1
|
Chen J, Chitrakar R, Baugh LR. DAF-18/PTEN protects LIN-35/Rb from CLP-1/CAPN-mediated cleavage to promote starvation resistance. Life Sci Alliance 2025; 8:e202403147. [PMID: 40199585 PMCID: PMC11979363 DOI: 10.26508/lsa.202403147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
Starvation resistance is a fundamental trait with profound influence on fitness and disease risk. DAF-18, the Caenorhabditis elegans ortholog of the tumor suppressor PTEN, promotes starvation resistance. PTEN is a dual phosphatase, and DAF-18 promotes starvation resistance as a lipid phosphatase by antagonizing insulin/IGF and PI3K signaling, activating the tumor suppressor DAF-16/FoxO. However, if or how DAF-18/PTEN protein-phosphatase activity promotes starvation resistance is unknown. Using genetic, genomic, bioinformatic, and biochemical approaches, we identified the C. elegans retinoblastoma/RB protein homolog, LIN-35/Rb, as a critical mediator of the effect of DAF-18/PTEN on starvation resistance. We show that DAF-18/PTEN protects LIN-35/Rb from cleavage by the μ-Calpain homolog CLP-1/CAPN, and that LIN-35/Rb together with the repressive DREAM complex promotes starvation resistance. We conclude that the tumor suppressors DAF-18/PTEN and LIN-35/Rb function in a linear pathway, with LIN-35/Rb and the rest of the DREAM complex functioning as a transcriptional effector of DAF-18/PTEN protein-phosphatase activity resulting in repression of germline gene expression. This work is significant for revealing a network of tumor suppressors that promote survival during cellular and developmental quiescence.
Collapse
Affiliation(s)
- Jingxian Chen
- Department of Biology, Duke University, Durham, NC, USA
| | | | - L Ryan Baugh
- Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
2
|
Chen J, Chitrakar R, Baugh LR. DAF-18/PTEN protects LIN-35/Rb from CLP-1/CAPN-mediated cleavage to promote starvation resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638677. [PMID: 40027768 PMCID: PMC11870551 DOI: 10.1101/2025.02.17.638677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Starvation resistance is a fundamental trait with profound influence on fitness and disease risk. DAF-18, the C. elegans ortholog of the tumor suppressor PTEN, promotes starvation resistance. PTEN is a dual phosphatase, and DAF-18 promotes starvation resistance as a lipid phosphatase by antagonizing insulin/IGF and PI3K signaling, activating the tumor suppressor DAF-16/FoxO. However, if or how DAF-18/PTEN protein-phosphatase activity promotes starvation resistance is unknown. Using genetic, genomic, bioinformatic, and biochemical approaches, we identified the C. elegans retinoblastoma/RB protein homolog, LIN-35/Rb, as a critical mediator of the effect of DAF-18/PTEN on starvation resistance. We show that DAF-18/PTEN protects LIN-35/Rb from cleavage by the μ-Calpain homolog CLP-1/CAPN, and that LIN-35/Rb together with the repressive DREAM complex promote starvation resistance. We conclude that the tumor suppressors DAF-18/PTEN and LIN-35/Rb function in a linear pathway, with LIN-35/Rb and the rest of the DREAM complex functioning as a transcriptional effector of DAF-18/PTEN protein-phosphatase activity resulting in repression of germline gene expression. This work is significant for revealing a network of tumor suppressors that promote survival during cellular and developmental quiescence.
Collapse
|
3
|
Seetharaman A, Galagali H, Linarte E, Liu MHX, Cohen JD, Chetal K, Sadreyev R, Tate AJ, Montgomery TA, Ruvkun G. Decreased SynMuv B gene activity in response to viral infection leads to activation of the antiviral RNAi pathway in C. elegans. PLoS Biol 2025; 23:e3002748. [PMID: 39879188 PMCID: PMC11778786 DOI: 10.1371/journal.pbio.3002748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025] Open
Abstract
RNA interference (RNAi) mediates antiviral defense in many eukaryotes. Caenorhabditis elegans mutants that disable RNAi are more sensitive to viral infection. Many mutants that enhance RNAi have also been identified; these mutations may reveal genes that are normally down-regulated in antiviral defense. About one-third of the score of mutants that enhance RNAi are in synMuv B genes, identified 30 years ago in unrelated screens for increased growth factor signaling. Many synMuv B genes encode dREAM complex chromatin-regulatory proteins found in nearly all animals and plants. We show that mRNAs which are highly induced in synMuv B mutants are congruent with those induced by Orsay RNA virus infection, suggesting that the enhanced RNAi of synMuv B mutants may also be triggered by down-regulation of synMuvB gene activity in an Orsay virus infection of wild type. The multivulval (Muv) phenotype of synMuv B mutants requires the presence of a second nematode-specific synMuv A gene mutation, but the enhanced RNAi of synMuv B mutants does not require a second synMuv A mutation. To test if Orsay viral infection down-regulates synMuv B gene activity, we infected a single synMuv A mutant with Orsay virus and found that a Muv phenotype could be induced. Thus, decreased synMuv B gene activity is part of the normal C. elegans viral defense response. In support of the model that decreased syn- Muv B gene activity enhances antiviral response, we found that synMuv B mutants have 50 to 100× lower viral RNA levels during an Orsay virus infection than wild type. Thus down-regulation of synMuv B activity to enhance RNAi is a key component in the defense response to viral infection. Small RNA deep sequencing analysis of dREAM complex mutants revealed siRNA profiles indicative of such a response. Thus, the pan-eukaryotic synMuv B genes constitute an element in C. elegans antiviral defense which is conserved across many eukaryotes where it also may act in viral defense. The enhanced RNAi and conservation of the dREAM complex mutants suggests new therapeutic avenues to boost antiviral defenses.
Collapse
Affiliation(s)
- Ashwin Seetharaman
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Himani Galagali
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elizabeth Linarte
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, Massachusetts, United States of America
| | - Mona H. X. Liu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Jennifer D. Cohen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kashish Chetal
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alex J. Tate
- Department of Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Taiowa A. Montgomery
- Department of Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Seetharaman A, Galagali H, Linarte E, Liu MHX, Cohen JD, Chetal K, Sadreyev R, Tate AJ, Montgomery TA, Ruvkun G. Caenorhabditis elegans SynMuv B gene activity is down-regulated during a viral infection to enhance RNA interference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603258. [PMID: 39071373 PMCID: PMC11275910 DOI: 10.1101/2024.07.12.603258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Small RNA pathways regulate eukaryotic antiviral defense. Many of the Caenorhabditis elegans mutations that were identified based on their enhanced RNAi, the synMuv B genes, also emerged from unrelated genetic screens for increased growth factor signaling. The dozen synMuv B genes encode homologues of the mammalian dREAM complex found in nearly all animals and plants, which includes the lin-35 /retinoblastoma oncogene. We show that a set of highly induced mRNAs in synMuv B mutants is congruent with mRNAs induced by Orsay RNA virus infection of C. elegans . In wild type animals, a combination of a synMuv A mutation and a synMuv B mutation are required for the Muv phenotype of increased growth factor signaling. But we show that Orsay virus infection of a single synMuv A mutant can induce a Muv phenotype, unlike the uninfected single synMuv A mutant. This suggests that decreased synMuv B activity, which activates the antiviral RNAi pathway, is a defense response to viral infection. Small RNA deep sequencing analysis of various dREAM complex mutants uncovers distinct siRNA profiles indicative of such an siRNA response. We conclude that the synMuv B mutants maintain an antiviral readiness state even in the absence of actual infection. The enhanced RNAi and conservation of the dREAM complex mutants suggests new therapeutic avenues to boost antiviral defenses.
Collapse
|
5
|
Martinez MAQ, Zhao CZ, Moore FEQ, Yee C, Zhang W, Shen K, Martin BL, Matus DQ. Cell cycle perturbation uncouples mitotic progression and invasive behavior in a post-mitotic cell. Differentiation 2024; 137:100765. [PMID: 38522217 PMCID: PMC11196158 DOI: 10.1016/j.diff.2024.100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
The acquisition of the post-mitotic state is crucial for the execution of many terminally differentiated cell behaviors during organismal development. However, the mechanisms that maintain the post-mitotic state in this context remain poorly understood. To gain insight into these mechanisms, we used the genetically and visually accessible model of C. elegans anchor cell (AC) invasion into the vulval epithelium. The AC is a terminally differentiated uterine cell that normally exits the cell cycle and enters a post-mitotic state before initiating contact between the uterus and vulva through a cell invasion event. Here, we set out to identify the set of negative cell cycle regulators that maintain the AC in this post-mitotic, invasive state. Our findings revealed a critical role for CKI-1 (p21CIP1/p27KIP1) in redundantly maintaining the post-mitotic state of the AC, as loss of CKI-1 in combination with other negative cell cycle regulators-including CKI-2 (p21CIP1/p27KIP1), LIN-35 (pRb/p107/p130), FZR-1 (Cdh1/Hct1), and LIN-23 (β-TrCP)-resulted in proliferating ACs. Remarkably, time-lapse imaging revealed that these ACs retain their ability to invade. Upon examination of a node in the gene regulatory network controlling AC invasion, we determined that proliferating, invasive ACs do so by maintaining aspects of pro-invasive gene expression. We therefore report that the requirement for a post-mitotic state for invasive cell behavior can be bypassed following direct cell cycle perturbation.
Collapse
Affiliation(s)
- Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Chris Z Zhao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Frances E Q Moore
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Callista Yee
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
6
|
Özdemir ÖÜ, Yurt K, Pektaş AN, Berk Ş. Evaluation and normalization of a set of reliable reference genes for quantitative sgk-1 gene expression analysis in Caenorhabditis elegans-focused cancer research. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 44:91-110. [PMID: 38359339 DOI: 10.1080/15257770.2024.2317413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Multiple signaling pathways have been discovered to play a role in aging and longevity, including the insulin/IGF-1 signaling system, AMPK pathway, TOR signaling, JNK pathway, and germline signaling. Mammalian serum and glucocorticoid-inducible kinase 1 (sgk-1), which has been associated with various disorders including hypertension, obesity, and tumor growth, limits survival in C. elegans by reducing DAF-16/FoxO activity while suppressing FoxO3 activity in human cell culture. C. elegans provides significant protection for a number of genes associated with human cancer. The best known of these are the lin-35/pRb (mammalian ortholog pRb) and CEP-1 (mammalian ortholog p53) genes. Therefore, in this study, we aimed to investigate the expression analyzes of sgk-1, which is overexpressed in many types of mammalian cancer, in mutant lin-35 and to demonstrate the validation of reference genes in wild-type N2 and mutant lin-35 for C. elegans-focused cancer research. To develop functional genomic studies in C. elegans, we evaluated the expression stability of five candidate reference genes (act-1, ama-1, cdc-42, pmp-3, iscu-1) by quantitative real-time PCR using five algorithms (geNorm, NormFinder, Delta Ct method, BestKeeper, RefFinder) in N2 and lin-35 worms. According to our findings, act-1 and cdc-42 were effective in accurately normalizing the levels of gene expression in N2 and lin-35. act-1 and cdc-42 also displayed the most consistent expression patterns, therefore they were utilized to standardize expression level of sgk-1. Furthermore, our results clearly showed that sgk-1 was upregulated in lin-35 worms compared to N2 worms. Our results highlight the importance of definitive validation using mostly expressed reference genes.
