1
|
Zhang J, Benko Z, Zhang C, Zhao RY. Advanced Protocol for Molecular Characterization of Viral Genome in Fission Yeast ( Schizosaccharomyces pombe). Pathogens 2024; 13:566. [PMID: 39057793 PMCID: PMC11279667 DOI: 10.3390/pathogens13070566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Fission yeast, a single-cell eukaryotic organism, shares many fundamental cellular processes with higher eukaryotes, including gene transcription and regulation, cell cycle regulation, vesicular transport and membrane trafficking, and cell death resulting from the cellular stress response. As a result, fission yeast has proven to be a versatile model organism for studying human physiology and diseases such as cell cycle dysregulation and cancer, as well as autophagy and neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases. Given that viruses are obligate intracellular parasites that rely on host cellular machinery to replicate and produce, fission yeast could serve as a surrogate to identify viral proteins that affect host cellular processes. This approach could facilitate the study of virus-host interactions and help identify potential viral targets for antiviral therapy. Using fission yeast for functional characterization of viral genomes offers several advantages, including a well-characterized and haploid genome, robustness, cost-effectiveness, ease of maintenance, and rapid doubling time. Therefore, fission yeast emerges as a valuable surrogate system for rapid and comprehensive functional characterization of viral proteins, aiding in the identification of therapeutic antiviral targets or viral proteins that impact highly conserved host cellular functions with significant virologic implications. Importantly, this approach has a proven track record of success in studying various human and plant viruses. In this protocol, we present a streamlined and scalable molecular cloning strategy tailored for genome-wide and comprehensive functional characterization of viral proteins in fission yeast.
Collapse
Affiliation(s)
- Jiantao Zhang
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
| | - Zsigmond Benko
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Chenyu Zhang
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
| | - Richard Y. Zhao
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
- Department of Microbiology-Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Institute of Global Health, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Research & Development Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
| |
Collapse
|
2
|
Hawkins LM, Wang C, Chaput D, Batra M, Marsilia C, Awshah D, Suvorova ES. The Crk4-Cyc4 complex regulates G 2/M transition in Toxoplasma gondii. EMBO J 2024; 43:2094-2126. [PMID: 38600241 PMCID: PMC11148040 DOI: 10.1038/s44318-024-00095-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
A versatile division of apicomplexan parasites and a dearth of conserved regulators have hindered the progress of apicomplexan cell cycle studies. While most apicomplexans divide in a multinuclear fashion, Toxoplasma gondii tachyzoites divide in the traditional binary mode. We previously identified five Toxoplasma CDK-related kinases (Crk). Here, we investigated TgCrk4 and its cyclin partner TgCyc4. We demonstrated that TgCrk4 regulates conventional G2 phase processes, such as repression of chromosome rereplication and centrosome reduplication, and acts upstream of the spindle assembly checkpoint. The spatial TgCyc4 dynamics supported the TgCrk4-TgCyc4 complex role in the coordination of chromosome and centrosome cycles. We also identified a dominant TgCrk4-TgCyc4 complex interactor, TgiRD1 protein, related to DNA replication licensing factor CDT1 but played no role in licensing DNA replication in the G1 phase. Our results showed that TgiRD1 also plays a role in controlling chromosome and centrosome reduplication. Global phosphoproteome analyses identified TgCrk4 substrates, including TgORC4, TgCdc20, TgGCP2, and TgPP2ACA. Importantly, the phylogenetic and structural studies suggest the Crk4-Cyc4 complex is limited to a minor group of the binary dividing apicomplexans.
Collapse
Affiliation(s)
- Lauren M Hawkins
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Chengqi Wang
- College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Dale Chaput
- Proteomics Core, College of Arts and Sciences, University of South Florida, Tampa, FL, 33612, USA
| | - Mrinalini Batra
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Clem Marsilia
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Danya Awshah
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Elena S Suvorova
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
3
|
Cheraghi H, Kovács KD, Székács I, Horvath R, Szabó B. Continuous distribution of cancer cells in the cell cycle unveiled by AI-segmented imaging of 37,000 HeLa FUCCI cells. Heliyon 2024; 10:e30239. [PMID: 38707416 PMCID: PMC11066426 DOI: 10.1016/j.heliyon.2024.e30239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
Classification of live or fixed cells based on their unlabeled microscopic images would be a powerful tool for cell biology and pathology. For such software, the first step is the generation of a ground truth database that can be used for training and testing AI classification algorithms. The Application of cells expressing fluorescent reporter proteins allows the building of ground truth datasets in a straightforward way. In this study, we present an automated imaging pipeline utilizing the Cellpose algorithm for the precise cell segmentation and measurement of fluorescent cellular intensities across multiple channels. We analyzed the cell cycle of HeLa-FUCCI cells expressing fluorescent red and green reporter proteins at various levels depending on the cell cycle state. To build the dataset, 37,000 fixed cells were automatically scanned using a standard motorized microscope, capturing phase contrast and fluorescent red/green images. The fluorescent pixel intensity of each cell was integrated to calculate the total fluorescence of cells based on cell segmentation in the phase contrast channel. It resulted in a precise intensity value for each cell in both channels. Furthermore, we conducted a comparative analysis of Cellpose 1.0 and Cellpose 2.0 in cell segmentation performance. Cellpose 2.0 demonstrated notable improvements, achieving a significantly reduced false positive rate of 2.7 % and 1.4 % false negative. The cellular fluorescence was visualized in a 2D plot (map) based on the red and green intensities of the FUCCI construct revealing the continuous distribution of cells in the cell cycle. This 2D map enables the selection and potential isolation of single cells in a specific phase. In the corresponding heatmap, two clusters appeared representing cells in the red and green states. Our pipeline allows the high-throughput and accurate measurement of cellular fluorescence providing extensive statistical information on thousands of cells with potential applications in developmental and cancer biology. Furthermore, our method can be used to build ground truth datasets automatically for training and testing AI cell classification. Our automated pipeline can be used to analyze thousands of cells within 2 h after putting the sample onto the microscope.
Collapse
Affiliation(s)
- Hamid Cheraghi
- Department of Biological Physics, Eötvös University (ELTE), H-1117, Budapest, Hungary
- CellSorter Scientific Company for Innovations, Prielle Kornélia utca 4A, 1117, Budapest, Hungary
| | - Kinga Dóra Kovács
- Department of Biological Physics, Eötvös University (ELTE), H-1117, Budapest, Hungary
- Nanobiosensorics Laboratory, HUN-REN, Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Inna Székács
- Nanobiosensorics Laboratory, HUN-REN, Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Robert Horvath
- Nanobiosensorics Laboratory, HUN-REN, Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Bálint Szabó
- Department of Biological Physics, Eötvös University (ELTE), H-1117, Budapest, Hungary
- CellSorter Scientific Company for Innovations, Prielle Kornélia utca 4A, 1117, Budapest, Hungary
| |
Collapse
|
4
|
Gaizer T, Juhász J, Pillér B, Szakadáti H, Pongor CI, Csikász-Nagy A. Integrative analysis of yeast colony growth. Commun Biol 2024; 7:511. [PMID: 38684888 PMCID: PMC11058853 DOI: 10.1038/s42003-024-06218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
Yeast colonies are routinely grown on agar plates in everyday experimental settings to understand basic molecular processes, produce novel drugs, improve health, and so on. Standardized conditions ensure these colonies grow in a reproducible fashion, while in nature microbes are under a constantly changing environment. Here we combine the power of computational simulations and laboratory experiments to investigate the impact of non-standard environmental factors on colony growth. We present the developement and parameterization of a quantitative agent-based model for yeast colony growth to reproduce measurements on colony size and cell number in a colony at non-standard environmental conditions. Specifically, we establish experimental conditions that mimic the effects of humidity changes and nutrient gradients. Our results show how colony growth is affected by moisture changes, nutrient availability, and initial colony inoculation conditions. We show that initial colony spread, not initial cell number have higher impact on the final size and cell number of colonies. Parameters of the model were identified by fitting these experiments and the fitted model gives guidance to establish conditions which enable unlimited growth of yeast colonies.
