1
|
Abo-Ghneim FDF, Al-Koofee DAF, Mohammed HJ. Association of XRCC1 (rs1799782) and XPD (rs13181) gene polymorphisms with renal failure risk in a sample of Iraqi population: a case-control study. Mol Biol Rep 2025; 52:294. [PMID: 40056231 DOI: 10.1007/s11033-025-10408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND End-stage chronic kidney disease (CKD) can lead to life-threatening complications and is caused primarily by CKD and cardiovascular issues. CKD is characterized by the inability of the kidneys to filter waste and excess fluids from the blood. This study investigated the associations of the genetic variants XRCC1 rs1799782 (C194T) and ERCC2/XPD rs25487 (Q399R) with CKD susceptibility in Iraqi patients and related biochemical changes. METHODS The research was performed from 25/01/2023 to 30/06/2023, we analyzed the genetic associations of two SNPs of DNA repair genes (XRCC1 and ERCC2/XPD) in a case‒control study involving 219 CKD patients diagnosed by a nephrologist and 246 healthy controls. Data and blood samples were collected, and the genotype distribution frequency was determined via the PCR-based high-resolution melting (PCR-HRM) technique. RESULTS This study included 465 participants, with 219 CKD patients and 246 healthy controls. XRCC1 and ERCC2/XPD gene polymorphisms were significantly associated with CKD susceptibility in Iraqi patients (p = 0.025 and p = 0.0001, respectively). Multivariate linear regression confirmed the associations of rs1799782 G/A and rs13181T/G with CKD, adjusting for sex, age, and BMI. Moderate and statistically significant linkage disequilibrium (0.43) between the two SNPs was observed, indicating nonrandom associations. CONCLUSION XRCC1 (rs1799782) and ERCC2/XPD (rs13181) polymorphisms are associated with an increased risk of CKD. The AG haplotype model is particularly related to increased CKD susceptibility in Iraqi patients, suggesting the importance of these DNA repair gene polymorphisms in CKD risk assessment.
Collapse
Affiliation(s)
- Fahad D F Abo-Ghneim
- Department of Medical Lab., Faculty of Healthy and Medical Techniques, Al-Furat Al-Awsat Technical University, Najaf, Iraq
| | - Dhafer A F Al-Koofee
- Department of Clinical Lab. Sc., Faculty of Pharmacy, University of Kufa, Najaf, 54002, Iraq.
| | | |
Collapse
|
2
|
Masago K, Kuroda H, Sasaki E, Fujita Y, Fujita S, Horio Y, Endo M, Ishihara H, Hanai N, Matsushita H. Novel gene fusions in human oropharyngeal carcinoma. Cancer Genet 2024; 286-287:29-34. [PMID: 38971117 DOI: 10.1016/j.cancergen.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/13/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Few reports have analyzed the fusion genes involved in carcinogenesis in the oropharynx, where the incidence of human papillomavirus-associated tumors is relatively low. The aim of this study was to identify novel driver fusion genes in patients with oropharyngeal cancer. The study enrolled fifty-seven patients who were diagnosed with oropharyngeal carcinoma. RNA sequencing data from fresh-frozen specimens were used to identify candidate fusion genes via the JAFFA, arriba, and STAR-Fusion pipelines. Candidate fusion genes were confirmed by direct sequencing. The expression level of a candidate fusion gene was compared to that of tumors without fusion genes. Finally, filtering was performed for driver genes using the annoFuse pipeline. In addition, the VIRTUS pipeline was used to analyze the presence of human papillomavirus in the tumors. We identified 5 (8.8 %) novel potential driver in-frame fusion genes, MKNK2::MOB3A, ICMT::RPS6KA3, ATP1B3::GRK7, CSNK2A1::KIF16B, and FGFR3::MAEA, and 1 (1.8 %) known in-frame fusion gene, FGFR3::TACC3, in 57 patients with pharyngeal carcinoma. Our results suggest that sporadic fusion genes may contribute to tumorigenesis in oropharyngeal carcinomas.
Collapse
Affiliation(s)
- Katsuhiro Masago
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan; Division of Translational Oncoimmunology, Aichi Cancer Research Institute, Nagoya, Japan.
| | - Hiroaki Kuroda
- Department of Respiratory Surgery, Aichi Cancer Center Hospital, Nagoya, Japan; Division of Translational Oncoimmunology, Aichi Cancer Research Institute, Nagoya, Japan; Department of Thoracic Surgery, Teikyo University Mizonokuchi Hospital, Kawasaki, Japan
| | - Eiichi Sasaki
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | - Yasuko Fujita
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | - Shiro Fujita
- Department of Respiratory Medicine, Kobe Central Hospital, Kobe, Japan
| | - Yoshitsugu Horio
- Department of Respiratory Medicine, Aichi Cancer Center Hospital, Nagoya, Japan; Division of Translational Oncoimmunology, Aichi Cancer Research Institute, Nagoya, Japan
| | - Motoyoshi Endo
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiromasa Ishihara
- Division of Translational Oncoimmunology, Aichi Cancer Research Institute, Nagoya, Japan
| | - Nobuhiro Hanai
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Hirokazu Matsushita
- Division of Translational Oncoimmunology, Aichi Cancer Research Institute, Nagoya, Japan
| |
Collapse
|
3
|
Hermosilla VE, Gyenis L, Rabalski AJ, Armijo ME, Sepúlveda P, Duprat F, Benítez-Riquelme D, Fuentes-Villalobos F, Quiroz A, Hepp MI, Farkas C, Mastel M, González-Chavarría I, Jackstadt R, Litchfield DW, Castro AF, Pincheira R. Casein kinase 2 phosphorylates and induces the SALL2 tumor suppressor degradation in colon cancer cells. Cell Death Dis 2024; 15:223. [PMID: 38493149 PMCID: PMC10944491 DOI: 10.1038/s41419-024-06591-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Spalt-like proteins are Zinc finger transcription factors from Caenorhabditis elegans to vertebrates, with critical roles in development. In vertebrates, four paralogues have been identified (SALL1-4), and SALL2 is the family's most dissimilar member. SALL2 is required during brain and eye development. It is downregulated in cancer and acts as a tumor suppressor, promoting cell cycle arrest and cell death. Despite its critical functions, information about SALL2 regulation is scarce. Public data indicate that SALL2 is ubiquitinated and phosphorylated in several residues along the protein, but the mechanisms, biological consequences, and enzymes responsible for these modifications remain unknown. Bioinformatic analyses identified several putative phosphorylation sites for Casein Kinase II (CK2) located within a highly conserved C-terminal PEST degradation motif of SALL2. CK2 is a serine/threonine kinase that promotes cell proliferation and survival and is often hyperactivated in cancer. We demonstrated that CK2 phosphorylates SALL2 residues S763, T778, S802, and S806 and promotes SALL2 degradation by the proteasome. Accordingly, pharmacological inhibition of CK2 with Silmitasertib (CX-4945) restored endogenous SALL2 protein levels in SALL2-deficient breast MDA-MB-231, lung H1299, and colon SW480 cancer cells. Silmitasertib induced a methuosis-like phenotype and cell death in SW480 cells. However, the phenotype was significantly attenuated in CRISPr/Cas9-mediated SALL2 knockout SW480 cells. Similarly, Sall2-deficient tumor organoids were more resistant to Silmitasertib-induced cell death, confirming that SALL2 sensitizes cancer cells to CK2 inhibition. We identified a novel CK2-dependent mechanism for SALL2 regulation and provided new insights into the interplay between these two proteins and their role in cell survival and proliferation.
Collapse
Affiliation(s)
- V E Hermosilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Dept of Orofacial Sciences and Dept of Anatomy, University of California-San Francisco, San Francisco, CA, USA
| | - L Gyenis
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - A J Rabalski
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
- Odyssey Therapeutics, Boston, MA, USA
| | - M E Armijo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - P Sepúlveda
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - F Duprat
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - D Benítez-Riquelme
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - F Fuentes-Villalobos
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Inmunovirología. Departamento de Microbiologia. Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - A Quiroz
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - M I Hepp
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - C Farkas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - M Mastel
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg. Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - I González-Chavarría
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - R Jackstadt
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg. Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - D W Litchfield
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - A F Castro
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - R Pincheira
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
4
|
Nosella ML, Kim TH, Huang SK, Harkness RW, Goncalves M, Pan A, Tereshchenko M, Vahidi S, Rubinstein JL, Lee HO, Forman-Kay JD, Kay LE. Poly(ADP-ribosyl)ation enhances nucleosome dynamics and organizes DNA damage repair components within biomolecular condensates. Mol Cell 2024; 84:429-446.e17. [PMID: 38215753 DOI: 10.1016/j.molcel.2023.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Nucleosomes, the basic structural units of chromatin, hinder recruitment and activity of various DNA repair proteins, necessitating modifications that enhance DNA accessibility. Poly(ADP-ribosyl)ation (PARylation) of proteins near damage sites is an essential initiation step in several DNA-repair pathways; however, its effects on nucleosome structural dynamics and organization are unclear. Using NMR, cryoelectron microscopy (cryo-EM), and biochemical assays, we show that PARylation enhances motions of the histone H3 tail and DNA, leaving the configuration of the core intact while also stimulating nuclease digestion and ligation of nicked nucleosomal DNA by LIG3. PARylation disrupted interactions between nucleosomes, preventing self-association. Addition of LIG3 and XRCC1 to PARylated nucleosomes generated condensates that selectively partition DNA repair-associated proteins in a PAR- and phosphorylation-dependent manner in vitro. Our results establish that PARylation influences nucleosomes across different length scales, extending from the atom-level motions of histone tails to the mesoscale formation of condensates with selective compositions.
Collapse
Affiliation(s)
- Michael L Nosella
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tae Hun Kim
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shuya Kate Huang
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert W Harkness
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Monica Goncalves
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alisia Pan
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Maria Tereshchenko
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Julie D Forman-Kay
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Lewis E Kay
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
5
|
Kraszewska I, Sarad K, Andrysiak K, Kopacz A, Schmidt L, Krüger M, Dulak J, Jaźwa-Kusior A. Casein kinase 2 activity is a host restriction factor for AAV transduction. Mol Ther 2024; 32:84-102. [PMID: 37952087 PMCID: PMC10787142 DOI: 10.1016/j.ymthe.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/29/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
So far, the mechanisms that impede AAV transduction, especially in the human heart, are poorly understood, hampering the introduction of new, effective gene therapy strategies. Therefore, the aim of this study was to identify and overcome the main cellular barriers to successful transduction in the heart, using induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs), iPSC-derived cardiac fibroblasts (iPSC-CFs), and primary endothelial cells to model vector-host interactions. Through phosphoproteome analysis we established that casein kinase 2 (CK2) signaling is one of the most significantly affected pathways upon AAV exposure. Transient inhibition of CK2 activity substantially enhanced the transduction rate of AAV2, AAV6, and AAV9 in all tested cell types. In particular, CK2 inhibition improved the trafficking of AAVs through the cytoplasm, impaired DNA damage response through destabilization of MRE11, and altered the RNA processing pathways, which were also highly responsive to AAV transduction. Also, it augmented transgene expression in already transduced iPSC-CFs, which retain AAV genomes in a functional, but probably silent form. In summary, the present study provides new insights into the current understanding of the host-AAV vector interaction, identifying CK2 activity as a key barrier to efficient transduction and transgene expression, which may translate to improving the outcome of AAV-based therapies in the future.
