1
|
Yuk HD, Kim M, Keam B, Ku JH, Kwak C, Jeong CW. Weekly versus 2-weekly versus 3-weekly docetaxel to treat metastatic castration-resistant prostate cancer. Prostate Int 2024; 12:219-223. [PMID: 39735199 PMCID: PMC11681325 DOI: 10.1016/j.prnil.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 12/31/2024] Open
Abstract
Background To compare the efficacy and toxicity of docetaxel treatment regimens in metastatic castration-resistant prostate cancer (mCRPC). Methods We retrospectively analyzed 162 patients diagnosed with mCRPC who underwent docetaxel chemotherapy between 2009 and 2020. The patients were divided into three groups according to the dosage and interval of docetaxel (DCT) chemotherapy regimen: 30 mL/m2 weekly, 50 mL/m2 biweekly (every 2 weeks), and 75 mL/m2 triweekly (every 3 weeks). Results There were no significant differences in the prostate-specific antigen (PSA) response rates (P = 0.709). The median time to progression was 3.0 [interquartile range (IQR 2.0-5.3)] months, 5.0 (IQR 2.0-13.0) months, and 5.0 (IQR 3.0-12.0) months in the weekly, biweekly, and triweekly groups, respectively (P = 0.062). The median overall survival (OS) was 12.5 (IQR 6.0-14.0) months, 18.8 (IQR 5.5-23.5) months, and 22.9 (IQR 11.0-33.0) months in the weekly, biweekly, and triweekly groups, respectively (P < 0.001). There were no differences in all toxicity and Grade 3 or higher toxicity. In Cox multivariate regression analysis, the Eastern Cooperative Oncology Group performance status (ECOG-PS), response to chemotherapy, and chemotherapy cycle also affected the PFS. Age, ECOG-PS, and chemotherapy cycle affected the OS. Conclusions The various options for optimal chemotherapy are indicated depending on the patient's conditions during the diagnosis of mCRPC. Treatment with DCT at 2-week or even 1-week intervals appears to be well tolerated in men diagnosed with mCRPC and represents a useful option when the conventional triweekly regimen is not tolerated due to poor patient condition.
Collapse
Affiliation(s)
- Hyeong Dong Yuk
- Department of Internal Urology, College of Medicine, Seoul National University, Seoul, Korea
| | - Miso Kim
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, Korea
| | - Bhumsuk Keam
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, Korea
| | - Ja Hyeon Ku
- Department of Internal Urology, College of Medicine, Seoul National University, Seoul, Korea
| | - Cheol Kwak
- Department of Internal Urology, College of Medicine, Seoul National University, Seoul, Korea
| | - Chang Wook Jeong
- Department of Internal Urology, College of Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
2
|
Yin W, Song B, Yu C, Jiang J, Yan Z, Xie C. Association of biological aging with prostate cancer: insights from the National Health and Nutrition Examination Survey. Aging Clin Exp Res 2024; 36:209. [PMID: 39446214 PMCID: PMC11502538 DOI: 10.1007/s40520-024-02861-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
The link between biological aging and prostate cancer (PCa) risk, particularly as indicated by elevated prostate-specific antigen (PSA) levels, remains uncertain. This study utilized data from the National Health and Nutrition Examination Survey (2001-2010) to explore this association. Biological age was assessed using Klemera-Doubal method age (KDMAge) and phenotypic age (PhenoAge). PCa was identified through self-reported diagnoses, and highly probable PCa was determined by PSA levels. We analyzed the prevalence of PCa and PSA-defined highly probable PCa across quartiles of biological age measures using weighted chi-square and linear trend tests. Associations were evaluated using weighted multiple logistic regression models. Among 7,209 and 6,682 males analyzed, the overall weighted prevalence of PCa was 2.86%, increasing to 9.60% in those aged 65 and above. A significant rise in PCa prevalence was observed with higher quartiles of KDMAge or PhenoAge (P for trend < 0.001), particularly in those under 65. In this younger group, higher PhenoAge acceleration quartiles were linked to increased PCa prevalence and higher risk of PCa (OR = 1.50, P = 0.015) as well as highly probable PCa in those without a diagnosis (OR = 1.28, P = 0.031). These findings suggest that accelerated biological aging is associated with an increased risk of PCa and may indicate early risk as signaled by PSA levels, even in those without a PCa diagnosis.
Collapse
Affiliation(s)
- Weiqi Yin
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Ningbo Clinical Research Center for Urological Disease, Ningbo, Zhejiang, China
| | - Baiyang Song
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Chengling Yu
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Junhui Jiang
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Ningbo Clinical Research Center for Urological Disease, Ningbo, Zhejiang, China
- Zhejiang Engineering Research Center of Innovative Technologies and Diagnostic and Therapeutic Equipment for Urinary System Diseases, Ningbo, Zhejiang, China
| | - Zejun Yan
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
- Ningbo Clinical Research Center for Urological Disease, Ningbo, Zhejiang, China.
- Zhejiang Engineering Research Center of Innovative Technologies and Diagnostic and Therapeutic Equipment for Urinary System Diseases, Ningbo, Zhejiang, China.
| | - Chengxin Xie
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China.
| |
Collapse
|
3
|
Mishra J, Chakraborty S, Nandi P, Manna S, Baral T, Niharika, Roy A, Mishra P, Patra SK. Epigenetic regulation of androgen dependent and independent prostate cancer. Adv Cancer Res 2024; 161:223-320. [PMID: 39032951 DOI: 10.1016/bs.acr.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer is one of the most common malignancies among men worldwide. Besides genetic alterations, epigenetic modulations including DNA methylation, histone modifications and miRNA mediated alteration of gene expression are the key driving forces for the prostate tumor development and cancer progression. Aberrant expression and/or the activity of the epigenetic modifiers/enzymes, results in aberrant expression of genes involved in DNA repair, cell cycle regulation, cell adhesion, apoptosis, autophagy, tumor suppression and hormone response and thereby disease progression. Altered epigenome is associated with prostate cancer recurrence, progression, aggressiveness and transition from androgen-dependent to androgen-independent phenotype. These epigenetic modifications are reversible and various compounds/drugs targeting the epigenetic enzymes have been developed that are effective in cancer treatment. This chapter focuses on the epigenetic alterations in prostate cancer initiation and progression, listing different epigenetic biomarkers for diagnosis and prognosis of the disease and their potential as therapeutic targets. This chapter also summarizes different epigenetic drugs approved for prostate cancer therapy and the drugs available for clinical trials.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
4
|
Cancel M, Crottes D, Bellanger D, Bruyère F, Mousset C, Pinault M, Mahéo K, Fromont G. Variable effects of periprostatic adipose tissue on prostate cancer cells: Role of adipose tissue lipid composition and cancer cells related factors. Prostate 2024; 84:358-367. [PMID: 38112233 DOI: 10.1002/pros.24655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Periprostatic adipose tissue (PPAT) is likely to modulate prostate cancer (PCa) progression. We analyzed the variations in the effect of PPAT on cancer cells, according to its fatty acid (FA) composition and tumor characteristics. METHODS The expression of markers of aggressiveness Ki67 and Zeb1, and epigenetic marks that could be modified during PCa progression, was analyzed by immunohistochemistry on a tissue-micro-array containing 59 pT3 PCa, including intra-prostatic areas and extra-prostatic foci in contact with PPAT belonging to the same tumor. In addition, we cocultivated PC3 and LNCaP cell lines with PPAT, which were then analyzed for FA composition. RESULTS Although the contact between PPAT and cancer cells led overall to an increase in Ki67 and Zeb1, and a decrease in the epigenetic marks 5MC, 5HMC, and H3K27ac, these effects were highly heterogeneous. Increased proliferation in extra-prostatic areas was associated with the international society of uropathology score. PC3 and LNCaP cocultures with PPAT led to increased Ki67, Zeb1 and H3K27me3, but only for PPAT associated with aggressive PCa. PC3 proliferation was correlated with high 20.2 n-6 and low 20.5n-3 in PPAT. CONCLUSIONS These results suggest that the effects of PPAT on cancer cells may depend on both PCa characteristics and PPAT composition, and could lead to propose nutritional supplementation.