Collapse
Affiliation(s)
- Tünde Gaizer
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - János Juhász
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
- Semmelweis University, Institute of Medical Microbiology, Budapest, Hungary
| | - Bíborka Pillér
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Helga Szakadáti
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Csaba I Pongor
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Attila Csikász-Nagy
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary.
| |
Collapse
|
5
|
Naumov AV, Wang C, Chaput D, Ting LM, Alvarez CA, Keller T, Ramadan A, White MW, Kim K, Suvorova ES. Restriction Checkpoint Controls Bradyzoite Development in Toxoplasma gondii. Microbiol Spectr 2022; 10:e0070222. [PMID: 35652638 PMCID: PMC9241953 DOI: 10.1128/spectrum.00702-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Human toxoplasmosis is a life-threatening disease caused by the apicomplexan parasite Toxoplasma gondii. Rapid replication of the tachyzoite is associated with symptomatic disease, while suppressed division of the bradyzoite is responsible for chronic disease. Here, we identified the T. gondii cell cycle mechanism, the G1 restriction checkpoint (R-point), that operates the switch between parasite growth and differentiation. Apicomplexans lack conventional R-point regulators, suggesting adaptation of alternative factors. We showed that Cdk-related G1 kinase TgCrk2 forms alternative complexes with atypical cyclins (TgCycP1, TgCycP2, and TgCyc5) in the rapidly dividing developmentally incompetent RH and slower dividing developmentally competent ME49 tachyzoites and bradyzoites. Examination of cyclins verified the correlation of cyclin expression with growth dependence and development capacity of RH and ME49 strains. We demonstrated that rapidly dividing RH tachyzoites were dependent on TgCycP1 expression, which interfered with bradyzoite differentiation. Using the conditional knockdown model, we established that TgCycP2 regulated G1 duration in the developmentally competent ME49 tachyzoites but not in the developmentally incompetent RH tachyzoites. We tested the functions of TgCycP2 and TgCyc5 in alkaline induced and spontaneous bradyzoite differentiation (rat embryonic brain cells) models. Based on functional and global gene expression analyses, we determined that TgCycP2 also regulated bradyzoite replication, while signal-induced TgCyc5 was critical for efficient tissue cyst maturation. In conclusion, we identified the central machinery of the T. gondii restriction checkpoint comprised of TgCrk2 kinase and three atypical T. gondii cyclins and demonstrated the independent roles of TgCycP1, TgCycP2, and TgCyc5 in parasite growth and development. IMPORTANCE Toxoplasma gondii is a virulent and abundant human pathogen that puts millions of silently infected people at risk of reactivation of the chronic disease. Encysted bradyzoites formed during the chronic stage are resistant to current therapies. Therefore, insights into the mechanism of tissue cyst formation and reactivation are major areas of investigation. The fact that rapidly dividing parasites differentiate poorly strongly suggests that there is a threshold of replication rate that must be crossed to be considered for differentiation. We discovered a cell cycle mechanism that controls the T. gondii growth-rest switch involved in the conversion of dividing tachyzoites into largely quiescent bradyzoites. This switch operates the T. gondii restriction checkpoint using a set of atypical and parasite-specific regulators. Importantly, the novel T. gondii R-point network was not present in the parasite's human and animal hosts, offering a wealth of new and parasite-specific drug targets to explore in the future.
Collapse
Affiliation(s)
- Anatoli V. Naumov
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Dale Chaput
- Proteomics Core, College of Arts and Sciences, University of South Florida, Tampa, Florida, USA
| | - Li-Min Ting
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Carmelo A. Alvarez
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Thomas Keller
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Ahmed Ramadan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Michael W. White
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Kami Kim
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Elena S. Suvorova
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
6
|
Rampioni Vinciguerra GL, Sonego M, Segatto I, Dall’Acqua A, Vecchione A, Baldassarre G, Belletti B. CDK4/6 Inhibitors in Combination Therapies: Better in Company Than Alone: A Mini Review. Front Oncol 2022; 12:891580. [PMID: 35712501 PMCID: PMC9197541 DOI: 10.3389/fonc.2022.891580] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022] Open
Abstract
The cyclin D-CDK4/6 complexes play a pivotal role in controlling the cell cycle. Deregulation in cyclin D-CDK4/6 pathway has been described in many types of cancer and it invariably leads to uncontrolled cell proliferation. Many efforts have been made to develop a target therapy able to inhibit CDK4/6 activity. To date, three selective CDK4/6 small inhibitors have been introduced in the clinic for the treatment of hormone positive advanced breast cancer patients, following the impressive results obtained in phase III clinical trials. However, since their approval, clinical evidences have demonstrated that about 30% of breast cancer is intrinsically resistant to CDK4/6 inhibitors and that prolonged treatment eventually leads to acquired resistance in many patients. So, on one hand, clinical and preclinical studies fully support to go beyond breast cancer and expand the use of CDK4/6 inhibitors in other tumor types; on the other hand, the question of primary and secondary resistance has to be taken into account, since it is now very clear that neoplastic cells rapidly develop adaptive strategies under treatment, eventually resulting in disease progression. Resistance mechanisms so far discovered involve both cell-cycle and non-cell-cycle related escape strategies. Full understanding is yet to be achieved but many different pathways that, if targeted, may lead to reversion of the resistant phenotype, have been already elucidated. Here, we aim to summarize the knowledge in this field, focusing on predictive biomarkers, to recognize intrinsically resistant tumors, and therapeutic strategies, to overcome acquired resistance.
Collapse
Affiliation(s)
- Gian Luca Rampioni Vinciguerra
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Maura Sonego
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Ilenia Segatto
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Alessandra Dall’Acqua
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant’Andrea Hospital, University of Rome “Sapienza”, Rome, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
- *Correspondence: Barbara Belletti,
| |
Collapse
|
7
|
Liu J, Peng Y, Wei W. Cell cycle on the crossroad of tumorigenesis and cancer therapy. Trends Cell Biol 2022; 32:30-44. [PMID: 34304958 PMCID: PMC8688170 DOI: 10.1016/j.tcb.2021.07.001] [Citation(s) in RCA: 181] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 01/03/2023]
Abstract
Aberrancy in cell cycle progression is one of the fundamental mechanisms underlying tumorigenesis, making regulators of the cell cycle machinery rational anticancer therapeutic targets. A growing body of evidence indicates that the cell cycle regulatory pathway integrates into other hallmarks of cancer, including metabolism remodeling and immune escape. Thus, therapies against cell cycle machinery components can not only repress the division of cancer cells, but also reverse cancer metabolism and restore cancer immune surveillance. Besides the ongoing effects on the development of small molecule inhibitors (SMIs) of the cell cycle machinery, proteolysis targeting chimeras (PROTACs) have recently been used to target these oncogenic proteins related to cell cycle progression. Here, we discuss the rationale of cell cycle targeting therapies, particularly PROTACs, to more efficiently retard tumorigenesis.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yunhua Peng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
8
|
Buja LM. The cell theory and cellular pathology: Discovery, refinements and applications fundamental to advances in biology and medicine. Exp Mol Pathol 2021; 121:104660. [PMID: 34116021 DOI: 10.1016/j.yexmp.2021.104660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/06/2021] [Indexed: 11/24/2022]
Abstract
This review explores the developments leading up to the establishment of the cell theory and cellular pathology and their subsequent refinements and applications while focusing on the individuals who have made seminal advances in the field. The links between cell biology, cell pathology and cell injury research are emphasized. Recognition also is given to the importance of technological advances in microscopy, histology, biochemical and molecular methods for discovery in cell biology and cell pathology. Particular attention is focused on the work of Rudolph Virchow and his former students in the formulation of the cell theory in biology and pathology and John F. R. Kerr and colleagues who identified and developed a comprehensive characterization of apoptosis, thereby giving impetus to the contemporary field of cell injury research. Cell injury research remains an important and fruitful field of ongoing inquiry and discovery.
Collapse
Affiliation(s)
- L Maximilian Buja
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America.
| |
Collapse
|
9
|
Hawkins LM, Naumov AV, Batra M, Wang C, Chaput D, Suvorova ES. Novel CRK-Cyclin Complex Controls Spindle Assembly Checkpoint in Toxoplasma Endodyogeny. mBio 2021; 13:e0356121. [PMID: 35130726 PMCID: PMC8822342 DOI: 10.1128/mbio.03561-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/18/2022] [Indexed: 12/21/2022] Open
Abstract
Opportunistic parasites of the Apicomplexa phylum use a variety of division modes built on two types of cell cycles that incorporate two distinctive mechanisms of mitosis: uncoupled from and coupled to parasite budding. Parasites have evolved novel factors to regulate such unique replication mechanisms that are poorly understood. Here, we have combined genetics, quantitative fluorescence microscopy, and global proteomics approaches to examine endodyogeny in Toxoplasma gondii dividing by mitosis coupled to cytokinesis. In the current study, we focus on the steps controlled by the recently described atypical Cdk-related kinase T. gondii Crk6 (TgCrk6). While inspecting protein complexes, we found that this previously orphaned TgCrk6 kinase interacts with a parasite-specific atypical cyclin, TgCyc1. We built conditional expression models and examined primary cell cycle defects caused by the lack of TgCrk6 or TgCyc1. Quantitative microscopy assays revealed that tachyzoites deficient in either TgCrk6 or the cyclin partner TgCyc1 exhibit identical mitotic defects, suggesting cooperative action of the complex components. Further examination of the mitotic structures indicated that the TgCrk6/TgCyc1 complex regulates metaphase. This novel finding confirms a functional spindle assembly checkpoint (SAC) in T. gondii. Measuring global changes in protein expression and phosphorylation, we found evidence that canonical activities of the Toxoplasma SAC are intertwined with parasite-specific tasks. Analysis of phosphorylation motifs suggests that Toxoplasma metaphase is regulated by CDK, mitogen-activated kinase (MAPK), and Aurora kinases, while the TgCrk6/TgCyc1 complex specifically controls the centromere-associated network. IMPORTANCE The rate of Toxoplasma tachyzoite division directly correlates with the severity of the disease, toxoplasmosis, which affects humans and animals. Thus, a better understanding of the tachyzoite cell cycle would offer much-needed efficient tools to control the acute stage of infection. Although tachyzoites divide by binary division, the cell cycle architecture and regulation differ significantly from the conventional binary fission of their host cells. Unlike the unidirectional conventional cell cycle, the Toxoplasma budding cycle is braided and is regulated by multiple essential Cdk-related kinases (Crks) that emerged in the place of missing conventional cell cycle regulators. How these novel Crks control apicomplexan cell cycles is largely unknown. Here, we have discovered a novel parasite-specific complex, TgCrk6/TgCyc1, that orchestrates a major mitotic event, the spindle assembly checkpoint. We demonstrated that tachyzoites incorporated parasite-specific tasks in the canonical checkpoint functions.
