction in CP accumulation. Additionally, TriMV with heterologous HC-Pro from other potyvirids produced symptom phenotype and genomic RNA accumulation similar to that of TriMV without HC-Pro, suggesting that HC-Pros of other potyvirids were not effective in complementing TriMV in wheat. Our data indicate that HC-Pro is expendable for replication of TriMV but is required for efficient viral genomic RNA amplification and symptom development. The availability of TriMV with various deletions in the HC-Pro cistron will facilitate the examination of the requirement of HC-Pro for wheat curl mite transmission.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- United States Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA.
| | - Jeffrey Alexander
- United States Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Frank Kovacs
- Department of Chemistry, University of Nebraska-Kearney, Kearney, NE 68849, USA
| |
Collapse
|
11
|
Xue M, Arvy N, German‐Retana S. The mystery remains: How do potyviruses move within and between cells? MOLECULAR PLANT PATHOLOGY 2023; 24:1560-1574. [PMID: 37571979 PMCID: PMC10632792 DOI: 10.1111/mpp.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
The genus Potyvirus is considered as the largest among plant single-stranded (positive-sense) RNA viruses, causing considerable economic damage to vegetable and fruit crops worldwide. Through the coordinated action of four viral proteins and a few identified host factors, potyviruses exploit the endomembrane system of infected cells for their replication and for their intra- and intercellular movement to and through plasmodesmata (PDs). Although a significant amount of data concerning potyvirus movement has been published, no synthetic review compiling and integrating all information relevant to our current understanding of potyvirus transport is available. In this review, we highlight the complexity of potyvirus movement pathways and present three potential nonexclusive mechanisms based on (1) the use of the host endomembrane system to produce membranous replication vesicles that are targeted to PDs and move from cell to cell, (2) the movement of extracellular viral vesicles in the apoplasm, and (3) the transport of virion particles or ribonucleoprotein complexes through PDs. We also present and discuss experimental data supporting these different models as well as the aspects that still remain mostly speculative.
Collapse
Affiliation(s)
- Mingshuo Xue
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du fruit et PathologieVillenave d'Ornon CedexFrance
| | - Nathalie Arvy
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du fruit et PathologieVillenave d'Ornon CedexFrance
| | - Sylvie German‐Retana
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du fruit et PathologieVillenave d'Ornon CedexFrance
| |
Collapse
|
12
|
Samarskaya VO, Spechenkova N, Ilina I, Suprunova TP, Kalinina NO, Love AJ, Taliansky ME. A Non-Canonical Pathway Induced by Externally Applied Virus-Specific dsRNA in Potato Plants. Int J Mol Sci 2023; 24:15769. [PMID: 37958754 PMCID: PMC10650801 DOI: 10.3390/ijms242115769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The external application of double-stranded RNA (dsRNA) has recently been developed as a non-transgenic approach for crop protection against pests and pathogens. This novel and emerging approach has come to prominence due to its safety and environmental benefits. It is generally assumed that the mechanism of dsRNA-mediated antivirus RNA silencing is similar to that of natural RNA interference (RNAi)-based defence against RNA-containing viruses. There is, however, no direct evidence to support this idea. Here, we provide data on the high-throughput sequencing (HTS) analysis of small non-coding RNAs (sRNA) as hallmarks of RNAi induced by infection with the RNA-containing potato virus Y (PVY) and also by exogenous application of dsRNA which corresponds to a fragment of the PVY genome. Intriguingly, in contrast to PVY-induced production of discrete 21 and 22 nt sRNA species, the externally administered PVY dsRNA fragment led to generation of a non-canonical pool of sRNAs, which were present as ladders of ~18-30 nt in length; suggestive of an unexpected sRNA biogenesis pathway. Interestingly, these non-canonical sRNAs are unable to move systemically and also do not induce transitive amplification. These findings may have significant implications for further developments in dsRNA-mediated crop protection.
Collapse
Affiliation(s)
- Viktoriya O. Samarskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (N.S.); (I.I.); (N.O.K.)
| | - Nadezhda Spechenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (N.S.); (I.I.); (N.O.K.)
| | - Irina Ilina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (N.S.); (I.I.); (N.O.K.)
| | | | - Natalia O. Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (N.S.); (I.I.); (N.O.K.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Andrew J. Love
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
| | - Michael E. Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (N.S.); (I.I.); (N.O.K.)
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
| |
Collapse
|
13
|
López-Márquez D, Del-Espino Á, Ruiz-Albert J, Bejarano ER, Brodersen P, Beuzón CR. Regulation of plant immunity via small RNA-mediated control of NLR expression. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6052-6068. [PMID: 37449766 PMCID: PMC10575705 DOI: 10.1093/jxb/erad268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Plants use different receptors to detect potential pathogens: membrane-anchored pattern recognition receptors (PRRs) activated upon perception of pathogen-associated molecular patterns (PAMPs) that elicit pattern-triggered immunity (PTI); and intracellular nucleotide-binding leucine-rich repeat proteins (NLRs) activated by detection of pathogen-derived effectors, activating effector-triggered immunity (ETI). The interconnections between PTI and ETI responses have been increasingly reported. Elevated NLR levels may cause autoimmunity, with symptoms ranging from fitness cost to developmental arrest, sometimes combined with run-away cell death, making accurate control of NLR dosage key for plant survival. Small RNA-mediated gene regulation has emerged as a major mechanism of control of NLR dosage. Twenty-two nucleotide miRNAs with the unique ability to trigger secondary siRNA production from target transcripts are particularly prevalent in NLR regulation. They enhance repression of the primary NLR target, but also bring about repression of NLRs only complementary to secondary siRNAs. We summarize current knowledge on miRNAs and siRNAs in the regulation of NLR expression with an emphasis on 22 nt miRNAs and propose that miRNA and siRNA regulation of NLR levels provides additional links between PTI and NLR defense pathways to increase plant responsiveness against a broad spectrum of pathogens and control an efficient deployment of defenses.
Collapse
Affiliation(s)
- Diego López-Márquez
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Ángel Del-Espino
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Javier Ruiz-Albert
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Peter Brodersen
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Carmen R Beuzón
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| |
Collapse
|
14
|
Ebrahimi S, Eini O, Baßler A, Hanke A, Yildirim Z, Wassenegger M, Krczal G, Uslu VV. Beet Curly Top Iran Virus Rep and V2 Suppress Post-Transcriptional Gene Silencing via Distinct Modes of Action. Viruses 2023; 15:1996. [PMID: 37896771 PMCID: PMC10611197 DOI: 10.3390/v15101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Beet curly top Iran virus (BCTIV) is a yield-limiting geminivirus belonging to the becurtovirus genus. The genome organization of BCTIV is unique such that the complementary strand of BCTIV resembles Mastrevirus, whereas the virion strand organization is similar to the Curtovirus genus. Geminiviruses are known to avoid the plant defense system by suppressing the RNA interference mechanisms both at the transcriptional gene silencing (TGS) and post-transcriptional gene silencing (PTGS) levels. Multiple geminivirus genes have been identified as viral suppressors of RNA silencing (VSR) but VSR activity remains mostly elusive in becurtoviruses. We found that BCTIV-V2 and -Rep could suppress specific Sense-PTGS mechanisms with distinct efficiencies depending on the nature of the silencing inducer and the target gene. Local silencing induced by GFP inverted repeat (IR) could not be suppressed by V2 but was partially reduced by Rep. Accordingly, we documented that Rep but not V2 could suppress systemic silencing induced by GFP-IR. In addition, we showed that the VSR activity of Rep was partly regulated by RNA-dependent RNA Polymerase 6 (RDR6), whereas the VSR activity of V2 was independent of RDR6. Domain mapping for Rep showed that an intact Rep protein was required for the suppression of PTGS. In summary, we showed that BCTIV-Rep and -V2 function as silencing suppressors with distinct modes of action.