Collapse
Affiliation(s)
- Izabela Kraszewska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Katarzyna Sarad
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Kalina Andrysiak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Luisa Schmidt
- CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Marcus Krüger
- CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agnieszka Jaźwa-Kusior
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
6
|
Ni Q, Wu X, Su T, Jiang C, Dong D, Wang D, Chen W, Cui Y, Peng Y. The regulatory subunits of CK2 complex mediate DNA damage response and virulence in Candida Glabrata. BMC Microbiol 2023; 23:317. [PMID: 37891489 PMCID: PMC10612253 DOI: 10.1186/s12866-023-03069-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Candida glabrata which belongs to normal microbiota, has caused significant concern worldwide due to its high prevalence and drug resistance in recent years. C. glabrata has developed many strategies to evade the clearance of the host immune system, thereby causing persistent infection. Although coping with the induced DNA damage is widely acknowledged to be important, the underlying mechanisms remain unclear. RESULTS The present study provides hitherto undocumented evidence of the importance of the regulatory subunits of CgCK2 (CgCkb1 and CgCkb2) in response to DNA damage. Deletion of CgCKB1 or CgCKB2 enhanced cellular apoptosis and DNA breaks and led to cell cycle delay. In addition, deficiencies in survival upon phagocytosis were observed in Δckb1 and Δckb2 strains. Consistently, disruption of CgCKB1 and CgCKB2 attenuated the virulence of C. glabrata in mouse models of invasive candidiasis. Furthermore, global transcriptional profiling analysis revealed that CgCkb1 and CgCkb2 participate in cell cycle resumption and genomic stability. CONCLUSIONS Overall, our findings suggest that the response to DNA damage stress is crucial for C. glabrata to survive in macrophages, leading to full virulence in vivo. The significance of this work lies in providing a better understanding of pathogenicity in C. glabrata-related candidiasis and expanding ideas for clinical therapies.
Collapse
Affiliation(s)
- Qi Ni
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China
| | - Xianwei Wu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725 South Wanping Road, Shanghai, 200032, China
| | - Tongxuan Su
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China
| | - Cen Jiang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China
| | - Danfeng Dong
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China
| | - Daosheng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China
| | - Wei Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China
| | - Yingchao Cui
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China
| | - Yibing Peng
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China.
| |
Collapse
|
7
|
Wang C, Tian L, He Q, Lin S, Wu Y, Qiao Y, Zhu B, Li D, Chen G. Targeting CK2-mediated phosphorylation of p53R2 sensitizes BRCA-proficient cancer cells to PARP inhibitors. Oncogene 2023; 42:2971-2984. [PMID: 37620447 DOI: 10.1038/s41388-023-02812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
Poly[ADP-ribose] polymerase (PARP) inhibitors, which selectively kills homologous recombination (HR) repair-deficient cancer cells, are widely employed to treat cancer patients harboring BRCA1/2 mutations. However, they display limited efficacy in tumors with wild-type (WT) BRCA1/2. Thus, it is crucial to identify new druggable HR repair regulators and improve the therapeutic efficacy of PARP inhibitors via combination therapies in BRCA1/2-WT tumors. Here, we show that the depletion of ribonucleotide reductase (RNR) subunit p53R2 impairs HR repair and sensitizes BRCA1/2-WT cancer cells to PARP inhibition. We further demonstrate that the loss of p53R2 leads to a decrease of HR repair factor CtIP, as a result of dNTPs shortage-induced ubiquitination of CtIP. Moreover, we identify that casein kinase II (CK2) phosphorylates p53R2 at its ser20, which subsequently activates RNR for dNTPs production. Therefore, pharmacologic inhibition of the CK2-mediated phosphorylation of p53R2 compromises its HR repair capacity in BRCA1/2-WT cancer cells, which renders these cells susceptible to PARP inhibition in vitro and in vivo. Therefore, our study reveals a novel strategy to inhibit HR repair activity and convert BRCA1/2-proficient cancers to be susceptible to PARP inhibitors via synthetic lethal combination.
Collapse
Affiliation(s)
- Cong Wang
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Ling Tian
- Department of Medical Biochemistry and Molecular Biology, School of Medicine Jinan University, Guangzhou, 510632, PR China
| | - Qiang He
- Department of Medical Biochemistry and Molecular Biology, School of Medicine Jinan University, Guangzhou, 510632, PR China
| | - Shengbin Lin
- Department of Medical Biochemistry and Molecular Biology, School of Medicine Jinan University, Guangzhou, 510632, PR China
| | - Yue Wu
- Department of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Yiting Qiao
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Bo Zhu
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Dake Li
- Department of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China.
| | - Guo Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
- Department of Medical Biochemistry and Molecular Biology, School of Medicine Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
8
|
Imamura R, Saito M, Shimada M, Kobayashi J, Ishiai M, Matsumoto Y. APTX acts in DNA double-strand break repair in a manner distinct from XRCC4. JOURNAL OF RADIATION RESEARCH 2023; 64:485-495. [PMID: 36940705 DOI: 10.1093/jrr/rrad007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/03/2023] [Indexed: 05/27/2023]
Abstract
Aprataxin (APTX), the product of the causative gene for hereditary neurogenerative syndromes Ataxia-oculomotor apraxia 1 and early onset ataxia with oculomotor apraxia and hypoalbuminemia, has an enzymatic activity of removing adenosine monophosphate from DNA 5'-end, which arises from abortive ligation by DNA ligases. It is also reported that APTX physically binds to XRCC1 and XRCC4, suggesting its involvement in DNA single-strand break repair (SSBR) and DNA double-strand break repair (DSBR) via non-homologous end joining pathway. Although the involvement of APTX in SSBR in association with XRCC1 has been established, the significance of APTX in DSBR and its interaction with XRCC4 have remained unclear. Here, we generated APTX knock-out (APTX-/-) cell from human osteosarcoma U2OS through CRISPR/Cas9-mediated genome editing system. APTX-/- cells exhibited increased sensitivity toward ionizing radiation (IR) and Camptothecin in association with retarded DSBR, as shown by increased number of retained γH2AX foci. However, the number of retained 53BP1 foci in APTX-/- cell was not discernibly different from wild-type cells, in stark contrast to XRCC4-depleted cells. The recruitment of GFP-tagged APTX (GFP-APTX) to the DNA damage sites was examined by laser micro-irradiation and live-cell imaging analysis using confocal microscope. The accumulation of GFP-APTX on the laser track was attenuated by siRNA-mediated depletion of XRCC1, but not XRCC4. Moreover, the deprivation of APTX and XRCC4 displayed additive inhibitory effects on DSBR after IR exposure and end joining of GFP reporter. These findings collectively suggest that APTX acts in DSBR in a manner distinct from XRCC4.
Collapse
Affiliation(s)
- Rikiya Imamura
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Mizuki Saito
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Mikio Shimada
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Junya Kobayashi
- Department of Radiological Sciences, School of Health Science at Narita, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba 286-8686, Japan
| | - Masamichi Ishiai
- National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yoshihisa Matsumoto
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
9
|
Islam A, Chakraborty A, Gambardella S, Campopiano R, Sarker AH, Boldogh I, Hazra T. Functional analysis of a conserved site mutation in the DNA end processing enzyme PNKP leading to ataxia with oculomotor apraxia type 4 in humans. J Biol Chem 2023; 299:104714. [PMID: 37061005 PMCID: PMC10197107 DOI: 10.1016/j.jbc.2023.104714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023] Open
Abstract
Polynucleotide kinase 3'-phosphatase (PNKP), an essential DNA end-processing enzyme in mammals with 3'-phosphatase and 5'-kinase activities, plays a pivotal role in multiple DNA repair pathways. Its functional deficiency has been etiologically linked to various neurological disorders. Recent reports have shown that mutation at a conserved glutamine (Gln) in PNKP leads to late-onset ataxia with oculomotor apraxia type 4 (AOA4) in humans and embryonic lethality in pigs. However, the molecular mechanism underlying such phenotypes remains elusive. Here, we report that the enzymatic activities of the mutant versus WT PNKP are comparable; however, cells expressing mutant PNKP and peripheral blood mononuclear cells (PBMCs) of AOA4 patients showed a significant amount of DNA double-strand break accumulation and consequent activation of the DNA damage response. Further investigation revealed that the nuclear localization of mutant PNKP is severely abrogated, and the mutant proteins remain primarily in the cytoplasm. Western blot analysis of AOA4 patient-derived PBMCs also revealed the presence of mutated PNKP predominantly in the cytoplasm. To understand the molecular determinants, we identified that mutation at a conserved Gln residue impedes the interaction of PNKP with importin alpha but not with importin beta, two highly conserved proteins that mediate the import of proteins from the cytoplasm into the nucleus. Collectively, our data suggest that the absence of PNKP in the nucleus leads to constant activation of the DNA damage response due to persistent accumulation of double-strand breaks in the mutant cells, triggering death of vulnerable brain cells-a potential cause of neurodegeneration in AOA4 patients.
Collapse
Affiliation(s)
- Azharul Islam
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Stefano Gambardella
- IRCCS Neuromed & Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Rosa Campopiano
- IRCCS Neuromed & Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Altaf H Sarker
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tapas Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
10
|
Chen F, Wang Z, Wang Y, Gou S. Circumventing drug resistance through a CK2-targeted combination via attenuating endogenous ahr-TLS-promoted genomic instability in human colorectal cancer cells. Food Chem Toxicol 2023; 176:113774. [PMID: 37037410 DOI: 10.1016/j.fct.2023.113774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023]
Abstract
As anchoring Casein Kinase 2 (CK2) in several human tumors, DN701 as a novel CK2 inhibitor was applied to reverse chemo-resistance via its antitumor effect synergized with oxaliplatin. Recently, translesion DNA synthesis (TLS) has attracted our attention for its association with chemo-resistance, as demonstrated by previous clinical data. The in vitro cell-based properties supported that oxaliplatin combined with DN701 could reverse drug resistance via blockading CK2-mediated aryl hydrocarbon receptor (AhR) and translesion DNA synthesis (TLS)-induced DNA damage repair. Moreover, pharmacologic or genetic inhibition on REV3L (Protein reversion less 3-like) greatly impaired TLS-induced genomic instability. Mechanistically, combination of oxaliplatin with DN701 was found to inhibit CK2 expression and AhR-TLS-REV3L axis signaling, implying the potential decrease of genomic instability. In addition, the combination of oxaliplatin with DN701 could reduce CK2-AhR-TLS-related genomic instability, leading to potent antitumor effects in vivo. Our study presents an underlying mechanism that DN701 could attenuate tumoral chemo-resistance via decaying CK2-mediated AhR and TLS genomic instability, suggesting a potential cancer chemotherapeutic modality to prolong survival in chemo-resistant patients.
Collapse
Affiliation(s)
- Feihong Chen
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Zhiwei Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Yuanjiang Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
11
|
Chen Y, Wang Y, Wang J, Zhou Z, Cao S, Zhang J. Strategies of Targeting CK2 in Drug Discovery: Challenges, Opportunities, and Emerging Prospects. J Med Chem 2023; 66:2257-2281. [PMID: 36745746 DOI: 10.1021/acs.jmedchem.2c01523] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CK2 (casein kinase 2) is a serine/threonine protein kinase that is ubiquitous in eukaryotic cells and plays important roles in a variety of cellular functions, including cell growth, apoptosis, circadian rhythms, DNA damage repair, transcription, and translation. CK2 is involved in cancer pathogenesis and the occurrence of many diseases. Therefore, targeting CK2 is a promising therapeutic strategy. Although many CK2-specific small-molecule inhibitors have been developed, only CX-4945 has progressed to clinical trials. In recent years, novel CK2 inhibitors have gradually become a research hotspot, which is expected to overcome the limitations of traditional inhibitors. Herein, we summarize the structure, biological functions, and disease relevance of CK2 and emphatically analyze the structure-activity relationship (SAR) and binding modes of small-molecule CK2 inhibitors. We also discuss the latest progress of novel strategies, providing insights into new drugs targeting CK2 for clinical practice.
Collapse
Affiliation(s)
- Yijia Chen
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuxi Wang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Zhilan Zhou
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shu Cao
- West China School of Stomatology Sichuan University, Chengdu, Sichuan 610064, China
| | - Jifa Zhang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| |
Collapse
|
12
|
Caldecott KW. DNA single-strand break repair and human genetic disease. Trends Cell Biol 2022; 32:733-745. [PMID: 35643889 DOI: 10.1016/j.tcb.2022.04.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022]
Abstract
DNA single-strand breaks (SSBs) are amongst the commonest DNA lesions arising in cells, with many tens of thousands induced in each cell each day. SSBs arise not only from exposure to intracellular and environmental genotoxins but also as intermediates of normal DNA metabolic processes, such as the removal of torsional stress in DNA by topoisomerase enzymes and the epigenetic regulation of gene expression by DNA base excision repair (BER). If not rapidly detected and repaired, SSBs can result in RNA polymerase stalling, DNA replication fork collapse, and hyperactivation of the SSB sensor protein poly(ADP-ribose) polymerase 1 (PARP1). The potential impact of unrepaired SSBs is illustrated by the existence of genetic diseases in which proteins involved in SSB repair (SSBR) are mutated, and which are typified by hereditary neurodevelopmental and/or neurodegenerative disease. Here, I review our current understanding of SSBR and its impact on human neurological disease, with a focus on recent developments and concepts.