Collapse
Affiliation(s)
- Lauren M. Hawkins
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Anatoli V. Naumov
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Mrinalini Batra
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Changqi Wang
- College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Dale Chaput
- Proteomics Core, College of Arts and Sciences, University of South Florida, Tampa, Florida, USA
| | - Elena S. Suvorova
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
10
|
Kameda M, Mikawa T, Yokode M, Inagaki N, Kondoh H. Senescence research from historical theory to future clinical application. Geriatr Gerontol Int 2020; 21:125-130. [PMID: 33372374 DOI: 10.1111/ggi.14121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/20/2020] [Accepted: 12/05/2020] [Indexed: 12/18/2022]
Abstract
Historically, the findings from cellular lifespan studies have greatly affected aging research. The discovery of replicative senescence by Hayflick developed into research on telomeres and telomerase, while stress-induced senescence became known as a telomere-independent event. Senescence-inducing signals comprise several tumor suppressors or cell cycle inhibitors, e.g., p53, cyclin-dependent kinase inhibitor p16 Ink4a and others. Stress-induced senescence serves as a physiological barrier to oncogenesis in vivo, while it activates senescence-associated secretary phenotype, inducing chronic inflammation. Thus, beside telomere length, p16, p53 and inflammatory cytokines have been utilized as biomarkers for cellular senescence. Telomere lengths in human leukocytes correlate well with events of aging-related lifestyle diseases, indicating the importance of cellular senescence in organismal aging. As such, the development of senescence research will have significant future clinical applications, e.g., senolysis. Geriatr Gerontol Int 2021; 21: 125-130.
Collapse
Affiliation(s)
- Masahiro Kameda
- Geriatric unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takumi Mikawa
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Yokode
- Geriatric unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kondoh
- Geriatric unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Sinai AP, Suvorova ES. The RESTRICTION checkpoint: a window of opportunity governing developmental transitions in Toxoplasma gondii. Curr Opin Microbiol 2020; 58:99-105. [PMID: 33065371 DOI: 10.1016/j.mib.2020.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 01/27/2023]
Abstract
The life cycle of Toxoplasma gondii is characterized by active replication alternating with periods of rest. Encysted dormant sporozoites and bradyzoites initiate active replication as tachyzoites and merozoites. Here we explore the role of the cell cycle with a focus on the canonical G1 RESTRICTION checkpoint (R-point) as the integrator governing developmental decisions in T. gondii. This surveillance mechanism, which licenses replication, creates a window of opportunity in G1 for cellular reorganization in the execution of developmental transitions. We also explore the unique status of the bradyzoite, the only life cycle stage executing both a forward (entry into the sexual cycle) and reverse (recrudescence) developmental transitions as a multipotent cell. These opposing decisions are executed through the common machinery of the RESTRICTION checkpoint.
Collapse
Affiliation(s)
- Anthony P Sinai
- Department of Microbiology Immunology and Molecular Genetics, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA
| | - Elena S Suvorova
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612, USA.
| |
Collapse
|
12
|
Jang J, Engleka KA, Liu F, Li L, Song G, Epstein JA, Li D. An Engineered Mouse to Identify Proliferating Cells and Their Derivatives. Front Cell Dev Biol 2020; 8:388. [PMID: 32523954 PMCID: PMC7261916 DOI: 10.3389/fcell.2020.00388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/29/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Cell proliferation is a fundamental event during development, disease, and regeneration. Effectively tracking and quantifying proliferating cells and their derivatives is critical for addressing many research questions. Cell cycle expression such as for Ki67, proliferating cell nuclear antigen (PCNA), or aurora kinase B (Aurkb), or measurement of 5-bromo-2'-deoxyuridine (BrdU) or 3H-thymidine incorporation have been widely used to assess and quantify cell proliferation. These are powerful tools for detecting actively proliferating cells, but they do not identify cell populations derived from proliferating progenitors over time. AIMS We developed a new mouse tool for lineage tracing of proliferating cells by targeting the Aurkb allele. RESULTS In quiescent cells or cells arrested at G1/S, little or no Aurkb mRNA is detectable. In cycling cells, Aurkb transcripts are detectable at G2 and become undetectable by telophase. These findings suggest that Aurkb transcription is restricted to proliferating cells and is tightly coupled to cell proliferation. Accordingly, we generated an Aurkb ER Cre/+ mouse by targeting a tamoxifen inducible Cre cassette into the start codon of Aurkb. We find that the Aurkb ER Cre/+ mouse faithfully labels proliferating cells in developing embryos and regenerative adult tissues such as intestine but does not label quiescent cells such as post-mitotic neurons. CONCLUSION The Aurkb ER Cre/+ mouse faithfully labels proliferating cells and their derivatives in developing embryos and regenerative adult tissues. This new mouse tool provides a novel genetic tracing capability for studying tissue proliferation and regeneration.
Collapse
Affiliation(s)
- Jihyun Jang
- Department of Surgery, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kurt A. Engleka
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Feiyan Liu
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Li Li
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Guang Song
- Department of Surgery, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jonathan A. Epstein
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Deqiang Li
- Department of Surgery, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
13
|
Martínez-Alonso D, Malumbres M. Mammalian cell cycle cyclins. Semin Cell Dev Biol 2020; 107:28-35. [PMID: 32334991 DOI: 10.1016/j.semcdb.2020.03.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/23/2022]
Abstract
Proper progression throughout the cell division cycle depends on the expression level of a family of proteins known as cyclins, and the subsequent activation of cyclin-dependent kinases (Cdks). Among the numerous members of the mammalian cyclin family, only a few of them, cyclins A, B, C, D and E, are known to display critical roles in the cell cycle. These functions will be reviewed here with a special focus on their relevance in different cell types in vivo and their implications in human disease.
Collapse
Affiliation(s)
- Diego Martínez-Alonso
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Spain.
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Spain.
| |
Collapse
|
14
|
Álvarez-Fernández M, Malumbres M. Mechanisms of Sensitivity and Resistance to CDK4/6 Inhibition. Cancer Cell 2020; 37:514-529. [PMID: 32289274 DOI: 10.1016/j.ccell.2020.03.010] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/04/2020] [Accepted: 03/12/2020] [Indexed: 12/25/2022]
Abstract
Inhibiting the cell-cycle kinases CDK4 and CDK6 results in significant therapeutic effect in patients with advanced hormone-positive breast cancer. The efficacy of this strategy is, however, limited by innate or acquired resistance mechanisms and its application to other tumor types is still uncertain. Here, through an integrative analysis of sensitivity and resistance mechanisms, we discuss the use of CDK4/6 inhibitors in combination with available targeted therapies, immunotherapy, or classical chemotherapy with the aim of improving future therapeutic uses of CDK4/6 inhibition in a variety of cancers.
Collapse
Affiliation(s)
- Mónica Álvarez-Fernández
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|
15
|
Zheng W, Fan W, Feng N, Lu N, Zou H, Gu J, Yuan Y, Liu X, Bai J, Bian J, Liu Z. T he Role of miRNAs in Zearalenone-Promotion of TM3 Cell Proliferation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091517. [PMID: 31035709 PMCID: PMC6540048 DOI: 10.3390/ijerph16091517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 01/05/2023]
Abstract
Zearalenone (ZEA) is a non-steroidal estrogen mycotoxin produced by several Gibberella and Fusarium species. Accumulating evidence has indicated that ZEA strongly stimulates cell proliferation. However the detailed molecular and cellular mechanisms of ZEA-mediated induction of cell proliferation have not yet been completely explained. The aim of this study was to detect the role of miRNAs in ZEA-mediated induction of cell proliferation. The effects of ZEA on cell proliferation were assessed using a cell counting kit assay and xCELLigence system. Micro-RNA sequencing was performed after treatment of TM3 cells with ZEA (0.01 μmol/L) for different time periods (0, 2, 6 and 18 h). Cell function and pathway analysis of the miRNA target genes were performed by Ingenuity Pathway Analysis (IPA). We found that ZEA promotes TM3 cell proliferation at low concentrations. miRNA sequenceing revealed 66 differentially expressed miRNAs in ZEA-treated cells in comparison to the untreated control ( p < 0.05). The miRNA sequencing indicated that compared to control group, there were 66 miRNAs significant change (p < 0.05) in ZEA-treated groups. IPA analysis showed that the predicated miRNAs target gene involved in cell Bio-functions including cell cycle, growth and proliferation, and in signaling pathways including MAPK and RAS-RAF-MEK-ERK pathways. Results from flow cytometry and Western Blot analysis validated the predictions that ZEA can affect cell cycle, and the MAPK signaling pathway. Taking these together, the cell proliferation induced ZEA is regulated by miRNAs. The results shed light on the molecular and cellular mechanisms for the mediation of ZEA to induce proliferation.