Collapse
Affiliation(s)
- Mathilde Cancel
- Faculté de Médecine, Inserm UMR1069 "Nutrition, Croissance et Cancer" Université François Rabelais, Tours, France
- Department of Medical Oncology, CHU Tours, Tours, France
| | - David Crottes
- Faculté de Médecine, Inserm UMR1069 "Nutrition, Croissance et Cancer" Université François Rabelais, Tours, France
| | - Dorine Bellanger
- Faculté de Médecine, Inserm UMR1069 "Nutrition, Croissance et Cancer" Université François Rabelais, Tours, France
| | | | - Coralie Mousset
- Faculté de Médecine, Inserm UMR1069 "Nutrition, Croissance et Cancer" Université François Rabelais, Tours, France
- Department of Pathology, CHU Tours, Tours, France
| | - Michelle Pinault
- Faculté de Médecine, Inserm UMR1069 "Nutrition, Croissance et Cancer" Université François Rabelais, Tours, France
| | - Karine Mahéo
- Faculté de Médecine, Inserm UMR1069 "Nutrition, Croissance et Cancer" Université François Rabelais, Tours, France
| | - Gaëlle Fromont
- Faculté de Médecine, Inserm UMR1069 "Nutrition, Croissance et Cancer" Université François Rabelais, Tours, France
- Department of Pathology, CHU Tours, Tours, France
| |
Collapse
|
5
|
ALMasri H, Rimawi O. Radiotherapy-induced fatigue in Palestinian breast cancer survivors. Health Psychol Behav Med 2024; 12:2302569. [PMID: 38196915 PMCID: PMC10776065 DOI: 10.1080/21642850.2024.2302569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024] Open
Abstract
Background No study has investigated the cancer-related fatigue (CRF) among Palestinian breast cancer survivors. Our purpose is to assess, compare, and correlate CRF in breast cancer survivors undergoing radiotherapy (RT) with study variables. Methods CRF in breast cancer survivors was assessed using Functional Assessment of Chronic Illness Therapy - Fatigue Scale (FACIT-F) (version 4). The sample consisted of 148 breast cancer survivors undergoing RT. Data was collected between 1 May 2021 and 1 September 2021. The means and standard deviations of the questionnaire using one-way ANOVA, and Pearson correlation coefficient were reported. Results Respondents ages ranged from 20 to >65 years old and was divided into four groups: (20-35, 36-50, 51-65, and >65 years, respectively). The total fatigue mean was 2.88 and the SD was 0.84, indicating an intermediate fatigue level among breast cancer survivors. Study survivors with higher education were more likely to be fatigued (F =7.68, P-value =0.001). Divorced survivors were more prone to fatigue compared to married survivors (F =5.83, P-value= 0.001). Finally, survivors who do not have children were more vulnerable to exhaustion compared to those with children (F =7.35, P-value =0.001). Also, younger survivors were more prone to fatigue, compared to older survivors (F =5.29, P-value = 0.002). Results also showed a positive relationship between each of the variables; the number of children (R =0.221, P-value =0.007), age (R =0.311, P-value =0.000), and duration of treatment (R =0.290, P-value =0.000), which means that the greater the number of children, the younger the age, or the longer the duration of treatment, the more fatigue is reported in breast cancer survivors. Conclusions Fatigue is frequently observed in breast cancer survivors undergoing RT. It can limit RT treatment continuity. Therefore, early detection of fatigue can help survivors adhere to RT treatment and achieve better clinical results.
Collapse
Affiliation(s)
- Hussein ALMasri
- Medical Imaging Department, Faculty of Health Professions, Al-Quds University, Jerusalem, Palestine
| | - Omar Rimawi
- Department of Psychology, Faculty of Education, Al-Quds University, Jerusalem, Palestine
| |
Collapse
|
6
|
Singh V, Shirbhate E, Kore R, Mishra A, Johariya V, Veerasamy R, Tiwari AK, Rajak H. Dietary Plant Metabolites Induced Epigenetic Modification as a Novel Strategy for the Management of Prostate Cancer. Mini Rev Med Chem 2024; 24:1409-1426. [PMID: 38385496 DOI: 10.2174/0113895575283895240207065454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Prostate cancer is a widespread malignancy among men, with a substantial global impact on morbidity and mortality. Despite advances in conventional therapies, the need for innovative and less toxic treatments remains a priority. Emerging evidence suggests that dietary plant metabolites possess epigenetic-modifying properties, making them attractive candidates for prostate cancer treatment. The present work reviews the epigenetic effects of dietary plant metabolites in the context of prostate cancer therapy. We first outline the key epigenetic mechanisms involved in prostate cancer pathogenesis, including histone modifications, DNA methylation, and miRNA or Long Noncoding RNA (lncRNA) dysregulation. Next, we delve into the vast array of dietary plant metabolites that have demonstrated promising anti-cancer effects through epigenetic regulation. Resveratrol, minerals, isothiocyanates, curcumin, tea polyphenols, soy isoflavones and phytoestrogens, garlic compounds, anthocyanins, lycopene, and indoles are among the most extensively studied compounds. These plant-derived bioactive compounds have been shown to influence DNA methylation patterns, histone modifications, and microRNA expression, thereby altering the gene expression allied with prostate cancer progression, cell proliferation, and apoptosis. We also explore preclinical and clinical studies investigating the efficacy of dietary plant metabolites as standalone treatments or in combination with traditional treatments for people with prostate cancer. The present work highlights the potential of dietary plant metabolites as epigenetic modulators to treat prostate cancer. Continued research in this field may pave the way for personalized and precision medicine approaches, moving us closer to the goal of improved prostate cancer management.
Collapse
Affiliation(s)
- Vaibhav Singh
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Rakesh Kore
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Aditya Mishra
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Varsha Johariya
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Ravichandran Veerasamy
- Departement of Pharmaceutical chemistry, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Amit K Tiwari
- UAMS College of Pharmacy, College of Pharmacy and Pharmaceutical Sciences, UAMS - University of Arkansas for Medical Sciences, Arkansas, (AR) USA
| | - Harish Rajak
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| |
Collapse
|
7
|
Li D, Jiang L, Zhou W, Huang Y, Yang Y, Li J, Yang J, Wang F, Li J, Zhang Y, Yan F, Gao H, Guo X, Xu Q, Tan S, Wei YQ, Wang W. Chimeric Antigen Receptor-T Cell Therapy Decreases Distant Metastasis and Inhibits Local Recurrence Post-surgery in Mice. Hum Gene Ther 2023; 34:1248-1256. [PMID: 37917093 DOI: 10.1089/hum.2023.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Distant metastasis and primary tumor relapse are the two main hurdles to the success of surgical treatment for cancer patients. Circulating tumor cells (CTCs) and incomplete surgical resection are the primary cause of distant metastasis and local recurrence of tumors, respectively. Chimeric antigen receptor (CAR)-modified T cells target residual carcinomas and CTCs hold the potential to inhibit primary recurrence and reduce tumor metastasis, but the experimental evidence is lacking. Here, we developed a surgery-induced tumor metastasis model in immunocompetent mice to investigate the efficacy of CAR-T cells therapy in preventing metastasis and local recurrence. We observed that subcutaneous tumor resection has induced a large number of CTCs intravasated into circulation. EpCAM-specific CAR-T was effective in clearing CTCs following surgical removal of the tumor. This resulted in less pulmonary metastasis and longer survival in mice when compared to mice treated with surgery followed by Mock-T cells infusion. In addition, the local relapse was obviously inhibited at the surgical site followed by EpCAM-CAR-T cell treatment. This study demonstrated that CAR-T cell therapy can be an adjuvant treatment following surgery to prevent tumor metastasis and inhibit primary tumor relapse for cancer patients.
Collapse
Affiliation(s)
- Dan Li
- Department of Biotherapy, The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Jiang
- Department of Biotherapy, The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Weilin Zhou
- Department of Biotherapy, The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Huang
- Department of Biotherapy, The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuening Yang
- Department of Biotherapy, The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Li
- Department of Biotherapy, The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jinrong Yang
- Department of Hematology, Hematology Research Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Fengling Wang
- Department of Biotherapy, The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaqian Li
- Department of Biotherapy, The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yalan Zhang
- Department of Biotherapy, The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Feiyang Yan
- Department of Biotherapy, The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haozhan Gao
- Department of Biotherapy, The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xianling Guo
- Department of Oncology, Shanghai Tenth Peoples' Hospital, Shanghai, China
| | - Qing Xu
- Department of Oncology, Shanghai Tenth Peoples' Hospital, Shanghai, China
| | - Shisheng Tan
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yu-Quan Wei
- Department of Biotherapy, The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Wang
- Department of Biotherapy, The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Gardani CFF, Pedrazza EL, Paz VS, Zanirati GG, da Costa JC, Andrejew R, Ulrich H, Scholl JN, Figueiró F, Rockenbach L, Morrone FB. Exploring CD39 and CD73 Expression as Potential Biomarkers in Prostate Cancer. Pharmaceuticals (Basel) 2023; 16:1619. [PMID: 38004484 PMCID: PMC10675019 DOI: 10.3390/ph16111619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Prostate cancer (PC) is the most diagnosed tumor in males and ranks as the second leading cause of male mortality in the western world. The CD39 and CD73 enzymes play a crucial role in cancer regulation by degrading nucleotides and forming nucleosides. This study aimed to investigate the expression of the CD39 and CD73 enzymes as potential therapeutic targets for PC. The initial part of this study retrospectively analyzed tissue samples from 23 PC patients. Using the TissueFAXSTM cytometry platform, we found significantly higher levels of CD39-labeling its intensity compared to CD73. Additionally, we observed a correlation between the Gleason score and the intensity of CD39 expression. In the prospective arm, blood samples were collected from 25 patients at the time of diagnosis and after six months of treatment to determine the expression of CD39 and CD73 in the serum extracellular vesicles (EVs) and to analyze nucleotide hydrolysis. Notably, the expression of CD39 in the EVs was significantly increased compared to the CD73 and/or combined CD39/CD73 expression levels at initial collection. Furthermore, our results demonstrated positive correlations between ADP hydrolysis and the transurethral resection and Gleason score. Understanding the role of ectonucleotidases is crucial for identifying new biomarkers in PC.
Collapse
Affiliation(s)
- Carla Fernanda Furtado Gardani
- Escola de Medicina, Programa de Pós-Graduaҫão em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil; (C.F.F.G.); (L.R.)