Collapse
Affiliation(s)
- Saeideh Ebrahimi
- RLP AgroScience GmbH, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
- Department of Plant Protection, University of Zanjan, Zanjan 313, Iran
| | - Omid Eini
- Department of Plant Protection, University of Zanjan, Zanjan 313, Iran
- Department of Phytopathology, Institute for Sugar Beet Research, 37079 Göttingen, Germany
| | - Alexandra Baßler
- RLP AgroScience GmbH, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
| | - Arvid Hanke
- RLP AgroScience GmbH, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
- MAPS, COS, Heidelberg University, 69120 Heidelberg, Germany
| | - Zeynep Yildirim
- RLP AgroScience GmbH, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
| | - Michael Wassenegger
- RLP AgroScience GmbH, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
| | - Gabi Krczal
- RLP AgroScience GmbH, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
| | - Veli Vural Uslu
- RLP AgroScience GmbH, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
- MAPS, COS, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Kawakubo S, Kim H, Takeshita M, Masuta C. Host-specific adaptation drove the coevolution of leek yellow stripe virus and Allium plants. Microbiol Spectr 2023; 11:e0234023. [PMID: 37706684 PMCID: PMC10581216 DOI: 10.1128/spectrum.02340-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 09/15/2023] Open
Abstract
Host adaptation plays a crucial role in virus evolution and is a consequence of long-term interactions between virus and host in a complex arms race between host RNA silencing and viral RNA silencing suppressor (RSS) as counterdefense. Leek yellow stripe virus (LYSV), a potyvirus causing yield loss of garlic, infects several species of Allium plants. The unexpected discovery of an interspecific hybrid of garlic, leek, and great-headed (GH) garlic motivated us to explore the host-adaptive evolution of LYSV. Here, using Bayesian phylogenetic comparative methods and a functional assay of viral RSS activity, we show that the evolutionary context of LYSV has been shaped by the host adaptation of the virus during its coevolution with Allium plants. Our phylogenetic analysis revealed that LYSV isolates from leek and their taxonomic relatives (Allium ampeloprasum complex; AAC) formed a distinct monophyletic clade separate from garlic isolates and are likely to be uniquely adapted to AAC. Our comparative studies on viral accumulation indicated that LYSV accumulated at a low level in leek, whereas LYSVs were abundant in other Allium species such as garlic and its relatives. When RSS activity of the viral P1 and HC-Pro of leek LYSV isolate was analyzed, significant synergism in RSS activity between the two proteins was observed in leek but not in other species, suggesting that viral RSS activity may be important for the viral host-specific adaptation. We thus consider that LYSV may have undergone host-specific evolution at least in leek, which must be driven by speciation of its Allium hosts. IMPORTANCE Potyviruses are the most abundant plant RNA viruses and are extremely diversified in terms of their wide host range. Due to frequent host switching during their evolution, host-specific adaptation of potyviruses may have been shaped by numerous host factors. However, any critical determinants for viral host range remain largely unknown, possibly because of the repeated gain and loss of virus infectivity of plants. Leek yellow stripe virus (LYSV) is a species of the genus Potyvirus, which has a relatively narrow host range, generally limited to hosts in the genus Allium. Our investigations on leek and leek relatives (Allium ampeloprasum complex), which must have been generated through interspecies hybridization, revealed that LYSV accumulation remained low in leek as a result of viral host adaptation in competition with host resistance such as RNA silencing. This study presents LYSV as an ideal model to study the process of host-adaptive evolution and virus-host coevolution.
Collapse
Affiliation(s)
- Shusuke Kawakubo
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hangil Kim
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Minoru Takeshita
- Faculty of Agriculture, Department of Agricultural and Environmental Sciences, University of Miyazaki, Miyazaki, Japan
| | - Chikara Masuta
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
16
|
Tran TNB, Cheng HW, Xie XY, Raja JAJ, Yeh SD. Concurrent Control of Two Aphid-Borne Potyviruses in Cucurbits by Two-in-One Vaccine. PHYTOPATHOLOGY 2023; 113:1583-1594. [PMID: 36935377 DOI: 10.1094/phyto-01-23-0019-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The application of attenuated viruses has been widely practiced for protecting crops from infection by related severe strains of the same species. Papaya ringspot virus W-type (PRSV W) and zucchini yellow mosaic virus (ZYMV) devastate cucurbits worldwide. However, the prevailing of these two viruses in cucurbits cannot be prevented by a single protective virus. In this study, we disclosed that co-infection of horn melon plants by two mild strains, PRSV P-type (PRSV P) HA5-1 and ZYMV-ZAC (a previously developed mild mutant of ZYMV) confers concurrent protection against PRSV P and ZYMV. Consequently, mild mutants of PRSV W were created by site-directed mutagenesis through modifications of the pathogenicity motifs FRNK and PD in helper component-protease (HC-Pro). A stable PRSV W mutant WAC (PRSV-WAC) with R181I and D397N mutations in HC-Pro was generated, inducing mild mottling, followed by symptomless recovery in cucurbits. Horn melon plants pre-infected by PRSV-WAC and ZYMV-ZAC showed no apparent interference on viral accumulation with no synergistic effects on symptoms. An agroinfiltration assay of mixed HC-Pros of WACHC-Pro + ZACHC-Pro revealed no additive effect of RNA silencing suppression. PRSV-WAC or ZYMV-ZAC alone only antagonized a severe strain of homologous virus, while co-infection with these two mild strains provided complete protection against both PRSV W and ZYMV. Similar results were reproduced in muskmelon and watermelon plants, indicating the feasibility of a two-in-one vaccine for concurrent control of PRSV W and ZYMV in cucurbits.
Collapse
Affiliation(s)
- Thi-Ngoc-Bich Tran
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Faculty of Agronomy, Nong Lam University-Ho Chi Minh City, Viet Nam
| | - Hao-Wen Cheng
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Xing-Yun Xie
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Joseph A J Raja
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Shyi-Dong Yeh
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Vietnam Overseas Agricultural Science and Technology Innovation Center, National Chung Hsing University, Taichung, Taiwan, R.O.C
| |
Collapse
|
17
|
Liu S, Han Y, Li WX, Ding SW. Infection Defects of RNA and DNA Viruses Induced by Antiviral RNA Interference. Microbiol Mol Biol Rev 2023; 87:e0003522. [PMID: 37052496 PMCID: PMC10304667 DOI: 10.1128/mmbr.00035-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Immune recognition of viral genome-derived double-stranded RNA (dsRNA) molecules and their subsequent processing into small interfering RNAs (siRNAs) in plants, invertebrates, and mammals trigger specific antiviral immunity known as antiviral RNA interference (RNAi). Immune sensing of viral dsRNA is sequence-independent, and most regions of viral RNAs are targeted by virus-derived siRNAs which extensively overlap in sequence. Thus, the high mutation rates of viruses do not drive immune escape from antiviral RNAi, in contrast to other mechanisms involving specific virus recognition by host immune proteins such as antibodies and resistance (R) proteins in mammals and plants, respectively. Instead, viruses actively suppress antiviral RNAi at various key steps with a group of proteins known as viral suppressors of RNAi (VSRs). Some VSRs are so effective in virus counter-defense that potent inhibition of virus infection by antiviral RNAi is undetectable unless the cognate VSR is rendered nonexpressing or nonfunctional. Since viral proteins are often multifunctional, resistance phenotypes of antiviral RNAi are accurately defined by those infection defects of VSR-deletion mutant viruses that are efficiently rescued by host deficiency in antiviral RNAi. Here, we review and discuss in vivo infection defects of VSR-deficient RNA and DNA viruses resulting from the actions of host antiviral RNAi in model systems.
Collapse
Affiliation(s)
- Si Liu
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Yanhong Han
- Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wan-Xiang Li
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Shou-Wei Ding
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| |
Collapse
|
18
|
Hu W, Dai Z, Liu P, Deng C, Shen W, Li Z, Cui H. The Single Distinct Leader Protease Encoded by Alpinia oxyphylla Mosaic Virus (Genus Macluravirus) Suppresses RNA Silencing Through Interfering with Double-Stranded RNA Synthesis. PHYTOPATHOLOGY 2023; 113:1103-1114. [PMID: 36576401 DOI: 10.1094/phyto-10-22-0371-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The genomic 5'-terminal regions of viruses in the family Potyviridae (potyvirids) encode two types of leader proteases: serine-protease (P1) and cysteine-protease (HCPro), which differ greatly in the arrangement and sequence composition among inter-genus viruses. Most potyvirids have the same tandemly arranged P1 and HCPro, whereas viruses in the genus Macluravirus encode a single distinct leader protease, a truncated version of HCPro with yet-unknown functions. We investigated the RNA silencing suppression (RSS) activity and its underpinning mechanism of the distinct HCPro from alpinia oxyphylla mosaic macluravirus (aHCPro). Sequence analysis revealed that macluraviral HCPros have obvious truncations in the N-terminal and middle regions when aligned to their counterparts in potyviruses (well-characterized viral suppressors of RNA silencing). Nearly all defined elements essential for the RSS activity of potyviral counterparts are not distinguished in macluraviral HCPros. Here, we demonstrated that aHCPro exhibits a similar anti-silencing activity with the potyviral counterpart. However, aHCPro fails to block both the local and systemic spreading of RNA silencing. In line, aHCPro interferes with the dsRNA synthesis, an upstream step in the RNA silencing pathway. Affinity-purification and NanoLC-MS/MS analysis revealed that aHCPro has no association with core components or their potential interactors involving in dsRNA synthesis from the protein layer. Instead, the ectopic expression of aHCPro significantly reduces the transcript abundance of RDR2, RDR6, SGS3, and SDE5. This study represents the first report on the anti-silencing function of Macluravirus-encoded HCPro and the underlying molecular mechanism.