Collapse
Affiliation(s)
- Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.
| | - Wentong Fan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Nannan Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| | - Nanyan Lu
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
16
|
Roskoski R. Cyclin-dependent protein serine/threonine kinase inhibitors as anticancer drugs. Pharmacol Res 2019; 139:471-488. [DOI: 10.1016/j.phrs.2018.11.035] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023]
|
17
|
White MW, Suvorova ES. Apicomplexa Cell Cycles: Something Old, Borrowed, Lost, and New. Trends Parasitol 2018; 34:759-771. [PMID: 30078701 PMCID: PMC6157590 DOI: 10.1016/j.pt.2018.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 02/04/2023]
Abstract
Increased parasite burden is linked to the severity of clinical disease caused by Apicomplexa parasites such as Toxoplasma gondii, Plasmodium spp, and Cryptosporidium. Pathogenesis of apicomplexan infections is greatly affected by the growth rate of the parasite asexual stages. This review discusses recent advances in deciphering the mitotic structures and cell cycle regulatory factors required by Apicomplexa parasites to replicate. As the molecular details become clearer, it is evident that the highly unconventional cell cycles of these parasites is a blending of many ancient and borrowed elements, which were then adapted to enable apicomplexan proliferation in a wide variety of different animal hosts.
Collapse
Affiliation(s)
- Michael W White
- Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - Elena S Suvorova
- Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
18
|
Lee I, Bos S, Li G, Wang S, Gadea G, Desprès P, Zhao RY. Probing Molecular Insights into Zika Virus⁻Host Interactions. Viruses 2018; 10:v10050233. [PMID: 29724036 PMCID: PMC5977226 DOI: 10.3390/v10050233] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 12/13/2022] Open
Abstract
The recent Zika virus (ZIKV) outbreak in the Americas surprised all of us because of its rapid spread and association with neurologic disorders including fetal microcephaly, brain and ocular anomalies, and Guillain–Barré syndrome. In response to this global health crisis, unprecedented and world-wide efforts are taking place to study the ZIKV-related human diseases. Much has been learned about this virus in the areas of epidemiology, genetic diversity, protein structures, and clinical manifestations, such as consequences of ZIKV infection on fetal brain development. However, progress on understanding the molecular mechanism underlying ZIKV-associated neurologic disorders remains elusive. To date, we still lack a good understanding of; (1) what virologic factors are involved in the ZIKV-associated human diseases; (2) which ZIKV protein(s) contributes to the enhanced viral pathogenicity; and (3) how do the newly adapted and pandemic ZIKV strains alter their interactions with the host cells leading to neurologic defects? The goal of this review is to explore the molecular insights into the ZIKV–host interactions with an emphasis on host cell receptor usage for viral entry, cell innate immunity to ZIKV, and the ability of ZIKV to subvert antiviral responses and to cause cytopathic effects. We hope this literature review will inspire additional molecular studies focusing on ZIKV–host Interactions.
Collapse
Affiliation(s)
- Ina Lee
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Sandra Bos
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France.
| | - Ge Li
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Shusheng Wang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Gilles Gadea
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France.
| | - Philippe Desprès
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France.
| | - Richard Y Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
19
|
|
20
|
Abstract
Fission yeast is a single-cell eukaryote that has been used extensively as a model organism to study cell biology and virology of higher eukaryotes including plants and humans. In particular, it is a very well-tested model to study evolutionary highly conserved cellular activities such as cell proliferation, cell cycle regulation, and cell death. Some of the advantages of using fission yeast as a surrogate system: easy to carry out functional and genome-wide analysis of small viral genome, easy to maintain in the laboratory with a relatively short doubling time. It is genetically amendable and can be used to test the effect of gain-of-function or loss-of-function of a gene product. Here, we describe a streamlined and large-scale molecular cloning strategy for genome-wide characterization of small viruses in fission yeast.
Collapse
Affiliation(s)
- Ge Li
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Richard Y Zhao
- University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
KISHIMOTO T. MPF-based meiotic cell cycle control: Half a century of lessons from starfish oocytes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:180-203. [PMID: 29643273 PMCID: PMC5968197 DOI: 10.2183/pjab.94.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/21/2018] [Indexed: 05/23/2023]
Abstract
In metazoans that undergo sexual reproduction, genomic inheritance is ensured by two distinct types of cell cycle, mitosis and meiosis. Mitosis maintains the genomic ploidy in somatic cells reproducing within a generation, whereas meiosis reduces by half the ploidy in germ cells to prepare for successive generations. The meiotic cell cycle is believed to be a derived form of the mitotic cell cycle; however, the molecular mechanisms underlying both of these processes remain elusive. My laboratory has long studied the meiotic cell cycle in starfish oocytes, particularly the control of meiotic M-phase by maturation- or M phase-promoting factor (MPF) and the kinase cyclin B-associated Cdk1 (cyclin B-Cdk1). Using this system, we have unraveled the molecular principles conserved in metazoans that modify M-phase progression from the mitotic type to the meiotic type needed to produce a haploid genome. Furthermore, we have solved a long-standing enigma concerning the molecular identity of MPF, a universal inducer of M-phase both in mitosis and meiosis of eukaryotic cells.
Collapse
Affiliation(s)
- Takeo KISHIMOTO
- Professor Emeritus of Tokyo Institute of Technology
- Visiting Professor of Ochanomizu University, Japan
- Correspondence should be addressed: T. Kishimoto, Science and Education Center, Ochanomizu University, Ootsuka 2-1-1, Bunkyo-ku, Tokyo 112-8610, Japan (e-mail: ; )
| |
Collapse
|
22
|
|
23
|
Zhao RY. Yeast for virus research. MICROBIAL CELL (GRAZ, AUSTRIA) 2017; 4:311-330. [PMID: 29082230 PMCID: PMC5657823 DOI: 10.15698/mic2017.10.592] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/27/2017] [Indexed: 12/25/2022]
Abstract
Budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are two popular model organisms for virus research. They are natural hosts for viruses as they carry their own indigenous viruses. Both yeasts have been used for studies of plant, animal and human viruses. Many positive sense (+) RNA viruses and some DNA viruses replicate with various levels in yeasts, thus allowing study of those viral activities during viral life cycle. Yeasts are single cell eukaryotic organisms. Hence, many of the fundamental cellular functions such as cell cycle regulation or programed cell death are highly conserved from yeasts to higher eukaryotes. Therefore, they are particularly suited to study the impact of those viral activities on related cellular activities during virus-host interactions. Yeasts present many unique advantages in virus research over high eukaryotes. Yeast cells are easy to maintain in the laboratory with relative short doubling time. They are non-biohazardous, genetically amendable with small genomes that permit genome-wide analysis of virologic and cellular functions. In this review, similarities and differences of these two yeasts are described. Studies of virologic activities such as viral translation, viral replication and genome-wide study of virus-cell interactions in yeasts are highlighted. Impacts of viral proteins on basic cellular functions such as cell cycle regulation and programed cell death are discussed. Potential applications of using yeasts as hosts to carry out functional analysis of small viral genome and to develop high throughput drug screening platform for the discovery of antiviral drugs are presented.
Collapse
Affiliation(s)
- Richard Yuqi Zhao
- Department of Pathology, Department of Microbiology and Immunology, Institute of Global Health, and Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
24
|
Zheng W, Huang Q, Pan S, Fan W, Wang G, Yuan Y, Gu J, Liu X, Liu Z, Bian J. Regulation of oncogenes and gap junction intercellular communication during the proliferative response of zearalenone in TM3 cells. Hum Exp Toxicol 2017; 36:701-708. [PMID: 27473017 DOI: 10.1177/0960327116661021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Zearalenone (ZEA) is a nonsteroidal estrogenic mycotoxin produced by Fusarium species. The exposure risk to humans and animals is the consumption of contaminated food and animal feeds. The aim of this study was to investigate ZEA-induced effects and its tumorigenic mechanism in TM3 cells (mouse Leydig cells). Cell proliferation, apoptosis, and gap junction intercellular communication (GJIC) were assessed in this study. Results showed that low concentrations of ZEA could significantly promote the growth of TM3 cells. The percentage of cell distribution was decreased significantly in G1/G0 phase and was increased significantly in S phase with 10 and 20 μg/L of ZEA for 72 h ( p < 0.05, p < 0.01). The expressions of cyclin D1 and Cdk4 were significantly increased in the exposure groups compared with the control group ( p < 0.05, p < 0.01). Compared with the control group, the apoptosis was significantly decreased in 10 and 20 μg/L groups ( p < 0.01), and the ratio of Bax/Bcl-2 protein level was significantly decreased in a dose-dependent manner. The protein levels of proto-oncogene c-Myc, c-Jun, and c-Fos were significantly elevated and the protein levels of anti-oncogene p53 and phosphatase and tensin homolog (PTEN) were decreased obviously compared with the control group ( p < 0.05, p < 0.01). ZEA affected the expressions of connexins and inhibited the activity of GJIC. These results demonstrated that ZEA can disturb the dynamic balance between proliferation and apoptosis and causes abnormal regulation of oncogenes, GJIC, and connexins in TM3 cells, which may easily induce the translation of normal cells into tumor cells.