Collapse
Affiliation(s)
- Özgür Ülkü Özdemir
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Kübra Yurt
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ayşe Nur Pektaş
- Advanced Technology Research and Application Center (CUTAM), Sivas Cumhuriyet University, Sivas, Turkey
| | - Şeyda Berk
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
- Advanced Technology Research and Application Center (CUTAM), Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
7
|
Martinez MAQ, Zhao CZ, Moore FEQ, Yee C, Zhang W, Shen K, Martin BL, Matus DQ. Cell cycle perturbation uncouples mitotic progression and invasive behavior in a post-mitotic cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.16.533034. [PMID: 38370624 PMCID: PMC10871222 DOI: 10.1101/2023.03.16.533034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The acquisition of the post-mitotic state is crucial for the execution of many terminally differentiated cell behaviors during organismal development. However, the mechanisms that maintain the post-mitotic state in this context remain poorly understood. To gain insight into these mechanisms, we used the genetically and visually accessible model of C. elegans anchor cell (AC) invasion into the vulval epithelium. The AC is a terminally differentiated uterine cell that normally exits the cell cycle and enters a post-mitotic state, initiating contact between the uterus and vulva through a cell invasion event. Here, we set out to identify the set of negative cell cycle regulators that maintain the AC in this post-mitotic, invasive state. Our findings revealed a critical role for CKI-1 (p21CIP1/p27KIP1) in redundantly maintaining the post-mitotic state of the AC, as loss of CKI-1 in combination with other negative cell cycle regulators-including CKI-2 (p21CIP1/p27KIP1), LIN-35 (pRb/p107/p130), FZR-1 (Cdh1/Hct1), and LIN-23 (β-TrCP)-resulted in proliferating ACs. Remarkably, time-lapse imaging revealed that these ACs retain their ability to invade. Upon examination of a node in the gene regulatory network controlling AC invasion, we determined that proliferating, invasive ACs do so by maintaining aspects of pro-invasive gene expression. We therefore report that the requirement for a post-mitotic state for invasive cell behavior can be bypassed following direct cell cycle perturbation.
Collapse
Affiliation(s)
- Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Chris Z Zhao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Frances E Q Moore
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Callista Yee
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
8
|
Shrestha B, Tallila M, Matilainen O. Folate receptor overexpression induces toxicity in a diet-dependent manner in C. elegans. Sci Rep 2024; 14:1066. [PMID: 38212621 PMCID: PMC10784478 DOI: 10.1038/s41598-024-51700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024] Open
Abstract
Folate receptor (FR) alpha (FOLR1) and beta (FOLR2) are membrane-anchored folate transporters that are expressed at low levels in normal tissues, while their expression is strongly increased in several cancers. Intriguingly, although the function of these receptors in, for example, development and cancer has been studied intensively, their role in aging is still unknown. To address this, we utilized Caenorhabditis elegans, in which FOLR-1 is the sole ortholog of folate receptors. We found that the loss of FOLR-1 does not affect reproduction, physical condition, proteostasis or lifespan, indicating that it is not required for folate transport to maintain health. Interestingly, we found that FOLR-1 is detectably expressed only in uterine-vulval cells, and that the histone-binding protein LIN-53 inhibits its expression in other tissues. Furthermore, whereas knockdown of lin-53 is known to shorten lifespan, we found that the loss of FOLR-1 partially rescues this phenotype, suggesting that elevated folr-1 expression is detrimental for health. Indeed, our data demonstrate that overexpression of folr-1 is toxic, and that this phenotype is dependent on diet. Altogether, this work could serve as a basis for further studies to elucidate the organismal effects of abnormal FR expression in diseases such as cancer.
Collapse
Affiliation(s)
- Bideep Shrestha
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Milla Tallila
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Olli Matilainen
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
9
|
Liu J, Murray JI. Mechanisms of lineage specification in Caenorhabditis elegans. Genetics 2023; 225:iyad174. [PMID: 37847877 PMCID: PMC11491538 DOI: 10.1093/genetics/iyad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
The studies of cell fate and lineage specification are fundamental to our understanding of the development of multicellular organisms. Caenorhabditis elegans has been one of the premiere systems for studying cell fate specification mechanisms at single cell resolution, due to its transparent nature, the invariant cell lineage, and fixed number of somatic cells. We discuss the general themes and regulatory mechanisms that have emerged from these studies, with a focus on somatic lineages and cell fates. We next review the key factors and pathways that regulate the specification of discrete cells and lineages during embryogenesis and postembryonic development; we focus on transcription factors and include numerous lineage diagrams that depict the expression of key factors that specify embryonic founder cells and postembryonic blast cells, and the diverse somatic cell fates they generate. We end by discussing some future perspectives in cell and lineage specification.
Collapse
Affiliation(s)
- Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Mikeworth BP, Compere FV, Petrella LN. LIN-35 is necessary in both the soma and germline for preserving fertility in Caenorhabditis elegans under moderate temperature stress. PLoS One 2023; 18:e0286926. [PMID: 37294778 PMCID: PMC10256190 DOI: 10.1371/journal.pone.0286926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/25/2023] [Indexed: 06/11/2023] Open
Abstract
Maintenance of germline function under stress conditions is crucial for species survival. The germ line in many species is especially sensitive to elevated temperature. We have investigated the role of the pocket protein LIN-35 in preserving fertility in Caenorhabditis elegans under moderate temperature stress. We show that lin-35 mutants display several temperature sensitive germline defects, and more severe reductions in brood size at elevated temperatures compared to wild type. This loss of fertility under temperature stress is primarily due to loss of zygotic, but not maternal, LIN-35. Additionally, we have found that expression of LIN-35 is necessary in both the germ line and soma for the preserving fertility under moderate temperature stress. Specifically, while LIN-35 function in the germ line is required for maintaining fertility in hermaphrodites, broad somatic expression of LIN-35 is also necessary for oocyte formation and/or function under moderate temperature stress. Together, our data add to the emerging understanding of the critical role that LIN-35 plays in preserving tissues against stress.
Collapse
Affiliation(s)
- Brian P. Mikeworth
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Frances V. Compere
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Lisa N. Petrella
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
11
|
Abstract
After decades of research, our knowledge of the complexity of cancer mechanisms, elegantly summarized as 'hallmarks of cancer', is expanding, as are the therapeutic opportunities that this knowledge brings. However, cancer still needs intense research to diminish its tremendous impact. In this context, the use of simple model organisms such as Caenorhabditis elegans, in which the genetics of the apoptotic pathway was discovered, can facilitate the investigation of several cancer hallmarks. Amenable for genetic and drug screens, convenient for fast and efficient genome editing, and aligned with the 3Rs ('Replacement, Reduction and Refinement') principles for ethical animal research, C. elegans plays a significant role in unravelling the intricate network of cancer mechanisms and presents a promising option in clinical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Julián Cerón
- Modeling Human Diseases in C. elegans Group – Genes, Disease and Therapy Program, Bellvitge Biomedical Research Institute – IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
12
|
Clavijo-Buriticá DC, Sosa CC, Heredia RC, Mosquera AJ, Álvarez A, Medina J, Quimbaya M. Use of Arabidopsis thaliana as a model to understand specific carcinogenic events: Comparison of the molecular machinery associated with cancer-hallmarks in plants and humans. Heliyon 2023; 9:e15367. [PMID: 37101642 PMCID: PMC10123165 DOI: 10.1016/j.heliyon.2023.e15367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Model organisms are fundamental in cancer research given that they rise the possibility to characterize in a quantitative-objective fashion the organisms as a whole in ways that are infeasible in humans. From this perspective, model organisms with short generation times and established protocols for genetic manipulation allow the understanding of basic biology principles that might guide carcinogenic onset. The cancer-hallmarks (CHs) approach, a modular perspective for cancer understanding, stands that underlying the variability among different cancer types, critical events support the carcinogenic origin and progression. Thus, CHs as interconnected genetic circuitry, have a causal effect over cancer biogenesis and might represent a comparison scaffold among model organisms to identify and characterize evolutionarily conserved modules to understand cancer. Nevertheless, the identification of novel cancer regulators by comparative genomics approaches relies on selecting specific biological processes or related signaling cascades that limit the type of detected regulators, even more, holistic analysis from a systemic perspective is absent. Similarly, although the plant Arabidopsis thaliana has been used as a model organism to dissect specific disease-associated mechanisms, given the evolutionary distance between plants and humans, a general concern about the utility of using A. thaliana as a cancer model persists. In the present research, we take advantage of the CHs paradigm as a framework to establish a functional systemic comparison between plants and humans, that allowed the identification not only of specific novel key genetic regulators, but also, biological processes, metabolic systems, and genetic modules that might contribute to the neoplastic transformation. We propose five cancer-hallmarks that overlapped in conserved mechanisms and processes between Arabidopsis and human and thus, represent mechanisms which study can be prioritized in A. thaliana as an alternative model for cancer research. Additionally, derived from network analyses and machine learning strategies, a new set of potential candidate genes that might contribute to neoplastic transformation is described. These findings postulate A. thaliana as a suitable model to dissect, not all, but specific cancer properties, highlighting the importance of using alternative complementary models to understand carcinogenesis.
Collapse
Affiliation(s)
| | - Chrystian C. Sosa
- Pontificia Universidad Javeriana Cali, Department of Natural Sciences and Mathematics, Cali, Colombia
- Grupo de Investigación en Evolución, Ecología y Conservación EECO, Programa de Biología, Facultad de Ciencias Básicas y Tecnologías, Universidad del Quindío, Armenia, Colombia
| | - Rafael Cárdenas Heredia
- Pontificia Universidad Javeriana Cali, Department of Natural Sciences and Mathematics, Cali, Colombia
| | - Arlen James Mosquera
- Pontificia Universidad Javeriana Cali, Department of Natural Sciences and Mathematics, Cali, Colombia
| | - Andrés Álvarez
- Pontificia Universidad Javeriana Cali, Department of Natural Sciences and Mathematics, Cali, Colombia
| | - Jan Medina
- Pontificia Universidad Javeriana Cali, Department of Natural Sciences and Mathematics, Cali, Colombia
| | - Mauricio Quimbaya
- Pontificia Universidad Javeriana Cali, Department of Natural Sciences and Mathematics, Cali, Colombia
- Corresponding author.
| |
Collapse
|
13
|
Bujarrabal-Dueso A, Sendtner G, Meyer DH, Chatzinikolaou G, Stratigi K, Garinis GA, Schumacher B. The DREAM complex functions as conserved master regulator of somatic DNA-repair capacities. Nat Struct Mol Biol 2023; 30:475-488. [PMID: 36959262 PMCID: PMC10113156 DOI: 10.1038/s41594-023-00942-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/08/2023] [Indexed: 03/25/2023]
Abstract
The DNA-repair capacity in somatic cells is limited compared with that in germ cells. It has remained unknown whether not only lesion-type-specific, but overall repair capacities could be improved. Here we show that the DREAM repressor complex curbs the DNA-repair capacities in somatic tissues of Caenorhabditis elegans. Mutations in the DREAM complex induce germline-like expression patterns of multiple mechanisms of DNA repair in the soma. Consequently, DREAM mutants confer resistance to a wide range of DNA-damage types during development and aging. Similarly, inhibition of the DREAM complex in human cells boosts DNA-repair gene expression and resistance to distinct DNA-damage types. DREAM inhibition leads to decreased DNA damage and prevents photoreceptor loss in progeroid Ercc1-/- mice. We show that the DREAM complex transcriptionally represses essentially all DNA-repair systems and thus operates as a highly conserved master regulator of the somatic limitation of DNA-repair capacities.
Collapse
Affiliation(s)
- Arturo Bujarrabal-Dueso
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Georg Sendtner
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - David H Meyer
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Georgia Chatzinikolaou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
14
|
Schultz‐Rogers LE, Thayer ML, Kambakam S, Wierson WA, Helmer JA, Wishman MD, Wall KA, Greig JL, Forsman JL, Puchhalapalli K, Nair S, Weiss TJ, Luiken JM, Blackburn PR, Ekker SC, Kool M, McGrail M. Rbbp4 loss disrupts neural progenitor cell cycle regulation independent of Rb and leads to Tp53 acetylation and apoptosis. Dev Dyn 2022; 251:1267-1290. [PMID: 35266256 PMCID: PMC9356990 DOI: 10.1002/dvdy.467] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Retinoblastoma binding protein 4 (Rbbp4) is a component of transcription regulatory complexes that control cell cycle gene expression. Previous work indicated that Rbbp4 cooperates with the Rb tumor suppressor to block cell cycle entry. Here, we use genetic analysis to examine the interactions of Rbbp4, Rb, and Tp53 in zebrafish neural progenitor cell cycle regulation and survival. RESULTS Rbbp4 is upregulated across the spectrum of human embryonal and glial brain cancers. Transgenic rescue of rbbp4 mutant embryos shows Rbbp4 is essential for zebrafish neurogenesis. Rbbp4 loss leads to apoptosis and γ-H2AX in the developing brain that is suppressed by tp53 knockdown or maternal zygotic deletion. Mutant retinal neural precursors accumulate in M phase and fail to initiate G0 gene expression. rbbp4; rb1 mutants show an additive effect on the number of M phase cells. In rbbp4 mutants, Tp53 acetylation is detected; however, Rbbp4 overexpression did not rescue DNA damage-induced apoptosis. CONCLUSION Rbbp4 is necessary for neural progenitor cell cycle progression and initiation of G0 independent of Rb. Tp53-dependent apoptosis in the absence of Rbpb4 correlates with Tp53 acetylation. Together these results suggest that Rbbp4 is required for cell cycle exit and contributes to neural progenitor survival through the regulation of Tp53 acetylation.