Collapse
Affiliation(s)
- Keith W Caldecott
- Genome Damage and Stability Centre, School of Life Sciences, Science Park Road, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
13
|
The Role of Protein Kinase CK2 in Development and Disease Progression: A Critical Review. J Dev Biol 2022; 10:jdb10030031. [PMID: 35997395 PMCID: PMC9397010 DOI: 10.3390/jdb10030031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Protein kinase CK2 (CK2) is a ubiquitous holoenzyme involved in a wide array of developmental processes. The involvement of CK2 in events such as neurogenesis, cardiogenesis, skeletogenesis, and spermatogenesis is essential for the viability of almost all organisms, and its role has been conserved throughout evolution. Further into adulthood, CK2 continues to function as a key regulator of pathways affecting crucial processes such as osteogenesis, adipogenesis, chondrogenesis, neuron differentiation, and the immune response. Due to its vast role in a multitude of pathways, aberrant functioning of this kinase leads to embryonic lethality and numerous diseases and disorders, including cancer and neurological disorders. As a result, CK2 is a popular target for interventions aiming to treat the aforementioned diseases. Specifically, two CK2 inhibitors, namely CX-4945 and CIBG-300, are in the early stages of clinical testing and exhibit promise for treating cancer and other disorders. Further, other researchers around the world are focusing on CK2 to treat bone disorders. This review summarizes the current understanding of CK2 in development, the structure of CK2, the targets and signaling pathways of CK2, the implication of CK2 in disease progression, and the recent therapeutics developed to inhibit the dysregulation of CK2 function in various diseases.
Collapse
|
14
|
Gyenis L, Menyhart D, Cruise ES, Jurcic K, Roffey SE, Chai DB, Trifoi F, Fess SR, Desormeaux PJ, Núñez de Villavicencio Díaz T, Rabalski AJ, Zukowski SA, Turowec JP, Pittock P, Lajoie G, Litchfield DW. Chemical Genetic Validation of CSNK2 Substrates Using an Inhibitor-Resistant Mutant in Combination with Triple SILAC Quantitative Phosphoproteomics. Front Mol Biosci 2022; 9:909711. [PMID: 35755813 PMCID: PMC9225150 DOI: 10.3389/fmolb.2022.909711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Casein Kinase 2 (CSNK2) is an extremely pleiotropic, ubiquitously expressed protein kinase involved in the regulation of numerous key biological processes. Mapping the CSNK2-dependent phosphoproteome is necessary for better characterization of its fundamental role in cellular signalling. While ATP-competitive inhibitors have enabled the identification of many putative kinase substrates, compounds targeting the highly conserved ATP-binding pocket often exhibit off-target effects limiting their utility for definitive kinase-substrate assignment. To overcome this limitation, we devised a strategy combining chemical genetics and quantitative phosphoproteomics to identify and validate CSNK2 substrates. We engineered U2OS cells expressing exogenous wild type CSNK2A1 (WT) or a triple mutant (TM, V66A/H160D/I174A) with substitutions at residues important for inhibitor binding. These cells were treated with CX-4945, a clinical-stage inhibitor of CSNK2, and analyzed using large-scale triple SILAC (Stable Isotope Labelling of Amino Acids in Cell Culture) quantitative phosphoproteomics. In contrast to wild-type CSNK2A1, CSNK2A1-TM retained activity in the presence of CX-4945 enabling identification and validation of several CSNK2 substrates on the basis of their increased phosphorylation in cells expressing CSNK2A1-TM. Based on high conservation within the kinase family, we expect that this strategy can be broadly adapted for identification of other kinase-substrate relationships.
Collapse
Affiliation(s)
- Laszlo Gyenis
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Daniel Menyhart
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Edward S Cruise
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Kristina Jurcic
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Scott E Roffey
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Darren B Chai
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Flaviu Trifoi
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Sam R Fess
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Paul J Desormeaux
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | | | - Adam J Rabalski
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Stephanie A Zukowski
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Jacob P Turowec
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Paula Pittock
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Gilles Lajoie
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - David W Litchfield
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.,Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| |
Collapse
|
15
|
Guerra B, Doktor TK, Frederiksen SB, Somyajit K, Andresen BS. Essential role of CK2α for the interaction and stability of replication fork factors during DNA synthesis and activation of the S-phase checkpoint. Cell Mol Life Sci 2022; 79:339. [PMID: 35661926 PMCID: PMC9166893 DOI: 10.1007/s00018-022-04374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
The ataxia telangiectasia mutated and Rad3-related (ATR)-CHK1 pathway is the major signalling cascade activated in response to DNA replication stress. This pathway is associated with the core of the DNA replication machinery comprising CDC45, the replicative MCM2-7 hexamer, GINS (altogether forming the CMG complex), primase-polymerase (POLε, -α, and -δ) complex, and additional fork protection factors such as AND-1, CLASPIN (CLSPN), and TIMELESS/TIPIN. In this study, we report that functional protein kinase CK2α is critical for preserving replisome integrity and for mounting S-phase checkpoint signalling. We find that CDC45, CLSPN and MCM7 are novel CK2α interacting partners and these interactions are particularly important for maintenance of stable MCM7-CDC45, ATRIP-ATR-MCM7, and ATR-CLSPN protein complexes. Consistently, cells depleted of CK2α and treated with hydroxyurea display compromised replisome integrity, reduced chromatin binding of checkpoint mediator CLSPN, attenuated ATR-mediated S-phase checkpoint and delayed recovery of stalled forks. In further support of this, differential gene expression analysis by RNA-sequencing revealed that down-regulation of CK2α accompanies global shutdown of genes that are implicated in the S-phase checkpoint. These findings add to our understanding of the molecular mechanisms involved in DNA replication by showing that the protein kinase CK2α is essential for maintaining the stability of the replisome machinery and for optimizing ATR-CHK1 signalling activation upon replication stress.
Collapse
Affiliation(s)
- Barbara Guerra
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| | - Thomas K Doktor
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Sabrina B Frederiksen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Kumar Somyajit
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Brage S Andresen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
16
|
Zika Virus Induces Mitotic Catastrophe in Human Neural Progenitors by Triggering Unscheduled Mitotic Entry in the Presence of DNA Damage While Functionally Depleting Nuclear PNKP. J Virol 2022; 96:e0033322. [PMID: 35412344 PMCID: PMC9093132 DOI: 10.1128/jvi.00333-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Vertical transmission of Zika virus (ZIKV) leads with high frequency to congenital ZIKV syndrome (CZS), whose worst outcome is microcephaly. However, the mechanisms of congenital ZIKV neurodevelopmental pathologies, including direct cytotoxicity to neural progenitor cells (NPC), placental insufficiency, and immune responses, remain incompletely understood. At the cellular level, microcephaly typically results from death or insufficient proliferation of NPC or cortical neurons. NPC replicate fast, requiring efficient DNA damage responses to ensure genome stability. Like congenital ZIKV infection, mutations in the polynucleotide 5′-kinase 3′-phosphatase (PNKP) gene, which encodes a critical DNA damage repair enzyme, result in recessive syndromes often characterized by congenital microcephaly with seizures (MCSZ). We thus tested whether there were any links between ZIKV and PNKP. Here, we show that two PNKP phosphatase inhibitors or PNKP knockout inhibited ZIKV replication. PNKP relocalized from the nucleus to the cytoplasm in infected cells, colocalizing with the marker of ZIKV replication factories (RF) NS1 and resulting in functional nuclear PNKP depletion. Although infected NPC accumulated DNA damage, they failed to activate the DNA damage checkpoint kinases Chk1 and Chk2. ZIKV also induced activation of cytoplasmic CycA/CDK1 complexes, which trigger unscheduled mitotic entry. Inhibition of CDK1 activity inhibited ZIKV replication and the formation of RF, supporting a role of cytoplasmic CycA/CDK1 in RF morphogenesis. In brief, ZIKV infection induces mitotic catastrophe resulting from unscheduled mitotic entry in the presence of DNA damage. PNKP and CycA/CDK1 are thus host factors participating in ZIKV replication in NPC, and pathogenesis to neural progenitor cells. IMPORTANCE The 2015–2017 Zika virus (ZIKV) outbreak in Brazil and subsequent international epidemic revealed the strong association between ZIKV infection and congenital malformations, mostly neurodevelopmental defects up to microcephaly. The scale and global expansion of the epidemic, the new ZIKV outbreaks (Kerala state, India, 2021), and the potential burden of future ones pose a serious ongoing risk. However, the cellular and molecular mechanisms resulting in microcephaly remain incompletely understood. Here, we show that ZIKV infection of neuronal progenitor cells results in cytoplasmic sequestration of an essential DNA repair protein itself associated with microcephaly, with the consequent accumulation of DNA damage, together with an unscheduled activation of cytoplasmic CDK1/Cyclin A complexes in the presence of DNA damage. These alterations result in mitotic catastrophe of neuronal progenitors, which would lead to a depletion of cortical neurons during development.
Collapse
|
17
|
Werner C, Gast A, Lindenblatt D, Nickelsen A, Niefind K, Jose J, Hochscherf J. Structural and Enzymological Evidence for an Altered Substrate Specificity in Okur-Chung Neurodevelopmental Syndrome Mutant CK2αLys198Arg. Front Mol Biosci 2022; 9:831693. [PMID: 35445078 PMCID: PMC9014129 DOI: 10.3389/fmolb.2022.831693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Specific de novo mutations in the CSNK2A1 gene, which encodes CK2α, the catalytic subunit of protein kinase CK2, are considered as causative for the Okur-Chung neurodevelopmental syndrome (OCNDS). OCNDS is a rare congenital disease with a high phenotypic diversity ranging from neurodevelopmental disabilities to multi-systemic problems and characteristic facial features. A frequent OCNDS mutation is the exchange of Lys198 to Arg at the center of CK2α′s P+1 loop, a key element of substrate recognition. According to preliminary data recently made available, this mutation causes a significant shift of the substrate specificity of the enzyme. We expressed the CK2αLys198Arg recombinantly and characterized it biophysically and structurally. Using isothermal titration calorimetry (ITC), fluorescence quenching and differential scanning fluorimetry (Thermofluor), we found that the mutation does not affect the interaction with CK2β, the non-catalytic CK2 subunit, and that the thermal stability of the protein is even slightly increased. However, a CK2αLys198Arg crystal structure and its comparison with wild-type structures revealed a significant shift of the anion binding site harboured by the P+1 loop. This observation supports the notion that the Lys198Arg mutation causes an alteration of substrate specificity which we underpinned here with enzymological data.
Collapse
Affiliation(s)
- Christian Werner
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Alexander Gast
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Dirk Lindenblatt
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Anna Nickelsen
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Karsten Niefind
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Jennifer Hochscherf
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
- *Correspondence: Jennifer Hochscherf,
| |
Collapse
|
18
|
Jiang B, Murray C, Cole BL, Glover JNM, Chan GK, Deschenes J, Mani RS, Subedi S, Nerva JD, Wang AC, Lockwood CM, Mefford HC, Leary SES, Ojemann JG, Weinfeld M, Ene CI. Mutations of the DNA repair gene PNKP in a patient with microcephaly, seizures, and developmental delay (MCSZ) presenting with a high-grade brain tumor. Sci Rep 2022; 12:5386. [PMID: 35354845 PMCID: PMC8967877 DOI: 10.1038/s41598-022-09097-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/04/2022] [Indexed: 11/08/2022] Open
Abstract
Polynucleotide Kinase-Phosphatase (PNKP) is a bifunctional enzyme that possesses both DNA 3'-phosphatase and DNA 5'-kinase activities, which are required for processing termini of single- and double-strand breaks generated by reactive oxygen species (ROS), ionizing radiation and topoisomerase I poisons. Even though PNKP is central to DNA repair, there have been no reports linking PNKP mutations in a Microcephaly, Seizures, and Developmental Delay (MSCZ) patient to cancer. Here, we characterized the biochemical significance of 2 germ-line point mutations in the PNKP gene of a 3-year old male with MSCZ who presented with a high-grade brain tumor (glioblastoma multiforme) within the cerebellum. Functional and biochemical studies demonstrated these PNKP mutations significantly diminished DNA kinase/phosphatase activities, altered its cellular distribution, caused defective repair of DNA single/double stranded breaks, and were associated with a higher propensity for oncogenic transformation. Our findings indicate that specific PNKP mutations may contribute to tumor initiation within susceptible cells in the CNS by limiting DNA damage repair and increasing rates of spontaneous mutations resulting in pediatric glioma associated driver mutations such as ATRX and TP53.