Collapse
Affiliation(s)
- W Zheng
- 1 College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- 2 Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Q Huang
- 1 College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- 2 Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - S Pan
- 1 College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - W Fan
- 1 College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - G Wang
- 1 College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Y Yuan
- 1 College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- 2 Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - J Gu
- 1 College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- 2 Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - X Liu
- 1 College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- 2 Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Z Liu
- 1 College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- 2 Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - J Bian
- 1 College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- 2 Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| |
Collapse
|
25
|
Characterization of cytopathic factors through genome-wide analysis of the Zika viral proteins in fission yeast. Proc Natl Acad Sci U S A 2017; 114:E376-E385. [PMID: 28049830 DOI: 10.1073/pnas.1619735114] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Zika virus (ZIKV) causes microcephaly and the Guillain-Barré syndrome. Little is known about how ZIKV causes these conditions or which ZIKV viral protein(s) is responsible for the associated ZIKV-induced cytopathic effects, including cell hypertrophy, growth restriction, cell-cycle dysregulation, and cell death. We used fission yeast for the rapid, global functional analysis of the ZIKV genome. All 14 proteins or small peptides were produced under an inducible promoter, and we measured the intracellular localization and the specific effects on ZIKV-associated cytopathic activities of each protein. The subcellular localization of each ZIKV protein was in overall agreement with its predicted protein structure. Five structural and two nonstructural ZIKV proteins showed various levels of cytopathic effects. The expression of these ZIKV proteins restricted cell proliferation, induced hypertrophy, or triggered cellular oxidative stress leading to cell death. The expression of premembrane protein (prM) resulted in cell-cycle G1 accumulation, whereas membrane-anchored capsid (anaC), membrane protein (M), envelope protein (E), and nonstructural protein 4A (NS4A) caused cell-cycle G2/M accumulation. A mechanistic study revealed that NS4A-induced cellular hypertrophy and growth restriction were mediated specifically through the target of rapamycin (TOR) cellular stress pathway involving Tor1 and type 2A phosphatase activator Tip41. These findings should provide a reference for future research on the prevention and treatment of ZIKV diseases.
Collapse
|
26
|
Abstract
The cell division cycle is controlled by a complex regulatory network which ensures that the phases of the cell cycle are executed in the right order. This regulatory network receives signals from the environment, monitors the state of the DNA, and decides timings of cell cycle events. The underlying transcriptional and post-translational regulatory interactions lead to complex dynamical responses, such as the oscillations in the levels of cell cycle proteins driven by intertwined biochemical reactions. A cell moves between different phases of its cycle similar to a dynamical system switching between its steady states. The complex molecular network driving these phases has been investigated in previous computational systems biology studies. Here, we review the critical physiological and molecular transitions that occur in the cell cycle and discuss the role of mathematical modeling in elucidating these transitions and understand cell cycle synchronization.
Collapse
|
27
|
Fueling the Cell Division Cycle. Trends Cell Biol 2016; 27:69-81. [PMID: 27746095 DOI: 10.1016/j.tcb.2016.08.009] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 08/08/2016] [Accepted: 08/25/2016] [Indexed: 11/21/2022]
Abstract
Cell division is a complex process with high energy demands. However, how cells regulate the generation of energy required for DNA synthesis and chromosome segregation is not well understood. Recent data suggest that changes in mitochondrial dynamics and metabolic pathways such as oxidative phosphorylation (OXPHOS) and glycolysis crosstalk with, and are tightly regulated by, the cell division machinery. Alterations in energy availability trigger cell-cycle checkpoints, suggesting a bidirectional connection between cell division and general metabolism. Some of these connections are altered in human disease, and their manipulation may help in designing therapeutic strategies for specific diseases including cancer. We review here recent studies describing the control of metabolism by the cell-cycle machinery.
Collapse
|
28
|
Roskoski R. Cyclin-dependent protein kinase inhibitors including palbociclib as anticancer drugs. Pharmacol Res 2016; 107:249-275. [DOI: 10.1016/j.phrs.2016.03.012] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 02/07/2023]
|
29
|
Cheng JS, Chou CT, Liu YY, Sun WC, Shieh P, Kuo DH, Kuo CC, Jan CR, Liang WZ. The effect of oleuropein from olive leaf (Olea europaea) extract on Ca²⁺ homeostasis, cytotoxicity, cell cycle distribution and ROS signaling in HepG2 human hepatoma cells. Food Chem Toxicol 2016; 91:151-66. [PMID: 27016494 DOI: 10.1016/j.fct.2016.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/23/2016] [Accepted: 03/21/2016] [Indexed: 12/28/2022]
Abstract
Oleuropein, a phenolic compound found in the olive leaf (Olea europaea), has been shown to have biological activities in different models. However, the effects of oleuropein on Ca(2+) homeostasis, cytotoxicity, cell cycle distribution and ROS signaling in liver cells have not been analyzed. Oleuropein induced [Ca(2+)]i rises only in HepG2 cells but not in AML12, HA22T or HA59T cells due to the different status of 3-hydroxy-3-methylglutaryl-CoA reductase expression. In HepG2 cells, this Ca(2+) signaling response was reduced by removing extracellular Ca(2+), and was inhibited by the store-operated Ca(2+) channel blockers 2-APB and SKF96365. In Ca(2+)-free medium, pretreatment with the ER Ca(2+) pump inhibitor thapsigargin abolished oleuropein-induced [Ca(2+)]i rises. Oleuropein induced cell cycle arrest which was associated with the regulation of p53, p21, CDK1 and cyclin B1 levels. Furthermore, oleuropein elevated intracellular ROS levels but reduced GSH levels. Treatment with the intracellular Ca(2+) chelator BAPTA-AM or the antioxidant NAC partially reversed oleuropein-induced cytotoxicity. Together, in HepG2 cells, oleuropein induced [Ca(2+)]i rises by releasing Ca(2+) from the ER and causing Ca(2+) influx through store-operated Ca(2+) channels. Moreover, oleuropein induced Ca(2+)-associated cytotoxicity that involved ROS signaling and cell cycle arrest. This compound may offer a potential therapy for treatment of human hepatoma.
Collapse
Affiliation(s)
- Jin-Shiung Cheng
- Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Chiang-Ting Chou
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi 613, Taiwan; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi 613, Taiwan
| | - Yuan-Yuarn Liu
- Division of Trauma, Department of Emergency, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Wei-Chih Sun
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Pochuen Shieh
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan
| | - Daih-Huang Kuo
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan
| | - Chun-Chi Kuo
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung 907, Taiwan
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| |
Collapse
|
30
|
Singh DK, Spillane C, Siddiqi I. PATRONUS1 is expressed in meiotic prophase I to regulate centromeric cohesion in Arabidopsis and shows synthetic lethality with OSD1. BMC PLANT BIOLOGY 2015; 15:201. [PMID: 26272661 PMCID: PMC4536785 DOI: 10.1186/s12870-015-0558-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 06/18/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Retention of sister centromere cohesion during meiosis I and its dissolution at meiosis II is necessary for balanced chromosome segregation and reduction of chromosome number. PATRONUS1 (PANS1) has recently been proposed to regulate centromere cohesion in Arabidopsis after meiosis I, during interkinesis. pans1 mutants lose centromere cohesion prematurely during interkinesis and segregate randomly at meiosis II. PANS1 protein interacts with components of the Anaphase Promoting Complex/Cyclosome (APC/C). RESULTS We show here that PANS1 protein is found mainly in prophase I of meiosis, with its level declining late in prophase I during diplotene. PANS1 also shows expression in dividing tissues. We demonstrate that, in addition to the previously reported premature loss of centromere cohesion during interkinesis, pans1 mutants show partially penetrant defects in centromere cohesion during meiosis I. We also determine that pans1 shows synthetic lethality at the level of the sporophyte, with Omission of Second Division 1 (osd1), which encodes a known inhibitor of the APC/C that is required for cell cycle progression during mitosis, as well as meiosis I and II. CONCLUSIONS Our results show that PANS1 is expressed mainly in meiosis I where it has an important function and together with previous studies indicate that PANS1 and OSD1 are part of a network linking centromere cohesion and cell cycle progression through control of APC/C activity.
Collapse
Affiliation(s)
- Dipesh Kumar Singh
- Centre for Cellular and Molecular Biology (CSIR), Uppal Road, Hyderabad, 500007, India.
| | - Charles Spillane
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), Botany and Plant Sciences, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland.