Collapse
Affiliation(s)
- Weiyao Hu
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Zhaoji Dai
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Peilan Liu
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Changhui Deng
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Wentao Shen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Zengping Li
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Hongguang Cui
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
19
|
Chase O, Javed A, Byrne MJ, Thuenemann EC, Lomonossoff GP, Ranson NA, López-Moya JJ. CryoEM and stability analysis of virus-like particles of potyvirus and ipomovirus infecting a common host. Commun Biol 2023; 6:433. [PMID: 37076658 PMCID: PMC10115852 DOI: 10.1038/s42003-023-04799-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/03/2023] [Indexed: 04/21/2023] Open
Abstract
Sweet potato feathery mottle virus (SPFMV) and Sweet potato mild mottle virus (SPMMV) are members of the genera Potyvirus and Ipomovirus, family Potyviridae, sharing Ipomoea batatas as common host, but transmitted, respectively, by aphids and whiteflies. Virions of family members consist of flexuous rods with multiple copies of a single coat protein (CP) surrounding the RNA genome. Here we report the generation of virus-like particles (VLPs) by transient expression of the CPs of SPFMV and SPMMV in the presence of a replicating RNA in Nicotiana benthamiana. Analysis of the purified VLPs by cryo-electron microscopy, gave structures with resolutions of 2.6 and 3.0 Å, respectively, showing a similar left-handed helical arrangement of 8.8 CP subunits per turn with the C-terminus at the inner surface and a binding pocket for the encapsidated ssRNA. Despite their similar architecture, thermal stability studies reveal that SPMMV VLPs are more stable than those of SPFMV.
Collapse
Affiliation(s)
- Ornela Chase
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Abid Javed
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Matthew J Byrne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot, Oxfordshire, OX11 0DE, UK
| | - Eva C Thuenemann
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - George P Lomonossoff
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), 08193, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
20
|
Ding SW. Transgene Silencing, RNA Interference, and the Antiviral Defense Mechanism Directed by Small Interfering RNAs. PHYTOPATHOLOGY 2023; 113:616-625. [PMID: 36441873 DOI: 10.1094/phyto-10-22-0358-ia] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
One important discovery in plant pathology over recent decades is the natural antiviral defense mechanism mediated by RNA interference (RNAi). In antiviral RNAi, virus infection triggers Dicer processing of virus-specific double-stranded RNA into small interfering RNAs (siRNAs). Frequently, further amplified by host enzyme and cofactors, these virus-derived siRNAs direct specific virus clearance in an Argonaute protein-containing effector complex. The siRNAs derived from viruses and viroids accumulate to very high levels during infection. Because they overlap extensively in nucleotide sequence, this allows for deep sequencing and bioinformatics assembly of total small RNAs for rapid discovery and identification of viruses and viroids. Antiviral RNAi acts as the primary defense mechanism against both RNA and DNA viruses in plants, yet viruses still successfully infect plants. They do so because all currently recognized plant viruses combat the RNAi response by encoding at least one protein as a viral suppressor of RNAi (VSR) required for infection, even though plant viruses have small genome sizes with a limited coding capacity. This review article will recapitulate the key findings that have revealed the genetic pathway for the biogenesis and antiviral activity of viral siRNAs and the specific role of VSRs in infection by antiviral RNAi suppression. Moreover, early pioneering studies on transgene silencing, RNAi, and virus-plant/virus-virus interactions paved the road to the discovery of antiviral RNAi.
Collapse
Affiliation(s)
- Shou-Wei Ding
- Department of Microbiology & Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA
| |
Collapse
|
21
|
Silencing suppressor protein PRT of rice tungro bacilliform virus interacts with the plant RNA silencing-related protein SGS3. Virology 2023; 581:71-80. [PMID: 36921478 DOI: 10.1016/j.virol.2023.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Rice tungro bacilliform virus (RTBV) is a double stranded DNA containing virus which causes the devastating tungro disease of rice in association with an RNA virus, rice tungro spherical virus. RNA silencing is an evolutionarily conserved antiviral defence pathway in plants as well as in several classes of higher organisms. Many viruses, in turn, encode proteins which are termed Viral Suppressor of RNA Silencing (VSR) because they downregulate or suppress RNA silencing. RESULTS Using an RNA silencing suppressor assay we show that RTBV protease (PRT) acts as a mild VSR. A truncated version of PRT gene abolished the silencing suppression activity. We also show in planta interaction of PRT with the SGS3 protein of Solanum tuberosum and Arabidopsis thaliana using bimolecular fluorescence complementation assay (BIFC). Transient expression of PRT in Nicotiana benthamiana caused an increased accumulation of the begomovirus Sri Lankan cassava mosaic virus (SLCMV) DNA-A, which indicated a virulence function imparted on an unrelated virus. CONCLUSION The finding supports the idea that PRT acts as suppressor of RNA silencing and this action may be mediated by its interaction with SGS3.
Collapse
|
22
|
A Zinc Finger Motif in the P1 N Terminus, Highly Conserved in a Subset of Potyviruses, Is Associated with the Host Range and Fitness of Telosma Mosaic Virus. J Virol 2023; 97:e0144422. [PMID: 36688651 PMCID: PMC9972955 DOI: 10.1128/jvi.01444-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
P1 is the first protein translated from the genomes of most viruses in the family Potyviridae, and it contains a C-terminal serine-protease domain that cis-cleaves the junction between P1 and HCPro in most cases. Intriguingly, P1 is the most divergent among all mature viral factors, and its roles during viral infection are still far from understood. In this study, we found that telosma mosaic virus (TelMV, genus Potyvirus) in passion fruit, unlike TelMV isolates present in other hosts, has two stretches at the P1 N terminus, named N1 and N2, with N1 harboring a Zn finger motif. Further analysis revealed that at least 14 different potyviruses, mostly belonging to the bean common mosaic virus subgroup, encode a domain equivalent to N1. Using the newly developed TelMV infectious cDNA clones from passion fruit, we demonstrated that N1, but not N2, is crucial for viral infection in both Nicotiana benthamiana and passion fruit. The regulatory effects of N1 domain on P1 cis cleavage, as well as the accumulation and RNA silencing suppression (RSS) activity of its cognate HCPro, were comprehensively investigated. We found that N1 deletion decreases HCPro abundance at the posttranslational level, likely by impairing P1 cis cleavage, thus reducing HCPro-mediated RSS activity. Remarkably, disruption of the Zn finger motif in N1 did not impair P1 cis cleavage and HCPro accumulation but severely debilitated TelMV fitness. Therefore, our results suggest that the Zn finger motif in P1s plays a critical role in viral infection that is independent of P1 protease activity and self-release, as well as HCPro accumulation and silencing suppression. IMPORTANCE Viruses belonging to the family Potyviridae represent the largest group of plant-infecting RNA viruses, including a variety of agriculturally and economically important viral pathogens. Like all picorna-like viruses, potyvirids employ polyprotein processing as the gene expression strategy. P1, the first protein translated from most potyvirid genomes, is the most variable viral factor and has attracted great scientific interest. Here, we defined a Zn finger motif-encompassing domain (N1) at the N terminus of P1 among diverse potyviruses phylogenetically related to bean common mosaic virus. Using TelMV as a model virus, we demonstrated that the N1 domain is key for viral infection, as it is involved both in regulating the abundance of its cognate HCPro and in an as-yet-undefined key function unrelated to protease processing and RNA silencing suppression. These results advance our knowledge of the hypervariable potyvirid P1s and highlight the importance for infection of a previously unstudied Zn finger domain at the P1 N terminus.