Collapse
Affiliation(s)
- Bingcheng Jiang
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Ave., Edmonton, AB, T6G 1Z2, Canada
| | - Cameron Murray
- Department of Biochemistry, University of Alberta, Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - Bonnie L Cole
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - Gordon K Chan
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Ave., Edmonton, AB, T6G 1Z2, Canada
| | - Jean Deschenes
- Department of Laboratory Medicine and Pathology, University of Alberta, Cross Cancer Institute, 11560 University Ave., Edmonton, AB, T6G 1Z2, Canada
| | - Rajam S Mani
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Ave., Edmonton, AB, T6G 1Z2, Canada
| | - Sudip Subedi
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Ave., Edmonton, AB, T6G 1Z2, Canada
| | - John D Nerva
- Department of Neurological Surgery, Tulane University, New Orleans, LA, USA
| | - Anthony C Wang
- Department of Neurological Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Heather C Mefford
- Division of Genetics Medicine, University of Washington, Seattle, WA, USA
| | - Sarah E S Leary
- Division of Pediatric Hematology/Oncology, Seattle Children's Hospital, Seattle, WA, USA
| | - Jeffery G Ojemann
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Michael Weinfeld
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Ave., Edmonton, AB, T6G 1Z2, Canada.
| | - Chibawanye I Ene
- Department of Neurological Surgery, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
19
|
Marshall CA, McBride JD, Changolkar L, Riddle DM, Trojanowski JQ, Lee VMY. Inhibition of CK2 mitigates Alzheimer's tau pathology by preventing NR2B synaptic mislocalization. Acta Neuropathol Commun 2022; 10:30. [PMID: 35246269 PMCID: PMC8895919 DOI: 10.1186/s40478-022-01331-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that exhibits pathological changes in both tau and synaptic function. AD patients display increases in hyperphosphorylated tau and synaptic activity. Previous studies have individually identified the role of NR2B subunit-containing NMDA receptors in AD related synaptic dysfunction and aggregated tau without reconciling the conflicting differences and implications of NR2B expression. Inhibition of extrasynaptically located NR2B mitigates tau pathology in AD models, whereas the inhibition of synaptic NR2B replicates tau-associated hyperactivity. This suggests that a simultaneous increase in extrasynaptic NR2B and decrease in synaptic NR2B may be responsible for tau pathology and synaptic dysfunction, respectively. The synaptic location of NR2B is regulated by casein kinase 2 (CK2), which is highly expressed in AD patients. Here, we used patient brains diagnosed with AD, corticobasal degeneration, progressive supranuclear palsy or Pick’s disease to characterize CK2 expression across these diverse tauopathies. Human derived material was also utilized in conjunction with cultured hippocampal neurons in order to investigate AD-induced changes in NR2B location. We further assessed the therapeutic effect of CK2 inhibition on NR2B synaptic distribution and tau pathology. We found that aberrant expression of CK2, and synaptically translocated NR2B, is unique to AD patients compared to other tauopathies. Increased CK2 was also observed in AD-tau treated neurons in addition to the mislocalization of NR2B receptors. Tau burden was alleviated in vitro by correcting synaptic:extrasynaptic NR2B function. Restoring NR2B physiological expression patterns with CK2 inhibition and inhibiting the function of excessive extrasynaptic NR2B with Memantine both mitigated tau accumulation in vitro. However, the combined pharmacological treatment promoted the aggregation of tau. Our data suggests that the synaptic:extrasynaptic balance of NR2B function regulates AD-tau pathogenesis, and that the inhibition of CK2, and concomitant prevention of NR2B mislocalization, may be a useful therapeutic tool for AD patients.
Collapse
|
20
|
Species variations in XRCC1 recruitment strategies for FHA domain-containing proteins. DNA Repair (Amst) 2022; 110:103263. [PMID: 35026705 PMCID: PMC9282668 DOI: 10.1016/j.dnarep.2021.103263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/07/2021] [Accepted: 12/21/2021] [Indexed: 02/03/2023]
Abstract
DNA repair scaffolds XRCC1 and XRCC4 utilize a phosphopeptide FHA domain binding motif (FBM) of the form Y-x-x-pS-pT-D-E that supports recruitment of three identified FHA domain-containing DNA repair proteins: polynucleotide kinase/phosphatase (PNKP), aprataxin (APTX), and a third protein, APLF, that functions as a scaffold in support of non-homologous end joining (NHEJ). Mammalian dimeric XRCC4 is able to interact with two of these proteins at any given time, while monomeric XRCC1 binds only one. However, sequence analysis indicates that amphibian and teleost XRCC1 generally contain two FHA binding motifs. X1-FBM1, is similar to the single mammalian XRCC1 FBM and probably functions similarly. X1-FBM2, is more similar to mammalian XRCC4 FBM; it is located closer to the XRCC1 BRCT1 domain and probably is less discriminating among its three likely binding partners. Availability of an additional PNKP or APTX recruitment motif may alleviate the bottleneck that results from using a single FBM motif for recruitment of multiple repair factors. Alternatively, recruitment of APLF by X1-FBM2 may function to rescue a misdirected or unsuccessful SSB repair response by redirecting the damaged DNA to the NHEJ pathway, - a need that results from the ambiguity of the PARP1 signal regarding the nature of the damage. Evaluation of XRCC4 FBMs in acanthomorphs, which account for a majority of the reported teleost sequences, reveals the presence of an additional XRCC4-like paralog, distinct from other previously described members of the XRCC4 superfamily. The FBM is typically absent in acanthomorph XRCC4, but present in the XRCC4-like paralog. Modeling suggests that XRCC4 and its paralog may form homodimers or XRCC4-XRCC4-like heterodimers.
Collapse
|
21
|
Pedroza-Garcia JA, Xiang Y, De Veylder L. Cell cycle checkpoint control in response to DNA damage by environmental stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:490-507. [PMID: 34741364 DOI: 10.1111/tpj.15567] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Being sessile organisms, plants are ubiquitously exposed to stresses that can affect the DNA replication process or cause DNA damage. To cope with these problems, plants utilize DNA damage response (DDR) pathways, consisting of both highly conserved and plant-specific elements. As a part of this DDR, cell cycle checkpoint control mechanisms either pause the cell cycle, to allow DNA repair, or lead cells into differentiation or programmed cell death, to prevent the transmission of DNA errors in the organism through mitosis or to its offspring via meiosis. The two major DDR cell cycle checkpoints control either the replication process or the G2/M transition. The latter is largely overseen by the plant-specific SOG1 transcription factor, which drives the activity of cyclin-dependent kinase inhibitors and MYB3R proteins, which are rate limiting for the G2/M transition. By contrast, the replication checkpoint is controlled by different players, including the conserved kinase WEE1 and likely the transcriptional repressor RBR1. These checkpoint mechanisms are called upon during developmental processes, in retrograde signaling pathways, and in response to biotic and abiotic stresses, including metal toxicity, cold, salinity, and phosphate deficiency. Additionally, the recent expansion of research from Arabidopsis to other model plants has revealed species-specific aspects of the DDR. Overall, it is becoming evidently clear that the DNA damage checkpoint mechanisms represent an important aspect of the adaptation of plants to a changing environment, hence gaining more knowledge about this topic might be helpful to increase the resilience of plants to climate change.
Collapse
Affiliation(s)
- José Antonio Pedroza-Garcia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| | - Yanli Xiang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| |
Collapse
|
22
|
Zhang J, Tang P, Zou L, Zhang J, Chen J, Yang C, He G, Liu B, Liu J, Chiang CM, Wang G, Ye T, Ouyang L. Discovery of Novel Dual-Target Inhibitor of Bromodomain-Containing Protein 4/Casein Kinase 2 Inducing Apoptosis and Autophagy-Associated Cell Death for Triple-Negative Breast Cancer Therapy. J Med Chem 2021; 64:18025-18053. [PMID: 34908415 PMCID: PMC10118286 DOI: 10.1021/acs.jmedchem.1c01382] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bromodomain-containing protein 4 (BRD4) is an attractive epigenetic target in human cancers. Inhibiting the phosphorylation of BRD4 by casein kinase 2 (CK2) is a potential strategy to overcome drug resistance in cancer therapy. The present study describes the synthesis of multiple BRD4-CK2 dual inhibitors based on rational drug design, structure-activity relationship, and in vitro and in vivo evaluations, and 44e was identified to possess potent and balanced activities against BRD4 (IC50 = 180 nM) and CK2 (IC50 = 230 nM). In vitro experiments show that 44e could inhibit the proliferation and induce apoptosis and autophagy-associated cell death of MDA-MB-231 and MDA-MB-468 cells. In two in vivo xenograft mouse models, 44e displays potent anticancer activity without obvious toxicities. Taken together, we successfully synthesized the first highly effective BRD4-CK2 dual inhibitor, which is expected to be an attractive therapeutic strategy for triple-negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan, China
| | - Pan Tang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan, China
| | - Ling Zou
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan, China.,School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Juncheng Chen
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan, China
| | - Chengcan Yang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan, China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan, China
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, Department of Pharmacology, and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan, China
| | - Tinghong Ye
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan, China
| |
Collapse
|
23
|
Adamowicz M, Hailstone R, Demin AA, Komulainen E, Hanzlikova H, Brazina J, Gautam A, Wells SE, Caldecott KW. XRCC1 protects transcription from toxic PARP1 activity during DNA base excision repair. Nat Cell Biol 2021; 23:1287-1298. [PMID: 34811483 PMCID: PMC8683375 DOI: 10.1038/s41556-021-00792-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022]
Abstract
Genetic defects in the repair of DNA single-strand breaks (SSBs) can result in neurological disease triggered by toxic activity of the single-strand-break sensor protein PARP1. However, the mechanism(s) by which this toxic PARP1 activity triggers cellular dysfunction are unclear. Here we show that human cells lacking XRCC1 fail to rapidly recover transcription following DNA base damage, a phenotype also observed in patient-derived fibroblasts with XRCC1 mutations and Xrcc1−/− mouse neurons. This defect is caused by excessive/aberrant PARP1 activity during DNA base excision repair, resulting from the loss of PARP1 regulation by XRCC1. We show that aberrant PARP1 activity suppresses transcriptional recovery during base excision repair by promoting excessive recruitment and activity of the ubiquitin protease USP3, which as a result reduces the level of monoubiquitinated histones important for normal transcriptional regulation. Importantly, inhibition and/or deletion of PARP1 or USP3 restores transcriptional recovery in XRCC1−/− cells, highlighting PARP1 and USP3 as possible therapeutic targets in neurological disease. Adamowicz et al. report that toxic PARP1 activity, induced by ataxia-associated mutations in XRCC1, impairs the recovery of global transcription during DNA base excision repair by promoting aberrant recruitment and activity of the histone ubiquitin protease USP3.