| | - Imran Siddiqi
- Centre for Cellular and Molecular Biology (CSIR), Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
31
|
Zielke N, Edgar BA. FUCCI sensors: powerful new tools for analysis of cell proliferation. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:469-87. [PMID: 25827130 PMCID: PMC6681141 DOI: 10.1002/wdev.189] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/11/2015] [Accepted: 02/26/2015] [Indexed: 01/09/2023]
Abstract
Visualizing the cell cycle behavior of individual cells within living organisms can facilitate the understanding of developmental processes such as pattern formation, morphogenesis, cell differentiation, growth, cell migration, and cell death. Fluorescence Ubiquitin Cell Cycle Indicator (FUCCI) technology offers an accurate, versatile, and universally applicable means of achieving this end. In recent years, the FUCCI system has been adapted to several model systems including flies, fish, mice, and plants, making this technology available to a wide range of researchers for studies of diverse biological problems. Moreover, a broad range of FUCCI‐expressing cell lines originating from diverse cell types have been generated, hence enabling the design of advanced studies that combine in vivo experiments and cell‐based methods such as high‐content screening. Although only a short time has passed since its introduction, the FUCCI technology has already provided fundamental insight into how cells establish quiescence and how G1 phase length impacts the balance between pluripotency and stem cell differentiation. Further discoveries using the FUCCI technology are sure to come. WIREs Dev Biol 2015, 4:469–487. doi: 10.1002/wdev.189 This article is categorized under:
Adult Stem Cells, Tissue Renewal, and Regeneration > Methods and Principles Technologies > Generating Chimeras and Lineage Analysis Technologies > Analysis of Cell, Tissue, and Animal Phenotypes
Collapse
Affiliation(s)
- N Zielke
- Deutsches Krebsforschungszentrum (DKFZ), Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Allianz, Heidelberg, Germany
| | - B A Edgar
- Deutsches Krebsforschungszentrum (DKFZ), Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Allianz, Heidelberg, Germany
| |
Collapse
|
32
|
Zimkus A, Misiūnas A, Ramanavičius A, Chaustova L. Evaluation of Competence Phenomenon of Yeast Saccharomyces cerevisiae by Lipophilic Cations Accumulation and FT-IR Spectroscopy. Relation of Competence to Cell Cycle. Fungal Biol 2015. [DOI: 10.1007/978-3-319-10142-2_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Neurospora crassa as a model organism to explore the interconnected network of the cell cycle and the circadian clock. Fungal Genet Biol 2014; 71:52-7. [PMID: 25239547 DOI: 10.1016/j.fgb.2014.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/06/2014] [Indexed: 12/20/2022]
Abstract
Budding and fission yeast pioneered uncovering molecular mechanisms of eukaryotic cell division cycles. However, they do not possess canonical circadian clock machinery that regulates physiological processes with a period of about 24h. On the other hand, Neurospora crassa played a critical role in elucidating molecular mechanisms of circadian rhythms, but have not been utilized frequently for cell cycle studies. Recent findings demonstrate that there exists a conserved coupling between the cell cycle and the circadian clock from N.crassa to Mus musculus, which poses Neurospora as an ideal model organism to investigate molecular mechanisms and emerging behavior of the coupled network of the cell cycle and circadian rhythms. In this review, we briefly describe generic eukaryotic cell cycle regulation focusing on G1/S and G2/M transitions, and highlight that these transitions may be targeted for the circadian clock to influence timing of cell division cycles.
Collapse
|
34
|
Src kinase function controls progenitor cell pools during regeneration and tumor onset in the Drosophila intestine. Oncogene 2014; 34:2371-84. [DOI: 10.1038/onc.2014.163] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 03/28/2014] [Accepted: 03/29/2014] [Indexed: 12/11/2022]
|
35
|
Transcript maturation in apicomplexan parasites. Curr Opin Microbiol 2014; 20:82-7. [PMID: 24934558 DOI: 10.1016/j.mib.2014.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 01/21/2023]
Abstract
The complex life cycles of apicomplexan parasites are associated with dynamic changes of protein repertoire. In Toxoplasma gondii, global analysis of gene expression demonstrates that dynamic changes in mRNA levels unfold in a serial cascade during asexual replication and up to 50% of encoded genes are unequally expressed in development. Recent studies indicate transcription and mRNA processing have important roles in fulfilling the 'just-in-time' delivery of proteins to parasite growth and development. The prominence of post-transcriptional mechanisms in the Apicomplexa was demonstrated by mechanistic studies of the critical RNA-binding proteins and regulatory kinases. However, it is still early in our understanding of how transcription and post-transcriptional mechanisms are balanced to produce adequate numbers of specialized forms that is required to complete the parasite life cycle.
Collapse
|
36
|
Fly-FUCCI: A versatile tool for studying cell proliferation in complex tissues. Cell Rep 2014; 7:588-598. [PMID: 24726363 DOI: 10.1016/j.celrep.2014.03.020] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/06/2014] [Accepted: 03/07/2014] [Indexed: 01/22/2023] Open
Abstract
One promising approach for in vivo studies of cell proliferation is the FUCCI system (fluorescent ubiquitination-based cell cycle indicator). Here, we report the development of a Drosophila-specific FUCCI system (Fly-FUCCI) that allows one to distinguish G1, S, and G2 phases of interphase. Fly-FUCCI relies on fluorochrome-tagged degrons from the Cyclin B and E2F1 proteins, which are degraded by the ubiquitin E3-ligases APC/C and CRL4(Cdt2), during mitosis or the onset of S phase, respectively. These probes can track cell-cycle patterns in cultured Drosophila cells, eye and wing imaginal discs, salivary glands, the adult midgut, and probably other tissues. To support a broad range of experimental applications, we have generated a toolkit of transgenic Drosophila lines that express the Fly-FUCCI probes under control of the UASt, UASp, QUAS, and ubiquitin promoters. The Fly-FUCCI system should be a valuable tool for visualizing cell-cycle activity during development, tissue homeostasis, and neoplastic growth.
Collapse
|
37
|
Bandura JL, Jiang H, Nickerson DW, Edgar BA. The molecular chaperone Hsp90 is required for cell cycle exit in Drosophila melanogaster. PLoS Genet 2013; 9:e1003835. [PMID: 24086162 PMCID: PMC3784567 DOI: 10.1371/journal.pgen.1003835] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 08/13/2013] [Indexed: 11/18/2022] Open
Abstract
The coordination of cell proliferation and differentiation is crucial for proper development. In particular, robust mechanisms exist to ensure that cells permanently exit the cell cycle upon terminal differentiation, and these include restraining the activities of both the E2F/DP transcription factor and Cyclin/Cdk kinases. However, the full complement of mechanisms necessary to restrain E2F/DP and Cyclin/Cdk activities in differentiating cells are not known. Here, we have performed a genetic screen in Drosophila melanogaster, designed to identify genes required for cell cycle exit. This screen utilized a PCNA-miniwhite+ reporter that is highly E2F-responsive and results in a darker red eye color when crossed into genetic backgrounds that delay cell cycle exit. Mutation of Hsp83, the Drosophila homolog of mammalian Hsp90, results in increased E2F-dependent transcription and ectopic cell proliferation in pupal tissues at a time when neighboring wild-type cells are postmitotic. Further, these Hsp83 mutant cells have increased Cyclin/Cdk activity and accumulate proteins normally targeted for proteolysis by the anaphase-promoting complex/cyclosome (APC/C), suggesting that APC/C function is inhibited. Indeed, reducing the gene dosage of an inhibitor of Cdh1/Fzr, an activating subunit of the APC/C that is required for timely cell cycle exit, can genetically suppress the Hsp83 cell cycle exit phenotype. Based on these data, we propose that Cdh1/Fzr is a client protein of Hsp83. Our results reveal that Hsp83 plays a heretofore unappreciated role in promoting APC/C function during cell cycle exit and suggest a mechanism by which Hsp90 inhibition could promote genomic instability and carcinogenesis. Cells must permanently stop dividing when they terminally differentiate for development to occur normally. Maintenance of this postmitotic state is also important, as unscheduled proliferation of differentiated cells can result in cancer. To identify genes important for restraining cell proliferation during terminal differentiation, we performed a genetic screen in Drosophila and found that mutation of Hsp90 caused ectopic cell proliferation in differentiating tissues. Hsp90 is a molecular chaperone that is essential for viability in all eukaryotes and has been shown to facilitate the activity of hundreds of “client” proteins. Indeed, several inhibitors of Hsp90 are currently being tested in clinical trials for use as anti-cancer therapeutics due to their ability to silence multiple client oncoproteins simultaneously. Our data suggest that Hsp90 is necessary to halt cell proliferation during differentiation because the protein Cdh1, which is required for normal cell cycle exit, may be a client of Hsp90. As reduced Cdh1 function results in genomic instability and tumorigenesis, our work highlights the need to design more precisely targeted Hsp90 inhibitors for use as cancer treatments.
Collapse
Affiliation(s)
- Jennifer L. Bandura
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- German Cancer Research Center (DKFZ) – Center for Molecular Biology Heidelberg (ZMBH) Alliance, Heidelberg, Germany
| | - Huaqi Jiang
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Derek W. Nickerson
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Bruce A. Edgar
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- German Cancer Research Center (DKFZ) – Center for Molecular Biology Heidelberg (ZMBH) Alliance, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
38
|
Suvorova ES, Radke JB, Ting LM, Vinayak S, Alvarez CA, Kratzer S, Kim K, Striepen B, White MW. A nucleolar AAA-NTPase is required for parasite division. Mol Microbiol 2013; 90:338-55. [PMID: 23964771 DOI: 10.1111/mmi.12367] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2013] [Indexed: 01/02/2023]
Abstract
Apicomplexa division involves several distinct phases shared with other eukaryote cell cycles including a gap period (G1) prior to chromosome synthesis, although how progression through the parasite cell cycle is controlled is not understood. Here we describe a cell cycle mutant that reversibly arrests in the G1 phase. The defect in this mutant was mapped by genetic complementation to a gene encoding a novel AAA-ATPase/CDC48 family member called TgNoAP1. TgNoAP1 is tightly regulated and expressed in the nucleolus during the G1/S phases. A tyrosine to a cysteine change upstream of the second AAA+ domain in the temperature sensitive TgNoAP1 allele leads to conditional protein instability, which is responsible for rapid cell cycle arrest and a primary defect in 28S rRNA processing as confirmed by knock-in of the mutation back into the parent genome. The interaction of TgNoAP1 with factors of the snoRNP and R2TP complexes indicates this protein has a role in pre-rRNA processing. This is a novel role for a cdc48-related chaperone protein and indicates that TgNoAP1 may be part of a dynamic mechanism that senses the health of the parasite protein machinery at the initial steps of ribosome biogenesis and conveys that information to the parasite cell cycle checkpoint controls.