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Partenon, Porto Alegre 90619-900, RS, Brazil; (E.L.P.); (V.S.P.)
| | - Eduardo Luiz Pedrazza
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Partenon, Porto Alegre 90619-900, RS, Brazil; (E.L.P.); (V.S.P.)
| | - Victória Santos Paz
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Partenon, Porto Alegre 90619-900, RS, Brazil; (E.L.P.); (V.S.P.)
| | - Gabriele Goulart Zanirati
- Instituto do Cérebro da PUCRS, InsCer, Avenida Ipiranga, 6690, Jardim Botânico, Porto Alegre 906010-000, RS, Brazil; (G.G.Z.); (J.C.d.C.)
| | - Jaderson Costa da Costa
- Instituto do Cérebro da PUCRS, InsCer, Avenida Ipiranga, 6690, Jardim Botânico, Porto Alegre 906010-000, RS, Brazil; (G.G.Z.); (J.C.d.C.)
| | - Roberta Andrejew
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Prof. Lineu Prestes, 748, Butantã, São Paulo 05508-000, SP, Brazil; (R.A.); (H.U.)
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Prof. Lineu Prestes, 748, Butantã, São Paulo 05508-000, SP, Brazil; (R.A.); (H.U.)
| | - Juliete Nathali Scholl
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, RS, Brazil; (J.N.S.); (F.F.)
| | - Fabrício Figueiró
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, RS, Brazil; (J.N.S.); (F.F.)
| | - Liliana Rockenbach
- Escola de Medicina, Programa de Pós-Graduaҫão em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil; (C.F.F.G.); (L.R.)
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Partenon, Porto Alegre 90619-900, RS, Brazil; (E.L.P.); (V.S.P.)
| | - Fernanda Bueno Morrone
- Escola de Medicina, Programa de Pós-Graduaҫão em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil; (C.F.F.G.); (L.R.)
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Partenon, Porto Alegre 90619-900, RS, Brazil; (E.L.P.); (V.S.P.)
- Instituto do Cérebro da PUCRS, InsCer, Avenida Ipiranga, 6690, Jardim Botânico, Porto Alegre 906010-000, RS, Brazil; (G.G.Z.); (J.C.d.C.)
- Escola de Ciências da Saúde e da Vida, Programa de Pós-Graduaҫão em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil
| |
Collapse
|
9
|
Ritawidya R, Wongso H, Effendi N, Pujiyanto A, Lestari W, Setiawan H, Humani TS. Lutetium-177-Labeled Prostate-Specific Membrane Antigen-617 for Molecular Imaging and Targeted Radioligand Therapy of Prostate Cancer. Adv Pharm Bull 2023; 13:701-711. [PMID: 38022814 PMCID: PMC10676551 DOI: 10.34172/apb.2023.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/04/2023] [Accepted: 04/24/2023] [Indexed: 12/01/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA) represents a promising target for PSMA-overexpressing diseases, especially prostate cancer-a common type of cancer among men worldwide. In response to the challenges in tackling prostate cancers, several promising PSMA inhibitors from a variety of molecular scaffolds (e.g., phosphorous-, thiol-, and urea-based molecules) have been developed. In addition, PSMA inhibitors bearing macrocyclic chelators have attracted interest due to their favorable pharmacokinetic properties. Recently, conjugating a small PSMA molecule inhibitor-bearing 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator, as exemplified by [177Lu]Lu-PSMA-617 could serve as a molecular imaging probe and targeted radioligand therapy (TRT) of metastatic castration resistant prostate cancer (mCRPC). Hence, studies related to mCRPC have drawn global attention. In this review, the recent development of PSMA ligand-617-labeled with 177Lu for the management of mCRPC is presented. Its molecular mechanism of action, safety, efficacy, and future direction are also described.
Collapse
Affiliation(s)
- Rien Ritawidya
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Setu, Tangerang Selatan, 15314 Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia
| | - Hendris Wongso
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Setu, Tangerang Selatan, 15314 Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia
| | - Nurmaya Effendi
- Faculty of Pharmacy, University of Muslim Indonesia, Kampus II UMI, Jl. Urip Sumoharjo No.225, Panaikang, Panakkukang, Kota, Makassar, Sulawesi Selatan 90231
| | - Anung Pujiyanto
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Setu, Tangerang Selatan, 15314 Indonesia
| | - Wening Lestari
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Setu, Tangerang Selatan, 15314 Indonesia
| | - Herlan Setiawan
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Setu, Tangerang Selatan, 15314 Indonesia
| | - Titis Sekar Humani
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Setu, Tangerang Selatan, 15314 Indonesia
| |
Collapse
|
10
|
Chen J, Meng J, Liu Y, Bian Z, Niu Q, Chen J, Zhou J, Zhang L, Zhang M, Liang C. Establishment of a five-enzalutamide-resistance-related-gene-based classifier for recurrence-free survival predicting of prostate cancer. J Cell Mol Med 2022; 26:5379-5390. [PMID: 36168930 PMCID: PMC9639034 DOI: 10.1111/jcmm.17554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
To identify prostate cancer (PCa) patients with a high risk of recurrence is critical before delivering adjuvant treatment. We developed a classifier based on the Enzalutamide treatment resistance‐related genes to assist the currently available staging system in predicting the recurrence‐free survival (RFS) prognosis of PCa patients. We overlapped the DEGs from two datasets to obtain a more convincing Enzalutamide‐resistance‐related‐gene (ERRG) cluster. The five‐ERRG‐based classifier obtained good predictive values in both the training and validation cohorts. The classifier precisely predicted RFS of patients in four cohorts, independent of patient age, pathological tumour stage, Gleason score and PSA levels. The classifier and the clinicopathological factors were combined to construct a nomogram, which had an increased predictive accuracy than that of each variable alone. Besides, we also compared the differences between high‐ and low‐risk subgroups and found their differences were enriched in cancer progression‐related pathways. The five‐ERRG‐based classifier is a practical and reliable predictor, which adds value to the existing staging system for predicting the RFS prognosis of PCa after radical prostatectomy, enabling physicians to make more informed treatment decisions concerning adjuvant therapy.
Collapse
Affiliation(s)
- Jing Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Yi Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Zichen Bian
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Qingsong Niu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Junyi Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China.,Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
11
|
Tang D, He J, Dai Y, Geng X, Leng Q, Jiang H, Sun R, Xu S. Targeting KDM1B-dependent miR-215-AR-AGR2-axis promotes sensitivity to enzalutamide-resistant prostate cancer. Cancer Gene Ther 2022; 29:543-557. [PMID: 33854217 DOI: 10.1038/s41417-021-00332-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/07/2021] [Accepted: 03/24/2021] [Indexed: 02/02/2023]
Abstract
Post-translational modifications of histones by histone demethylases plays an important role in the regulation of gene transcription and are implicated in cancers. Castrate resistant prostate cancer (CRPC) is often driven by constitutively active androgen receptor and commonly becomes resistant to established hormonal therapy strategies such as enzalutamide as a result. However, the role of KDM1B involved in next generation anti-enzalutamide resistance and the mechanisms of KDM1B regulation are poorly defined. Here, we show that KDM1B is upregulated and correlated with prostate cancer progression and poor prognosis. Downregulation of miR-215 is correlated with overexpression of KDM1B in enzalutamide-resistant prostate cancer cells, which promotes AR-dependent AGR2 transcription and regulates the sensitivity to next generation AR-targeted therapy. Inhibition of KDM1B significantly inhibits prostate tumor growth and improves enzalutamide treatments through AGR2 suppression. Our studies demonstrate inhibition of KDM1B can offer a viable therapeutic option to overcome enzalutamide resistance in tumors with deregulated miR-215-KDM1B-AR-AGR2 signaling axis.
Collapse
Affiliation(s)
- Donge Tang
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Jiaxi He
- Department of Pathology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yong Dai
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Xinyan Geng
- Department of Biochemistry, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Qixin Leng
- Department of Pathology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Haowu Jiang
- Department of Anesthesiology and Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Rui Sun
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Songhui Xu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
- Department of Pathology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Lin X, Tian M, Cao C, Shu T, Wen Y, Su L, Zhang X. Using bimetallic Au/Cu nanoplatelets for construction of facile and label-free inner filter effect-based photoluminescence sensing platform for sarcosine detection. Anal Chim Acta 2022; 1192:339331. [PMID: 35057923 DOI: 10.1016/j.aca.2021.339331] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/01/2022]
Abstract
Herein, we report a facile and label-free method for sensitive and specific determination of prostate cancer biomarker sarcosine via using photoluminescent bimetallic Au/Cu nanoplatelets (AuCu NPs) to construct an inner filter effect (IFE)-based photoluminescence (PL) sensing platform. The AuCu NPs were formed by the cysteine-induced co-reduction reaction, which displayed bright PL with an emission peak at 560 nm. Meanwhile, the Cu(I) doping caused a maximum 25-fold enhancement of quantum yield (QY), compared with the native Au(I) complexes, i.e., from 0.85 to 21.5%. By integrating the AuCu NPs with p-phenylenediamine (PPD) oxidation reaction, an IFE-based sensor for sarcosine detection was constructed. In this method, sarcosine is oxidized under the catalysis of sarcosine oxidase (SOx) to yield H2O2. The latter further oxidizes PPD to form 2,5-diamino-N,N'-bis(p-aminophenyl)-l,4-benzoquinone di-imine (PPDox) in the presence of horseradish peroxidase (HRP). The UV-vis absorption spectrum of the PPDox can overlap well with the excitation and emission spectra of the AuCu NPs, resulting in the efficient quenching of the AuCu NPs via the IFE effect. Therefore, this IFE-based AuCu NPs/SOx/PPD/HRP sensing platform can be used for highly sensitive and specific sensing of sarcosine. The sensing platform showed two linear regions of the PL intensity of the AuCu NPs versus the concentration of sarcosine in the range of 0.5-5 μM and 5-100 μM with a detection limit (LOD) of 0.12 μM (S/N = 3). Furthermore, this IFE-based sensing platform could be developed into a paper-based biosensor for simple, instrument-free, and visual detection of sarcosine.