Collapse
Affiliation(s)
- Laura E. Schultz‐Rogers
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- Interdepartmental Graduate Program in Genetics and GenomicsIowa State UniversityAmesIowaUSA
- Present address:
Department of Pathology and Lab MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Michelle L. Thayer
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- Interdepartmental Graduate Program in Molecular, Cellular and Developmental BiologyIowa State UniversityAmesIowaUSA
| | - Sekhar Kambakam
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
| | - Wesley A. Wierson
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- Interdepartmental Graduate Program in Molecular, Cellular and Developmental BiologyIowa State UniversityAmesIowaUSA
| | - Jordan A. Helmer
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- GeneticsIowa State UniversityAmesIowaUSA
| | - Mark D. Wishman
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- GeneticsIowa State UniversityAmesIowaUSA
| | - Kristen A. Wall
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- BiologyIowa State UniversityAmesIowaUSA
| | - Jessica L. Greig
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- GeneticsIowa State UniversityAmesIowaUSA
| | - Jaimie L. Forsman
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- GeneticsIowa State UniversityAmesIowaUSA
| | - Kavya Puchhalapalli
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- GeneticsIowa State UniversityAmesIowaUSA
| | - Siddharth Nair
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- Kinesiology and HealthIowa State UniversityAmesUSA
| | - Trevor J. Weiss
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
| | - Jon M. Luiken
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
| | - Patrick R. Blackburn
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesotaUSA
- Present address:
Department of PathologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesotaUSA
| | - Marcel Kool
- Hopp Children's Cancer (KiTZ)HeidelbergGermany
- Division of Pediatric Neuro‐oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK)HeidelbergGermany
- Princess Maxima Center for Pediatric OncologyUtrechtNetherlands
| | - Maura McGrail
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- Interdepartmental Graduate Program in Genetics and GenomicsIowa State UniversityAmesIowaUSA
- Interdepartmental Graduate Program in Molecular, Cellular and Developmental BiologyIowa State UniversityAmesIowaUSA
- GeneticsIowa State UniversityAmesIowaUSA
- BiologyIowa State UniversityAmesIowaUSA
- Kinesiology and HealthIowa State UniversityAmesUSA
| |
Collapse
|
15
|
Goetsch PD, Strome S. DREAM interrupted: severing LIN-35-MuvB association in Caenorhabditis elegans impairs DREAM function but not its chromatin localization. Genetics 2022; 221:iyac073. [PMID: 35554539 PMCID: PMC9252284 DOI: 10.1093/genetics/iyac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/19/2022] [Indexed: 11/14/2022] Open
Abstract
The mammalian pocket protein family, which includes the Retinoblastoma protein (pRb) and Rb-like pocket proteins p107 and p130, regulates entry into and exit from the cell cycle by repressing cell cycle gene expression. Although pRb plays a dominant role in mammalian systems, p107 and p130 are the ancestral pocket proteins. The Rb-like pocket proteins interact with the highly conserved 5-subunit MuvB complex and an E2F-DP transcription factor heterodimer, forming the DREAM (for Dp, Rb-like, E2F, and MuvB) complex. DREAM complex assembly on chromatin culminates in repression of target genes mediated by the MuvB subcomplex. Here, we examined how the Rb-like pocket protein contributes to DREAM formation and function by disrupting the interaction between the sole Caenorhabditis elegans pocket protein LIN-35 and the MuvB subunit LIN-52 using CRISPR/Cas9 targeted mutagenesis. A triple alanine substitution of LIN-52's LxCxE motif severed LIN-35-MuvB association and caused classical DREAM mutant phenotypes, including synthetic multiple vulvae, high-temperature arrest, and ectopic expression of germline genes in the soma. However, RNA-sequencing revealed limited upregulation of DREAM target genes when LIN-35-MuvB association was severed, as compared with gene upregulation following LIN-35 loss. Based on chromatin immunoprecipitation, disrupting LIN-35-MuvB association did not affect the chromatin localization of E2F-DP, LIN-35, or MuvB components. In a previous study, we showed that in worms lacking LIN-35, E2F-DP, and MuvB chromatin occupancy was reduced genome-wide. With LIN-35 present but unable to associate with MuvB, our study suggests that the E2F-DP-LIN-35 interaction promotes E2F-DP's chromatin localization, which we hypothesize supports MuvB chromatin occupancy indirectly through DNA. Altogether, this study highlights how the pocket protein's association with MuvB supports DREAM function but is not required for DREAM's chromatin occupancy.
Collapse
Affiliation(s)
- Paul D Goetsch
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Susan Strome
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
16
|
Kachroo AH, Vandeloo M, Greco BM, Abdullah M. Humanized yeast to model human biology, disease and evolution. Dis Model Mech 2022; 15:275614. [PMID: 35661208 PMCID: PMC9194483 DOI: 10.1242/dmm.049309] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
For decades, budding yeast, a single-cellular eukaryote, has provided remarkable insights into human biology. Yeast and humans share several thousand genes despite morphological and cellular differences and over a billion years of separate evolution. These genes encode critical cellular processes, the failure of which in humans results in disease. Although recent developments in genome engineering of mammalian cells permit genetic assays in human cell lines, there is still a need to develop biological reagents to study human disease variants in a high-throughput manner. Many protein-coding human genes can successfully substitute for their yeast equivalents and sustain yeast growth, thus opening up doors for developing direct assays of human gene function in a tractable system referred to as 'humanized yeast'. Humanized yeast permits the discovery of new human biology by measuring human protein activity in a simplified organismal context. This Review summarizes recent developments showing how humanized yeast can directly assay human gene function and explore variant effects at scale. Thus, by extending the 'awesome power of yeast genetics' to study human biology, humanizing yeast reinforces the high relevance of evolutionarily distant model organisms to explore human gene evolution, function and disease.
Collapse
|
17
|
Gal C, Carelli FN, Appert A, Cerrato C, Huang N, Dong Y, Murphy J, Frapporti A, Ahringer J. DREAM represses distinct targets by cooperating with different THAP domain proteins. Cell Rep 2021; 37:109835. [PMID: 34686342 PMCID: PMC8552245 DOI: 10.1016/j.celrep.2021.109835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 06/03/2021] [Accepted: 09/24/2021] [Indexed: 01/09/2023] Open
Abstract
The DREAM (dimerization partner [DP], retinoblastoma [Rb]-like, E2F, and MuvB) complex controls cellular quiescence by repressing cell-cycle and other genes, but its mechanism of action is unclear. Here, we demonstrate that two C. elegans THAP domain proteins, LIN-15B and LIN-36, co-localize with DREAM and function by different mechanisms for repression of distinct sets of targets. LIN-36 represses classical cell-cycle targets by promoting DREAM binding and gene body enrichment of H2A.Z, and we find that DREAM subunit EFL-1/E2F is specific for LIN-36 targets. In contrast, LIN-15B represses germline-specific targets in the soma by facilitating H3K9me2 promoter marking. We further find that LIN-36 and LIN-15B differently regulate DREAM binding. In humans, THAP proteins have been implicated in cell-cycle regulation by poorly understood mechanisms. We propose that THAP domain proteins are key mediators of Rb/DREAM function.
Collapse
Affiliation(s)
- Csenge Gal
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Francesco Nicola Carelli
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Alex Appert
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Chiara Cerrato
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Ni Huang
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Yan Dong
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Jane Murphy
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Andrea Frapporti
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Julie Ahringer
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
18
|
Linn P, Kohno S, Sheng J, Kulathunga N, Yu H, Zhang Z, Voon D, Watanabe Y, Takahashi C. Targeting RB1 Loss in Cancers. Cancers (Basel) 2021; 13:cancers13153737. [PMID: 34359636 PMCID: PMC8345210 DOI: 10.3390/cancers13153737] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Irreversible defects in RB1 tumor suppressor functions often predict poor outcomes in cancer patients. However, the RB1-defecient status can be a benefit as well for them, as it generates a variety of vulnerabilities induced through the upregulation of RB1 targets, relief from functional restrictions due to RB1 binding, presence of genes whose inactivation cause synthetic lethality with RB1 loss, or collateral synthetic lethality owing to simultaneous loss of neighboring genes. Abstract Retinoblastoma protein 1 (RB1) is encoded by a tumor suppressor gene that was discovered more than 30 years ago. Almost all mitogenic signals promote cell cycle progression by braking on the function of RB1 protein through mono- and subsequent hyper-phosphorylation mediated by cyclin-CDK complexes. The loss of RB1 function drives tumorigenesis in limited types of malignancies including retinoblastoma and small cell lung cancer. In a majority of human cancers, RB1 function is suppressed during tumor progression through various mechanisms. The latter gives rise to the acquisition of various phenotypes that confer malignant progression. The RB1-targeted molecules involved in such phenotypic changes are good quarries for cancer therapy. Indeed, a variety of novel therapies have been proposed to target RB1 loss. In particular, the inhibition of a number of mitotic kinases appeared to be synthetic lethal with RB1 deficiency. A recent study focusing on a neighboring gene that is often collaterally deleted together with RB1 revealed a pharmacologically targetable vulnerability in RB1-deficient cancers. Here we summarize current understanding on possible therapeutic approaches targeting functional or genomic aberration of RB1 in cancers.
Collapse
Affiliation(s)
- Paing Linn
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
- Yangon General Hospital, Yangon, Myanmar
| | - Susumu Kohno
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
| | - Jindan Sheng
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
| | - Nilakshi Kulathunga
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
| | - Hai Yu
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
| | - Zhiheng Zhang
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
| | - Dominic Voon
- Institute of Frontier Sciences Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
| | | | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
- Correspondence: ; Tel.: +81-76-264-6750; Fax: +81-76-234-4521
| |
Collapse
|
19
|
Nabeel-Shah S, Garg J, Saettone A, Ashraf K, Lee H, Wahab S, Ahmed N, Fine J, Derynck J, Pu S, Ponce M, Marcon E, Zhang Z, Greenblatt JF, Pearlman RE, Lambert JP, Fillingham J. Functional characterization of RebL1 highlights the evolutionary conservation of oncogenic activities of the RBBP4/7 orthologue in Tetrahymena thermophila. Nucleic Acids Res 2021; 49:6196-6212. [PMID: 34086947 PMCID: PMC8216455 DOI: 10.1093/nar/gkab413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022] Open
Abstract
Retinoblastoma-binding proteins 4 and 7 (RBBP4 and RBBP7) are two highly homologous human histone chaperones. They function in epigenetic regulation as subunits of multiple chromatin-related complexes and have been implicated in numerous cancers. Due to their overlapping functions, our understanding of RBBP4 and 7, particularly outside of Opisthokonts, has remained limited. Here, we report that in the ciliate protozoan Tetrahymena thermophila a single orthologue of human RBBP4 and 7 proteins, RebL1, physically interacts with histone H4 and functions in multiple epigenetic regulatory pathways. Functional proteomics identified conserved functional links for Tetrahymena RebL1 protein as well as human RBBP4 and 7. We found that putative subunits of multiple chromatin-related complexes including CAF1, Hat1, Rpd3, and MuvB, co-purified with RebL1 during Tetrahymena growth and conjugation. Iterative proteomics analyses revealed that the cell cycle regulatory MuvB-complex in Tetrahymena is composed of at least five subunits including evolutionarily conserved Lin54, Lin9 and RebL1 proteins. Genome-wide analyses indicated that RebL1 and Lin54 (Anqa1) bind within genic and intergenic regions. Moreover, Anqa1 targets primarily promoter regions suggesting a role for Tetrahymena MuvB in transcription regulation. RebL1 depletion inhibited cellular growth and reduced the expression levels of Anqa1 and Lin9. Consistent with observations in glioblastoma tumors, RebL1 depletion suppressed DNA repair protein Rad51 in Tetrahymena, thus underscoring the evolutionarily conserved functions of RBBP4/7 proteins. Our results suggest the essentiality of RebL1 functions in multiple epigenetic regulatory complexes in which it impacts transcription regulation and cellular viability.