Collapse
Affiliation(s)
- Marek Adamowicz
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Richard Hailstone
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Annie A Demin
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Emilia Komulainen
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Hana Hanzlikova
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK.,Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Science, Prague, Czech Republic
| | - Jan Brazina
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Amit Gautam
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Sophie E Wells
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Keith W Caldecott
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK. .,Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Science, Prague, Czech Republic.
| |
Collapse
|
24
|
Jayaraman PS, Gaston K. Targeting protein kinase CK2 in the treatment of cholangiocarcinoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:434-447. [PMID: 36045705 PMCID: PMC9400764 DOI: 10.37349/etat.2021.00055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/31/2021] [Indexed: 12/23/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a disease with a very poor prognosis and limited treatment options. Although targeted therapies directed towards specific mutations found in CCA are becoming available and are showing great potential, many tumors do not carry actionable mutations and, in those that do, the emergence of drug resistance is a likely consequence of treatment. Therapeutic targeting of enzymes and other proteins that show elevated activity in CCA cells but which are not altered by mutation is a potential strategy for the treatment of target negative and drug-resistant disease. Protein kinase CK2 (CK2) is a ubiquitously expressed kinase that has increased expression and increased activity in a variety of cancer types including CCA. Several potent CK2 inhibitors are in pre-clinical development or under assessment in a variety of clinical trials often in combination with drugs that induce DNA damage. This review outlines the importance of CK2 in CCA and assesses the progress that has been made in the evaluation of CK2 inhibition as a treatment strategy in this disease. Targeting CK2 based on the expression levels or activity of this protein and/or in combination with drugs that induce DNA damage or inhibit cell cycle progression, could be a viable option for tumors that lack actionable mutations, or for tumors that develop resistance to targeted treatments.
Collapse
Affiliation(s)
- Padma-Sheela Jayaraman
- Biodiscovery Institute, University of Nottingham, NG7 2UH, UK
- Division of Translational Medical Sciences, School of Medicine, University of Nottingham, NG7 2UH, UK
| | - Kevin Gaston
- Biodiscovery Institute, University of Nottingham, NG7 2UH, UK
- Division of Translational Medical Sciences, School of Medicine, University of Nottingham, NG7 2UH, UK
| |
Collapse
|
25
|
Xeroderma Pigmentosum C: A Valuable Tool to Decipher the Signaling Pathways in Skin Cancers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6689403. [PMID: 34630850 PMCID: PMC8495593 DOI: 10.1155/2021/6689403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/24/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
Xeroderma pigmentosum (XP) is a rare autosomal genodermatosis that manifests clinically with pronounced sensitivity to ultraviolet (UV) radiation and the high probability of the occurrence of different skin cancer types in XP patients. XP is mainly caused by mutations in XP-genes that are involved in the nucleotide excision repair (NER) pathway that functions in the removal of bulky DNA adducts. Besides, the aggregation of DNA lesions is a life-threatening event that might be a key for developing various mutations facilitating cancer appearance. One of the key players of NER is XPC that senses helical distortions found in damaged DNA. The majority of XPC gene mutations are nonsense, and some are missense leading either to the loss of XPC protein or to the expression of a truncated nonfunctional version. Given that no cure is yet available, XPC patients should be completely protected and isolated from all types of UV radiations (UVR). Although it is still poorly understood, the characterization of the proteomic signature of an XPC mutant is essential to identify mediators that could be targeted to prevent cancer development in XPC patients. Unraveling this proteomic signature is fundamental to decipher the signaling pathways affected by the loss of XPC expression following exposure to UVB radiation. In this review, we will focus on the signaling pathways disrupted in skin cancer, pathways modulating NER's function, including XPC, to disclose signaling pathways associated with XPC loss and skin cancer occurrence.
Collapse
|
26
|
Shin W, Alpaugh W, Hallihan LJ, Sinha S, Crowther E, Martin GR, Scheidl-Yee T, Yang X, Yoon G, Goldsmith T, Berger ND, de Almeida LG, Dufour A, Dobrinski I, Weinfeld M, Jirik FR, Biernaskie J. PNKP is required for maintaining the integrity of progenitor cell populations in adult mice. Life Sci Alliance 2021; 4:4/9/e202000790. [PMID: 34226276 PMCID: PMC8321660 DOI: 10.26508/lsa.202000790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/24/2022] Open
Abstract
Knockout of Pnkp in adult mice impairs the growth of hair follicle, spermatogonial, and neural progenitor populations. DNA repair proteins are critical to the maintenance of genomic integrity. Specific types of genotoxic factors, including reactive oxygen species generated during normal cellular metabolism or as a result of exposure to exogenous oxidative agents, frequently leads to “ragged” single-strand DNA breaks. The latter exhibits abnormal free DNA ends containing either a 5′-hydroxyl or 3′-phosphate requiring correction by the dual function enzyme, polynucleotide kinase phosphatase (PNKP), before DNA polymerase and ligation reactions can occur to seal the break. Pnkp gene deletion during early murine development leads to lethality; in contrast, the role of PNKP in adult mice is unknown. To investigate the latter, we used an inducible conditional mutagenesis approach to cause global disruption of the Pnkp gene in adult mice. This resulted in a premature aging-like phenotype, characterized by impaired growth of hair follicles, seminiferous tubules, and neural progenitor cell populations. These results point to an important role for PNKP in maintaining the normal growth and survival of these murine progenitor populations.
Collapse
Affiliation(s)
- Wisoo Shin
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Whitney Alpaugh
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Laura J Hallihan
- McCaig Institute for Bone and Joint Health, Calgary, Canada.,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Emilie Crowther
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Gary R Martin
- McCaig Institute for Bone and Joint Health, Calgary, Canada.,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | | | - Xiaoyan Yang
- Department of Oncology, University of Alberta, and Cross Cancer Institute, Edmonton, Canada
| | - Grace Yoon
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Taylor Goldsmith
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Nelson D Berger
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Luiz Gn de Almeida
- McCaig Institute for Bone and Joint Health, Calgary, Canada.,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Antoine Dufour
- McCaig Institute for Bone and Joint Health, Calgary, Canada.,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Michael Weinfeld
- Department of Oncology, University of Alberta, and Cross Cancer Institute, Edmonton, Canada
| | - Frank R Jirik
- McCaig Institute for Bone and Joint Health, Calgary, Canada .,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, Calgary, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada .,Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada.,Department of Surgery, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, Calgary, Canada
| |
Collapse
|
27
|
Kuleshov MV, Xie Z, London ABK, Yang J, Evangelista J, Lachmann A, Shu I, Torre D, Ma’ayan A. KEA3: improved kinase enrichment analysis via data integration. Nucleic Acids Res 2021; 49:W304-W316. [PMID: 34019655 PMCID: PMC8265130 DOI: 10.1093/nar/gkab359] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/06/2021] [Accepted: 04/22/2021] [Indexed: 12/27/2022] Open
Abstract
Phosphoproteomics and proteomics experiments capture a global snapshot of the cellular signaling network, but these methods do not directly measure kinase state. Kinase Enrichment Analysis 3 (KEA3) is a webserver application that infers overrepresentation of upstream kinases whose putative substrates are in a user-inputted list of proteins. KEA3 can be applied to analyze data from phosphoproteomics and proteomics studies to predict the upstream kinases responsible for observed differential phosphorylations. The KEA3 background database contains measured and predicted kinase-substrate interactions (KSI), kinase-protein interactions (KPI), and interactions supported by co-expression and co-occurrence data. To benchmark the performance of KEA3, we examined whether KEA3 can predict the perturbed kinase from single-kinase perturbation followed by gene expression experiments, and phosphoproteomics data collected from kinase-targeting small molecules. We show that integrating KSIs and KPIs across data sources to produce a composite ranking improves the recovery of the expected kinase. The KEA3 webserver is available at https://maayanlab.cloud/kea3.
Collapse
Affiliation(s)
- Maxim V Kuleshov
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Zhuorui Xie
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Alexandra B K London
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Janice Yang
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - John Erol Evangelista
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Alexander Lachmann
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Ingrid Shu
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Denis Torre
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Avi Ma’ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| |
Collapse
|
28
|
XRCC1 prevents toxic PARP1 trapping during DNA base excision repair. Mol Cell 2021; 81:3018-3030.e5. [PMID: 34102106 PMCID: PMC8294329 DOI: 10.1016/j.molcel.2021.05.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/08/2021] [Accepted: 05/10/2021] [Indexed: 01/12/2023]
Abstract
Mammalian DNA base excision repair (BER) is accelerated by poly(ADP-ribose) polymerases (PARPs) and the scaffold protein XRCC1. PARPs are sensors that detect single-strand break intermediates, but the critical role of XRCC1 during BER is unknown. Here, we show that protein complexes containing DNA polymerase β and DNA ligase III that are assembled by XRCC1 prevent excessive engagement and activity of PARP1 during BER. As a result, PARP1 becomes "trapped" on BER intermediates in XRCC1-deficient cells in a manner similar to that induced by PARP inhibitors, including in patient fibroblasts from XRCC1-mutated disease. This excessive PARP1 engagement and trapping renders BER intermediates inaccessible to enzymes such as DNA polymerase β and impedes their repair. Consequently, PARP1 deletion rescues BER and resistance to base damage in XRCC1-/- cells. These data reveal excessive PARP1 engagement during BER as a threat to genome integrity and identify XRCC1 as an "anti-trapper" that prevents toxic PARP1 activity.
Collapse
|
29
|
Elevating CDCA3 levels in non-small cell lung cancer enhances sensitivity to platinum-based chemotherapy. Commun Biol 2021; 4:638. [PMID: 34050247 PMCID: PMC8163776 DOI: 10.1038/s42003-021-02136-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Platinum-based chemotherapy remains the cornerstone of treatment for most non-small cell lung cancer (NSCLC) cases either as maintenance therapy or in combination with immunotherapy. However, resistance remains a primary issue. Our findings point to the possibility of exploiting levels of cell division cycle associated protein-3 (CDCA3) to improve response of NSCLC tumours to therapy. We demonstrate that in patients and in vitro analyses, CDCA3 levels correlate with measures of genome instability and platinum sensitivity, whereby CDCA3high tumours are sensitive to cisplatin and carboplatin. In NSCLC, CDCA3 protein levels are regulated by the ubiquitin ligase APC/C and cofactor Cdh1. Here, we identified that the degradation of CDCA3 is modulated by activity of casein kinase 2 (CK2) which promotes an interaction between CDCA3 and Cdh1. Supporting this, pharmacological inhibition of CK2 with CX-4945 disrupts CDCA3 degradation, elevating CDCA3 levels and increasing sensitivity to platinum agents. We propose that combining CK2 inhibitors with platinum-based chemotherapy could enhance platinum efficacy in CDCA3low NSCLC tumours and benefit patients. Kildey et al find that high levels of mitotic regulator CDCA3 correlates with sensitivity to platinum agents in non-small cell lung cancer patients and cell lines. They show that interfering with CDCA3 degradation through CK2 inhibition enhances CDCA3 levels and increases sensitivity to platinum agents suggesting a therapeutic route.
Collapse
|
30
|
Kim K, Kirby TW, Perera L, London RE. Phosphopeptide interactions of the Nbs1 N-terminal FHA-BRCT1/2 domains. Sci Rep 2021; 11:9046. [PMID: 33907233 PMCID: PMC8079451 DOI: 10.1038/s41598-021-88400-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/05/2021] [Indexed: 11/21/2022] Open
Abstract
Human Nbs1, a component of the MRN complex involved in DNA double strand break repair, contains a concatenated N-terminal FHA-BRCT1/2 sequence that supports interaction with multiple phosphopeptide binding partners. MDC1 binding localizes Nbs1 to the damage site, while binding of CDK-phosphorylated CtIP activates additional ATM-dependent CtIP phosphorylation, modulating substrate-dependent resection. We have investigated the phosphopeptide binding characteristics of Nbs1 BRCT1/2 based on a molecular modeling approach that revealed structural homology with the tandem TopBP1 BRCT7/8 domains. Relevance of the model was substantiated by the ability of TopBP1-binding FANCJ phosphopeptide to interact with hsNbsBRCT1/2, albeit with lower affinity. The modeled BRCT1/2 is characterized by low pSer/pThr selectivity, preference for a cationic residue at the + 2 position, and an inter-domain binding cleft selective for hydrophobic residues at the + 3/ + 4 positions. These features provide insight into the basis for interaction of SDT motifs with the BRCT1/2 domains and allowed identification of CtIP pSer347- and pThr847-containing phosphopeptides as high and lower affinity ligands, respectively. Among other binding partners considered, rodent XRCC1 contains an SDT sequence in the second linker consistent with high-affinity Nbs1 binding, while human XRCC1 lacks this motif, but contains other phosphorylated sequences that exhibit low-affinity binding.