Collapse
Affiliation(s)
- Xiangfang Lin
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Meng Tian
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Chengcheng Cao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Tong Shu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China
| | - Yongqiang Wen
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Lei Su
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China
| |
Collapse
|
13
|
Chiodelli P, Coltrini D, Turati M, Cerasuolo M, Maccarinelli F, Rezzola S, Grillo E, Giacomini A, Taranto S, Mussi S, Ligresti A, Presta M, Ronca R. FGFR blockade by pemigatinib treats naïve and castration resistant prostate cancer. Cancer Lett 2022; 526:217-224. [PMID: 34861311 DOI: 10.1016/j.canlet.2021.11.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/08/2021] [Accepted: 11/28/2021] [Indexed: 11/02/2022]
Abstract
Prostate cancer (PCa) is a leading cause of cancer mortality in the male population commonly treated with androgen deprivation therapy (ADT) and relapsing as aggressive and androgen-independent castration-resistant prostate cancer (CRPC). In PCa the FGF/FGFR family of growth factors and receptors represents a relevant mediator of cancer growth, tumor-stroma interaction, and a driver of resistance and relapse to ADT. In the present work, we validate the therapeutic efficacy the FDA-approved FGFR inhibitor pemigatinib, in an integrated platform consisting of human and murine PCa cells, and the transgenic multistage TRAMP model of PCa that recapitulates both androgen-dependent and CRPC settings. Our results show for the first time that pemigatinib causes intracellular stress and cell death in PCa cells and prevents tumor growth in vivo and in the multistage model. In addition, the combination of pemigatinib with enzalutamide resulted in long-lasting tumor inhibition and prevention of CRPC relapse in TRAMP mice. These data are confirmed by the implementation of a stochastic mathematical model and in silico simulation. Pemigatinib represents a promising FDA-approved FGFR inhibitor for the treatment of PCa and CRPC alone and in combination with enzalutamide.
Collapse
Affiliation(s)
- Paola Chiodelli
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Daniela Coltrini
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Marta Turati
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Marianna Cerasuolo
- University of Portsmouth, School of Mathematics and Physics, Hampshire, PO1 3HF, UK
| | - Federica Maccarinelli
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Sara Rezzola
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Elisabetta Grillo
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Arianna Giacomini
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Sara Taranto
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Silvia Mussi
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Alessia Ligresti
- National Research Council of Italy, Institute of Biomolecular Chemistry, Pozzuoli, Italy
| | - Marco Presta
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Roberto Ronca
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy.
| |
Collapse
|
14
|
Lefebvre F, Blanchet-Deverly A, Michineau L, Blanchet P, Multigner L, Brureau L. Metabolic syndrome and prostate cancer in Afro-Caribbean men. Prostate 2022; 82:359-365. [PMID: 34905623 DOI: 10.1002/pros.24281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/29/2021] [Indexed: 01/22/2023]
Abstract
INTRODUCTION AND OBJECTIVES Metabolic syndrome (MetS) is a group of risk factors that increases the likelihood of developing cardiovascular diseases. Although suggested, the relationship between MetS and prostate cancer (PCa) is still inconclusive. Very few studies have addressed this question in populations of African descent, which are disproportionately affected by PCa. This study aimed to assess the prevalence of MetS among incident cases of Afro-Caribbean PCa and estimate its association with adverse clinicopathological features and the risk of biochemical recurrence (BCR) after radical prostatectomy (RP). MATERIALS AND METHODS We included 285 consecutive patients with incident cases of PCa attending the University Hospital of Guadeloupe (French West Indies). MetS was evaluated at the time of diagnosis by collecting information on blood pressure, glycaemic status, triglyceride and high-density lipoprotein cholesterol levels, and obesity through various surrogates, including two waist circumference indicators (≤94 cm, ≥102 cm), the waist-to-hip ratio (≥0.95), and body mass index (BMI; ≥30 kg/m2 ). We followed 245 patients who underwent RP as primary treatment of localized PCa. RESULTS The prevalence of MetS varied greatly, from 31.6% to 16.4%, when a waist circumference ≥94 cm or BMI were used as obesity surrogates, respectively. No significant associations were found between MetS, regardless of the obesity criteria employed, and the risk of adverse pathological features or BCR. CONCLUSIONS The high variability in MetS resulting from the diversity of obesity criteria used may explain the discordant associations reported in the literature. Further studies using strict and uniform criteria to define MetS on homogeneous ethnic groups are encouraged to clarify the association, if any, between MetS and PCa outcomes.
Collapse
Affiliation(s)
- Florian Lefebvre
- CHU de Guadeloupe, Univ Antilles, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes, France
| | | | - Leah Michineau
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Pointe à Pitre, France
| | - Pascal Blanchet
- CHU de Guadeloupe, Univ Antilles, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes, France
| | - Luc Multigner
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Pointe à Pitre, France
| | - Laurent Brureau
- CHU de Guadeloupe, Univ Antilles, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes, France
| |
Collapse
|
15
|
Zhu W, Sheng D, Shao Y, Zhang Q, Peng Y. STAT3-regulated LncRNA LINC00160 mediates cell proliferation and cell metabolism of prostate cancer cells by repressing RCAN1 expression. Mol Cell Biochem 2022; 477:865-875. [PMID: 35067783 DOI: 10.1007/s11010-021-04284-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022]
Abstract
Long non-coding RNA (LncRNA) LINC00160 was reported to be associated with cancer progression and mediates drug resistance. However, the role of LINC00160 in prostate cancer remains unclear. The study sought to study the function of LINC00160 in prostate cancer. Moreover, the potential mechanism was investigated. Silence of LINC00160 inhibited proliferation and promoted the apoptosis of prostate cancer cells, retarded the glycolysis of prostate cancer cells. By acting as a transcription activator, STAT3 induced LINC00160 expression, which regulated RCAN1 transcription epigenetically via binding to EZH2. Mechanically, LINC00160 mediated prostate cell proliferation and metabolism by repressing RCAN1 expression. In summary, LINC00160 may function as the novel marker for prostate cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Wenjing Zhu
- Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Dongya Sheng
- Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yiqun Shao
- Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Qiang Zhang
- Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yu Peng
- Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
16
|
Arginine and Arginases Modulate Metabolism, Tumor Microenvironment and Prostate Cancer Progression. Nutrients 2021; 13:nu13124503. [PMID: 34960055 PMCID: PMC8704013 DOI: 10.3390/nu13124503] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/05/2021] [Accepted: 12/11/2021] [Indexed: 12/30/2022] Open
Abstract
Arginine availability and activation of arginine-related pathways at cancer sites have profound effects on the tumor microenvironment, far beyond their well-known role in the hepatic urea cycle. Arginine metabolism impacts not only malignant cells but also the surrounding immune cells behavior, modulating growth, survival, and immunosurveillance mechanisms, either through an arginase-mediated effect on polyamines and proline synthesis, or by the arginine/nitric oxide pathway in tumor cells, antitumor T-cells, myeloid-derived suppressor cells, and macrophages. This review presents evidence concerning the impact of arginine metabolism and arginase activity in the prostate cancer microenvironment, highlighting the recent advances in immunotherapy, which might be relevant for prostate cancer. Even though further research is required, arginine deprivation may represent a novel antimetabolite strategy for the treatment of arginine-dependent prostate cancer.
Collapse
|
17
|
Exploration of Redox-Related Molecular Patterns and the Redox Score for Prostate Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4548594. [PMID: 34804366 PMCID: PMC8601839 DOI: 10.1155/2021/4548594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/07/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022]
Abstract
Redox homeostasis is the key to cell survival, and its imbalance can promote the occurrence and progression of tumors. However, it remains unclear whether these redox-related genes (RRGs) have potential roles in the tumor microenvironment, immunotherapy, and drug sensitivity. Here, we performed a systematic and comprehensive analysis of 489 prostate cancer (PC) samples from The Cancer Genome Atlas database and 214 PC samples from 8 datasets in the Gene Expression Omnibus database to determine redox modification patterns and the redox scoring system for PC. We identified two modification patterns (Redox_A and Redox_B) in PC using unsupervised consensus clustering based on 1410 differential expression RRGs. We then compared the prognostic value, tumor microenvironment characteristics, immune cell infiltration, and molecular characteristics of the two patterns. The Redox_A pattern was significantly enriched in the carcinogenic activation signaling pathways and had a poor prognosis, while the Redox_B pattern was mainly enriched in a variety of metabolic and redox pathways and had a good prognosis. Next, redox-related characteristic genes were extracted from these two patterns, and a scoring system (Redox_score) was constructed to evaluate PC patients. Further analysis indicated that lower Redox_score patients had a better prognosis, while higher Redox_score patients had a higher tumor mutation burden, driver gene mutation rate, and immune checkpoint inhibitor gene expression. We also found that higher Redox_score patients were more responsive to anti-PD-1 immunotherapy. Moreover, Redox_score was determined to be significantly correlated with anticancer drug sensitivity and resistance. Our study provides a comprehensive analysis of redox modifications in PC and reveals new patterns of PC based on RRGs, which will provide insights into the complex mechanisms of PC and develop more effective individualized therapeutic strategies.