Collapse
|
23
|
Bai Q, Jiang J, Luo D, Huang Y, Huang M, Zhao G, Wang Z, Li X. Cysteine protease domain of potato virus Y: The potential target for urea derivatives. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 189:105309. [PMID: 36549816 DOI: 10.1016/j.pestbp.2022.105309] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The cysteine protease structural domain (CPD) encoded by the potato virus Y (PVY) accessory component protein helper component-proteinase (HC-Pro) is an auxiliary component of aphid virus transmission and plays an important role in virus infection and replication. Urea derivatives have potential antiviral activities. In this study, the PVY HC-Pro C-terminal truncated recombinant protein (residues 307-465) was expressed and purified. The interactions of PVY CPD with urea derivatives HD1-36 were investigated. Microscale thermophoresis experiments showed that HD6, -19, -21 and - 25 had the strongest binding forces to proteins, with Kd values of 2.16, 1.40, 1.97 and 1.12 μM, respectively. An experiment verified the microscale thermophoresis results, and the results were as expected, with Kd values of 6.10, 4.78, 5.32, and 4.52 μM for HD6, -19, -21, and - 25, respectively. Molecular docking studies indicated that the interaction sites between PVY CPD and HD6, -19, -21, and - 25, independently, were aspartic acid 121, asparagine 48, and tyrosine 38, which played important roles in their binding. In vivo experiments verified that HD25 inhibited PVY more than the control agents ningnanmycin and urea. These data have important implications for the design and synthesis of novel urea derivatives.
Collapse
Affiliation(s)
- Qian Bai
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Junmei Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Dan Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yajiao Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Min Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Guili Zhao
- College of Chemical Engineering, Guizhou Institute of Technology, Guiyang, China
| | - Zhenchao Wang
- College of Pharmacy, Guizhou University, Guiyang, China.
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
24
|
Petrov NM, Stoyanova MI, Gaur RK. siRNAs based gene silencing of potato virus Y by simultaneous blocking of HC-Pro and NIa. BIOTECHNOL BIOTEC EQ 2023. [DOI: 10.1080/13102818.2022.2149349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Nikolay Manchev Petrov
- Laboratory of Virology, Department of Natural Sciences, New Bulgarian University, Sofia, Bulgaria
| | - Mariya Ivanova Stoyanova
- Department of Plant Protection, Institute of Soil Science, Agrotechnologies and Plant Protection “N. Pushkarov”, Agricultural Academy, Sofia, Bulgaria
| | - Rajarshi Kumar Gaur
- Plant Biotechnology Laboratory, Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| |
Collapse
|
25
|
Nishiguchi M, Ali ME, Kaya T, Kobayashi K. Plant virus disease control by vaccination and transgenic approaches: Current status and perspective. PLANT RNA VIRUSES 2023:373-424. [DOI: 10.1016/b978-0-323-95339-9.00028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
26
|
Abstract
Adaptive antiviral immunity in plants is an RNA-based mechanism in which small RNAs derived from both strands of the viral RNA are guides for an Argonaute (AGO) nuclease. The primed AGO specifically targets and silences the viral RNA. In plants this system has diversified to involve mobile small interfering RNAs (siRNAs), an amplification system involving secondary siRNAs and targeting mechanisms involving DNA methylation. Most, if not all, plant viruses encode multifunctional proteins that are suppressors of RNA silencing that may also influence the innate immune system and fine-tune the virus-host interaction. Animal viruses similarly trigger RNA silencing, although it may be masked in differentiated cells by the interferon system and by the action of the virus-encoded suppressor proteins. There is huge potential for RNA silencing to combat viral disease in crops, farm animals, and people, although there are complications associated with the various strategies for siRNA delivery including transgenesis. Alternative approaches could include using breeding or small molecule treatment to enhance the inherent antiviral capacity of infected cells.
Collapse
Affiliation(s)
- David C Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
27
|
Zheng L, Fu S, Xie Y, Han Y, Zhou X, Wu J. Discovery and Characterization of a Novel Umbravirus from Paederia scandens Plants Showing Leaf Chlorosis and Yellowing Symptoms. Viruses 2022; 14:1821. [PMID: 36016443 PMCID: PMC9414234 DOI: 10.3390/v14081821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Umbraviruses are a special class of plant viruses that do not encode any viral structural proteins. Here, a novel umbravirus that has been tentatively named Paederia scandens chlorosis yellow virus (PSCYV) was discovered through RNA-seq in Paederia scandens plants showing leaf chlorosis and yellowing symptoms. The PSCYV genome is a 4301 nt positive-sense, single strand RNA that contains four open reading frames (ORFs), i.e., ORF1-4, that encode P1-P4 proteins, respectively. Together, ORF1 and ORF2 are predicted to encode an additional protein, RdRp, through a -1 frameshift mechanism. The P3 protein encoded by ORF3 was predicted to be the viral long-distance movement protein. P4 was determined to function as the viral cell-to-cell movement protein (MP) and transcriptional gene silencing (TGS) suppressor. Both P1 and RdRp function as weak post-transcriptional gene silencing (PTGS) suppressors of PSCYV. The PVX-expression system indicated that all viral proteins may be symptom determinants of PSCYV. Phylogenetic analysis indicated that PSCYV is evolutionarily related to members of the genus Umbravirus in the family Tombusviridae. Furthermore, a cDNA infectious clone of PSCYV was successfully constructed and used to prove that PSCYV can infect both Paederia scandens and Nicotiana benthamiana plants through mechanical inoculation, causing leaf chlorosis and yellowing symptoms. These findings have broadened our understanding of umbraviruses and their host range.
Collapse
Affiliation(s)
- Lianshun Zheng
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Shuai Fu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yi Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yang Han
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| |
Collapse
|
28
|
Sasaki J, Kawakubo S, Kim H, Kim OK, Yamashita K, Shimura H, Masuta C. Leek Yellow Stripe Virus Can Adjust for Host Adaptation by Trimming the N-Terminal Domain to Allow the P1 Protein to Function as an RNA Silencing Suppressor. THE PLANT PATHOLOGY JOURNAL 2022; 38:383-394. [PMID: 35953058 PMCID: PMC9372110 DOI: 10.5423/ppj.ft.06.2022.0077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
In Japan, the P1 protein (S-type) encoded by leek yellow stripe virus (LYSV) isolates detected in Honshu and southward is shorter than the P1 (N-type) of LYSV isolates from garlic grown in Hokkaido due to a large deletion in the N-terminal half. In garlic fields in Hokkaido, two types of LYSV isolate with N- and S-type P1s are sometimes found in mixed infections. In this study, we confirmed that N- and S-type P1 sequences were present in the same plant and that they belong to different evolutionary phylogenetic groups. To investigate how LYSV with S-type P1 (LYSV-S) could have invaded LYSV with N-type P1 (LYSV-N)-infected garlic, we examined wild Allium spp. plants in Hokkaido and found that LYSV was almost undetectable. On the other hand, in Honshu, LYSV-S was detected at a high frequency in Allium spp. other than garlic, suggesting that the LYSV-S can infect a wider host range of Allium spp. compared to LYSV-N. Because P1 proteins of potyviruses have been reported to promote RNA silencing suppressor (RSS) activity of HC-Pro proteins, we analyzed whether the same was true for P1 of LYSV. In onion, contrary to expectation, the P1 protein itself had RSS activity. Moreover, the RSS activity of S-type P1 was considerably stronger than that of N-type P1, suggesting that LYSV P1 may be able to enhance its RSS activity when the deletion is in the N-terminal half and that acquiring S-type P1 may have enabled LYSV to expand its host range.
Collapse
Affiliation(s)
- Jun Sasaki
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589,
Japan
- Ornamental Plants and Vegetables Research Center, Takikawa 073-0026,
Japan
| | - Shusuke Kawakubo
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589,
Japan
| | - Hangil Kim
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589,
Japan
| | - Ok-Kyung Kim
- Department of Agriculture, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi 243-0034,
Japan
| | - Kazuo Yamashita
- Department of Agriculture, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi 243-0034,
Japan
- Fukuchi Garlic R&S, Nambu-Chou, Aomori 039-0815,
Japan
| | - Hanako Shimura
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589,
Japan
| | - Chikara Masuta
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589,
Japan
| |
Collapse
|
29
|
Saha S, Lõhmus A, Dutta P, Pollari M, Mäkinen K. Interplay of HCPro and CP in the Regulation of Potato Virus A RNA Expression and Encapsidation. Viruses 2022; 14:1233. [PMID: 35746704 PMCID: PMC9227828 DOI: 10.3390/v14061233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 12/04/2022] Open
Abstract
Potyviral coat protein (CP) and helper component-proteinase (HCPro) play key roles in both the regulation of viral gene expression and the formation of viral particles. We investigated the interplay between CP and HCPro during these viral processes. While the endogenous HCPro and a heterologous viral suppressor of gene silencing both complemented HCPro-less potato virus A (PVA) expression, CP stabilization connected to particle formation could be complemented only by the cognate PVA HCPro. We found that HCPro relieves CP-mediated inhibition of PVA RNA expression likely by enabling HCPro-mediated sequestration of CPs to particles. We addressed the question about the role of replication in formation of PVA particles and gained evidence for encapsidation of non-replicating PVA RNA. The extreme instability of these particles substantiates the need for replication in the formation of stable particles. During replication, viral protein genome linked (VPg) becomes covalently attached to PVA RNA and can attract HCPro, cylindrical inclusion protein and host proteins. Based on the results of the current study and our previous findings we propose a model in which a large ribonucleoprotein complex formed around VPg at one end of PVA particles is essential for their integrity.