Collapse
Affiliation(s)
- Kyungmin Kim
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Thomas W Kirby
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
31
|
Wang Y, Wang X, Xu G, Gou S. Novel CK2-Specific Pt(II) Compound Reverses Cisplatin-Induced Resistance by Inhibiting Cancer Cell Stemness and Suppressing DNA Damage Repair in Non-small Cell Lung Cancer Treatments. J Med Chem 2021; 64:4163-4178. [PMID: 33784109 DOI: 10.1021/acs.jmedchem.1c00079] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer stem cells (CSCs) have a pivotal impact in drug resistance, tumor metastasis, and progression of various cancer entities, including in non-small cell lung cancer (NSCLC). A CK2 inhibitor HY1 was found to show potent CSC inhibitory effects in A549 cells. By taking advantage of inherent CK2 specificity and CSC inhibition of HY1, a Pt(II) agent (HY1-Pt) was developed by conjugation of HY1 with an active Pt(II) unit to reverse cisplatin-induced resistance in A549/cDDP cell treatment. In vitro biological studies indicated that HY1-Pt can target CK2, suppress DNA damage repair, reinforce cellular accumulation of platinum, and reverse resistance apart from effectively inhibiting CSCs through Wnt/β-catenin signal pathway in A549/cDDP cells. Significantly, HY1-Pt presented an acceptable pharmacokinetic behavior and exhibited higher tumor growth inhibitory efficacy than cisplatin either in A549 or A549/cDDP xenograft models with low toxicity. Overall, HY1-Pt is a promising drug candidate for NSCLC treatment.
Collapse
Affiliation(s)
- Yuanjiang Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xinyi Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Gang Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| |
Collapse
|
32
|
Hammel M, Rashid I, Sverzhinsky A, Pourfarjam Y, Tsai MS, Ellenberger T, Pascal JM, Kim IK, Tainer JA, Tomkinson AE. An atypical BRCT-BRCT interaction with the XRCC1 scaffold protein compacts human DNA Ligase IIIα within a flexible DNA repair complex. Nucleic Acids Res 2021; 49:306-321. [PMID: 33330937 PMCID: PMC7797052 DOI: 10.1093/nar/gkaa1188] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/21/2020] [Accepted: 12/13/2020] [Indexed: 01/08/2023] Open
Abstract
The XRCC1-DNA ligase IIIα complex (XL) is critical for DNA single-strand break repair, a key target for PARP inhibitors in cancer cells deficient in homologous recombination. Here, we combined biophysical approaches to gain insights into the shape and conformational flexibility of the XL as well as XRCC1 and DNA ligase IIIα (LigIIIα) alone. Structurally-guided mutational analyses based on the crystal structure of the human BRCT-BRCT heterodimer identified the network of salt bridges that together with the N-terminal extension of the XRCC1 C-terminal BRCT domain constitute the XL molecular interface. Coupling size exclusion chromatography with small angle X-ray scattering and multiangle light scattering (SEC-SAXS-MALS), we determined that the XL is more compact than either XRCC1 or LigIIIα, both of which form transient homodimers and are highly disordered. The reduced disorder and flexibility allowed us to build models of XL particles visualized by negative stain electron microscopy that predict close spatial organization between the LigIIIα catalytic core and both BRCT domains of XRCC1. Together our results identify an atypical BRCT-BRCT interaction as the stable nucleating core of the XL that links the flexible nick sensing and catalytic domains of LigIIIα to other protein partners of the flexible XRCC1 scaffold.
Collapse
Affiliation(s)
- Michal Hammel
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ishtiaque Rashid
- Departments of Internal Medicine, Molecular Genetics & Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Aleksandr Sverzhinsky
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Yasin Pourfarjam
- Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH 45221, USA
| | - Miaw-Sheue Tsai
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tom Ellenberger
- Department of Biochemistry, Washington University, St. Louis, MO, USA
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - In-Kwon Kim
- Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH 45221, USA
| | - John A Tainer
- Departments of Cancer Biology and Molecular & Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alan E Tomkinson
- Departments of Internal Medicine, Molecular Genetics & Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
33
|
Gibson D. Platinum(IV) anticancer agents; are we en route to the holy grail or to a dead end? J Inorg Biochem 2021; 217:111353. [PMID: 33477089 DOI: 10.1016/j.jinorgbio.2020.111353] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/02/2020] [Accepted: 12/13/2020] [Indexed: 01/23/2023]
Abstract
Pt(IV) complexes are designed as prodrugs that are intended to overcome resistance. Pt(IV) prodrugs are activated inside cancer cells releasing cytotoxic Pt(II) drugs as well as two axial ligands that can be used to confer favorable pharmacological properties to the prodrug. The ligands can be innocent spectators, cancer targeting agents or bioactive moieties. The choice of axial ligands determines the chemical and pharmacological properties of the prodrugs. Over the years, several approaches were employed in attempts to increase the selectivity of the prodrugs to cancer cells and to utilize multi-action prodrugs to overcome resistance. In this review, we critically examine several of these approaches in order to evaluate the validity of some of the working hypotheses that are driving the current research.
Collapse
Affiliation(s)
- Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| |
Collapse
|
34
|
Tsukada K, Matsumoto Y, Shimada M. Linker region is required for efficient nuclear localization of polynucleotide kinase phosphatase. PLoS One 2020; 15:e0239404. [PMID: 32970693 PMCID: PMC7514006 DOI: 10.1371/journal.pone.0239404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/05/2020] [Indexed: 01/10/2023] Open
Abstract
Polynucleotide kinase phosphatase (PNKP) is a DNA repair factor with dual enzymatic functions, i.e., phosphorylation of 5’-end and dephosphorylation of 3’-end, which are prerequisites for DNA ligation and, thus, is involved in multiple DNA repair pathways, i.e., base excision repair, single-strand break repair and double-strand break repair through non-homologous end joining. Mutations in PNKP gene causes inherited diseases, such as microcephaly and seizure (MCSZ) by neural developmental failure and ataxia with oculomotor apraxia 4 (AOA4) and Charcot-Marie-Tooth disease 2B2 (CMT2B2) by neurodegeneration. PNKP consists of the Forkhead-associated (FHA) domain, linker region, phosphatase domain and kinase domain. Although the functional importance of PNKP interaction with XRCC1 and XRCC4 through the FHA domain and that of phosphatase and kinase enzyme activities have been well established, little is known about the function of linker region. In this study, we identified a functional putative nuclear localization signal (NLS) of PNKP located in the linker region, and showed that lysine 138 (K138), arginine 139 (R139) and arginine 141 (R141) residues therein are critically important for nuclear localization. Furthermore, double mutant of K138A and R35A, the latter of which mutates arginine 35, central amino acid of FHA domain, showed additive effect on nuclear localization, indicating that the FHA domain as well as the NLS is important for PNKP nuclear localization. Thus, this study revealed two distinct mechanisms regulating nuclear localization and subnuclear distribution of PNKP. These findings would contribute to deeper understanding of a variety of DNA repair pathway, i.e., base excision repair, single-strand break repair and double-strand break repair.
Collapse
Affiliation(s)
- Kaima Tsukada
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Yoshihisa Matsumoto
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Mikio Shimada
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
- * E-mail:
| |
Collapse
|
35
|
Kalasova I, Hailstone R, Bublitz J, Bogantes J, Hofmann W, Leal A, Hanzlikova H, Caldecott KW. Pathological mutations in PNKP trigger defects in DNA single-strand break repair but not DNA double-strand break repair. Nucleic Acids Res 2020; 48:6672-6684. [PMID: 32504494 PMCID: PMC7337934 DOI: 10.1093/nar/gkaa489] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022] Open
Abstract
Hereditary mutations in polynucleotide kinase-phosphatase (PNKP) result in a spectrum of neurological pathologies ranging from neurodevelopmental dysfunction in microcephaly with early onset seizures (MCSZ) to neurodegeneration in ataxia oculomotor apraxia-4 (AOA4) and Charcot-Marie-Tooth disease (CMT2B2). Consistent with this, PNKP is implicated in the repair of both DNA single-strand breaks (SSBs) and DNA double-strand breaks (DSBs); lesions that can trigger neurodegeneration and neurodevelopmental dysfunction, respectively. Surprisingly, however, we did not detect a significant defect in DSB repair (DSBR) in primary fibroblasts from PNKP patients spanning the spectrum of PNKP-mutated pathologies. In contrast, the rate of SSB repair (SSBR) is markedly reduced. Moreover, we show that the restoration of SSBR in patient fibroblasts collectively requires both the DNA kinase and DNA phosphatase activities of PNKP, and the fork-head associated (FHA) domain that interacts with the SSBR protein, XRCC1. Notably, however, the two enzymatic activities of PNKP appear to affect different aspects of disease pathology, with reduced DNA phosphatase activity correlating with neurodevelopmental dysfunction and reduced DNA kinase activity correlating with neurodegeneration. In summary, these data implicate reduced rates of SSBR, not DSBR, as the source of both neurodevelopmental and neurodegenerative pathology in PNKP-mutated disease, and the extent and nature of this reduction as the primary determinant of disease severity.
Collapse
Affiliation(s)
- Ilona Kalasova
- Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, 142 20, Czech Republic
| | - Richard Hailstone
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Janin Bublitz
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Jovel Bogantes
- Servicio de Cirugía Reconstructiva, Hospital Rafael Ángel Calderón Guardia, Caja Costarricense de Seguro Social, San José, Costa Rica
| | - Winfried Hofmann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Alejandro Leal
- Section of Genetics and Biotechnology, School of Biology, University of Costa Rica, San José, Costa Rica
| | - Hana Hanzlikova
- Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, 142 20, Czech Republic.,Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Keith W Caldecott
- Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, 142 20, Czech Republic.,Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| |
Collapse
|
36
|
Flavones and flavonols may have clinical potential as CK2 inhibitors in cancer therapy. Med Hypotheses 2020; 141:109723. [DOI: 10.1016/j.mehy.2020.109723] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/27/2020] [Accepted: 04/08/2020] [Indexed: 01/16/2023]
|
37
|
ShiYang X, Miao Y, Cui Z, Lu Y, Zhou C, Zhang Y, Xiong B. Casein kinase 2 modulates the spindle assembly checkpoint to orchestrate porcine oocyte meiotic progression. J Anim Sci Biotechnol 2020; 11:31. [PMID: 32292585 PMCID: PMC7140493 DOI: 10.1186/s40104-020-00438-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/17/2020] [Indexed: 11/10/2022] Open
Abstract
Background CK2 (casein kinase 2) is a serine/threonine-selective protein kinase that has been involved in a variety of cellular processes such as DNA repair, cell cycle control and circadian rhythm regulation. However, its functional roles in oocyte meiosis have not been fully determined. Results We report that CK2 is essential for porcine oocyte meiotic maturation by regulating spindle assembly checkpoint (SAC). Immunostaining and immunoblotting analysis showed that CK2 was constantly expressed and located on the chromosomes during the entire oocyte meiotic maturation. Inhibition of CK2 activity by its selective inhibitor CX-4945 impaired the first polar body extrusion and arrested oocytes at M I stage, accompanied by the presence of BubR1 at kinetochores, indicative of activated SAC. In addition, we found that spindle/chromosome structure was disrupted in CK2-inhibited oocytes due to the weakened microtubule stability, which is a major cause resulting in the activation of SAC. Last, we found that the level DNA damage as assessed by γH2A.X staining was considerably elevated when CK2 was inhibited, suggesting that DNA damage might be another critical factor leading to the SAC activation and meiotic failure of oocytes. Conclusions Our findings demonstrate that CK2 promotes the porcine oocyte maturation by ensuring normal spindle assembly and DNA damage repair.