Collapse
|
18
|
Chen B, Bai G, Ma X, Tan L, Xu H. MicroRNA‑195‑5p is associated with cell proliferation, migration and invasion in prostate cancer and targets MIB1. Oncol Rep 2021; 46:259. [PMID: 34698358 PMCID: PMC8561671 DOI: 10.3892/or.2021.8210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/18/2021] [Indexed: 01/13/2023] Open
Abstract
Mind bomb 1 (MIB1) is a well‑known E3 ubiquitin ligase. MicroRNAs (miRNAs/miRs) have been found to serve important functions in cancer cell physiology. However, the clinical significance and biological function of MIB1 and miRNAs in prostate cancer (PCa) are yet to be fully elucidated. The current study predicted the interaction between MIB1 and miR‑195‑5p using TargetScan, and the results were confirmed by performing a dual‑luciferase reporter assay. The mRNA expression level of MIB1 and miR‑195‑5p in PCa and adjacent normal tissues, and PCa cell lines was detected using reverse transcription‑quantitative PCR. Cell Counting Kit‑8 and Transwell assays were used to measure the proliferation, and migration and invasion of VCaP and DU145 PCa cell lines, respectively, while western blot analysis was used to detect the protein expression level of MIB1. The results revealed that the mRNA expression level of MIB1 was increased, while the mRNA expression level of miR‑195‑5p was decreased in PCa tissues (P<0.001 and P<0.01, respectively) and in various cell lines, including PC‑3 (P<0.001 and P<0.05, respectively), VCaP (P<0.001 and P<0.01, respectively), 22Rv1 (P<0.001 and P<0.05, respectively), DU145 (P<0.001 and P<0.01, respectively) and LNCaP (P<0.001 and P<0.05, respectively). miR‑195‑5p mimics rescued the inhibitory effects caused by knockdown of MIB1 on cell proliferation, migration and invasion in the VCaP and DU145 cell lines. In addition, MIB1 overexpression restored the miR‑195‑5p overexpression‑induced repression of cell proliferation and invasion. The current study revealed that the MIB1 gene was an effector of cell proliferation, migration and invasion in PCa cell lines. Furthermore, miR‑195‑5p may regulate PCa cell proliferation and invasion by regulating MIB1, indicating its potential therapeutic application for PCa in the future.
Collapse
Affiliation(s)
- Bin Chen
- College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Guohui Bai
- College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Xiaoyan Ma
- College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Lulin Tan
- College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Houqiang Xu
- College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| |
Collapse
|
19
|
Fan C, Lu W, Li K, Zhao C, Wang F, Ding G, Wang J. Identification of immune cell infiltration pattern and related critical genes in metastatic castration-resistant prostate cancer by bioinformatics analysis. Cancer Biomark 2021; 32:363-377. [PMID: 34151837 DOI: 10.3233/cbm-203222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Metastatic castration-resistant prostate cancer (mCRPC) is the lethal stage of prostate cancer and the main cause of morbidity and mortality, which is also a potential target for immunotherapy. METHOD In this study, using the Approximate Relative Subset of RNA Transcripts (CIBERSORT) online method, we analysed the immune cell abundance ratio of each sample in the mCRPC dataset. The EdgeR (an R package) was used to classify differentially expressed genes (DEGs). Using the Database for annotation, visualisation and interactive exploration (DAVID) online method, we performed functional enrichment analyses. STRING online database and Cytoscape tools have been used to analyse protein-protein interaction (PPI) and classify hub genes. RESULTS The profiles of immune infiltration in mCRPC showed that Macrophages M2, Macrophages M0, T cells CD4 memory resting, T cells CD8 and Plasma cells were the main infiltration cell types in mCRPC samples. Macrophage M0 and T cell CD4 memory resting abundance ratios were correlated with clinical outcomes. We identified 1102 differentially expressed genes (DEGs) associated with the above two immune cells to further explore the underlying mechanisms. Enrichment analysis found that DEGs were substantially enriched in immune response, cell metastasis, and metabolism related categories. We identified 20 hub genes by the protein-protein interaction network analysis. Further analysis showed that three critical hub genes, CCR5, COL1A1 and CXCR3, were significantly associated with prostate cancer prognosis. CONCLUSION Our findings revealed the pattern of immune cell infiltration in mCRPC, and identified the types and genes of immune cells correlated with clinical outcomes. A new theoretical basis for immunotherapy may be given by our results.
Collapse
Affiliation(s)
- Caibin Fan
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Lu
- School of Nursing, Suzhou Vocational Health and Technical College, Suzhou, Jiangsu, China.,Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kai Li
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunchun Zhao
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fei Wang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guanxiong Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianqing Wang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
High Monocyte Count and Expression of S100A9 and S100A12 in Peripheral Blood Mononuclear Cells Are Associated with Poor Outcome in Patients with Metastatic Prostate Cancer. Cancers (Basel) 2021; 13:cancers13102424. [PMID: 34067757 PMCID: PMC8156049 DOI: 10.3390/cancers13102424] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 01/14/2023] Open
Abstract
Increasing evidence indicates calcium-binding S100 protein involvement in inflammation and tumor progression. In this prospective study, we evaluated the mRNA levels of two members of this family, S100A9 and S100A12, in peripheral blood mononuclear cells (PBMCs) in a cohort of 121 prostate cancer patients using RT-PCR. Furthermore, monocyte count was determined by flow cytometry. By stratifying patients into different risk groups, according to TNM stage, Gleason score and PSA concentration at diagnosis, expression of S100A9 and S100A12 was found to be significantly higher in patients with metastases compared to patients without clinically detectable metastases. In line with this, we observed that the protein levels of S100A9 and S100A12 in plasma were higher in patients with advanced disease. Importantly, in patients with metastases at diagnosis, high monocyte count and high levels of S100A9 and S100A12 were significantly associated with short progression free survival (PFS) after androgen deprivation therapy (ADT). High monocyte count and S100A9 levels were also associated with short cancer-specific survival, with monocyte count providing independent prognostic information. These findings indicate that circulating levels of monocytes, as well as S100A9 and S100A12, could be biomarkers for metastatic prostate cancer associated with particularly poor prognosis.
Collapse
|
21
|
Microfluidic Assessment of Drug Effects on Physical Properties of Androgen Sensitive and Non-Sensitive Prostate Cancer Cells. MICROMACHINES 2021; 12:mi12050532. [PMID: 34067167 PMCID: PMC8151345 DOI: 10.3390/mi12050532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 12/22/2022]
Abstract
The identification and treatment of androgen-independent prostate cancer are both challenging and significant. In this work, high-throughput deformability cytometry was employed to assess the effects of two anti-cancer drugs, docetaxel and enzalutamide, on androgen-sensitive prostate cancer cells (LNCaP) and androgen-independent prostate cancer cells (PC-3), respectively. The quantified results show that PC-3 and LNCaP present not only different intrinsic physical properties but also different physical responses to the same anti-cancer drug. PC-3 cells possess greater stiffness and a smaller size than LNCaP cells. As the docetaxel concentration increases, PC-3 cells present an increase in stiffness and size, but LNCaP cells only present an increase in stiffness. As the enzalutamide concentration increases, PC-3 cells present no physical changes but LNCaP cells present changes in both cell size and deformation. These results demonstrated that cellular physical properties quantified by the deformability cytometry are effective indicators for identifying the androgen-independent prostate cancer cells from androgen-sensitive prostate cancer cells and evaluating drug effects on these two types of prostate cancer.
Collapse
|
22
|
Lin HY, Huang PY, Cheng CH, Tung HY, Fang Z, Berglund AE, Chen A, French-Kwawu J, Harris D, Pow-Sang J, Yamoah K, Cleveland JL, Awasthi S, Rounbehler RJ, Gerke T, Dhillon J, Eeles R, Kote-Jarai Z, Muir K, Schleutker J, Pashayan N, Neal DE, Nielsen SF, Nordestgaard BG, Gronberg H, Wiklund F, Giles GG, Haiman CA, Travis RC, Stanford JL, Kibel AS, Cybulski C, Khaw KT, Maier C, Thibodeau SN, Teixeira MR, Cannon-Albright L, Brenner H, Kaneva R, Pandha H, Srinivasan S, Clements J, Batra J, Park JY. KLK3 SNP-SNP interactions for prediction of prostate cancer aggressiveness. Sci Rep 2021; 11:9264. [PMID: 33927218 PMCID: PMC8084951 DOI: 10.1038/s41598-021-85169-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Risk classification for prostate cancer (PCa) aggressiveness and underlying mechanisms remain inadequate. Interactions between single nucleotide polymorphisms (SNPs) may provide a solution to fill these gaps. To identify SNP-SNP interactions in the four pathways (the angiogenesis-, mitochondria-, miRNA-, and androgen metabolism-related pathways) associated with PCa aggressiveness, we tested 8587 SNPs for 20,729 cases from the PCa consortium. We identified 3 KLK3 SNPs, and 1083 (P < 3.5 × 10-9) and 3145 (P < 1 × 10-5) SNP-SNP interaction pairs significantly associated with PCa aggressiveness. These SNP pairs associated with PCa aggressiveness were more significant than each of their constituent SNP individual effects. The majority (98.6%) of the 3145 pairs involved KLK3. The 3 most common gene-gene interactions were KLK3-COL4A1:COL4A2, KLK3-CDH13, and KLK3-TGFBR3. Predictions from the SNP interaction-based polygenic risk score based on 24 SNP pairs are promising. The prevalence of PCa aggressiveness was 49.8%, 21.9%, and 7.0% for the PCa cases from our cohort with the top 1%, middle 50%, and bottom 1% risk profiles. Potential biological functions of the identified KLK3 SNP-SNP interactions were supported by gene expression and protein-protein interaction results. Our findings suggest KLK3 SNP interactions may play an important role in PCa aggressiveness.