Collapse
Affiliation(s)
| | | | | | | | - Kristiina Mäkinen
- Department of Microbiology, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland; (S.S.); (A.L.); (P.D.); (M.P.)
| |
Collapse
|
30
|
Hua M, Jiang S, Yuan E, Wan Q, Wang L, Lu Y, Zheng H, Chen H, Chen J, Yan F, Wang S, Peng J. Construction of an infectious full-length and eGFP-tagged cDNA clone of a chilli ringspot virus isolate from Yunnan province, China. Arch Virol 2022; 167:1583-1587. [PMID: 35567696 DOI: 10.1007/s00705-022-05457-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/21/2022] [Indexed: 11/02/2022]
Abstract
Chilli ringspot virus (ChiRSV; genus Potyvirus) was one of several viruses previously detected in pepper samples with severe yellowing and curling symptoms growing in Wenshan, Yunan province, China. We now report the full-length sequence of ChiRSV-YN/Wenshan (MZ269480), which has 88.5-98.9% nucleotide sequence identity to other published ChiRSV isolates. A full-length cDNA infectious clone was constructed. This cDNA and an eGFP-tagged clone were infectious, leading to systemic symptoms in both Nicotiana benthamiana and Capsicum spp. Recombinant clones containing the P1 protein coding region of other ChiRSV isolates differed in their pathogenicity. Single infection by ChiRSV caused mild mosaic or leaf crinkling in Capsicum frutescens L. and Capsicum annuum L.
Collapse
Affiliation(s)
- Mengying Hua
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Shanshan Jiang
- Shandong Provincial Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Enping Yuan
- Wenshan Academy of Agricultural Sciences, Wenshan, 663000, Yunnan, China
| | - Qionglian Wan
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Liyan Wang
- Shandong Provincial Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Hairu Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Shaoxiang Wang
- Wenshan Academy of Agricultural Sciences, Wenshan, 663000, Yunnan, China.
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
31
|
Advances in RNA-Silencing-Related Resistance against Viruses in Potato. Genes (Basel) 2022; 13:genes13050731. [PMID: 35627117 PMCID: PMC9141481 DOI: 10.3390/genes13050731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
Potato is a major food crop that has the potential to feed the increasing global population. Potato is the fourth most important crop and a staple food for many people worldwide. The traditional breeding of potato poses many challenges because of its autotetraploid nature and its tendency toward inbreeding depression. Moreover, potato crops suffer considerable production losses because of infections caused by plant viruses. In this context, RNA silencing technology has been successfully applied in model and crop species. In this review, we describe the RNA interference (RNAi) mechanisms, including small-interfering RNA, microRNA, and artificial microRNA, which may be used to engineer resistance against potato viruses. We also explore the latest advances in the development of antiviral strategies to enhance resistance against potato virus X, potato virus Y, potato virus A, potato leafroll virus, and potato spindle tuber viroid. Furthermore, the challenges in RNAi that need to be overcome are described in this review. Altogether, this report would be insightful for the researchers attempting to understand the RNAi-mediated resistance against viruses in potato.
Collapse
|
32
|
Del Toro F, Sun H, Robinson C, Jiménez Á, Covielles E, Higuera T, Aguilar E, Tenllado F, Canto T. In planta vs viral expression of HCPro affects its binding of nonplant 21-22 nucleotide small RNAs, but not its preference for 5'-terminal adenines, or its effects on small RNA methylation. THE NEW PHYTOLOGIST 2022; 233:2266-2281. [PMID: 34942019 DOI: 10.1111/nph.17935] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Previous studies have found a correlation between the abilities of PVX vector-expressed HCPro variants to bind small RNAs (sRNAs), and to suppress silencing. Moreover, HCPro preferred to bind viral sRNAs of 21-22 nucleotides (nt) containing 5'-terminal adenines. This would require such viral sRNAs to have either different access to the suppressor than those of plant sequences, or different molecular properties. To investigate this preference further, we have used suppressor-competent or suppressor-deficient HCPro variants, expressed from either T-DNAs or potyvirus constructs. Then, the sRNAs generated in plants and associated with the purified HCPro variants were characterized. Marked differences were observed in the ratios of sRNAs of plant vs nonplant origin that bound to suppressor-competent HCPro, depending on the mode of its expression. Regardless of the means of expression, HCPro retained the same preference among the nonplant sRNAs of 21-22 nt for those with 5'-terminal adenines. Relative methylation levels of individual sRNAs were assessed, and the nonplant sRNAs were found to be significantly less methylated in the presence of the suppressor. Targeted binding of sRNAs based on size, 5'-terminal sequence and origin, together with affecting their methylation, could explain how HCPro counteracts silencing.
Collapse
Affiliation(s)
- Francisco Del Toro
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Hao Sun
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Carmen Robinson
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Álvaro Jiménez
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Eva Covielles
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Tomás Higuera
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Emmanuel Aguilar
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Francisco Tenllado
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Tomás Canto
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| |
Collapse
|
33
|
Jin L, Chen M, Xiang M, Guo Z. RNAi-Based Antiviral Innate Immunity in Plants. Viruses 2022; 14:v14020432. [PMID: 35216025 PMCID: PMC8875485 DOI: 10.3390/v14020432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple antiviral immunities were developed to defend against viral infection in hosts. RNA interference (RNAi)-based antiviral innate immunity is evolutionarily conserved in eukaryotes and plays a vital role against all types of viruses. During the arms race between the host and virus, many viruses evolve viral suppressors of RNA silencing (VSRs) to inhibit antiviral innate immunity. Here, we reviewed the mechanism at different stages in RNAi-based antiviral innate immunity in plants and the counteractions of various VSRs, mainly upon infection of RNA viruses in model plant Arabidopsis. Some critical challenges in the field were also proposed, and we think that further elucidating conserved antiviral innate immunity may convey a broad spectrum of antiviral strategies to prevent viral diseases in the future.
Collapse
|
34
|
Zhao JH, Guo HS. RNA silencing: From discovery and elucidation to application and perspectives. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:476-498. [PMID: 34964265 DOI: 10.1111/jipb.13213] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
RNA silencing (or RNA interference, RNAi) is a conserved mechanism for regulating gene expression in eukaryotes. The discovery of natural trans-kingdom RNAi indicated that small RNAs act as signaling molecules and enable communication between organisms in different kingdoms. The phenomenon and potential mechanisms of trans-kingdom RNAi are among the most exciting research topics. To better understand trans-kingdom RNAi, we review the history of the discovery and elucidation of RNAi mechanisms. Based on canonical RNAi mechanisms, we summarize the major points of divergence around RNAi pathways in the main eukaryotes' kingdoms, including plants, animals, and fungi. We review the representative incidents associated with the mechanisms and applications of trans-kingdom RNAi in crop protection, and discuss the critical factors that should be considered to develop successful trans-kingdom RNAi-based crop protection strategies.
Collapse
Affiliation(s)
- Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
35
|
Pantaleo V, Masuta C. Diversity of viral RNA silencing suppressors and their involvement in virus-specific symptoms. Adv Virus Res 2022; 113:1-23. [DOI: 10.1016/bs.aivir.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Choudhary C, Meghwanshi KK, Shukla N, Shukla JN. Innate and adaptive resistance to RNAi: a major challenge and hurdle to the development of double stranded RNA-based pesticides. 3 Biotech 2021; 11:498. [PMID: 34881161 PMCID: PMC8595431 DOI: 10.1007/s13205-021-03049-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022] Open
Abstract
RNA interference (RNAi) is a post-transcriptional gene silencing process where short interfering RNAs degrade targeted mRNA. Exploration of gene function through reverse genetics is the major achievement of RNAi discovery. Besides, RNAi can be used as a potential strategy for the control of insect pests. This has led to the idea of developing RNAi-based pesticides. Differential RNAi efficiency in the different insect orders is the biggest biological obstacle in developing RNAi-based pesticides. dsRNA stability, the sensitivity of core RNAi machinery, uptake of dsRNA and amplification and spreading of the RNAi signal are the key factors responsible for RNAi efficiency in insects. This review discusses the physiological and adaptive factors responsible for reduced RNAi in insects that pose a major challenge in developing dsRNA- based pesticides.