Collapse
Affiliation(s)
- Syed Nabeel-Shah
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto M5B 2K3, Canada
| | - Jyoti Garg
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto M5B 2K3, Canada.,Department of Biology, York University, 4700 Keele St., Toronto M3J 1P3, Canada
| | - Alejandro Saettone
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto M5B 2K3, Canada
| | - Kanwal Ashraf
- Department of Biology, York University, 4700 Keele St., Toronto M3J 1P3, Canada
| | - Hyunmin Lee
- Department of Computer Science, University of Toronto, Toronto M5S 1A8, Canada.,Donnelly Centre, University of Toronto, Toronto M5S 3E1, Canada
| | - Suzanne Wahab
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto M5B 2K3, Canada
| | - Nujhat Ahmed
- Donnelly Centre, University of Toronto, Toronto M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Jacob Fine
- Department of Biology, York University, 4700 Keele St., Toronto M3J 1P3, Canada
| | - Joanna Derynck
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto M5B 2K3, Canada
| | - Shuye Pu
- Donnelly Centre, University of Toronto, Toronto M5S 3E1, Canada
| | - Marcelo Ponce
- SciNet HPC Consortium, University of Toronto, 661 University Avenue, Suite 1140, Toronto M5G 1M1, Canada
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto M5S 3E1, Canada
| | - Zhaolei Zhang
- Department of Computer Science, University of Toronto, Toronto M5S 1A8, Canada.,Donnelly Centre, University of Toronto, Toronto M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Jack F Greenblatt
- Donnelly Centre, University of Toronto, Toronto M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Ronald E Pearlman
- Department of Biology, York University, 4700 Keele St., Toronto M3J 1P3, Canada
| | - Jean-Philippe Lambert
- Department of Molecular Medicine, Cancer Research Center, Big Data Research Center, Université Laval, Quebec City, Canada; CHU de Québec Research Center, CHUL, 2705 Laurier Boulevard, Quebec City G1V 4G2, Canada
| | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto M5B 2K3, Canada
| |
Collapse
|
20
|
Abstract
Polymerase Chain Reaction (PCR) is a powerful tool to detect natural variation or experimentally introduced variation in research and clinical settings and a widely-used method for genotyping. Single nucleotide polymorphisms (SNP) detection is challenging by PCR as the variant and wild type alleles differ by only one nucleotide. Traditional methods to detect SNPs, including Sanger sequencing and commercial kits, are usually time-consuming. Here we describe a simple primer design strategy that enables specific variant detection through regular one-step PCR. The strategy employs the differential efficiency of genomic PCR using a primer that has a single mismatch with the chromosome that contains the SNP to be detected (typically the variant allele) versus two mismatches with the corresponding alternative allele (typically the wild type allele). To date, we have successfully employed this approach to detect more than 20 SNPs. The simplicity and robustness of the approach allows rapid application to legacy mutations as well as newly discovered or generated SNPs.
Collapse
Affiliation(s)
- Jian Chen
- Department of Genetics, School of Medicine, Washington University in St. Louis, Missouri 63110
| | - Tim Schedl
- Department of Genetics, School of Medicine, Washington University in St. Louis, Missouri 63110
| |
Collapse
|
21
|
Willis AR, Zhao W, Sukhdeo R, Wadi L, El Jarkass HT, Claycomb JM, Reinke AW. A parental transcriptional response to microsporidia infection induces inherited immunity in offspring. SCIENCE ADVANCES 2021; 7:7/19/eabf3114. [PMID: 33952520 PMCID: PMC8099193 DOI: 10.1126/sciadv.abf3114] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/17/2021] [Indexed: 05/05/2023]
Abstract
Parental infection can result in the production of offspring with enhanced immunity phenotypes. Critically, the mechanisms underlying inherited immunity are poorly understood. Here, we show that Caenorhabditis elegans infected with the intracellular microsporidian parasite N. parisii produce progeny that are resistant to microsporidia infection. We determine the kinetics of the response and show that intergenerational immunity prevents host-cell invasion by Nematocida parisii and enhances survival to the bacterial pathogen Pseudomonas aeruginosa We demonstrate that immunity is induced by the parental transcriptional response to infection, which can be mimicked through maternal somatic depletion of PALS-22 and the retinoblastoma protein ortholog, LIN-35. We find that other biotic and abiotic stresses (viral infection and cadmium exposure) that induce a similar transcriptional response as microsporidia also induce immunity in progeny. Together, our results reveal how a parental transcriptional signal can be induced by distinct stimuli and protect offspring against multiple classes of pathogens.
Collapse
Affiliation(s)
- Alexandra R Willis
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Winnie Zhao
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Ronesh Sukhdeo
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lina Wadi
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Aaron W Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
22
|
Kazmierczak M, Farré i Díaz C, Ofenbauer A, Herzog S, Tursun B. The CONJUDOR pipeline for multiplexed knockdown of gene pairs identifies RBBP-5 as a germ cell reprogramming barrier in C. elegans. Nucleic Acids Res 2021; 49:e22. [PMID: 33290523 PMCID: PMC7913679 DOI: 10.1093/nar/gkaa1171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 12/05/2022] Open
Abstract
Multiple gene activities control complex biological processes such as cell fate specification during development and cellular reprogramming. Investigating the manifold gene functions in biological systems requires also simultaneous depletion of two or more gene activities. RNA interference-mediated knockdown (RNAi) is commonly used in Caenorhabditis elegans to assess essential genes, which otherwise lead to lethality or developmental arrest upon full knockout. RNAi application is straightforward by feeding worms with RNAi plasmid-containing bacteria. However, the general approach of mixing bacterial RNAi clones to deplete two genes simultaneously often yields poor results. To address this issue, we developed a bacterial conjugation-mediated double RNAi technique 'CONJUDOR'. It allows combining RNAi bacteria for robust double RNAi with high-throughput. To demonstrate the power of CONJUDOR for large scale double RNAi screens we conjugated RNAi against the histone chaperone gene lin-53 with more than 700 other chromatin factor genes. Thereby, we identified the Set1/MLL methyltransferase complex member RBBP-5 as a novel germ cell reprogramming barrier. Our findings demonstrate that CONJUDOR increases efficiency and versatility of RNAi screens to examine interconnected biological processes in C. elegans with high-throughput.
Collapse
Affiliation(s)
- Marlon Kazmierczak
- Berlin Institute for Medical Systems Biology, Berlin 10115, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Carlota Farré i Díaz
- Berlin Institute for Medical Systems Biology, Berlin 10115, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Andreas Ofenbauer
- Berlin Institute for Medical Systems Biology, Berlin 10115, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Sergej Herzog
- Berlin Institute for Medical Systems Biology, Berlin 10115, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Baris Tursun
- Berlin Institute for Medical Systems Biology, Berlin 10115, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| |
Collapse
|
23
|
Kaushik M, Nehra A, Gakhar SK, Gill SS, Gill R. The multifaceted histone chaperone RbAp46/48 in Plasmodium falciparum: structural insights, production, and characterization. Parasitol Res 2020; 119:1753-1765. [PMID: 32363442 DOI: 10.1007/s00436-020-06669-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/15/2020] [Indexed: 12/31/2022]
Abstract
RbAp46/RBBP7 and RbAp48/RBBP4 are WD40-repeat histone chaperones and chromatin adaptors that reside in multiple complexes involved in maintenance of chromatin structure. RbAp48 is the essential subunit of the chromatin assembly factor-1 (CAF-1) complex, therefore also named as CAF-1C. A detailed in silico sequence and structure analysis of homologs of RbAp46/48 in Plasmodium falciparum (PF3D7_0110700 and PF3D7_1433300) exhibited conservation of characteristic features in both the protein-seven-bladed WD40 β-propeller conformation and different binding interfaces. A comparative structural analysis highlighted species-specific features of the parasite, yeast, drosophila, and human RbAp46/48. In the present study, we report cloning, expression, and characterization of P. falciparum PF3D7_0110700, a putative RbAp46/48 (PfRbAp46/48). PfRbAp46/48 was cloned into pTEM11 vector in fusion with 6xHistidine tag and over-expressed in Escherichia coli B834 cells. The protein was purified by Ni-NTA followed by gel permeation chromatography. The protein expressed in all the three asexual blood stages and exhibited nuclear localization. We showed direct interaction of the purified rPfRbAp46/48 with the histone H4. These findings further our understanding of RbAp46/48 proteins and role of these proteins in the parasite biology.
Collapse
Affiliation(s)
- Manjeri Kaushik
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India
| | - Ashima Nehra
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India
| | - Surendra Kumar Gakhar
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India
| | - Sarvajeet Singh Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India
| | - Ritu Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India.
| |
Collapse
|
24
|
Müthel S, Uyar B, He M, Krause A, Vitrinel B, Bulut S, Vasiljevic D, Marchal I, Kempa S, Akalin A, Tursun B. The conserved histone chaperone LIN-53 is required for normal lifespan and maintenance of muscle integrity in Caenorhabditis elegans. Aging Cell 2019; 18:e13012. [PMID: 31397537 PMCID: PMC6826145 DOI: 10.1111/acel.13012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022] Open
Abstract
Whether extension of lifespan provides an extended time without health deteriorations is an important issue for human aging. However, to which degree lifespan and aspects of healthspan regulation might be linked is not well understood. Chromatin factors could be involved in linking both aging aspects, as epigenetic mechanisms bridge regulation of different biological processes. The epigenetic factor LIN‐53 (RBBP4/7) associates with different chromatin‐regulating complexes to safeguard cell identities in Caenorhabditis elegans as well as mammals, and has a role in preventing memory loss and premature aging in humans. We show that LIN‐53 interacts with the nucleosome remodeling and deacetylase (NuRD) complex in C. elegans muscles to ensure functional muscles during postembryonic development and in adults. While mutants for other NuRD members show a normal lifespan, animals lacking LIN‐53 die early because LIN‐53 depletion affects also the histone deacetylase complex Sin3, which is required for a normal lifespan. To determine why lin‐53 and sin‐3 mutants die early, we performed transcriptome and metabolomic analysis revealing that levels of the disaccharide trehalose are significantly decreased in both mutants. As trehalose is required for normal lifespan in C. elegans, lin‐53 and sin‐3 mutants could be rescued by either feeding with trehalose or increasing trehalose levels via the insulin/IGF1 signaling pathway. Overall, our findings suggest that LIN‐53 is required for maintaining lifespan and muscle integrity through discrete chromatin regulatory mechanisms. Since both LIN‐53 and its mammalian homologs safeguard cell identities, it is conceivable that its implication in lifespan regulation is also evolutionarily conserved.
Collapse
Affiliation(s)
- Stefanie Müthel
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Bora Uyar
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Mei He
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Anne Krause
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Burcu Vitrinel
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Selman Bulut
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Djordje Vasiljevic
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Iris Marchal
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Stefan Kempa
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Altuna Akalin
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Baris Tursun
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| |
Collapse
|
25
|
Shin H, Reiner DJ. The Signaling Network Controlling C. elegans Vulval Cell Fate Patterning. J Dev Biol 2018; 6:E30. [PMID: 30544993 PMCID: PMC6316802 DOI: 10.3390/jdb6040030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022] Open
Abstract
EGF, emitted by the Anchor Cell, patterns six equipotent C. elegans vulval precursor cells to assume a precise array of three cell fates with high fidelity. A group of core and modulatory signaling cascades forms a signaling network that demonstrates plasticity during the transition from naïve to terminally differentiated cells. In this review, we summarize the history of classical developmental manipulations and molecular genetics experiments that led to our understanding of the signals governing this process, and discuss principles of signal transduction and developmental biology that have emerged from these studies.