Collapse
Affiliation(s)
- Hui-Yi Lin
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| | - Po-Yu Huang
- Computational Intelligence Technology Center, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chia-Ho Cheng
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Heng-Yuan Tung
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Zhide Fang
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Anders E Berglund
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Ann Chen
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Jennifer French-Kwawu
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Darian Harris
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Julio Pow-Sang
- Department of Genitourinary Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Kosj Yamoah
- Department of Radiation Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - John L Cleveland
- Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Shivanshu Awasthi
- Department of Cancer Epidemiology, Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Robert J Rounbehler
- Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Travis Gerke
- Department of Cancer Epidemiology, Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Jasreman Dhillon
- Department of Pathology, Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Rosalind Eeles
- The Institute of Cancer Research, London, SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| | | | - Kenneth Muir
- Division of Population Health, Health Services Research, and Primary Care, University of Manchester, Oxford Road, Manchester, M139PT, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Johanna Schleutker
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
- Department of Medical Genetics, Genomics, Laboratory Division, Turku University Hospital, PO Box 52, 20521, Turku, Finland
| | - Nora Pashayan
- Department of Applied Health Research, University College London, London, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Strangeways Laboratory, Worts Causeway, Cambridge, CB1 8RN, UK
- Department of Applied Health Research, University College London, London, WC1E 7HB, UK
| | - David E Neal
- Nuffield Department of Surgical Sciences, University of Oxford, Room 6603, Level 6, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
- Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Box 279, Cambridge, CB2 0QQ, UK
| | - Sune F Nielsen
- Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, 2200, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, 2200, Copenhagen, Denmark
| | - Henrik Gronberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, VIC, 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Grattan Street, Parkville, VIC, 3010, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, 90015, USA
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, 98195, USA
| | - Adam S Kibel
- Division of Urologic Surgery, Brigham and Womens Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Kay-Tee Khaw
- Clinical Gerontology Unit, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Christiane Maier
- Humangenetik Tuebingen, Paul-Ehrlich-Str 23, 72076, Tuebingen, Germany
| | - Stephen N Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
- Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Lisa Cannon-Albright
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Radka Kaneva
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University of Sofia, Sofia, 2 Zdrave Str., 1431, Sofia, Bulgaria
| | - Hardev Pandha
- University of Surrey, Guildford, GU2 7XH, Surrey, UK
| | - Srilakshmi Srinivasan
- Translational Research Institute, Brisbane, QLD, 4102, Australia
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Judith Clements
- Translational Research Institute, Brisbane, QLD, 4102, Australia
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Jyotsna Batra
- Translational Research Institute, Brisbane, QLD, 4102, Australia
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Jong Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| |
Collapse
|
23
|
Hu YM, Lou XL, Liu BZ, Sun L, Wan S, Wu L, Zhao X, Zhou Q, Sun MM, Tao K, Zhang YS, Wang SL. TGF-β1-regulated miR-3691-3p targets E2F3 and PRDM1 to inhibit prostate cancer progression. Asian J Androl 2021; 23:188-196. [PMID: 33159025 PMCID: PMC7991816 DOI: 10.4103/aja.aja_60_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 08/07/2020] [Indexed: 12/31/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) acts as a tumor promoter in advanced prostate cancer (PCa). We speculated that microRNAs (miRNAs) that are inhibited by TGF-β1 might exert anti-tumor effects. To assess this, we identified several miRNAs downregulated by TGF-β1 in PCa cell lines and selected miR-3691-3p for detailed analysis as a candidate anti-oncogene miRNA. miR-3691-3p was expressed at significantly lower levels in human PCa tissue compared with paired benign prostatic hyperplasia tissue, and its expression level correlated inversely with aggressive clinical pathological features. Overexpression of miR-3691-3p in PCa cell lines inhibited proliferation, migration, and invasion, and promoted apoptosis. The miR-3691-3p target genes E2F transcription factor 3 (E2F3) and PR domain containing 1, with ZNF domain (PRDM1) were upregulated in miR-3691-3p-overexpressing PCa cells, and silencing of E2F3 or PRDM1 suppressed PCa cell proliferation, migration, and invasion. Treatment of mice bearing PCa xenografts with a miR-3691-3p agomir inhibited tumor growth and promoted tumor cell apoptosis. Consistent with the negative regulation of E2F3 and PRDM1 by miR-3691-3p, both proteins were overexpressed in clinical PCa specimens compared with noncancerous prostate tissue. Our results indicate that TGF-β1-regulated miR-3691-3p acts as an anti-oncogene in PCa by downregulating E2F3 and PRDM1. These results provide novel insights into the mechanisms by which TGF-β1 contributes to the progression of PCa.
Collapse
Affiliation(s)
- Yue-Mei Hu
- Department of Pathology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
- Department of Pathology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
- Collaborative Innovation Center of Clinical Immunology between Soochow University and Sihong People's Hospital, Sihong 223900, China
| | - Xiao-Li Lou
- Department of Pathology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Clinical Immunology between Soochow University and Sihong People's Hospital, Sihong 223900, China
| | - Bao-Zhu Liu
- Collaborative Innovation Center of Clinical Immunology between Soochow University and Sihong People's Hospital, Sihong 223900, China
- Department of Pathology, Sihong People's Hospital, Sihong 223900, China
| | - Li Sun
- Laboratory Animal Research Center, Soochow University School of Medicine, Suzhou 215123, China
| | - Shan Wan
- Department of Pathology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Lei Wu
- Laboratory Animal Research Center, Soochow University School of Medicine, Suzhou 215123, China
| | - Xin Zhao
- Department of Pathology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Qing Zhou
- Department of Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Mao-Min Sun
- Laboratory Animal Research Center, Soochow University School of Medicine, Suzhou 215123, China
| | - Kun Tao
- Department of Pathology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yong-Sheng Zhang
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Shou-Li Wang
- Department of Pathology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
- Suzhou Key Laboratory of Tumor Microenvironment and Pathology, Soochow University, Suzhou 215006, China
| |
Collapse
|
24
|
Buckup M, Rice MA, Hsu EC, Garcia-Marques F, Liu S, Aslan M, Bermudez A, Huang J, Pitteri SJ, Stoyanova T. Plectin is a regulator of prostate cancer growth and metastasis. Oncogene 2021; 40:663-676. [PMID: 33219316 PMCID: PMC8078627 DOI: 10.1038/s41388-020-01557-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022]
Abstract
Prostate cancer is responsible for over 30,000 US deaths annually, attributed largely to incurable metastatic disease. Here, we demonstrate that high levels of plectin are associated with localized and metastatic human prostate cancer when compared to benign prostate tissues. Knock-down of plectin inhibits prostate cancer cell growth and colony formation in vitro, and growth of prostate cancer xenografts in vivo. Plectin knock-down further impairs aggressive and invasive cellular behavior assessed by migration, invasion, and wound healing in vitro. Consistently, plectin knock-down cells have impaired metastatic colonization to distant sites including liver, lung, kidney, bone, and genitourinary system. Plectin knock-down inhibited number of metastases per organ, as well as decreased overall metastatic burden. To gain insights into the role of plectin in prostate cancer growth and metastasis, we performed proteomic analysis of prostate cancer plectin knock-down xenograft tissues. Gene set enrichment analysis shows an increase in levels of proteins involved with extracellular matrix and laminin interactions, and a decrease in levels of proteins regulating amino acid metabolism, cytoskeletal proteins, and cellular response to stress. Collectively these findings demonstrate that plectin is an important regulator of prostate cancer cell growth and metastasis.