Collapse
Affiliation(s)
- Chhavi Choudhary
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, Distt. Ajmer, Kishangarh, Rajasthan 305817 India
| | - Keshav Kumar Meghwanshi
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, Distt. Ajmer, Kishangarh, Rajasthan 305817 India
| | - Nidhi Shukla
- Birla Institute of Scientific Research, Statue Circle, Prithviraj Rd, C-Scheme, Jaipur, Rajasthan 302001 India
| | - Jayendra Nath Shukla
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, Distt. Ajmer, Kishangarh, Rajasthan 305817 India
| |
Collapse
|
37
|
Investigation of P1/HC-Pro-Mediated ABA/Calcium Signaling Responses via Gene Silencing through High- and Low-Throughput RNA-seq Approaches. Viruses 2021; 13:v13122349. [PMID: 34960618 PMCID: PMC8708664 DOI: 10.3390/v13122349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022] Open
Abstract
The P1/HC-Pro viral suppressor of potyvirus suppresses posttranscriptional gene silencing (PTGS). The fusion protein of P1/HC-Pro can be cleaved into P1 and HC-Pro through the P1 self-cleavage activity, and P1 is necessary and sufficient to enhance PTGS suppression of HC-Pro. To address the modulation of gene regulatory relationships induced by turnip mosaic virus (TuMV) P1/HC-Pro (P1/HC-ProTu), a comparative transcriptome analysis of three types of transgenic plants (P1Tu, HC-ProTu, and P1/HC-ProTu) were conducted using both high-throughput (HTP) and low-throughput (LTP) RNA-Seq strategies. The results showed that P1/HC-ProTu disturbed the endogenous abscisic acid (ABA) accumulation and genes in the signaling pathway. Additionally, the integrated responses of stress-related genes, in particular to drought stress, cold stress, senescence, and stomatal dynamics, altered the expressions by the ABA/calcium signaling. Crosstalk among the ABA, jasmonic acid, and salicylic acid pathways might simultaneously modulate the stress responses triggered by P1/HC-ProTu. Furthermore, the LTP network analysis revealed crucial genes in common with those identified by the HTP network in this study, demonstrating the effectiveness of the miniaturization of the HTP profile. Overall, our findings indicate that P1/HC-ProTu-mediated suppression in RNA silencing altered the ABA/calcium signaling and a wide range of stress responses.
Collapse
|
38
|
Yang X, Li Y, Wang A. Research Advances in Potyviruses: From the Laboratory Bench to the Field. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:1-29. [PMID: 33891829 DOI: 10.1146/annurev-phyto-020620-114550] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Potyviruses (viruses in the genus Potyvirus, family Potyviridae) constitute the largest group of known plant-infecting RNA viruses and include many agriculturally important viruses that cause devastating epidemics and significant yield losses in many crops worldwide. Several potyviruses are recognized as the most economically important viral pathogens. Therefore, potyviruses are more studied than other groups of plant viruses. In the past decade, a large amount of knowledge has been generated to better understand potyviruses and their infection process. In this review, we list the top 10 economically important potyviruses and present a brief profile of each. We highlight recent exciting findings on the novel genome expression strategy and the biological functions of potyviral proteins and discuss recent advances in molecular plant-potyvirus interactions, particularly regarding the coevolutionary arms race. Finally, we summarize current disease control strategies, with a focus on biotechnology-based genetic resistance, and point out future research directions.
Collapse
Affiliation(s)
- Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| |
Collapse
|
39
|
Genome editing for resistance against plant pests and pathogens. Transgenic Res 2021; 30:427-459. [PMID: 34143358 DOI: 10.1007/s11248-021-00262-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
The conventional breeding of crops struggles to keep up with increasing food needs and ever-adapting pests and pathogens. Global climate changes have imposed another layer of complexity to biological systems, increasing the challenge to obtain improved crop cultivars. These dictate the development and application of novel technologies, like genome editing (GE), that assist targeted and fast breeding programs in crops, with enhanced resistance to pests and pathogens. GE does not require crossings, hence avoiding the introduction of undesirable traits through linkage in elite varieties, speeding up the whole breeding process. Additionally, GE technologies can improve plant protection by directly targeting plant susceptibility (S) genes or virulence factors of pests and pathogens, either through the direct edition of the pest genome or by adding the GE machinery to the plant genome or to microorganisms functioning as biocontrol agents (BCAs). Over the years, GE technology has been continuously evolving and more so with the development of CRISPR/Cas. Here we review the latest advancements of GE to improve plant protection, focusing on CRISPR/Cas-based genome edition of crops and pests and pathogens. We discuss how other technologies, such as host-induced gene silencing (HIGS) and the use of BCAs could benefit from CRISPR/Cas to accelerate the development of green strategies to promote a sustainable agriculture in the future.
Collapse
|
40
|
Alinizi HR, Mehrvar M, Zakiaghl M. Analysis of the molecular and biological variability of Zucchini yellow mosaic virus isolates from Iran and Iraq. Gene 2021; 788:145674. [PMID: 33887370 DOI: 10.1016/j.gene.2021.145674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
During the growing season of 2018, several field-grown cucurbit plants in different parts of Iraq and Iran were surveyed for the presence of zucchini yellow mosaic virus (ZYMV), using two degenerate primer pairs (CIF/Rev and NIb2F/3R) targeting the two separated partial regions of the potyvirus genome (CI and NIb respectively). 7 out of 20 samples were confirmed to be infected with ZYMV. Phylogenetic analyses based on the CI gene grouped all Iranian and two Iraqi (ZYMV1 and ZYMV2) isolates together with isolates from the Middle East in the subgroup (AI), whereas the other Iraqi (ZYMV3 and ZYMV4) isolates were clustered in the subgroup (DI), which was only consisted of American isolates. The highest and lowest identity between the studied isolates and the GenBank isolates showed that the two genes (CI, NIb) of each isolate particularly the Iraqi isolates were more similar to a specific and geographically scattered mosaic of worldwide isolates, suggestive of mixed infection might have occurred between different worldwide isolates in Iraq. Furthermore, the first complete nucleotide sequence of an Iraqi ZYMV (ZYMV-Iq) isolate was done, using the Illumina sequencing technique. The complete nucleotide sequence of ZYMV-Iq isolate was 9650 nt, excluding the 3'poly (A) tail. ZYMV-Iq isolate shared the highest nt identity of 98.8% with an American (KC665630) isolate. Phylogenetic analysis based on the full genome sequence placed ZYMV-Iq in subgroup A of group I alongside 18 isolates from the US and two isolates from Australia. In addition, recombination analysis detected lone significant recombination between ZYMV-Iq and South Korean (AY279000) isolate. Moreover, the results showed that symptom intensity was varied across experimental host plants.
Collapse
Affiliation(s)
- Hayder R Alinizi
- Department of Plant Pathology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohsen Mehrvar
- Department of Plant Pathology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammad Zakiaghl
- Department of Plant Pathology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
41
|
Domingo-Calap ML, Chase O, Estapé M, Moreno AB, López-Moya JJ. The P1 Protein of Watermelon mosaic virus Compromises the Activity as RNA Silencing Suppressor of the P25 Protein of Cucurbit yellow stunting disorder virus. Front Microbiol 2021; 12:645530. [PMID: 33828542 PMCID: PMC8019732 DOI: 10.3389/fmicb.2021.645530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/02/2021] [Indexed: 11/17/2022] Open
Abstract
Mixed viral infections in plants involving a potyvirus and other unrelated virus often result in synergistic effects, with significant increases in accumulation of the non-potyvirus partner, as in the case of melon plants infected by the potyvirus Watermelon mosaic virus (WMV) and the crinivirus Cucurbit yellow stunting disorder virus (CYSDV). To further explore the synergistic interaction between these two viruses, the activity of RNA silencing suppressors (RSSs) was addressed in transiently co-expressed combinations of heterologous viral products in Nicotiana benthamiana leaves. While the strong RSS activity of WMV Helper Component Proteinase (HCPro) was unaltered, including no evident additive effects observed when co-expressed with the weaker CYSDV P25, an unexpected negative effect of WMV P1 was found on the RSS activity of P25. Analysis of protein expression during the assays showed that the amount of P25 was not reduced when co-expressed with P1. The detrimental action of P1 on the activity of P25 was dose-dependent, and the subcellular localization of fluorescently labeled variants of P1 and P25 when transiently co-expressed showed coincidences both in nucleus and cytoplasm. Also, immunoprecipitation experiments showed interaction of tagged versions of the two proteins. This novel interaction, not previously described in other combinations of potyviruses and criniviruses, might play a role in modulating the complexities of the response to multiple viral infections in susceptible plants.