Collapse
Affiliation(s)
- Xiayan ShiYang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yilong Miao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhaokang Cui
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yajuan Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Changyin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
38
|
Campopiano R, Ferese R, Buttari F, Femiano C, Centonze D, Fornai F, Biagioni F, Chiaravalloti MA, Magnani M, Giardina E, Ruzzo A, Gambardella S. A Novel Homozygous Variant in the Fork-Head-Associated Domain of Polynucleotide Kinase Phosphatase in a Patient Affected by Late-Onset Ataxia With Oculomotor Apraxia Type 4. Front Neurol 2020; 10:1331. [PMID: 32010037 PMCID: PMC6974581 DOI: 10.3389/fneur.2019.01331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 12/02/2019] [Indexed: 11/13/2022] Open
Abstract
Ataxia with oculomotor apraxia (AOA) is a clinical syndrome featuring a group of genetic diseases including at least four separate autosomal-recessive cerebellar ataxias. All these disorders are due to altered genes involved in DNA repair. AOA type 4 (AOA4) is caused by mutations in DNA repair factor polynucleotide kinase phosphatase (PNKP), which encodes for a DNA processing enzyme also involved in other syndromes featured by microcephaly or neurodegeneration. To date, only a few AOA4 patients have been reported worldwide. All these patients are homozygous or compound heterozygous carriers for mutations in the kinase domain of PNKP. In this report, we describe a 56 years old patient affected by AOA4 characterized by ataxia, polyneuropathy, oculomotor apraxia, and cognitive impairment with the absence of dystonia. The disease is characterized by a very late onset (50 years) when compared with other AOA4 patients described so far (median age of onset at 4 years). In this proband, Clinical Exome Analysis through Next Generation Sequencing (NGS) consisting of 4,800 genes, identified the PNKP homozygous mutation p.Gln50Glu. This variant, classified as a likely pathogenic variant according to American College of Medical Genetics (ACMG) guidelines, does not involve the kinase domain but falls in the fork-head-associated (FHA) domain. So far, mutations in such a domain were reported to associate only with a pure seizure syndrome without the classic AOA4 features. Therefore, this is the first report of patients carrying a mutation of the FHA domain within the PNKP gene which expresses the clinical phenotype known as the AOA4 syndrome and the lack of any seizure activity. Further studies are required to investigate specifically the significance of various mutations within the FHA domain, and it would be worth to correlate these variants with the age of onset of the AOA4 syndrome.
Collapse
Affiliation(s)
| | | | | | | | - Diego Centonze
- IRCCS Neuromed, Pozzilli, Italy.,Dipartimento di Medicina dei Sistemi, Università di Roma Tor Vergata, Rome, Italy
| | - Francesco Fornai
- IRCCS Neuromed, Pozzilli, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Emiliano Giardina
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy
| | - Anna Ruzzo
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Stefano Gambardella
- IRCCS Neuromed, Pozzilli, Italy.,Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| |
Collapse
|
39
|
Liu Z, Wang M, Wang H, Fang L, Gou S. Platinum-Based Modification of Styrylbenzylsulfones as Multifunctional Antitumor Agents: Targeting the RAS/RAF Pathway, Enhancing Antitumor Activity, and Overcoming Multidrug Resistance. J Med Chem 2019; 63:186-204. [DOI: 10.1021/acs.jmedchem.9b01223] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zhikun Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Meng Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
40
|
Jiang C, Ma Z, Zhang G, Yang X, Du Q, Wang W. CSNK2A1 Promotes Gastric Cancer Invasion Through the PI3K-Akt-mTOR Signaling Pathway. Cancer Manag Res 2019; 11:10135-10143. [PMID: 31819646 PMCID: PMC6897054 DOI: 10.2147/cmar.s222620] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022] Open
Abstract
Objective Casein kinase 2 a1 (CSNK2A1) has been shown to be involved in tumorigenesis by enhancing several oncogenic signaling pathways in various cancers. However, the function and mechanism of CSNK2A1 in gastric cancer remain unclear, and this study aimed to elucidate the role of CSNK2A1 in gastric cancer. Methods CSNK2A1 expression was assessed by Western blot and qPCR in four gastric cancer (GC) cell lines and one normal gastric epithelial cell line. Stable cancer cell lines with CSNK2A1 gene overexpression or knockdown were established to investigate the function and mechanism of CSNK2A1 in GC cells. Results CSNK2A1 expression was higher in GC cells than in normal gastric epithelial cells. Stable overexpression of CSNK2A1 in SNU216 cells significantly increased cellular proliferation, invasion, and migration. Silencing CSNK2A1 expression in SGC-790 cells effectively inhibited its oncogenic function. We further verified that epithelial-mesenchymal transition (EMT) was affected by CSNK2A1 and that CSNK2A1 promotes GC cell invasion through the PI3K-Akt-mTOR signaling pathway. Conclusion Our findings suggested that CSNK2A1 plays important oncogenic roles in GC invasion via EMT and the PI3K-Akt-mTOR signaling pathway and that CSNK2A1 may serve as a novel prognostic and/or therapeutic target in GC.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, People's Republic of China.,Departments of Oncology, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong 250031, People's Republic of China
| | - Zhenghong Ma
- Departments of Oncology, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong 250031, People's Republic of China
| | - Guoan Zhang
- Forensic Science Center, Jining Medical University, Jining, Shandong 272067, People's Republic of China.,Cancer Pathology Institute, Jining Medical University, Jining, Shandong 272000, People's Republic of China
| | - Xigui Yang
- Departments of Oncology, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong 250031, People's Republic of China
| | - Qin Du
- Departments of Oncology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, People's Republic of China
| | - Weibo Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, People's Republic of China
| |
Collapse
|
41
|
Liang QX, Wang ZB, Lei WL, Lin F, Qiao JY, Filhol-Cochet O, Boldyreff B, Schatten H, Sun QY, Qian WP. Deletion of Ck2β gene causes germ cell development arrest and azoospermia in male mice. Cell Prolif 2019; 53:e12726. [PMID: 31755150 PMCID: PMC6985669 DOI: 10.1111/cpr.12726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/28/2022] Open
Abstract
Objectives In humans, non‐obstructive azoospermia (NOA) is a major cause of male infertility. However, the aetiology of NOA is largely unknown. Previous studies reported that protein CK2β was abundantly and broadly expressed in spermatogenic cells. Here, we investigate whether protein CK2β participates in spermatogenesis. Materials and Methods In this study, we separated spermatogenic cells using STA‐PUT velocity sedimentation, analysed the expression pattern of protein CK2β by immunoblotting, specifically deleted Ck2β gene in early‐stage spermatogenic cells by crossing Ck2βfl mice with Stra8‐Cre+ mice and validated the knockout efficiency by quantitative RT‐PCR and immunoblotting. The phenotypes of Ck2βfl/Δ;SCre+ mice were studied by immunohistochemistry and immunofluorescence. The molecular mechanisms of male germ cell development arrest were elucidated by immunoblotting and TUNEL assay. Results Ablation of Ck2β gene triggered excessive germ cell apoptosis, germ cell development arrest, azoospermia and male infertility. Inactivation of Ck2β gene caused distinctly reduced expression of Ck2α′ gene and CK2α′ protein. Conclusions Ck2β is a vital gene for germ cell survival and male fertility in mice.
Collapse
Affiliation(s)
- Qiu-Xia Liang
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fei Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Center for Reproductive Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jing-Yi Qiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Odile Filhol-Cochet
- INSERM U1036, Institute de Recherches en Technologies et Sciences pour le Vivant/Biologie du Cancer et de l'Infection, Commissariat à l'Énergie Atomique et aux Énergies Alternatives Grenoble, Grenoble, France
| | | | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei-Ping Qian
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
42
|
Salama YA, El-karef A, El Gayyar AM, Abdel-Rahman N. Beyond its antioxidant properties: Quercetin targets multiple signalling pathways in hepatocellular carcinoma in rats. Life Sci 2019; 236:116933. [DOI: 10.1016/j.lfs.2019.116933] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022]
|
43
|
Down-regulation of CK2α correlates with decreased expression levels of DNA replication minichromosome maintenance protein complex (MCM) genes. Sci Rep 2019; 9:14581. [PMID: 31601942 PMCID: PMC6787000 DOI: 10.1038/s41598-019-51056-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/12/2019] [Indexed: 11/12/2022] Open
Abstract
Protein kinase CK2 is a serine/threonine kinase composed of two catalytic subunits (CK2α and/or CK2α’) and two regulatory subunits (CK2β). It is implicated in every stage of the cell cycle and in the regulation of various intracellular pathways associated with health and disease states. The catalytic subunits have similar biochemical activity, however, their functions may differ significantly in cells and in vivo. In this regard, homozygous deletion of CK2α leads to embryonic lethality in mid-gestation potentially due to severely impaired cell proliferation. To determine the CK2α-dependent molecular mechanisms that control cell proliferation, we established a myoblast-derived cell line with inducible silencing of CK2α and carried out a comprehensive RNA-Seq analysis of gene expression. We report evidence that CK2α depletion causes delayed cell cycle progression through the S-phase and defective response to replication stress. Differential gene expression analysis revealed that the down-regulated genes were enriched in pathways implicated in cell cycle regulation, DNA replication and DNA damage repair. Interestingly, the genes coding for the minichromosome maintenance proteins (MCMs), which constitute the core of the replication origin recognition complex, were among the most significantly down-regulated genes. These findings were validated in cells and whole mouse embryos. Taken together, our study provides new evidence for a critical role of protein kinase CK2 in controlling DNA replication initiation and the expression levels of replicative DNA helicases, which ensure maintenance of proliferative potential and genome integrity in eukaryotic cells.
Collapse
|
44
|
|
45
|
Signaling Pathways, Chemical and Biological Modulators of Nucleotide Excision Repair: The Faithful Shield against UV Genotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4654206. [PMID: 31485292 PMCID: PMC6702832 DOI: 10.1155/2019/4654206] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/10/2019] [Indexed: 12/28/2022]
Abstract
The continuous exposure of the human body's cells to radiation and genotoxic stresses leads to the accumulation of DNA lesions. Fortunately, our body has several effective repair mechanisms, among which is nucleotide excision repair (NER), to counteract these lesions. NER includes both global genome repair (GG-NER) and transcription-coupled repair (TC-NER). Deficiencies in the NER pathway underlie the development of several DNA repair diseases, such as xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD). Deficiencies in GG-NER and TC-NER render individuals to become prone to cancer and neurological disorders, respectively. Therefore, NER regulation is of interest in fine-tuning these risks. Distinct signaling cascades including the NFE2L2 (NRF2), AHR, PI3K/AKT1, MAPK, and CSNK2A1 pathways can modulate NER function. In addition, several chemical and biological compounds have proven success in regulating NER's activity. These modulators, particularly the positive ones, could therefore provide potential treatments for genetic DNA repair-based diseases. Negative modulators, nonetheless, can help sensitize cells to killing by genotoxic chemicals. In this review, we will summarize and discuss the major upstream signaling pathways and molecules that could modulate the NER's activity.
Collapse
|
46
|
Borgo C, Ruzzene M. Role of protein kinase CK2 in antitumor drug resistance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:287. [PMID: 31277672 PMCID: PMC6612148 DOI: 10.1186/s13046-019-1292-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/25/2019] [Indexed: 01/21/2023]
Abstract
Drug resistance represents the major reason of pharmacological treatment failure. It is supported by a broad spectrum of mechanisms, whose molecular bases have been frequently correlated to aberrant protein phosphorylation. CK2 is a constitutively active protein kinase which phosphorylates hundreds of substrates; it is expressed in all cells, but its level is commonly found higher in cancer cells, where it plays anti-apoptotic, pro-migration and pro-proliferation functions. Several evidences support a role for CK2 in processes directly responsible of drug resistance, such as drug efflux and DNA repair; moreover, CK2 intervenes in signaling pathways which are crucial to evade drug response (as PI3K/AKT/PTEN, NF-κB, β-catenin, hedgehog signaling, p53), and controls the activity of chaperone machineries fundamental in resistant cells. Interestingly, a panel of specific and effective inhibitors of CK2 is available, and several examples are known of their efficacy in resistant cells, with synergistic effect when used in combination with conventional drugs, also in vivo. Here we analyze and discuss evidences supporting the hypothesis that CK2 targeting represents a valuable strategy to overcome drug resistance.