Collapse
Affiliation(s)
- Mark Buckup
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Meghan A Rice
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - En-Chi Hsu
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Fernando Garcia-Marques
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Shiqin Liu
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Merve Aslan
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Abel Bermudez
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University, Durham, NC, USA
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Tanya Stoyanova
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
25
|
Costa-Pinheiro P, Heher A, Raymond MH, Jividen K, Shaw JJ, Paschal BM, Walker SJ, Fox TE, Kester M. Role of SPTSSB-Regulated de Novo Sphingolipid Synthesis in Prostate Cancer Depends on Androgen Receptor Signaling. iScience 2020; 23:101855. [PMID: 33313495 PMCID: PMC7721643 DOI: 10.1016/j.isci.2020.101855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/23/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Anti-androgens are a common therapy in prostate cancer (PCa) targeting androgen receptor (AR) signaling. However, these therapies fail due to selection of highly aggressive AR-negative cancer cells that have no therapeutic options available. We demonstrate that elevating endogenous ceramide levels with administration of exogenous ceramide nanoliposomes (CNLs) was efficacious in AR-negative cell lines with limited efficacy in AR-positive cells. This effect is mediated through reduced de novo sphingolipid synthesis in AR-positive cells. We show that anti-androgens elevate de novo generation of sphingolipids via SPTSSB, a rate-limiting mediator of sphingolipid generation. Moreover, pharmacological inhibition of AR increases the efficacy of CNL in AR-positive cells through de novo synthesis, while SPTSSB knockdown limited CNL's efficacy in AR-negative cells. Alluding to clinical relevance, SPTSSB is upregulated in patients with advanced PCa after anti-androgens treatment. These findings emphasize the relevance of AR regulation upon sphingolipid metabolism and the potential of CNL as a PCa therapeutic. AR-negative PCa cells are more susceptible to CNL than AR-positive cells Combination of anti-androgens and CNL results in enhanced efficacy for AR-positive PCa AR negatively regulates the de novo synthesis of sphingolipids through SPTSSB SPTSSB is crucial for CNL effect in AR-negative PCa and is upregulated in neuroendocrine tumors
Collapse
Affiliation(s)
| | - Abigail Heher
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Michael H Raymond
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Kasey Jividen
- Center for Cell Signaling, University of Virginia, Charlottesville, VA 22903, USA
| | - Jeremy Jp Shaw
- Department of Pathology, University of Virginia, Charlottesville, VA 22903, USA
| | - Bryce M Paschal
- Center for Cell Signaling, University of Virginia, Charlottesville, VA 22903, USA.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Susan J Walker
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - Todd E Fox
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - Mark Kester
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA.,nanoSTAR Institute, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
26
|
Super-enhancer in prostate cancer: transcriptional disorders and therapeutic targets. NPJ Precis Oncol 2020; 4:31. [PMID: 33299103 PMCID: PMC7677538 DOI: 10.1038/s41698-020-00137-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Abnormal activity of oncogenic and tumor-suppressor signaling pathways contributes to cancer and cancer risk in humans. Transcriptional dysregulation of these pathways is commonly associated with tumorigenesis and the development of cancer. Genetic and epigenetic alterations may mediate dysregulated transcriptional activity. One of the most important epigenetic alternations is the non-coding regulatory element, which includes both enhancers and super-enhancers (SEs). SEs, characterized as large clusters of enhancers with aberrant high levels of transcription factor binding, have been considered as key drivers of gene expression in controlling and maintaining cancer cell identity. In cancer cells, oncogenes acquire SEs and the cancer phenotype relies on these abnormal transcription programs driven by SEs, which leads to cancer cells often becoming addicted to the SEs-related transcription programs, including prostate cancer. Here, we summarize recent findings of SEs and SEs-related gene regulation in prostate cancer and review the potential pharmacological inhibitors in basic research and clinical trials.
Collapse
|
27
|
Zeng Y, Du Q, Zhang Z, Ma J, Han L, Wang Y, Yang L, Tao N, Qin Z. Curcumin promotes cancer-associated fibroblasts apoptosis via ROS-mediated endoplasmic reticulum stress. Arch Biochem Biophys 2020; 694:108613. [DOI: 10.1016/j.abb.2020.108613] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
|
28
|
Boros F, Vécsei L. Progress in the development of kynurenine and quinoline-3-carboxamide-derived drugs. Expert Opin Investig Drugs 2020; 29:1223-1247. [DOI: 10.1080/13543784.2020.1813716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Fanni Boros
- Department of Neurology, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group of the Hungarian Academy of Sciences and the University of Szeged, Szeged, Hungary
- Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
29
|
Schröder SK, Asimakopoulou A, Tillmann S, Koschmieder S, Weiskirchen R. TNF-α controls Lipocalin-2 expression in PC-3 prostate cancer cells. Cytokine 2020; 135:155214. [PMID: 32712458 DOI: 10.1016/j.cyto.2020.155214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 12/21/2022]
Abstract
Prostate cancer (PCa) is one of the most common and deadly cancers in men worldwide. The surrounding tumor microenvironment (TME) is important in tumor progression, as cytokines and soluble mediators including tumor necrosis factor (TNF-α) or lipocalin-2 (LCN2) can influence tumor growth and formation of metastasis. The exact mechanisms on how these pleiotropic factors affect PCa are still unknown. In this study, we showed for the first time that LCN2 mRNA and protein expression are strongly inducible by TNF-α in the highly metastatic human PCa cell line PC-3. In addition, we observed higher levels of secreted LCN2 in cell culture medium of TNF-α-treated PC-3 cells. We found that different signaling pathways such as p38, NF-κB or JNK were activated shortly after TNF-α treatment. Moreover, the mRNA levels of IL-1β and IL-8 were also significantly increased after 24 h stimulation. Mechanistically, the NF-κB pathway and the JNK signaling axis are directly responsible for LCN2 upregulation. This was shown by the fact that pretreatment with the JNK inhibitors SP600125 or JNK-IN-8 strongly downregulated phosphorylation of c-Jun protein and markedly reduced TNF-α-mediated LCN2 upregulation in PC-3 cells. Likewise, the NF-κB inhibitor QNZ was able to repress TNF-α-induced LCN2 expression in PC-3 cells. Taking into consideration that LCN2 has been described as a tumor promoting factor in PCa, our results indicate that JNK regulates LCN2 expression and unmasks the JNK signaling axis as a possible therapeutic target for patients with PCa.
Collapse
Affiliation(s)
- Sarah K Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Anastasia Asimakopoulou
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Stefan Tillmann
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
30
|
A genetic risk assessment for prostate cancer influences patients' risk perception and use of repeat PSA testing: a cross-sectional study in Danish general practice. BJGP Open 2020; 4:bjgpopen20X101039. [PMID: 32457098 PMCID: PMC7330221 DOI: 10.3399/bjgpopen20x101039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 11/24/2022] Open
Abstract
Background Prostate cancer (PC) is the most common cancer among men in the western world. Genetic lifetime risk assessment could alleviate controversies about prostate specific antigen (PSA) testing for early diagnosis. Aim To determine how men interpret information about their lifetime risk for PC and how this can affect their choice of having a repeated PSA test. Design & setting A genetic test was offered for assessment of individual PC lifetime risk in general practices in Denmark, with the purpose of promoting appropriate use of PSA testing. Method Participants had a genetic lifetime risk assessment for PC diagnosis (either high or normal risk). A month after receiving the result, participants answered a questionnaire about their perceived risk of getting or dying from PC compared with other men, as well as their intentions for repeated PSA testing. Results Nearly half (44.7%) of 555 participants who received the genetic risk assessment were not aware they had a genetic test. Nevertheless, compared with men with a normal genetic risk, those with high genetic risk reported higher perceived risk for PC (mean difference of 0.74 [95% confidence interval {CI} = 0.56 to 0.96] on a 5-point scale), higher perceived risk of dying from PC (mean difference of 0.48 [95% CI = 0.29 to 0.66] on a 5-point scale), and increased intention for repeated PSA testing (mean difference of 0.48 [95% CI = 0.30 to 0.65] on a 4-point scale). Conclusion Despite low awareness and/or understanding of the test result, a high genetic risk for PC made participants more aware of their risk, and it increased their intention and probability for repeated PSA testing.
Collapse
|
31
|
The MAO inhibitors phenelzine and clorgyline revert enzalutamide resistance in castration resistant prostate cancer. Nat Commun 2020; 11:2689. [PMID: 32483206 PMCID: PMC7264333 DOI: 10.1038/s41467-020-15396-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/06/2020] [Indexed: 12/28/2022] Open
Abstract
The antiandrogen enzalutamide (Enz) has improved survival in castration resistant prostate cancer (CRPC) patients. However, most patients eventually develop Enz resistance that may involve inducing the androgen receptor (AR) splicing variant 7 (ARv7). Here we report that high expression of monoamine oxidase-A (MAO-A) is associated with positive ARv7 detection in CRPC patients following Enz treatment. Targeting MAO-A with phenelzine or clorgyline, the FDA-approved drugs for antidepression, resensitize the Enz resistant (EnzR) cells to Enz treatment and further suppress EnzR cell growth in vitro and in vivo. Our findings suggest that Enz-increased ARv7 expression can transcriptionally enhance MAO-A expression resulting in Enz resistance via altering the hypoxia HIF-1α signals. Together, our results show that targeting the Enz/ARv7/MAO-A signaling with the antidepressants phenelzine or clorgyline can restore Enz sensitivity to suppress EnzR cell growth, which may indicate that these antidepression drugs can overcome the Enz resistance to further suppress the EnzR CRPC. Castration resistant prostate cancer patients treated with enzalutamide may develop resistance to the drug. Here, the authors report that monoamine oxidase-A expression is increased in these resistant tumors and that the antidepressants phenelzine/clorgyline can reverse such resistance to further suppress tumor growth
Collapse
|
32
|
Fan L, Li H, Wang W. Long non-coding RNA PRRT3-AS1 silencing inhibits prostate cancer cell proliferation and promotes apoptosis and autophagy. Exp Physiol 2020; 105:793-808. [PMID: 32086850 DOI: 10.1113/ep088011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the role of lncRNA PRRT3-AS1 in the regulation of peroxisome proliferator-activated receptor γ (PPARγ) gene-mediated mechanistic target of rapamycin (mTOR) signalling pathway in proliferation, apoptosis and autophagy of prostate cancer cells? What is the main finding and its importance? The targeting relation between lncRNA PRRT3-AS1 and PPARγ was verified, and it was demonstrated that silencing of lncRNA PRRT3-AS1 can upregulate apoptosis and autophagy yet downregulate proliferation, migration and invasion of prostate cancer cells through the mTOR signalling pathway. Further work is needed to consolidate the therapeutic value of lncRNA PRRT3-AS1 in clinical trials and treatment of prostate cancer. ABSTRACT Although long non-coding RNAs (lncRNAs) are correlated with multiple cancers, their molecular mechanisms in prostate cancer (PC) remain inadequately understood. This study investigated the effects of lncRNA PRRT3-AS1 on the progression of prostate cancer (PC) with involvement of peroxisome proliferator-activated receptor γ (PPARγ). Microarray analysis was used to identify the differentially expressed genes and lncRNAs associated with PC. RT-qPCR and western blot analysis were employed to test the expression of lncRNA PRRT3-AS1, mammalian target of rapamycin (mTOR) signalling pathway-, apoptosis- and autophagy-related genes. A scratch test, Transwell assay, CCK-8 assay, colony formation assay, flow cytometry and monodansylcadaverine staining were employed to identify the migration, invasion, proliferation activity, cell cycle and apoptosis and autophagy of PC3 cells, respectively. Tumorigenicity assays in nude mice were used to detect the tumorigenic ability. GSE55945 and GSE46602 datasets indicated that lncRNA PRRT3-AS1 was highly expressed in PC. PPARγ was predicted as a target gene of lncRNA PRRT3-AS1. Ectopic overexpression of PPARγ or lncRNA PRRT3-AS1 silencing led to inhibited cell viability, migration and invasion, and accelerated apoptosis. Furthermore, the delivery of si-PRRT3-AS1 or PPARγ vector to PC3 cells resulted in the regression of xenografts in nude mice. Based on the in vitro and in vivo experiments, silencing of lncRNA PRRT3-AS1 was observed to activate the PPARγ gene, which in turn could inhibit PC cell proliferation and promote apoptosis and autophagy by blocking the mTOR signalling pathway.