Collapse
Affiliation(s)
- Maria Luisa Domingo-Calap
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain.,Instituto Valencia de Investigaciones Agrarias, IVIA, Valencia, Spain
| | - Ornela Chase
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Mariona Estapé
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain.,Universitair Medisch Centrum, UMC, Utrecht, Netherlands
| | - Ana Beatriz Moreno
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain.,Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
42
|
Wang A. Cell-to-cell movement of plant viruses via plasmodesmata: a current perspective on potyviruses. Curr Opin Virol 2021; 48:10-16. [PMID: 33784579 DOI: 10.1016/j.coviro.2021.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 01/18/2023]
Abstract
Plant viruses have evolved efficient mechanisms to move cell-to-cell through plasmodesmata (PD) for systemic infection. Potyviruses including many economically important viruses constitute the largest group of known plant-infecting RNA viruses. Potyviral intercellular movement is accomplished by the coordinated action of at least three viral proteins and diverse host components. It requires the viral coat protein and is interlinked with active virus replication that generates, through RNA-polymerase slippage, a small percentage of frameshift viral RNA for the production of another essential movement protein named P3N-PIPO. This PD-located protein targets the virus-encoded cylindrical inclusion protein to PD to form special conical structures for potyviral passage, possibly in the form of virion. Here, I highlight and discuss major advances of potyviral intercellular trafficking.
Collapse
Affiliation(s)
- Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, N5V 4T3, Canada.
| |
Collapse
|
43
|
Construction and biological characterization of an infectious full-length cDNA clone of a Chinese isolate of Wheat yellow mosaic virus. Virology 2021; 556:101-109. [PMID: 33561697 DOI: 10.1016/j.virol.2021.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/22/2022]
Abstract
Wheat yellow mosaic virus (family Potyviridae; genus Bymovirus), is an important soil-borne virus that causes serious economic losses in wheat. In this study, we constructed infectious cDNA clones of WYMV genomic RNAs under the control of 35S or SP6 promoter for versatile usage (agroinfiltration or in vitro RNA transcription). Our results showed that an Agrobacterium-mediated inoculation system enabled WYMV to infect the leaves of Nicotiana benthamiana without causing WYMV systemic infection. However, in vitro transcripts from infectious cDNA clones using the SP6 promoter promoted WYMV systemic infection of wheat plants, which was then developed for further assays. The optimal temperature for virus multiplication and systemic infection of wheat was 8 °C. Additionally, a synergistic effect between WYMV and Chinese wheat mosaic virus (CWMV) was also detected. This is the first report of the construction of a Chinese isolate of WYMV and should facilitate the investigation of viral pathogenesis.
Collapse
|
44
|
Li M, Li C, Jiang K, Li K, Zhang J, Sun M, Wu G, Qing L. Characterization of Pathogenicity-Associated V2 Protein of Tobacco Curly Shoot Virus. Int J Mol Sci 2021; 22:E923. [PMID: 33477652 PMCID: PMC7831499 DOI: 10.3390/ijms22020923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
V2 proteins encoded by some whitefly-transmitted geminiviruses were reported to be functionally important proteins. However, the functions of the V2 protein of tobacco curly shoot virus (TbCSV), a monopartite begomovirus that causes leaf curl disease on tomato and tobacco in China, remains to be characterized. In our report, an Agrobacterium infiltration-mediated transient expression assay indicated that TbCSV V2 can suppress local and systemic RNA silencing and the deletion analyses demonstrated that the amino acid region 1-92 of V2, including the five predicted α-helices, are required for local RNA silencing suppression. Site-directed substitutions showed that the conserved basic and ring-structured amino acids in TbCSV V2 are critical for its suppressor activity. Potato virus X-mediated heteroexpression of TbCSV V2 in Nicotiana benthamiana induced hypersensitive response-like (HR-like) cell death and systemic necrosis in a manner independent of V2's suppressor activity. Furthermore, TbCSV infectious clone mutant with untranslated V2 protein (TbCSV∆V2) could not induce visual symptoms, and coinfection with betasatellite (TbCSB) could obviously elevate the viral accumulation and symptom development. Interestingly, symptom recovery occurred at 15 days postinoculation (dpi) and onward in TbCSV∆V2/TbCSB-inoculated plants. The presented work contributes to understanding the RNA silencing suppression activity of TbCSV V2 and extends our knowledge of the multifunctional role of begomovirus-encoded V2 proteins during viral infections.
Collapse
Affiliation(s)
- Mingjun Li
- Correspondence: (M.L.); (L.Q.); Tel.: +86-023-68250517 (L.Q.)
| | | | | | | | | | | | | | - Ling Qing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China; (C.L.); (K.J.); (K.L.); (J.Z.); (M.S.); (G.W.)
| |
Collapse
|
45
|
A Newly Identified Virus in the Family Potyviridae Encodes Two Leader Cysteine Proteases in Tandem That Evolved Contrasting RNA Silencing Suppression Functions. J Virol 2020; 95:JVI.01414-20. [PMID: 33055249 DOI: 10.1128/jvi.01414-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Potyviridae is the largest family of plant-infecting RNA viruses and includes many agriculturally and economically important viral pathogens. The viruses in the family, known as potyvirids, possess single-stranded, positive-sense RNA genomes with polyprotein processing as a gene expression strategy. The N-terminal regions of potyvirid polyproteins vary greatly in sequence. Previously, we identified a novel virus species within the family, Areca palm necrotic spindle-spot virus (ANSSV), which was predicted to encode two cysteine proteases, HCPro1 and HCPro2, in tandem at the N-terminal region. Here, we present evidence showing self-cleavage activity of these two proteins and define their cis-cleavage sites. We demonstrate that HCPro2 is a viral suppressor of RNA silencing (VSR), and both the variable N-terminal and conserved C-terminal (protease domain) moieties have antisilencing activity. Intriguingly, the N-terminal region of HCPro1 also has RNA silencing suppression activity, which is, however, suppressed by its C-terminal protease domain, leading to the functional divergence of HCPro1 and HCPro2 in RNA silencing suppression. Moreover, the deletion of HCPro1 or HCPro2 in a newly created infectious clone abolishes viral infection, and the deletion mutants cannot be rescued by addition of corresponding counterparts of a potyvirus. Altogether, these data suggest that the two closely related leader proteases of ANSSV have evolved differential and essential functions to concertedly maintain viral viability.IMPORTANCE The Potyviridae represent the largest group of known plant RNA viruses and account for more than half of the viral crop damage worldwide. The leader proteases of viruses within the family vary greatly in size and arrangement and play key roles during the infection. Here, we experimentally demonstrate the presence of a distinct pattern of leader proteases, HCPro1 and HCPro2 in tandem, in a newly identified member within the family. Moreover, HCPro1 and HCPro2, which are closely related and typically characterized with a short size, have evolved contrasting RNA silencing suppression activity and seem to function in a coordinated manner to maintain viral infectivity. Altogether, the new knowledge fills a missing piece in the evolutionary relationship history of potyvirids and improves our understanding of the diversification of potyvirid genomes.
Collapse
|
46
|
Watt LG, Crawshaw S, Rhee SJ, Murphy AM, Canto T, Carr JP. The cucumber mosaic virus 1a protein regulates interactions between the 2b protein and ARGONAUTE 1 while maintaining the silencing suppressor activity of the 2b protein. PLoS Pathog 2020; 16:e1009125. [PMID: 33270799 PMCID: PMC7738167 DOI: 10.1371/journal.ppat.1009125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 12/15/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022] Open
Abstract
The cucumber mosaic virus (CMV) 2b viral suppressor of RNA silencing (VSR) is a potent counter-defense and pathogenicity factor that inhibits antiviral silencing by titration of short double-stranded RNAs. It also disrupts microRNA-mediated regulation of host gene expression by binding ARGONAUTE 1 (AGO1). But in Arabidopsis thaliana complete inhibition of AGO1 is counterproductive to CMV since this triggers another layer of antiviral silencing mediated by AGO2, de-represses strong resistance against aphids (the insect vectors of CMV), and exacerbates symptoms. Using confocal laser scanning microscopy, bimolecular fluorescence complementation, and co-immunoprecipitation assays we found that the CMV 1a protein, a component of the viral replicase complex, regulates the 2b-AGO1 interaction. By binding 2b protein molecules and sequestering them in P-bodies, the 1a protein limits the proportion of 2b protein molecules available to bind AGO1, which ameliorates 2b-induced disease symptoms, and moderates induction of resistance to CMV and to its aphid vector. However, the 1a protein-2b protein interaction does not inhibit the ability of the 2b protein to inhibit silencing of reporter gene expression in agroinfiltration assays. The interaction between the CMV 1a and 2b proteins represents a novel regulatory system in which specific functions of a VSR are selectively modulated by another viral protein. The finding also provides a mechanism that explains how CMV, and possibly other viruses, modulates symptom induction and manipulates host-vector interactions.