Collapse
Affiliation(s)
- Elena S Suvorova
- Departments of Molecular Medicine & Global Health, University of South Florida, Tampa, FL, 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mathematical modeling of fission yeast Schizosaccharomyces pombe cell cycle: exploring the role of multiple phosphatases. SYSTEMS AND SYNTHETIC BIOLOGY 2012. [PMID: 23205155 DOI: 10.1007/s11693-011-9090-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED Cell cycle is the central process that regulates growth and division in all eukaryotes. Based on the environmental condition sensed, the cell lies in a resting phase G0 or proceeds through the cyclic cell division process (G1→S→G2→M). These series of events and phase transitions are governed mainly by the highly conserved Cyclin dependent kinases (Cdks) and its positive and negative regulators. The cell cycle regulation of fission yeast Schizosaccharomyces pombe is modeled in this study. The study exploits a detailed molecular interaction map compiled based on the published model and experimental data. There are accumulating evidences about the prominent regulatory role of specific phosphatases in cell cycle regulations. The current study emphasizes the possible role of multiple phosphatases that governs the cell cycle regulation in fission yeast S. pombe. The ability of the model to reproduce the reported regulatory profile for the wild-type and various mutants was verified though simulations. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (doi:10.1007/s11693-011-9090-7) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Klochendler A, Weinberg-Corem N, Moran M, Swisa A, Pochet N, Savova V, Vikeså J, Van de Peer Y, Brandeis M, Regev A, Nielsen FC, Dor Y, Eden A. A transgenic mouse marking live replicating cells reveals in vivo transcriptional program of proliferation. Dev Cell 2012; 23:681-90. [PMID: 23000141 DOI: 10.1016/j.devcel.2012.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 07/15/2012] [Accepted: 08/14/2012] [Indexed: 12/26/2022]
Abstract
Most adult mammalian tissues are quiescent, with rare cell divisions serving to maintain homeostasis. At present, the isolation and study of replicating cells from their in vivo niche typically involves immunostaining for intracellular markers of proliferation, causing the loss of sensitive biological material. We describe a transgenic mouse strain, expressing a CyclinB1-GFP fusion reporter, that marks replicating cells in the S/G2/M phases of the cell cycle. Using flow cytometry, we isolate live replicating cells from the liver and compare their transcriptome to that of quiescent cells to reveal gene expression programs associated with cell proliferation in vivo. We find that replicating hepatocytes have reduced expression of genes characteristic of liver differentiation. This reporter system provides a powerful platform for gene expression and metabolic and functional studies of replicating cells in their in vivo niche.
Collapse
Affiliation(s)
- Agnes Klochendler
- Department of Cell and Developmental Biology, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
McCusker D, Royou A, Velours C, Kellogg D. Cdk1-dependent control of membrane-trafficking dynamics. Mol Biol Cell 2012; 23:3336-47. [PMID: 22767578 PMCID: PMC3431941 DOI: 10.1091/mbc.e11-10-0834] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cyclin-dependent kinase 1 (Cdk1) is required for initiation and maintenance of polarized cell growth in budding yeast. Cdk1 activates Rho-family GTPases, which trigger polarization of the actin cytoskeleton for delivery of membrane to growth sites. It is found that Cdk1's function in polarized growth extends beyond that of actin organization. Cyclin-dependent kinase 1 (Cdk1) is required for initiation and maintenance of polarized cell growth in budding yeast. Cdk1 activates Rho-family GTPases, which polarize the actin cytoskeleton for delivery of membrane to growth sites via the secretory pathway. Here we investigate whether Cdk1 plays additional roles in the initiation and maintenance of polarized cell growth. We find that inhibition of Cdk1 causes a cell surface growth defect that is as severe as that caused by actin depolymerization. However, unlike actin depolymerization, Cdk1 inhibition does not result in a massive accumulation of intracellular secretory vesicles or their cargoes. Analysis of post-Golgi vesicle dynamics after Cdk1 inhibition demonstrates that exocytic vesicles are rapidly mistargeted away from the growing bud, possibly to the endomembrane/vacuolar system. Inhibition of Cdk1 also causes defects in the organization of endocytic and exocytic zones at the site of growth. Cdk1 thus modulates membrane-trafficking dynamics, which is likely to play an important role in coordinating cell surface growth with cell cycle progression.
Collapse
Affiliation(s)
- Derek McCusker
- European Institute of Chemistry and Biology, 33607 Pessac, France
| | | | | | | |
Collapse
|
42
|
Liu Z, Yuan F, Ren J, Cao J, Zhou Y, Yang Q, Xue Y. GPS-ARM: computational analysis of the APC/C recognition motif by predicting D-boxes and KEN-boxes. PLoS One 2012; 7:e34370. [PMID: 22479614 PMCID: PMC3315528 DOI: 10.1371/journal.pone.0034370] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/27/2012] [Indexed: 11/19/2022] Open
Abstract
Anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase incorporated with Cdh1 and/or Cdc20 recognizes and interacts with specific substrates, and faithfully orchestrates the proper cell cycle events by targeting proteins for proteasomal degradation. Experimental identification of APC/C substrates is largely dependent on the discovery of APC/C recognition motifs, e.g., the D-box and KEN-box. Although a number of either stringent or loosely defined motifs proposed, these motif patterns are only of limited use due to their insufficient powers of prediction. We report the development of a novel GPS-ARM software package which is useful for the prediction of D-boxes and KEN-boxes in proteins. Using experimentally identified D-boxes and KEN-boxes as the training data sets, a previously developed GPS (Group-based Prediction System) algorithm was adopted. By extensive evaluation and comparison, the GPS-ARM performance was found to be much better than the one using simple motifs. With this powerful tool, we predicted 4,841 potential D-boxes in 3,832 proteins and 1,632 potential KEN-boxes in 1,403 proteins from H. sapiens, while further statistical analysis suggested that both the D-box and KEN-box proteins are involved in a broad spectrum of biological processes beyond the cell cycle. In addition, with the co-localization information, we predicted hundreds of mitosis-specific APC/C substrates with high confidence. As the first computational tool for the prediction of APC/C-mediated degradation, GPS-ARM is a useful tool for information to be used in further experimental investigations. The GPS-ARM is freely accessible for academic researchers at: http://arm.biocuckoo.org.
Collapse
Affiliation(s)
- Zexian Liu
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Fang Yuan
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Ren
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun Cao
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanhong Zhou
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Yang
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail: (QY); (YX)
| | - Yu Xue
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail: (QY); (YX)
| |
Collapse
|
43
|
Transcriptional regulation is a major controller of cell cycle transition dynamics. PLoS One 2012; 7:e29716. [PMID: 22238641 PMCID: PMC3253096 DOI: 10.1371/journal.pone.0029716] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 12/01/2011] [Indexed: 01/14/2023] Open
Abstract
DNA replication, mitosis and mitotic exit are critical transitions of the cell cycle which normally occur only once per cycle. A universal control mechanism was proposed for the regulation of mitotic entry in which Cdk helps its own activation through two positive feedback loops. Recent discoveries in various organisms showed the importance of positive feedbacks in other transitions as well. Here we investigate if a universal control system with transcriptional regulation(s) and post-translational positive feedback(s) can be proposed for the regulation of all cell cycle transitions. Through computational modeling, we analyze the transition dynamics in all possible combinations of transcriptional and post-translational regulations. We find that some combinations lead to ‘sloppy’ transitions, while others give very precise control. The periodic transcriptional regulation through the activator or the inhibitor leads to radically different dynamics. Experimental evidence shows that in cell cycle transitions of organisms investigated for cell cycle dependent periodic transcription, only the inhibitor OR the activator is under cyclic control and never both of them. Based on these observations, we propose two transcriptional control modes of cell cycle regulation that either STOP or let the cycle GO in case of a transcriptional failure. We discuss the biological relevance of such differences.
Collapse
|
44
|
Nuclear actin-related protein is required for chromosome segregation in Toxoplasma gondii. Mol Biochem Parasitol 2011; 181:7-16. [PMID: 21963440 DOI: 10.1016/j.molbiopara.2011.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 09/10/2011] [Accepted: 09/15/2011] [Indexed: 12/30/2022]
Abstract
Apicomplexa parasites use complex cell cycles to replicate that are not well understood mechanistically. We have established a robust forward genetic strategy to identify the essential components of parasite cell division. Here we describe a novel temperature sensitive Toxoplasma strain, mutant 13-20C2, which growth arrests due to a defect in mitosis. The primary phenotype is the mis-segregation of duplicated chromosomes with chromosome loss during nuclear division. This defect is conditional-lethal with respect to temperature, although relatively mild in regard to the preservation of the major microtubule organizing centers. Despite severe DNA loss many of the physical structures associated with daughter budding and the assembly of invasion structures formed and operated normally at the non-permissive temperature before completely arresting. These results suggest there are coordinating mechanisms that govern the timing of these events in the parasite cell cycle. The defect in mutant 13-20C2 was mapped by genetic complementation to Toxoplasma chromosome III and to a specific mutation in the gene encoding an ortholog of nuclear actin-related protein 4. A change in a conserved isoleucine to threonine in the helical structure of this nuclear actin related protein leads to protein instability and cellular mis-localization at the higher temperature. Given the age of this protist family, the results indicate a key role for nuclear actin-related proteins in chromosome segregation was established very early in the evolution of eukaryotes.