Collapse
Affiliation(s)
- Hanna Shin
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
| | - David J Reiner
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
- College of Medicine, Texas A & M University, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Turcotte CA, Sloat SA, Rigothi JA, Rosenkranse E, Northrup AL, Andrews NP, Checchi PM. Maintenance of Genome Integrity by Mi2 Homologs CHD-3 and LET-418 in Caenorhabditis elegans. Genetics 2018; 208:991-1007. [PMID: 29339410 PMCID: PMC5844346 DOI: 10.1534/genetics.118.300686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/10/2018] [Indexed: 02/06/2023] Open
Abstract
Meiotic recombination depends upon the tightly coordinated regulation of chromosome dynamics and is essential for the production of haploid gametes. Central to this process is the formation and repair of meiotic double-stranded breaks (DSBs), which must take place within the constraints of a specialized chromatin architecture. Here, we demonstrate a role for the nucleosome remodeling and deacetylase (NuRD) complex in orchestrating meiotic chromosome dynamics in Caenorhabditis elegans Our data reveal that the conserved Mi2 homologs Chromodomain helicase DNA-binding protein (CHD-3) and its paralog LET-418 facilitate meiotic progression by ensuring faithful repair of DSBs through homologous recombination. We discovered that loss of either CHD-3 or LET-418 results in elevated p53-dependent germ line apoptosis, which relies on the activation of the conserved checkpoint kinase CHK-1 Consistent with these findings, chd-3 and let-418 mutants produce a reduced number of offspring, indicating a role for Mi2 in forming viable gametes. When Mi2 function is compromised, persisting recombination intermediates are detected in late pachytene nuclei, indicating a failure in the timely repair of DSBs. Intriguingly, our data indicate that in Mi2 mutant germ lines, a subset of DSBs are repaired by nonhomologous end joining, which manifests as chromosomal fusions. We find that meiotic defects are exacerbated in Mi2 mutants lacking CKU-80, as evidenced by increased recombination intermediates, corpses, and defects in chromosomal integrity. Taken together, our findings support a model wherein the C. elegans Mi2 complex maintains genomic integrity through reinforcement of a chromatin landscape suitable for homology-driven repair mechanisms.
Collapse
Affiliation(s)
| | - Solomon A Sloat
- Department of Biology, Marist College, Poughkeepsie, New York 12601
| | - Julia A Rigothi
- Department of Biology, Marist College, Poughkeepsie, New York 12601
| | | | | | | | - Paula M Checchi
- Department of Biology, Marist College, Poughkeepsie, New York 12601
| |
Collapse
|
27
|
Lee CYS, Lu T, Seydoux G. Nanos promotes epigenetic reprograming of the germline by down-regulation of the THAP transcription factor LIN-15B. eLife 2017; 6:30201. [PMID: 29111977 PMCID: PMC5734877 DOI: 10.7554/elife.30201] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/06/2017] [Indexed: 12/15/2022] Open
Abstract
Nanos RNA-binding proteins are required for germline development in metazoans, but the underlying mechanisms remain poorly understood. We have profiled the transcriptome of primordial germ cells (PGCs) lacking the nanos homologs nos-1 and nos-2 in C. elegans. nos-1nos-2 PGCs fail to silence hundreds of transcripts normally expressed in oocytes. We find that this misregulation is due to both delayed turnover of maternal transcripts and inappropriate transcriptional activation. The latter appears to be an indirect consequence of delayed turnover of the maternally-inherited transcription factor LIN-15B, a synMuvB class transcription factor known to antagonize PRC2 activity. PRC2 is required for chromatin reprogramming in the germline, and the transcriptome of PGCs lacking PRC2 resembles that of nos-1nos-2 PGCs. Loss of maternal LIN-15B restores fertility to nos-1nos-2 mutants. These findings suggest that Nanos promotes germ cell fate by downregulating maternal RNAs and proteins that would otherwise interfere with PRC2-dependent reprogramming of PGC chromatin.
Collapse
Affiliation(s)
- Chih-Yung Sean Lee
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Tu Lu
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Geraldine Seydoux
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
28
|
Goetsch PD, Garrigues JM, Strome S. Loss of the Caenorhabditis elegans pocket protein LIN-35 reveals MuvB's innate function as the repressor of DREAM target genes. PLoS Genet 2017; 13:e1007088. [PMID: 29091720 PMCID: PMC5683655 DOI: 10.1371/journal.pgen.1007088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/13/2017] [Accepted: 10/24/2017] [Indexed: 12/27/2022] Open
Abstract
The DREAM (Dp/Retinoblastoma(Rb)-like/E2F/MuvB) transcriptional repressor complex acts as a gatekeeper of the mammalian cell cycle by establishing and maintaining cellular quiescence. How DREAM’s three functional components, the E2F-DP heterodimer, the Rb-like pocket protein, and the MuvB subcomplex, form and function at target gene promoters remains unknown. The current model invokes that the pocket protein links E2F-DP and MuvB and is essential for gene repression. We tested this model by assessing how the conserved yet less redundant DREAM system in Caenorhabditis elegans is affected by absence of the sole C. elegans pocket protein LIN-35. Using a LIN-35 protein null mutant, we analyzed the assembly of E2F-DP and MuvB at promoters that are bound by DREAM and the level of expression of those "DREAM target genes" in embryos. We report that LIN-35 indeed mediates the association of E2F-DP and MuvB, a function that stabilizes DREAM subunit occupancy at target genes. In the absence of LIN-35, the occupancy of E2F-DP and MuvB at most DREAM target genes decreases dramatically and many of those genes become upregulated. The retention of E2F-DP and MuvB at some target gene promoters in lin-35 null embryos allowed us to test their contribution to DREAM target gene repression. Depletion of MuvB, but not E2F-DP, in the sensitized lin-35 null background caused further upregulation of DREAM target genes. We conclude that the pocket protein functions primarily to support MuvB-mediated repression of DREAM targets and that transcriptional repression is the innate function of the evolutionarily conserved MuvB complex. Our findings provide important insights into how mammalian DREAM assembly and disassembly may regulate gene expression and the cell cycle. The 8-subunit DREAM transcriptional repressor complex contains 3 functional components that together control expression of cell cycle and developmental genes. How the E2F-DP transcription factor heterodimer, the pocket protein, and the highly conserved MuvB complex coalesce on chromatin and repress DREAM target genes has yet to be determined. We directly tested the prevailing model that the DREAM pocket protein links E2F-DP to MuvB and is required for gene repression. Using a protein null mutant of the sole C. elegans pocket protein LIN-35, we demonstrate that the pocket protein indeed links E2F-DP and MuvB, which aids in the stable occupancy of DREAM components near target genes. Depletion of additional DREAM components in lin-35 null worms revealed that the remaining chromatin-bound MuvB represses target genes. We conclude that the MuvB subcomplex mediates DREAM’s critical repressive function. Our functional genomics approach in the simplified C. elegans system reveals that the ancestral function of the pocket protein is to stabilize the innate repressive activity of MuvB, ensuring proper regulation of DREAM target genes through development.
Collapse
Affiliation(s)
- Paul D. Goetsch
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jacob M. Garrigues
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Susan Strome
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Lee BCH, Lin Z, Yuen KWY. RbAp46/48(LIN-53) Is Required for Holocentromere Assembly in Caenorhabditis elegans. Cell Rep 2016; 14:1819-28. [PMID: 26904949 DOI: 10.1016/j.celrep.2016.01.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/01/2015] [Accepted: 01/21/2016] [Indexed: 12/14/2022] Open
Abstract
Centromeres, the specialized chromosomal regions for recruiting kinetochores and directing chromosome segregation, are epigenetically marked by a centromeric histone H3 variant, CENP-A. To maintain centromere identity through cell cycles, CENP-A diluted during DNA replication is replenished. The licensing factor M18BP1(KNL-2) is known to recruit CENP-A to holocentromeres. Here, we show that RbAp46/48(LIN-53), a conserved histone chaperone, is required for CENP-A(HCP-3) localization in holocentric Caenorhabditis elegans. Indeed, RbAp46/48(LIN-53) and CENP-A(HCP-3) localizations are interdependent. RbAp46/48(LIN-53) localizes to the centromere during metaphase in a CENP-A(HCP-3)- and M18BP1(KNL-2)-dependent manner, suggesting CENP-A(HCP-3) loading may occur before anaphase. RbAp46/48(LIN-53) does not function at the centromere through histone acetylation, H3K27 trimethylation, or its known chromatin-modifying complexes. RbAp46/48(LIN-53) may function independently to escort CENP-A(HCP-3) for holocentromere assembly but is dispensable for other kinetochore protein recruitment. Nonetheless, depletion of RbAp46/48(LIN-53) leads to anaphase bridges and chromosome missegregation. This study unravels the holocentromere assembly hierarchy and its conservation with monocentromeres.
Collapse
Affiliation(s)
- Bernard Chi Hang Lee
- School of Biological Sciences, the University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Zhongyang Lin
- School of Biological Sciences, the University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Karen Wing Yee Yuen
- School of Biological Sciences, the University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong.
| |
Collapse
|
30
|
Jia F, Cui M, Than MT, Han M. Developmental Defects of Caenorhabditis elegans Lacking Branched-chain α-Ketoacid Dehydrogenase Are Mainly Caused by Monomethyl Branched-chain Fatty Acid Deficiency. J Biol Chem 2015; 291:2967-73. [PMID: 26683372 DOI: 10.1074/jbc.m115.676650] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 12/20/2022] Open
Abstract
Branched-chain α-ketoacid dehydrogenase (BCKDH) catalyzes the critical step in the branched-chain amino acid (BCAA) catabolic pathway and has been the focus of extensive studies. Mutations in the complex disrupt many fundamental metabolic pathways and cause multiple human diseases including maple syrup urine disease (MSUD), autism, and other related neurological disorders. BCKDH may also be required for the synthesis of monomethyl branched-chain fatty acids (mmBCFAs) from BCAAs. The pathology of MSUD has been attributed mainly to BCAA accumulation, but the role of mmBCFA has not been evaluated. Here we show that disrupting BCKDH in Caenorhabditis elegans causes mmBCFA deficiency, in addition to BCAA accumulation. Worms with deficiency in BCKDH function manifest larval arrest and embryonic lethal phenotypes, and mmBCFA supplementation suppressed both without correcting BCAA levels. The majority of developmental defects caused by BCKDH deficiency may thus be attributed to lacking mmBCFAs in worms. Tissue-specific analysis shows that restoration of BCKDH function in multiple tissues can rescue the defects, but is especially effective in neurons. Taken together, we conclude that mmBCFA deficiency is largely responsible for the developmental defects in the worm and conceivably might also be a critical contributor to the pathology of human MSUD.
Collapse
Affiliation(s)
- Fan Jia
- From the Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309-0347
| | - Mingxue Cui
- From the Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309-0347
| | - Minh T Than
- From the Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309-0347
| | - Min Han
- From the Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309-0347
| |
Collapse
|
31
|
Garcia-Segura L, Abreu-Goodger C, Hernandez-Mendoza A, Dimitrova Dinkova TD, Padilla-Noriega L, Perez-Andrade ME, Miranda-Rios J. High-Throughput Profiling of Caenorhabditis elegans Starvation-Responsive microRNAs. PLoS One 2015; 10:e0142262. [PMID: 26554708 PMCID: PMC4640506 DOI: 10.1371/journal.pone.0142262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/20/2015] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs of ~22 nucleotides in length that regulate gene expression by interfering with the stability and translation of mRNAs. Their expression is regulated during development, under a wide variety of stress conditions and in several pathological processes. In nature, animals often face feast or famine conditions. We observed that subjecting early L4 larvae from Caenorhabditis elegans to a 12-hr starvation period produced worms that are thinner and shorter than well-fed animals, with a decreased lipid accumulation, diminished progeny, reduced gonad size, and an increased lifespan. Our objective was to identify which of the 302 known miRNAs of C. elegans changed their expression under starvation conditions as compared to well-fed worms by means of deep sequencing in early L4 larvae. Our results indicate that 13 miRNAs (miR-34-3p, the family of miR-35-3p to miR-41-3p, miR-39-5p, miR-41-5p, miR-240-5p, miR-246-3p and miR-4813-5p) were upregulated, while 2 miRNAs (let-7-3p and miR-85-5p) were downregulated in 12-hr starved vs. well-fed early L4 larvae. Some of the predicted targets of the miRNAs that changed their expression in starvation conditions are involved in metabolic or developmental process. In particular, miRNAs of the miR-35 family were upregulated 6–20 fold upon starvation. Additionally, we showed that the expression of gld-1, important in oogenesis, a validated target of miR-35-3p, was downregulated when the expression of miR-35-3p was upregulated. The expression of another reported target, the cell cycle regulator lin-23, was unchanged during starvation. This study represents a starting point for a more comprehensive understanding of the role of miRNAs during starvation in C. elegans.