Collapse
Affiliation(s)
- Christian Borgo
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58b, 35131, Padova, Italy
| | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58b, 35131, Padova, Italy.
| |
Collapse
|
47
|
Abstract
Genomic DNA is susceptible to endogenous and environmental stresses that modify DNA structure and its coding potential. Correspondingly, cells have evolved intricate DNA repair systems to deter changes to their genetic material. Base excision DNA repair involves a number of enzymes and protein cofactors that hasten repair of damaged DNA bases. Recent advances have identified macromolecular complexes that assemble at the DNA lesion and mediate repair. The repair of base lesions generally requires five enzymatic activities: glycosylase, endonuclease, lyase, polymerase, and ligase. The protein cofactors and mechanisms for coordinating the sequential enzymatic steps of repair are being revealed through a range of experimental approaches. We discuss the enzymes and protein cofactors involved in eukaryotic base excision repair, emphasizing the challenge of integrating findings from multiple methodologies. The results provide an opportunity to assimilate biochemical findings with cell-based assays to uncover new insights into this deceptively complex repair pathway.
Collapse
Affiliation(s)
- William A Beard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Science, National Institutes of Health, Research Triangle Park, North Carolina 27709-2233, USA;
| | - Julie K Horton
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Science, National Institutes of Health, Research Triangle Park, North Carolina 27709-2233, USA;
| | - Rajendra Prasad
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Science, National Institutes of Health, Research Triangle Park, North Carolina 27709-2233, USA;
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Science, National Institutes of Health, Research Triangle Park, North Carolina 27709-2233, USA;
| |
Collapse
|
48
|
Lopez-Martinez D, Kupculak M, Yang D, Yoshikawa Y, Liang CC, Wu R, Gygi SP, Cohn MA. Phosphorylation of FANCD2 Inhibits the FANCD2/FANCI Complex and Suppresses the Fanconi Anemia Pathway in the Absence of DNA Damage. Cell Rep 2019; 27:2990-3005.e5. [PMID: 31167143 PMCID: PMC6581795 DOI: 10.1016/j.celrep.2019.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/01/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
Interstrand crosslinks (ICLs) of the DNA helix are a deleterious form of DNA damage. ICLs can be repaired by the Fanconi anemia pathway. At the center of the pathway is the FANCD2/FANCI complex, recruitment of which to DNA is a critical step for repair. After recruitment, monoubiquitination of both FANCD2 and FANCI leads to their retention on chromatin, ensuring subsequent repair. However, regulation of recruitment is poorly understood. Here, we report a cluster of phosphosites on FANCD2 whose phosphorylation by CK2 inhibits both FANCD2 recruitment to ICLs and its monoubiquitination in vitro and in vivo. We have found that phosphorylated FANCD2 possesses reduced DNA binding activity, explaining the previous observations. Thus, we describe a regulatory mechanism operating as a molecular switch, where in the absence of DNA damage, the FANCD2/FANCI complex is prevented from loading onto DNA, effectively suppressing the FA pathway.
Collapse
Affiliation(s)
| | - Marian Kupculak
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Di Yang
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Chih-Chao Liang
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Ronghu Wu
- Department of Cell Biology, Harvard Medical School, Boston, MA 01125, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 01125, USA
| | - Martin A Cohn
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
49
|
Kalasova I, Hanzlikova H, Gupta N, Li Y, Altmüller J, Reynolds JJ, Stewart GS, Wollnik B, Yigit G, Caldecott KW. Novel PNKP mutations causing defective DNA strand break repair and PARP1 hyperactivity in MCSZ. NEUROLOGY-GENETICS 2019; 5:e320. [PMID: 31041400 PMCID: PMC6454307 DOI: 10.1212/nxg.0000000000000320] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/07/2019] [Indexed: 11/29/2022]
Abstract
Objective To address the relationship between novel mutations in polynucleotide 5'-kinase 3'-phosphatase (PNKP), DNA strand break repair, and neurologic disease. Methods We have employed whole-exome sequencing, Sanger sequencing, and molecular/cellular biology. Results We describe here a patient with microcephaly with early onset seizures (MCSZ) from the Indian sub-continent harboring 2 novel mutations in PNKP, including a pathogenic mutation in the fork-head associated domain. In addition, we confirm that MCSZ is associated with hyperactivation of the single-strand break sensor protein protein poly (ADP-ribose) polymerase 1 (PARP1) following the induction of abortive topoisomerase I activity, a source of DNA strand breakage associated previously with neurologic disease. Conclusions These data expand the spectrum of PNKP mutations associated with MCSZ and show that PARP1 hyperactivation at unrepaired topoisomerase-induced DNA breaks is a molecular feature of this disease.
Collapse
Affiliation(s)
- Ilona Kalasova
- Department of Genome Dynamics (I.K., H.H., K.W.C.), Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Republic; Genome Damage and Stability Centre (H.H., K.W.C.), School of Life Sciences, University of Sussex, Falmer, Brighton, UK; Institute of Human Genetics (Y.L., B.W., G.Y.), University Medical Center Göttingen, Germany; Cologne Center for Genomics (J.A.), University of Cologne, Germany; Institute of Cancer and Genomic Sciences (J.J.R., G.S.S.), College of Medical and Dental Sciences, University of Birmingham, UK; and Division of Genetics (N.G.), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Hana Hanzlikova
- Department of Genome Dynamics (I.K., H.H., K.W.C.), Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Republic; Genome Damage and Stability Centre (H.H., K.W.C.), School of Life Sciences, University of Sussex, Falmer, Brighton, UK; Institute of Human Genetics (Y.L., B.W., G.Y.), University Medical Center Göttingen, Germany; Cologne Center for Genomics (J.A.), University of Cologne, Germany; Institute of Cancer and Genomic Sciences (J.J.R., G.S.S.), College of Medical and Dental Sciences, University of Birmingham, UK; and Division of Genetics (N.G.), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Neerja Gupta
- Department of Genome Dynamics (I.K., H.H., K.W.C.), Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Republic; Genome Damage and Stability Centre (H.H., K.W.C.), School of Life Sciences, University of Sussex, Falmer, Brighton, UK; Institute of Human Genetics (Y.L., B.W., G.Y.), University Medical Center Göttingen, Germany; Cologne Center for Genomics (J.A.), University of Cologne, Germany; Institute of Cancer and Genomic Sciences (J.J.R., G.S.S.), College of Medical and Dental Sciences, University of Birmingham, UK; and Division of Genetics (N.G.), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Yun Li
- Department of Genome Dynamics (I.K., H.H., K.W.C.), Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Republic; Genome Damage and Stability Centre (H.H., K.W.C.), School of Life Sciences, University of Sussex, Falmer, Brighton, UK; Institute of Human Genetics (Y.L., B.W., G.Y.), University Medical Center Göttingen, Germany; Cologne Center for Genomics (J.A.), University of Cologne, Germany; Institute of Cancer and Genomic Sciences (J.J.R., G.S.S.), College of Medical and Dental Sciences, University of Birmingham, UK; and Division of Genetics (N.G.), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Janine Altmüller
- Department of Genome Dynamics (I.K., H.H., K.W.C.), Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Republic; Genome Damage and Stability Centre (H.H., K.W.C.), School of Life Sciences, University of Sussex, Falmer, Brighton, UK; Institute of Human Genetics (Y.L., B.W., G.Y.), University Medical Center Göttingen, Germany; Cologne Center for Genomics (J.A.), University of Cologne, Germany; Institute of Cancer and Genomic Sciences (J.J.R., G.S.S.), College of Medical and Dental Sciences, University of Birmingham, UK; and Division of Genetics (N.G.), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - John J Reynolds
- Department of Genome Dynamics (I.K., H.H., K.W.C.), Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Republic; Genome Damage and Stability Centre (H.H., K.W.C.), School of Life Sciences, University of Sussex, Falmer, Brighton, UK; Institute of Human Genetics (Y.L., B.W., G.Y.), University Medical Center Göttingen, Germany; Cologne Center for Genomics (J.A.), University of Cologne, Germany; Institute of Cancer and Genomic Sciences (J.J.R., G.S.S.), College of Medical and Dental Sciences, University of Birmingham, UK; and Division of Genetics (N.G.), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Grant S Stewart
- Department of Genome Dynamics (I.K., H.H., K.W.C.), Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Republic; Genome Damage and Stability Centre (H.H., K.W.C.), School of Life Sciences, University of Sussex, Falmer, Brighton, UK; Institute of Human Genetics (Y.L., B.W., G.Y.), University Medical Center Göttingen, Germany; Cologne Center for Genomics (J.A.), University of Cologne, Germany; Institute of Cancer and Genomic Sciences (J.J.R., G.S.S.), College of Medical and Dental Sciences, University of Birmingham, UK; and Division of Genetics (N.G.), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Bernd Wollnik
- Department of Genome Dynamics (I.K., H.H., K.W.C.), Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Republic; Genome Damage and Stability Centre (H.H., K.W.C.), School of Life Sciences, University of Sussex, Falmer, Brighton, UK; Institute of Human Genetics (Y.L., B.W., G.Y.), University Medical Center Göttingen, Germany; Cologne Center for Genomics (J.A.), University of Cologne, Germany; Institute of Cancer and Genomic Sciences (J.J.R., G.S.S.), College of Medical and Dental Sciences, University of Birmingham, UK; and Division of Genetics (N.G.), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Gökhan Yigit
- Department of Genome Dynamics (I.K., H.H., K.W.C.), Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Republic; Genome Damage and Stability Centre (H.H., K.W.C.), School of Life Sciences, University of Sussex, Falmer, Brighton, UK; Institute of Human Genetics (Y.L., B.W., G.Y.), University Medical Center Göttingen, Germany; Cologne Center for Genomics (J.A.), University of Cologne, Germany; Institute of Cancer and Genomic Sciences (J.J.R., G.S.S.), College of Medical and Dental Sciences, University of Birmingham, UK; and Division of Genetics (N.G.), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Keith W Caldecott
- Department of Genome Dynamics (I.K., H.H., K.W.C.), Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Republic; Genome Damage and Stability Centre (H.H., K.W.C.), School of Life Sciences, University of Sussex, Falmer, Brighton, UK; Institute of Human Genetics (Y.L., B.W., G.Y.), University Medical Center Göttingen, Germany; Cologne Center for Genomics (J.A.), University of Cologne, Germany; Institute of Cancer and Genomic Sciences (J.J.R., G.S.S.), College of Medical and Dental Sciences, University of Birmingham, UK; and Division of Genetics (N.G.), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
50
|
Lindenblatt D, Horn M, Götz C, Niefind K, Neundorf I, Pietsch M. Design of CK2β-Mimicking Peptides as Tools To Study the CK2α/CK2β Interaction in Cancer Cells. ChemMedChem 2019; 14:833-841. [PMID: 30786177 DOI: 10.1002/cmdc.201800786] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Indexed: 11/07/2022]
Abstract
The ubiquitously expressed Ser/Thr kinase CK2 is a key regulator in a variety of key processes in normal and malignant cells. Due to its distinctive anti-apoptotic and tumor-driving properties, elevated levels of CK2 have frequently been found in tumors of different origin. In recent years, development of CK2 inhibitors has largely been focused on ATP-competitive compounds; however, targeting the CK2α/CK2β interface has emerged as a further concept that might avoid selectivity issues. To address the CK2 subunit interaction site, we have synthesized halogenated CK2β-mimicking cyclic peptides modified with the cell-penetrating peptide sC18 to mediate cellular uptake. We investigated the binding of the resulting chimeric peptides to recombinant human CK2α using a recently developed fluorescence anisotropy assay. The iodinated peptide sC18-I-Pc was identified as a potent CK2α ligand (Ki =0.622 μm). It was internalized in cells to a high extent and exhibited significant cytotoxicity toward cancerous HeLa cells (IC50 =37 μm) in contrast to non-cancerous HEK-293 cells. The attractive features and functionalities of sC18-I-Pc offer the opportunity for further improvement.
Collapse
Affiliation(s)
- Dirk Lindenblatt
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674, Cologne, Germany
| | - Mareike Horn
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674, Cologne, Germany
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, Kirrberger Str., Building 44, 66421, Homburg, Germany
| | - Karsten Niefind
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674, Cologne, Germany
| | - Ines Neundorf
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674, Cologne, Germany
| | - Markus Pietsch
- Institute II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, 50931, Cologne, Germany
| |
Collapse
|