Collapse
|
45
|
Abstract
The cell cycle is controlled by complex regulatory network to ensure that the phases of the cell cycle happen in the right order and transitions between phases happen only if the earlier phase is properly finished. This regulatory network receives signals from the environment, monitors the state of the DNA, and decides when the cell can proceed in its cycle. The transcriptional and post-translational regulatory interactions in this network can lead to complex dynamical responses. The cell cycle dependent oscillations in protein activities are driven by these interactions as the regulatory system moves between steady states that correspond to different phases of the cell cycle. The analysis of such complex molecular network behavior can be investigated with the tools of computational systems biology. Here we review the basic physiological and molecular transitions in the cell cycle and present how the system-level emergent properties were found by the help of mathematical/computational modeling.
Collapse
|
46
|
Le Roy H, Zuliani T, Wolowczuk I, Faivre N, Jouy N, Masselot B, Kerkaert JP, Formstecher P, Polakowska R. Asymmetric distribution of epidermal growth factor receptor directs the fate of normal and cancer keratinocytes in vitro. Stem Cells Dev 2010; 19:209-20. [PMID: 19799519 DOI: 10.1089/scd.2009.0150] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cancer cells are unequal in a tumor mass and in established cultures. This is attributable to cancer stem cells with the unique ability to self-renew and to generate differentiating progeny. This ability is controlled at the level of asymmetric division by mechanisms that are yet not well defined. We found that normal and cancer keratinocyte fate was linked to the asymmetric distribution of epidermal growth factor receptor (EGFR) during mitosis. Although essential for epithelial cell proliferation, differentiation, and survival, this receptor was not present on the surface of cells satisfying criteria for stem cells such as quiescence, competence to produce functionally distinct daughters, high proliferative and clonogenic potential, sphere formation ability, and expression of stem cell markers. In contrast, keratinocytes displaying EGFR acquired a more differentiated phenotype, suggesting that EGFR may be involved in a switch from stem to transient amplifying cell fate. This switch was associated with changes in the expression profile of cell cycle, survival, and mitochondria controlling proteins that varied between normal and cancer cells. In conclusion, it appears that an unequal distribution of EGFR at mitosis controls keratinocyte fate by balancing quiescence and cycling of EGFR(-) cells, clearly malfunctioning in cancer. We believe that our findings provide mechanistic insights into the development of resistance to anti-EGFR therapies.
Collapse
|
47
|
Heuts J, Salber J, Goldyn AM, Janser R, Möller M, Klee D. Bio-functionalized star PEG-coated PVDF surfaces for cytocompatibility-improved implant components. J Biomed Mater Res A 2010; 92:1538-51. [PMID: 19431207 DOI: 10.1002/jbm.a.32478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Unmodified and GRGDS peptide-modified six arm PEG star based hydrogels (Star PEG) have been applied as a multifunctional, easy to handle coating system for textile polyvinylidene fluoride (PVDF) structures, which prevent unspecific protein and cell adsorption and control-specific cell adhesion. The reactive isocyanate-terminated Star PEG has been successfully applied to ammonia-plasma treated two- and three-dimensional PVDF surfaces. Easy modification of the surface hydrogel by mixing in of GRGDS peptide during the coating step or subsequent coupling of GRGDS was determined by TOF-SIMS. Unmodified and GRGDS-functionalized hydrogel surfaces show distinct protein repellency, as demonstrated by fluorescence microscopy after incubation with fluorescent labeled proteins and Surface MALDI-TOF-Mass Spectroscopy. Cell culture experiments with primary human dermal fibroblasts, primary fetal rat fibroblasts, and human osteoblasts on GRGDS and/or KRSR Star PEG-modified two- and three-dimensional substrates show advancement in cell adhesion and proliferation compared with untreated PVDF surfaces, whereas pure star PEG-coated surfaces show no cell adhesion. The combination of protein and cell repellent properties with specific biofunctionality and easy application of the coatings will enable their application for 3D-scaffolds.
Collapse
Affiliation(s)
- Jean Heuts
- Institute of Technical and Macromolecular Chemistry of RWTH Aachen University, Aachen, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Autophosphorylation-induced degradation of the Pho85 cyclin Pcl5 is essential for response to amino acid limitation. Mol Cell Biol 2008; 28:6858-69. [PMID: 18794371 DOI: 10.1128/mcb.00367-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pho85 cyclins (Pcls), activators of the yeast cyclin-dependent kinase (CDK) Pho85, belong together with the p35 activator of mammalian CDK5 to a distinct structural cyclin class. Different Pcls target Pho85 to distinct substrates. Pcl5 targets Pho85 specifically to Gcn4, a yeast transcription factor involved in the response to amino acid starvation, eventually causing the degradation of Gcn4. Pcl5 is itself highly unstable, an instability that was postulated to be important for regulation of Gcn4 degradation. We used hybrids between different Pcls to circumscribe the substrate recognition function to the core cyclin box domain of Pcl5. Furthermore, the cyclin hybrids revealed that Pcl5 degradation is uniquely dependent on two distinct degradation signals: one N-terminal and one C-terminal to the cyclin box domain. Whereas the C-terminal degradation signal is independent of Pho85, the N-terminal degradation signal requires phosphorylation of a specific threonine residue by the Pho85 molecule bound to the cyclin. This latter mode of degradation depends on the SCF ubiquitin ligase. Degradation of Pcl5 after self-catalyzed phosphorylation ensures that activity of the Pho85/Pcl5 complex is self-limiting in vivo. We demonstrate the importance of this mechanism for the regulation of Gcn4 degradation and for cell growth under conditions of amino acid starvation.
Collapse
|
49
|
Koch B, Kueng S, Ruckenbauer C, Wendt KS, Peters JM. The Suv39h-HP1 histone methylation pathway is dispensable for enrichment and protection of cohesin at centromeres in mammalian cells. Chromosoma 2008; 117:199-210. [PMID: 18075750 DOI: 10.1007/s00412-007-0139-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 11/11/2007] [Accepted: 11/12/2007] [Indexed: 11/29/2022]
Abstract
Sister chromatids are physically connected by cohesin complexes. This sister chromatid cohesion is essential for the biorientation of chromosomes on the mitotic and meiotic spindle. In many species, cohesion between chromosome arms is partly dissolved in prophase of mitosis, whereas cohesion is protected at centromeres until the onset of anaphase. In vertebrates, the protein Sgo1, protein phosphatase 2A, and several other proteins are required for protection of centromeric cohesin in early mitosis. In fission yeast, the recruitment of heterochromatin protein Swi6/HP1 to centromeres by the histone-methyltransferase Clr4/Suv39h is required for enrichment of cohesin at centromeres already in interphase. We have tested if the Suv39h-HP1 histone methylation pathway is also required for enrichment and mitotic protection of cohesin at centromeres in mammalian cells. We show that cohesin and HP1 proteins partially colocalize at mitotic centromeres but that cohesin localization is not detectably altered in mouse embryonic fibroblasts that lack Suv39h genes and in which HP1 proteins can, therefore, not be properly enriched in pericentric heterochromatin. Our data indicate that the Suv39h-HP1 pathway is not essential for enrichment and mitotic protection of cohesin at centromeres in mammalian cells.
Collapse
Affiliation(s)
- Birgit Koch
- Research Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
50
|
Time scale and dimension analysis of a budding yeast cell cycle model. BMC Bioinformatics 2006; 7:494. [PMID: 17094799 PMCID: PMC1660553 DOI: 10.1186/1471-2105-7-494] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 11/09/2006] [Indexed: 12/04/2022] Open
Abstract
Background The progress through the eukaryotic cell division cycle is driven by an underlying molecular regulatory network. Cell cycle progression can be considered as a series of irreversible transitions from one steady state to another in the correct order. Although this view has been put forward some time ago, it has not been quantitatively proven yet. Bifurcation analysis of a model for the budding yeast cell cycle has identified only two different steady states (one for G1 and one for mitosis) using cell mass as a bifurcation parameter. By analyzing the same model, using different methods of dynamical systems theory, we provide evidence for transitions among several different steady states during the budding yeast cell cycle. Results By calculating the eigenvalues of the Jacobian of kinetic differential equations we have determined the stability of the cell cycle trajectories of the Chen model. Based on the sign of the real part of the eigenvalues, the cell cycle can be divided into excitation and relaxation periods. During an excitation period, the cell cycle control system leaves a formerly stable steady state and, accordingly, excitation periods can be associated with irreversible cell cycle transitions like START, entry into mitosis and exit from mitosis. During relaxation periods, the control system asymptotically approaches the new steady state. We also show that the dynamical dimension of the Chen's model fluctuates by increasing during excitation periods followed by decrease during relaxation periods. In each relaxation period the dynamical dimension of the model drops to one, indicating a period where kinetic processes are in steady state and all concentration changes are driven by the increase of cytoplasmic growth. Conclusion We apply two numerical methods, which have not been used to analyze biological control systems. These methods are more sensitive than the bifurcation analysis used before because they identify those transitions between steady states that are not controlled by a bifurcation parameter (e.g. cell mass). Therefore by applying these tools for a cell cycle control model, we provide a deeper understanding of the dynamical transitions in the underlying molecular network.
Collapse
|