Collapse
Affiliation(s)
- Laura Garcia-Segura
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), México, D.F., México
- Unidad de Genética de la Nutrición, Depto. de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, UNAM e Instituto Nacional de Pediatría, México, D.F., México
| | - Cei Abreu-Goodger
- Unidad de Genómica Avanzada (Langebio), CINVESTAV, Irapuato, Guanajuato, México
| | - Armando Hernandez-Mendoza
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Edo. de Morelos, Cuernavaca, Morelos, México
| | | | - Luis Padilla-Noriega
- Departamento de Virología, Facultad de Medicina, Universidad Nacional Autónoma de México, México, D.F., México
| | - Martha Elva Perez-Andrade
- Unidad de Genética de la Nutrición, Depto. de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, UNAM e Instituto Nacional de Pediatría, México, D.F., México
| | - Juan Miranda-Rios
- Unidad de Genética de la Nutrición, Depto. de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, UNAM e Instituto Nacional de Pediatría, México, D.F., México
- * E-mail:
| |
Collapse
|
32
|
Direct and positive regulation of Caenorhabditis elegans bed-3 by PRDM1/BLIMP1 ortholog BLMP-1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1229-36. [DOI: 10.1016/j.bbagrm.2015.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 11/19/2022]
|
33
|
Sharanya D, Fillis CJ, Kim J, Zitnik EM, Ward KA, Gallagher ME, Chamberlin HM, Gupta BP. Mutations in Caenorhabditis briggsae identify new genes important for limiting the response to EGF signaling during vulval development. Evol Dev 2015; 17:34-48. [PMID: 25627712 DOI: 10.1111/ede.12105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies of vulval development in the nematode C. elegans have identified many genes that are involved in cell division and differentiation processes. Some of these encode components of conserved signal transduction pathways mediated by EGF, Notch, and Wnt. To understand how developmental mechanisms change during evolution, we are doing a comparative analysis of vulva formation in C. briggsae, a species that is closely related to C. elegans. Here, we report 14 mutations in 7 Multivulva (Muv) genes in C. briggsae that inhibit inappropriate division of vulval precursors. We have developed a new efficient and cost-effective gene mapping method to localize Muv mutations to small genetic intervals on chromosomes, thus facilitating cloning and functional studies. We demonstrate the utility of our method by determining molecular identities of three of the Muv genes that include orthologs of Cel-lin-1 (ETS) and Cel-lin-31 (Winged-Helix) of the EGF-Ras pathway and Cel-pry-1 (Axin), of the Wnt pathway. The remaining four genes reside in regions that lack orthologs of known C. elegans Muv genes. Inhibitor studies demonstrate that the Muv phenotype of all four new genes is dependent on the activity of the EGF pathway kinase, MEK. One of these, Cbr-lin(gu167), shows modest increase in the expression of Cbr-lin-3/EGF compared to wild type. These results argue that while Cbr-lin(gu167) may act upstream of Cbr-lin-3/EGF, the other three genes influence the EGF pathway downstream or in parallel to Cbr-lin-3. Overall, our findings demonstrate that the genetic program underlying a conserved developmental process includes both conserved and divergent functional contributions.
Collapse
Affiliation(s)
- Devika Sharanya
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Praslicka B, Gissendanner CR. The C. elegans NR4A nuclear receptor gene nhr-6 promotes cell cycle progression in the spermatheca lineage. Dev Dyn 2015; 244:417-30. [PMID: 25529479 DOI: 10.1002/dvdy.24244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND NR4A nuclear receptors are a conserved, functionally diverse group of nuclear receptors that regulate multiple cellular processes including proliferation and differentiation. The gene nhr-6 encodes the sole Caenorhabditis elegans NR4A nuclear receptor homolog with an essential role in reproduction by regulating morphogenesis of the spermatheca, a somatic gonad organ involved in ovulation and fertilization. RESULTS Here, we identify the spermatheca cell lineage defects that occur in nhr-6 mutants. Utilizing cell marker analysis, we find that nhr-6 is required for cell cycle progression and that the cell proliferation phenotype is not due to premature cell cycle exit. We also show that loss of the negative cell cycle regulators fzr-1 and lin-35 suppresses the cell proliferation defects. We further demonstrate that NHR-6 activity intersects with Eph receptor signaling during spermatheca cell proliferation. CONCLUSIONS NHR-6 has an essential function in promoting cell cycle progression during G1 phase in a specific spermatheca cell lineage. Genetic suppression of the proliferation phenotype does not affect the differentiation phenotypes observed in nhr-6 mutants, indicating a dualistic role for nhr-6 in regulating cell proliferation and cell differentiation during spermatheca organogenesis.
Collapse
Affiliation(s)
- Brandon Praslicka
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana
| | | |
Collapse
|
35
|
Conversion of the LIN-1 ETS protein of Caenorhabditis elegans from a SUMOylated transcriptional repressor to a phosphorylated transcriptional activator. Genetics 2015; 199:761-75. [PMID: 25567989 DOI: 10.1534/genetics.114.172668] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The LIN-1 ETS transcription factor plays a pivotal role in controlling cell fate decisions during development of the Caenorhabditis elegans vulva. Prior to activation of the RTK/Ras/ERK-signaling pathway, LIN-1 functions as a SUMOylated transcriptional repressor that inhibits vulval cell fate. Here we demonstrate using the yeast two-hybrid system that SUMOylation of LIN-1 mediates interactions with a protein predicted to be involved in transcriptional repression: the RAD-26 Mi-2β/CHD4 component of the nucleosome remodeling and histone deacetylation (NuRD) transcriptional repression complex. Genetic studies indicated that rad-26 functions to inhibit vulval cell fates in worms. Using the yeast two-hybrid system, we showed that the EGL-27/MTA1 component of the NuRD complex binds the carboxy-terminus of LIN-1 independently of LIN-1 SUMOylation. EGL-27 also binds UBC-9, an enzyme involved in SUMOylation, and MEP-1, a zinc-finger protein previously shown to bind LIN-1. Genetic studies indicate that egl-27 inhibits vulval cell fates in worms. These results suggest that LIN-1 recruits multiple proteins that repress transcription via both the SUMOylated amino-terminus and the unSUMOylated carboxy-terminus. Assays in cultured cells showed that the carboxy-terminus of LIN-1 was converted to a potent transcriptional activator in response to active ERK. We propose a model in which LIN-1 recruits multiple transcriptional repressors to inhibit the 1° vulval cell fate, and phosphorylation by ERK converts LIN-1 to a transcriptional activator that promotes the 1° vulval cell fate.
Collapse
|
36
|
Popov B, Petrov N. pRb-E2F signaling in life of mesenchymal stem cells: Cell cycle, cell fate, and cell differentiation. Genes Dis 2014; 1:174-187. [PMID: 30258863 PMCID: PMC6150080 DOI: 10.1016/j.gendis.2014.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/14/2014] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into various mesodermal lines forming fat, muscle, bone, and other lineages of connective tissue. MSCs possess plasticity and under special metabolic conditions may transform into cells of unusual phenotypes originating from ecto- and endoderm. After transplantation, MSCs release the humoral factors promoting regeneration of the damaged tissue. During last five years, the numbers of registered clinical trials of MSCs have increased about 10 folds. This gives evidence that MSCs present a new promising resource for cell therapy of the most dangerous diseases. The efficacy of the MSCs therapy is limited by low possibilities to regulate their conversion into cells of damaged tissues that is implemented by the pRb-E2F signaling. The widely accepted viewpoint addresses pRb as ubiquitous regulator of cell cycle and tumor suppressor. However, current publications suggest that basic function of the pRb-E2F signaling in development is to regulate cell fate and differentiation. Through facultative and constitutive chromatin modifications, pRb-E2F signaling promotes transient and stable cells quiescence, cell fate choice to differentiate, to senesce, or to die. Loss of pRb is associated with cancer cell fate. pRb regulates cell fate by retaining quiescence of one cell population in favor of commitment of another or by suppression of genes of different cell phenotype. pRb is the founder member of the "pocket protein" family possessing functional redundancy. Critical increase in the efficacy of the MSCs based cell therapy will depend on precise understanding of various aspects of the pRb-E2F signaling.
Collapse
Affiliation(s)
- Boris Popov
- Institute of Cytology, Russian Academy of Sciences, St.Petersburg, 4, Tikhoretsky Av., 194064, Russia
| | | |
Collapse
|
37
|
Lu Y, Roy R. Centrosome/Cell cycle uncoupling and elimination in the endoreduplicating intestinal cells of C. elegans. PLoS One 2014; 9:e110958. [PMID: 25360893 PMCID: PMC4215990 DOI: 10.1371/journal.pone.0110958] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 09/28/2014] [Indexed: 01/14/2023] Open
Abstract
The centrosome cycle is most often coordinated with mitotic cell division through the activity of various essential cell cycle regulators, consequently ensuring that the centriole is duplicated once, and only once, per cell cycle. However, this coupling can be altered in specific developmental contexts; for example, multi-ciliated cells generate hundreds of centrioles without any S-phase requirement for their biogenesis, while Drosophila follicle cells eliminate their centrosomes as they begin to endoreduplicate. In order to better understand how the centrosome cycle and the cell cycle are coordinated in a developmental context we use the endoreduplicating intestinal cell lineage of C. elegans to address how novel variations of the cell cycle impact this important process. In C. elegans, the larval intestinal cells undergo one nuclear division without subsequent cytokinesis, followed by four endocycles that are characterized by successive rounds of S-phase. We monitored the levels of centriolar/centrosomal markers and found that centrosomes lose their pericentriolar material following the nuclear division that occurs during the L1 stage and is thereafter never re-gained. The centrioles then become refractory to S phase regulators that would normally promote duplication during the first endocycle, after which they are eliminated during the L2 stage. Furthermore, we show that SPD-2 plays a central role in the numeral regulation of centrioles as a potential target of CDK activity. On the other hand, the phosphorylation on SPD-2 by Polo-like kinase, the transcriptional regulation of genes that affect centriole biogenesis, and the ubiquitin/proteasome degradation pathway, contribute collectively to the final elimination of the centrioles during the L2 stage.
Collapse
Affiliation(s)
- Yu Lu
- Department of Biology, The Developmental Biology Research Initiative, McGill University, Montreal, Quebec, Canada
| | - Richard Roy
- Department of Biology, The Developmental Biology Research Initiative, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
38
|
LIN-35/Rb causes starvation-induced germ cell apoptosis via CED-9/Bcl2 downregulation in Caenorhabditis elegans. Mol Cell Biol 2014; 34:2499-516. [PMID: 24752899 DOI: 10.1128/mcb.01532-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Apoptosis is an important mechanism for maintaining germ line health. In Caenorhabditis elegans, germ cell apoptosis occurs under normal conditions to sustain gonad homeostasis and oocyte quality. Under stress, germ cell apoptosis can be triggered via different pathways, including the following: (i) the CEP-1/p53 pathway, which induces germ cell apoptosis when animals are exposed to DNA damage; (ii) the mitogen-activated protein kinase kinase (MAPKK) pathway, which triggers germ cell apoptosis when animals are exposed to heat shock, oxidative stress, or osmotic stress; and (iii) an unknown mechanism that triggers germ cell apoptosis during starvation. Here, we address how starvation induces germ cell apoptosis. Using polysomal profiling, we found that starvation for 6 h reduces the translationally active ribosomes, which differentially affect the mRNAs of the core apoptotic machinery and some of its regulators. During starvation, lin-35/Rb mRNA increases its expression, resulting in the accumulation of this protein. As a consequence, LIN-35 downregulates the expression of the antiapoptotic gene ced-9/Bcl-2. We observed that the reduced translation of ced-9/Bcl-2 mRNA during food deprivation together with its downregulation drastically affects its protein accumulation. We propose that CED-9/Bcl-2 downregulation via LIN-35/Rb triggers germ cell apoptosis in C. elegans in response to starvation.