Collapse
Affiliation(s)
- Lewis G. Watt
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Sam Crawshaw
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Sun-Ju Rhee
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alex M. Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Tomás Canto
- Department of Microbial and Plant Biotechnology, Center for Biological Research, Madrid, Spain
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
47
|
Freire MÁ. Viral silencing suppressors and cellular proteins partner with plant RRP6-like exoribonucleases. Virus Genes 2020; 56:621-631. [PMID: 32519287 DOI: 10.1007/s11262-020-01775-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/02/2020] [Indexed: 10/24/2022]
Abstract
RNA silencing and RNA decay are functionally interlaced, regulate gene expression and play a pivotal role in antiviral responses. As a counter-defensive strategy, many plant and mammalian viruses encode suppressors which interfere with both mechanisms. However, the protein interactions that connect these pathways remain elusive. Previous work reported that RNA silencing suppressors from different potyviruses, together with translation initiation factors EIF(iso)4E, interacted with the C-terminal region of the tobacco exoribonuclease RRP6-like 2, a component of the RNA decay exosome complex. Here, we investigate whether other viral silencing suppressors and cellular proteins might also bind RRP6-like exoribonucleases. A candidate search approach based on yeast two-hybrid protein interaction assays showed that three other unrelated viral suppressors, two from plant viruses and one from a mammalian virus, bound the C-terminus of the tobacco RRP6-like 2, the full-length of the Arabidopsis RRP6L1 protein and its C-terminal region. In addition, RRP6-like proteins were found to interact with members of the cellular double-stranded RNA-binding protein (DRB) family involved in RNA silencing. The C-terminal regions of RRP6L proteins are engaged in homotypic and heterotypic interactions and were predicted to be disordered. Collectively, these results suggest a protein interaction network that connects components of RNA decay and RNA silencing that is targeted by viral silencing suppressors.
Collapse
Affiliation(s)
- Miguel Ángel Freire
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 299, CC 495, 5000, Córdoba, Argentina.
| |
Collapse
|
48
|
Davino S, Ruiz-Ruiz S, Serra P, Forment J, Flores R. Revisiting the cysteine-rich proteins encoded in the 3'-proximal open reading frame of the positive-sense single-stranded RNA of some monopartite filamentous plant viruses: functional dissection of p15 from grapevine virus B. Arch Virol 2020; 165:2229-2239. [PMID: 32676682 DOI: 10.1007/s00705-020-04729-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/09/2020] [Indexed: 10/23/2022]
Abstract
A reexamination of proteins with conserved cysteines and basic amino acids encoded by the 3'-proximal gene of the positive-sense single-stranded RNA of some monopartite filamentous plant viruses has been carried out. The cysteines are involved in a putative Zn-finger domain, which, together with the basic amino acids, form part of the nuclear or nucleolar localization signals. An in-depth study of one of these proteins, p15 from grapevine B virus (GVB), has shown: (i) a three-dimensional structure with four α-helices predicted by two independent in silico approaches, (ii) the nucleolus as the main accumulation site by applying confocal laser microscopy to a fusion between p15 and the green fluorescent protein, (iii) the involvement of the basic amino acids and the putative Zn-finger domain, mapping at the N-terminal region of p15, in the nucleolar localization signal, as revealed by the effect of six alanine substitution mutations, (iv) the p15 suppressor function of sense-mediated RNA silencing as revealed by agroinfiltration in a transgenic line of Nicotiana benthamiana, and (v) the enhancer activity of p15 on viral pathogenicity in N. benthamiana when expressed from a potato virus X vector. In addition, we elaborate on an evolutionary scenario for these filamentous viruses, invoking takeover by a common ancestor(s) of viral or host genes coding for those cysteine-rich proteins, followed by divergence, which would also explain why they are encoded in the 3'-proximal gene of the genomic single-stranded viral RNA.
Collapse
Affiliation(s)
- Salvatore Davino
- Instituto de Biologia Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos, 46022, Valencia, Spain
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze Building 5, 90128, Palermo, Italy
| | - Susana Ruiz-Ruiz
- Instituto de Biologia Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos, 46022, Valencia, Spain
| | - Pedro Serra
- Instituto de Biologia Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos, 46022, Valencia, Spain
| | - Javier Forment
- Instituto de Biologia Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos, 46022, Valencia, Spain
| | - Ricardo Flores
- Instituto de Biologia Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos, 46022, Valencia, Spain.
| |
Collapse
|
49
|
Pollari M, De S, Wang A, Mäkinen K. The potyviral silencing suppressor HCPro recruits and employs host ARGONAUTE1 in pro-viral functions. PLoS Pathog 2020; 16:e1008965. [PMID: 33031436 PMCID: PMC7575100 DOI: 10.1371/journal.ppat.1008965] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/20/2020] [Accepted: 09/04/2020] [Indexed: 11/19/2022] Open
Abstract
In this study, we demonstrate a novel pro-viral role for the Nicotiana benthamiana ARGONAUTE 1 (AGO1) in potyvirus infection. AGO1 strongly enhanced potato virus A (PVA) particle production and benefited the infection when supplied in excess. We subsequently identified the potyviral silencing suppressor, helper-component protease (HCPro), as the recruiter of host AGO1. After the identification of a conserved AGO1-binding GW/WG motif in potyviral HCPros, we used site-directed mutagenesis to introduce a tryptophan-to-alanine change into the HCPro (HCProAG) of PVA (PVAAG) and turnip mosaic virus (TuMVAG). AGO1 co-localization and co-immunoprecipitation with PVA HCPro was significantly reduced by the mutation suggesting the interaction was compromised. Although the mutation did not interfere with HCPro's complementation or silencing suppression capacity, it nevertheless impaired virus particle accumulation and the systemic spread of both PVA and TuMV. Furthermore, we found that the HCPro-AGO1 interaction was important for AGO1's association with the PVA coat protein. The coat protein was also more stable in wild type PVA infection than in PVAAG infection. Based on these findings we suggest that potyviral HCPro recruits host AGO1 through its WG motif and engages AGO1 in the production of stable virus particles, which are required for an efficient systemic infection.
Collapse
Affiliation(s)
- Maija Pollari
- University of Helsinki, Department of Microbiology, Viikki Plant Science Center, Helsinki, Finland
| | - Swarnalok De
- University of Helsinki, Department of Microbiology, Viikki Plant Science Center, Helsinki, Finland
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Kristiina Mäkinen
- University of Helsinki, Department of Microbiology, Viikki Plant Science Center, Helsinki, Finland
| |
Collapse
|
50
|
Yang T, Qiu L, Huang W, Xu Q, Zou J, Peng Q, Lin H, Xi D. Chilli veinal mottle virus HCPro interacts with catalase to facilitate virus infection in Nicotiana tabacum. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5656-5668. [PMID: 32594157 PMCID: PMC7501817 DOI: 10.1093/jxb/eraa304] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/19/2020] [Indexed: 05/06/2023]
Abstract
Plant symptoms are derived from specific interactions between virus and host components. However, little is known about viral or host factors that participate in the establishment of systemic necrosis. Here, we showed that helper component proteinase (HCPro), encoded by Chilli veinal mottle virus (ChiVMV), could directly interact with catalase 1 (CAT1) and catalase 3 (CAT3) in the cytoplasm of tobacco (Nicotiana tabacum) plants to facilitate viral infection. In vitro, the activities of CAT1 and CAT3 were inhibited by the interaction between HCPro and CATs. The C-terminus of HCPro was essential for their interaction and was also required for the decrease of enzyme activities. Interestingly, the mRNA and protein level of CATs were up-regulated in tobacco plants in response to ChiVMV infection. Nicotiana tabacum plants with HCPro overexpression or CAT1 knockout were more susceptible to ChiVMV infection, which was similar to the case of H2O2-pre-treated plants, and the overexpression of CAT1 inhibited ChiVMV accumulation. Also, neither CAT1 nor CAT3 could affect the RNA silencing suppression (RSS) activity of HCPro. Our results showed that the interaction between HCPro and CATs promoted the development of plant systemic necrosis, revealing a novel role for HCPro in virus infection and pathogenicity.
Collapse
Affiliation(s)
- Ting Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Long Qiu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Wanying Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Qianyi Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Jialing Zou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Qiding Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Dehui Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| |
Collapse
|