Collapse
|
39
|
Identification of a genetic interaction between the tumor suppressor EAF2 and the retinoblastoma protein (Rb) signaling pathway in C. elegans and prostate cancer cells. Biochem Biophys Res Commun 2014; 447:292-8. [PMID: 24727455 DOI: 10.1016/j.bbrc.2014.03.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 12/25/2022]
Abstract
The tumor suppressor EAF2 is regulated by androgen signaling and associated with prostate cancer. While EAF2 and its partner ELL have been shown to be members of protein complexes involved in RNA polymerase II transcriptional elongation, the biologic roles for EAF2 especially with regards to the development of cancer remains poorly understood. We have previously identified the eaf-1 gene in Caenorhabditiselegans as the ortholog of EAF2, and shown that eaf-1 interacts with the ELL ortholog ell-1 to control development and fertility in worms. To identify genetic pathways that interact with eaf-1, we screened RNAi libraries consisting of transcription factors, phosphatases, and chromatin-modifying factors to identify genes which enhance the effects of eaf-1(tm3976) on fertility. From this screen, we identified lin-53, hmg-1.2, pha-4, ruvb-2 and set-6 as hits. LIN-53 is the C. elegans ortholog of human retinoblastoma binding protein 4/7 (RBBP 4/7), which binds to the retinoblastoma protein and inhibits the Ras signaling pathway. We find that lin-53 showed a synthetic interaction with eaf-1(tm3976) where knockdown of lin-53 in an eaf-1(tm3976) mutant resulted in sterile worms. This phenotype may be due to cell death as the treated worms contain degenerated embryos with increased expression of the ced-1:GFP cell death marker. Further we find that the interaction between eaf-1 and lin-53/RBBP4/7 also exists in vertebrates, which is reflected by the formation of a protein complex between EAF2 and RBBP4/7. Finally, overexpression of either human EAF2 or RBBP4 in LNCaP cells induced the cell death while knockdown of EAF2 in LNCaP enhanced cell proliferation, indicating an important role of EAF2 in controlling the growth and survival of prostate cancer cells. Together these findings identify a novel physical and functional interaction between EAF2 and the Rb pathway.
Collapse
|
40
|
The Caenorhabditis elegans HP1 family protein HPL-2 maintains ER homeostasis through the UPR and hormesis. Proc Natl Acad Sci U S A 2014; 111:5956-61. [PMID: 24715729 DOI: 10.1073/pnas.1321698111] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cellular adaptation to environmental changes and stress relies on a wide range of regulatory mechanisms that are tightly controlled at several levels, including transcription. Chromatin structure and chromatin binding proteins are important factors contributing to the transcriptional response to stress. However, it remains largely unknown to what extent specific chromatin factors influence the response to distinct forms of stress in a developmental context. One of the best characterized stress response pathways is the unfolded protein response (UPR), which is activated by accumulation of misfolded proteins in the endoplasmic reticulum (ER). Here, we show that Caenorhabditis elegans heterochromatin protein like-2 (HPL-2), the homolog of heterochromatin protein 1 (HP1), down-regulates the UPR in the intestine. Inactivation of HPL-2 results in an enhanced resistance to ER stress dependent on the X-box binding protein 1 (XBP-1)/inositol requiring enzyme 1 branch of the UPR and the closely related process of autophagy. Increased resistance to ER stress in animals lacking HPL-2 is associated with increased basal levels of XBP-1 activation and ER chaperone expression under physiological conditions, which may in turn activate an adaptive response known as ER hormesis. HPL-2 expression in intestinal cells is sufficient to rescue stress resistance, whereas expression in neuronal cells negatively influenced the ER stress response through a cell-nonautonomous mechanism. We further show that the retinoblastoma protein homolog LIN-35 and the LIN-13 zinc finger protein act in the same pathway as HPL-2 to limit the ER stress response. Altogether, our results point to multiple functions for HP1 in different cell types to maintain ER homeostasis.
Collapse
|
41
|
Abstract
Mammalian DREAM is a conserved protein complex that functions in cellular quiescence. DREAM contains an E2F, a retinoblastoma (RB)-family protein, and the MuvB core (LIN9, LIN37, LIN52, LIN54, and RBBP4). In mammals, MuvB can alternatively bind to BMYB to form a complex that promotes mitotic gene expression. Because BMYB-MuvB is essential for proliferation, loss-of-function approaches to study MuvB have generated limited insight into DREAM function. Here, we report a gene-targeted mouse model that is uniquely deficient for DREAM complex assembly. We have targeted p107 (Rbl1) to prevent MuvB binding and combined it with deficiency for p130 (Rbl2). Our data demonstrate that cells from these mice preferentially assemble BMYB-MuvB complexes and fail to repress transcription. DREAM-deficient mice show defects in endochondral bone formation and die shortly after birth. Micro-computed tomography and histology demonstrate that in the absence of DREAM, chondrocytes fail to arrest proliferation. Since DREAM requires DYRK1A (dual-specificity tyrosine phosphorylation-regulated protein kinase 1A) phosphorylation of LIN52 for assembly, we utilized an embryonic bone culture system and pharmacologic inhibition of (DYRK) kinase to demonstrate a similar defect in endochondral bone growth. This reveals that assembly of mammalian DREAM is required to induce cell cycle exit in chondrocytes.
Collapse
|
42
|
Alvares SM, Mayberry GA, Joyner EY, Lakowski B, Ahmed S. H3K4 demethylase activities repress proliferative and postmitotic aging. Aging Cell 2014; 13:245-53. [PMID: 24134677 PMCID: PMC4020274 DOI: 10.1111/acel.12166] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2013] [Indexed: 12/16/2022] Open
Abstract
Homeostasis of postmitotic and proliferating cells is maintained by pathways that repress stress. We found that the Caenorhabditis elegans histone 3 lysine 4 (H3K4) demethylases RBR-2 and SPR-5 promoted postmitotic longevity of stress-resistant daf-2 adults, altered pools of methylated H3K4, and promoted silencing of some daf-2 target genes. In addition, RBR-2 and SPR-5 were required for germ cell immortality at a high temperature. Transgenerational proliferative aging was enhanced for spr-5; rbr-2 double mutants, suggesting that these histone demethylases may function sequentially to promote germ cell immortality by targeting distinct H3K4 methyl marks. RBR-2 did not play a comparable role in the maintenance of quiescent germ cells in dauer larvae, implying that it represses stress that occurs as a consequence of germ cell proliferation, rather than stress that accumulates in nondividing cells. We propose that H3K4 demethylase activities promote the maintenance of chromatin states during stressful growth conditions, thereby repressing postmitotic aging of somatic cells as well as proliferative aging of germ cells.
Collapse
Affiliation(s)
- Stacy M. Alvares
- Department of Genetics University of North Carolina Chapel Hill NC 27599‐3280USA
- SPIRE Postdoctoral Fellowship Program University of North Carolina Chapel Hill NC 27599‐3280USA
| | - Gaea A. Mayberry
- Department of Biology University of North Carolina Chapel Hill NC 27599‐3280USA
| | - Ebony Y. Joyner
- Department of Natural Sciences Fayetteville State University Fayetteville NC 28301‐4298USA
| | - Bernard Lakowski
- Department of Neuroscience Institut Pasteur 75724 Paris Cedex 15 France
| | - Shawn Ahmed
- Department of Genetics University of North Carolina Chapel Hill NC 27599‐3280USA
- Department of Biology University of North Carolina Chapel Hill NC 27599‐3280USA
| |
Collapse
|
43
|
Roy SH, Tobin DV, Memar N, Beltz E, Holmen J, Clayton JE, Chiu DJ, Young LD, Green TH, Lubin I, Liu Y, Conradt B, Saito RM. A complex regulatory network coordinating cell cycles during C. elegans development is revealed by a genome-wide RNAi screen. G3 (BETHESDA, MD.) 2014; 4:795-804. [PMID: 24584095 PMCID: PMC4025478 DOI: 10.1534/g3.114.010546] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 02/25/2014] [Indexed: 12/11/2022]
Abstract
The development and homeostasis of multicellular animals requires precise coordination of cell division and differentiation. We performed a genome-wide RNA interference screen in Caenorhabditis elegans to reveal the components of a regulatory network that promotes developmentally programmed cell-cycle quiescence. The 107 identified genes are predicted to constitute regulatory networks that are conserved among higher animals because almost half of the genes are represented by clear human orthologs. Using a series of mutant backgrounds to assess their genetic activities, the RNA interference clones displaying similar properties were clustered to establish potential regulatory relationships within the network. This approach uncovered four distinct genetic pathways controlling cell-cycle entry during intestinal organogenesis. The enhanced phenotypes observed for animals carrying compound mutations attest to the collaboration between distinct mechanisms to ensure strict developmental regulation of cell cycles. Moreover, we characterized ubc-25, a gene encoding an E2 ubiquitin-conjugating enzyme whose human ortholog, UBE2Q2, is deregulated in several cancers. Our genetic analyses suggested that ubc-25 acts in a linear pathway with cul-1/Cul1, in parallel to pathways employing cki-1/p27 and lin-35/pRb to promote cell-cycle quiescence. Further investigation of the potential regulatory mechanism demonstrated that ubc-25 activity negatively regulates CYE-1/cyclin E protein abundance in vivo. Together, our results show that the ubc-25-mediated pathway acts within a complex network that integrates the actions of multiple molecular mechanisms to control cell cycles during development.
Collapse
Affiliation(s)
- Sarah H Roy
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - David V Tobin
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Nadin Memar
- Center for Integrated Protein Science Munich (CiPSM), Biocenter, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Eleanor Beltz
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Jenna Holmen
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Joseph E Clayton
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Daniel J Chiu
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Laura D Young
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Travis H Green
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Isabella Lubin
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Yuying Liu
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Barbara Conradt
- Center for Integrated Protein Science Munich (CiPSM), Biocenter, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - R Mako Saito
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755 Norris Cotton Cancer Center, Lebanon, New Hampshire 03756
| |
Collapse
|
44
|
Polley SRG, Kuzmanov A, Kuang J, Karpel J, Lažetić V, Karina EI, Veo BL, Fay DS. Implicating SCF complexes in organogenesis in Caenorhabditis elegans. Genetics 2014; 196:211-23. [PMID: 24214340 PMCID: PMC3872186 DOI: 10.1534/genetics.113.158485] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 10/29/2013] [Indexed: 11/18/2022] Open
Abstract
Development of the Caenorhabditis elegans foregut (pharynx) is regulated by a network of proteins that includes the Retinoblastoma protein (pRb) ortholog LIN-35; the ubiquitin pathway components UBC-18 and ARI-1; and PHA-1, a cytoplasmic protein. Loss of pha-1 activity impairs pharyngeal development and body morphogenesis, leading to embryonic arrest. We have used a genetic suppressor approach to dissect this complex pathway. The lethality of pha-1 mutants is suppressed by loss-of-function mutations in sup-35/ztf-21 and sup-37/ztf-12, which encode Zn-finger proteins, and by mutations in sup-36. Here we show that sup-36 encodes a divergent Skp1 family member that binds to several F-box proteins and the microtubule-associated protein PLT-1/τ. Like SUP-35, SUP-36 levels were negatively regulated by UBC-18-ARI-1. We also found that SUP-35 and SUP-37 physically associated and that SUP-35 could bind microtubules. Thus, SUP-35, SUP-36, and SUP-37 may function within a pathway or complex that includes cytoskeletal components. Additionally, SUP-36 may regulate the subcellular localization of SUP-35 during embryogenesis. We carried out a genome-wide RNAi screen to identify additional regulators of this network and identified 39 genes, most of which are associated with transcriptional regulation. Twenty-three of these genes acted via the LIN-35 pathway. In addition, several S-phase kinase-associated protein (Skp)1-Cullin-F-Box (SCF) components were identified, further implicating SCF complexes as part of the greater network controlling pharyngeal development.
Collapse
Affiliation(s)
| | | | | | | | - Vladimir Lažetić
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming 82071
| | - Evguenia I. Karina
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming 82071
| | - Bethany L. Veo
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming 82071
| | - David S. Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming 82071
| |
Collapse
|
45
|
Zhang P, Zhong J, Cao G, Xue R, Gong C. BmAly is an important factor in meiotic progression and spermatid differentiation in Bombyx mori (Lepidoptera: Bombycidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:188. [PMID: 25480974 PMCID: PMC5633954 DOI: 10.1093/jisesa/ieu050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 05/29/2013] [Indexed: 06/04/2023]
Abstract
The Drosophila melanogaster "always early" gene (Dmaly), which is required for G2/M cell-cycle control and spermatid differentiation, is one of the meiotic arrest genes. To study the Bombyx mori aly gene (Bmaly), the cDNA of Bmaly was cloned and sequenced, and the results showed that the open reading frame of Bmaly is 1,713 bp in length, encoding 570 amino acid residues, in which a domain in an Rb-related pathway was found. Phylogenetic analysis based on the amino acid sequence of conserved regions showed that Aly from different insects gathered together, except for DmAly and Culex quinquefasciatus Aly, which were not clustered to a subgroup according to insect order. The Bmaly gene was inserted into expression vector pGS-21a(+) and then the recombinant protein was expressed in Escherichia coli and used to immunize mice to prepare the antibody against BmAly. Immunofluorescence examination showed that BmAly was distributed in both the cytoplasm and nucleus of BmN cell. The Bmaly gene expression could not be detected in the silk gland, malpighian tubule, fat body, or midgut of the silkworm. Expression levels of the Bmaly gene were detected in the gonadal tissues, where the levels in the testes were 10 times higher than that in the ovaries. Moreover, Bmaly expression was detected by quantitative polymerase chain reaction at different stages of B. mori testis development, at which fifth instar was relatively grossly expressed. The result suggested Bmaly was abundantly expressed in primary spermatocytes and prespermatids. To further explore the function of Bmaly, Bmaly siRNA was injected into third and fourth instar silkworm larvae, which markedly inhibited the development of sperm cells. These results together suggest that Bmaly is a meiotic arrest gene that plays an important role in spermatogenesis.
Collapse
Affiliation(s)
- Pengjie Zhang
- School of Biology and Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Jinfeng Zhong
- School of Biology and Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Guangli Cao
- School of Biology and Basic Medical Science, Soochow University, Suzhou 215123, China National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, People's Republic of China
| | - Renyu Xue
- School of Biology and Basic Medical Science, Soochow University, Suzhou 215123, China National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, People's Republic of China
| | - Chengliang Gong
- School of Biology and Basic Medical Science, Soochow University, Suzhou 215123, China National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
46
|
Fisher K, Gee F, Wang S, Xue F, Knapp S, Philpott M, Wells C, Rodriguez M, Snoek LB, Kammenga J, Poulin GB. Maintenance of muscle myosin levels in adult C. elegans requires both the double bromodomain protein BET-1 and sumoylation. Biol Open 2013; 2:1354-63. [PMID: 24285704 PMCID: PMC3863420 DOI: 10.1242/bio.20136007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Attenuation of RAS-mediated signalling is a conserved process essential to control cell proliferation, differentiation, and apoptosis. Cooperative interactions between histone modifications such as acetylation, methylation and sumoylation are crucial for proper attenuation in C. elegans, implying that the proteins recognising these histone modifications could also play an important role in attenuation of RAS-mediated signalling. We sought to systematically identify these proteins and found BET-1. BET-1 is a conserved double bromodomain protein that recognises acetyl-lysines on histone tails and maintains the stable fate of various lineages. Unexpectedly, adults lacking both BET-1 and SUMO-1 are depleted of muscle myosin, an essential component of myofibrils. We also show that this muscle myosin depletion does not occur in all animals at a specific time, but rather that the penetrance of the phenotype increases with age. To gain mechanistic insights into this process, we sought to delay the occurrence of the muscle myosin depletion phenotype and found that it requires caspase activity and MEK-dependent signalling. We also performed transcription profiling on these mutants and found an up-regulation of the FGF receptor, egl-15, a tyrosine kinase receptor acting upstream of MEK. Consistent with a MEK requirement, we could delay the muscle phenotype by systemic or hypodermal knock down of egl-15. Thus, this work uncovered a caspase- and MEK-dependent mechanism that acts specifically on ageing adults to maintain the appropriate net level of muscle myosin.
Collapse
Affiliation(s)
- Kate Fisher
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Massirer KB, Pasquinelli AE. MicroRNAs that interfere with RNAi. WORM 2013; 2:e21835. [PMID: 24058860 PMCID: PMC3670461 DOI: 10.4161/worm.21835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 08/14/2012] [Indexed: 11/28/2022]
Abstract
A recent study by Massirer et al. in the nematode C. elegans has shown that a family of microRNAs (miRNAs), miR-35-41, regulates the efficiency of RNA interference (RNAi), revealing a new connection between these small RNA pathways. In this commentary, we discuss the potential mechanisms for cross regulation in the miRNA and RNAi pathways and the implications for gene expression. While miRNAs are genetically encoded, the small interfering RNAs (siRNAs) that function in RNAi can originate from processing of exogenous dsRNA (exo-RNAi) or from the production of siRNAs from endogenous transcripts (endo-RNAi). These small RNA pathways involve Dicer and Argonaute proteins and typically use antisense base pairing to target mRNAs for downregulated expression. The discovery that loss of miR-35–41 results in enhanced exo-RNAi sensitivity and reduced endo-RNAi effectiveness suggests that these miRNAs normally help balance the RNAi pathways. The effect of mir-35–41 on RNAi is largely through lin-35, the C. elegans homolog of the tumor suppressor Retinoblastoma (Rb) gene. lin-35/Rb previously has been shown to regulate RNAi sensitivity through unclear mechanisms and the new finding that accumulation of LIN-35/Rb protein is dependent on miR-35–41 adds another layer of complexity to this process. The utilization of miRNAs to control the responsiveness of RNAi exemplifies the cross-regulation embedded in small RNA-directed pathways.
Collapse
Affiliation(s)
- Katlin B Massirer
- Division of Biology; University of California San Diego; La Jolla, CA USA
| | | |
Collapse
|
48
|
Gysi S, Rhiner C, Flibotte S, Moerman DG, Hengartner MO. A network of HSPG core proteins and HS modifying enzymes regulates netrin-dependent guidance of D-type motor neurons in Caenorhabditis elegans. PLoS One 2013; 8:e74908. [PMID: 24066155 PMCID: PMC3774775 DOI: 10.1371/journal.pone.0074908] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 08/07/2013] [Indexed: 11/18/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are proteins with long covalently attached sugar side chains of the heparan sulfate (HS) type. Depending on the cellular context HS chains carry multiple structural modifications such as sulfate residues or epimerized sugars allowing them to bind to a wide range of molecules. HSPGs have been found to play extremely diverse roles in animal development and were shown to interact with certain axon guidance molecules. In this study we describe the role of the Caenorhabditis elegans HSPG core proteins Syndecan (SDN-1) and Glypican (LON-2) and the HS modifying enzymes in the dorsal guidance of D-type motor axons, a process controlled mainly by the conserved axon guidance molecule UNC-6/Netrin. Our genetic analysis established the specific HS code relevant for this axon guidance event. Using two sensitized genetic backgrounds, we isolated novel components influencing D-type motor axon guidance with a link to HSPGs, as well as new alleles of several previously characterized axon guidance genes. Interestingly, the dorsal axon guidance defects induced by mutations in zfp-1 or lin-35 depended on the transgene oxIs12 used to visualize the D-type motor neurons. oxIs12 is a large multi-copy transgene that enlarges the X chromosome by approximately 20%. In a search for genes with a comparable phenotype we found that a mutation in the known dosage compensation gene dpy-21 showed similar axon guidance defects as zfp-1 or lin-35 mutants. Thus, derepression of genes on X, where many genes relevant for HS dependent axon guidance are located, might also influence axon guidance of D-type motor neurons.
Collapse
Affiliation(s)
- Stephan Gysi
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Christa Rhiner
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Stephane Flibotte
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Donald G. Moerman
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Michael O. Hengartner
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
49
|
Alternative Splicing Regulation of Cancer-Related Pathways in Caenorhabditis elegans: An In Vivo Model System with a Powerful Reverse Genetics Toolbox. Int J Cell Biol 2013; 2013:636050. [PMID: 24069034 PMCID: PMC3771449 DOI: 10.1155/2013/636050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/29/2013] [Indexed: 11/18/2022] Open
Abstract
Alternative splicing allows for the generation of protein diversity and fine-tunes gene expression. Several model systems have been used for the in vivo study of alternative splicing. Here we review the use of the nematode Caenorhabditis elegans to study splicing regulation in vivo. Recent studies have shown that close to 25% of genes in the worm genome undergo alternative splicing. A big proportion of these events are functional, conserved, and under strict regulation either across development or other conditions. Several techniques like genome-wide RNAi screens and bichromatic reporters are available for the study of alternative splicing in worms. In this review, we focus, first, on the main studies that have been performed to dissect alternative splicing in this system and later on examples from genes that have human homologs that are implicated in cancer. The significant advancement towards understanding the regulation of alternative splicing and cancer that the C. elegans system has offered is discussed.
Collapse
|
50
|
Ranawade AV, Cumbo P, Gupta BP. Caenorhabditis elegans histone deacetylase hda-1 is required for morphogenesis of the vulva and LIN-12/Notch-mediated specification of uterine cell fates. G3 (BETHESDA, MD.) 2013; 3:1363-74. [PMID: 23797102 PMCID: PMC3737176 DOI: 10.1534/g3.113.006999] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 06/02/2013] [Indexed: 01/03/2023]
Abstract
Chromatin modification genes play crucial roles in development and disease. In Caenorhabditis elegans, the class I histone deacetylase family member hda-1, a component of the nucleosome remodeling and deacetylation complex, has been shown to control cell proliferation. We recovered hda-1 in an RNA interference screen for genes involved in the morphogenesis of the egg-laying system. We found that hda-1 mutants have abnormal vulva morphology and vulval-uterine connections (i.e., no uterine-seam cell). We characterized the vulval defects by using cell fate-specific markers and found that hda-1 is necessary for the specification of all seven vulval cell types. The analysis of the vulval-uterine connection defect revealed that hda-1 is required for the differentiation of the gonadal anchor cell (AC), which in turn induces ventral uterine granddaughters to adopt π fates, leading to the formation of the uterine-seam cell. Consistent with these results, hda-1 is expressed in the vulva and AC. A search for hda-1 target genes revealed that fos-1 (fos proto-oncogene family) acts downstream of hda-1 in vulval cells, whereas egl-43 (evi1 proto-oncogene family) and nhr-67 (tailless homolog, NHR family) mediate hda-1 function in the AC. Furthermore, we showed that AC expression of hda-1 plays a crucial role in the regulation of the lin-12/Notch ligand lag-2 to specify π cell fates. These results demonstrate the pivotal role of hda-1 in the formation of the vulva and the vulval-uterine connection. Given that hda-1 homologs are conserved across the phyla, our findings are likely to provide a better understanding of HDAC1 function in development and disease.
Collapse
Affiliation(s)
| | - Philip Cumbo
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1 Canada
| | - Bhagwati P. Gupta
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1 Canada
| |
Collapse
|