Collapse
Affiliation(s)
- Li Fan
- Department of Urology, China and Japan Union Hospital of Jilin University, Changchun, 130033, P.R. China
| | - Hai Li
- Department of Urology, China and Japan Union Hospital of Jilin University, Changchun, 130033, P.R. China
| | - Weihua Wang
- Department of Urology, China and Japan Union Hospital of Jilin University, Changchun, 130033, P.R. China
| |
Collapse
|
33
|
Izzo S, Naponelli V, Bettuzzi S. Flavonoids as Epigenetic Modulators for Prostate Cancer Prevention. Nutrients 2020; 12:E1010. [PMID: 32268584 PMCID: PMC7231128 DOI: 10.3390/nu12041010] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is a multifactorial disease with an unclear etiology. Due to its high prevalence, long latency, and slow progression, PCa is an ideal target for chemoprevention strategies. Many research studies have highlighted the positive effects of natural flavonoids on chronic diseases, including PCa. Different classes of dietary flavonoids exhibit anti-oxidative, anti-inflammatory, anti-mutagenic, anti-aging, cardioprotective, anti-viral/bacterial and anti-carcinogenic properties. We overviewed the most recent evidence of the antitumoral effects exerted by dietary flavonoids, with a special focus on their epigenetic action in PCa. Epigenetic alterations have been identified as key initiating events in several kinds of cancer. Many dietary flavonoids have been found to reverse DNA aberrations that promote neoplastic transformation, particularly for PCa. The epigenetic targets of the actions of flavonoids include oncogenes and tumor suppressor genes, indirectly controlled through the regulation of epigenetic enzymes such as DNA methyltransferase (DNMT), histone acetyltransferase (HAT), and histone deacetylase (HDAC). In addition, flavonoids were found capable of restoring miRNA and lncRNA expression that is altered during diseases. The optimization of the use of flavonoids as natural epigenetic modulators for chemoprevention and as a possible treatment of PCa and other kinds of cancers could represent a promising and valid strategy to inhibit carcinogenesis and fight cancer.
Collapse
Affiliation(s)
- Simona Izzo
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy; (S.I.); (S.B.)
| | - Valeria Naponelli
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy; (S.I.); (S.B.)
- National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d’Oro 305, 00136 Rome, Italy
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| | - Saverio Bettuzzi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy; (S.I.); (S.B.)
- National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d’Oro 305, 00136 Rome, Italy
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| |
Collapse
|
34
|
Wang F, Liu L, Tong Y, Li L, Liu Y, Gao WQ. Proscillaridin A slows the prostate cancer progression through triggering the activation of endoplasmic reticulum stress. Cell Cycle 2020; 19:541-550. [PMID: 32009541 DOI: 10.1080/15384101.2020.1716484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the second commonly diagnosed malignancy in men over the world. Although androgen deprivation therapy for advanced PCa patients has significantly improved their survival, the majority of these patients eventually develop castration-resistant prostate cancer (CRPC). Proscillaridin A (Pro A), a cardiac glycoside that is clinically used to treat various heart failure diseases, has been reported to have anticancer activity in several cancers. However, whether Pro A exerts an inhibitory effect on PCa progression remains unknown. In this study, we determined possible antitumor effects of Pro A on PCa cells and demonstrated the following: firstly, Pro A selectively inhibited androgen-independent PCa (including PC3 and DU145) cell growth and induced cell apoptosis in vitro; secondly, Pro A significantly decreased cell motility and invasion of androgen-independent PCa cells; thirdly, Pro A enhanced the sensitivity of PCa cells to docetaxel; fourthly, Pro A significantly inhibited the growth of PCa xenografts in vivo and patient-derived organoids (PDO). In addition, RNA-sequencing analysis revealed that the antitumor effects of Pro A on androgen-independent PCa appeared to be achieved via driving the activation of endoplasmic reticulum stress. The antitumor effects of Pro A could be ameliorated by reactive oxygen species scavenger and ER stress inhibitors. Therefore, these data suggest that Pro A may provide a potential therapeutic option for the treatment of PCa, particularly CRPC.
Collapse
Affiliation(s)
- Fan Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Tong
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Linfeng Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanfeng Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Fredsøe J, Koetsenruyter J, Vedsted P, Kirkegaard P, Væth M, Edwards A, Ørntoft TF, Sørensen KD, Bro F. The effect of assessing genetic risk of prostate cancer on the use of PSA tests in primary care: A cluster randomized controlled trial. PLoS Med 2020; 17:e1003033. [PMID: 32032355 PMCID: PMC7006905 DOI: 10.1371/journal.pmed.1003033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/15/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Assessing genetic lifetime risk for prostate cancer has been proposed as a means of risk stratification to identify those for whom prostate-specific antigen (PSA) testing is likely to be most valuable. This project aimed to test the effect of introducing a genetic test for lifetime risk of prostate cancer in general practice on future PSA testing. METHODS AND FINDINGS We performed a cluster randomized controlled trial with randomization at the level of general practices (73 in each of two arms) in the Central Region (Region Midtjylland) of Denmark. In intervention practices, men were offered a genetic test (based on genotyping of 33 risk-associated single nucleotide polymorphisms) in addition to the standard PSA test that informed them about lifetime genetic risk of prostate cancer and distinguished between "normal" and "high" risk. The primary outcome was the proportion of men having a repeated PSA test within 2 years. A multilevel logistic regression model was used to test the association. After applying the exclusion criteria, 3,558 men were recruited in intervention practices, with 1,235 (34.7%) receiving the genetic test, and 4,242 men were recruited in control practices. Men with high genetic risk had a higher propensity for repeated PSA testing within 2 years than men with normal genetic risk (odds ratio [OR] = 8.94, p < 0.01). The study was conducted in routine practice and had some selection bias, which is evidenced by the relatively large proportion of younger and higher income participants taking the genetic test. CONCLUSIONS Providing general practitioners (GPs) with access to a genetic test to assess lifetime risk of prostate cancer did not reduce the overall number of future PSA tests. However, among men who had a genetic test, knowledge of genetic risk significantly influenced future PSA testing. TRIAL REGISTRATION This study is registered with ClinicalTrials.gov, number NCT01739062.
Collapse
Affiliation(s)
- Jacob Fredsøe
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jan Koetsenruyter
- Research Unit for General Practice, The Research Centre for Cancer Diagnosis in Primary Care (Cap), Aarhus University, Aarhus, Denmark
| | - Peter Vedsted
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Research Unit for General Practice, The Research Centre for Cancer Diagnosis in Primary Care (Cap), Aarhus University, Aarhus, Denmark
| | - Pia Kirkegaard
- Department of Public Health, Randers Regional Hospital, Randers, Denmark
| | - Michael Væth
- Department of Public Health, Section of Biostatistics, Aarhus University, Aarhus, Denmark
| | - Adrian Edwards
- Division of Population Medicine, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Torben F. Ørntoft
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Karina D. Sørensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Flemming Bro
- Research Unit for General Practice, The Research Centre for Cancer Diagnosis in Primary Care (Cap), Aarhus University, Aarhus, Denmark
| |
Collapse
|
36
|
Ho CH, Cheng KC, Chao CM, Lai CC, Chiang SR, Chen CM, Liao KM, Wang JJ, Lee PH, Hung CM, Tai CM, Chiu CC. Does radiotherapy increase the risk of colorectal cancer among prostate cancer patients? A large population-based study. J Cancer 2020; 11:6204-6212. [PMID: 33033503 PMCID: PMC7532509 DOI: 10.7150/jca.44726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023] Open
Abstract
Objective: The survival of prostate cancer (PC) patients after radiotherapy (RT) has improved over time, but it raises the debate of increased risk of secondary colorectal cancer (SCRC). This study aimed to assess whether RT for PC treatment increases the risk of SCRC in comparison with radical prostatectomy (RP). Methods: A population-based cohort of PC patients treated only with RT or only with RP between January 2007 and December 2015 was identified from the Taiwan Cancer Registry. The incidence rate of SCRC development was estimated using Cox regression model. Results: In this study, total 8,797 PC patients treated with either RT (n = 3,219) or RP (n =5,578). Patients subjected to RT were elder (higher percentage of 70≧years, p < 0.0001) and more advanced clinically (stage III: 22.90% vs. 11.87%; stage IV: 22.15% vs. 13.80%, p < 0.0001), compared to those subjected to RP. More patients subjected to RT had a much higher percentage of autoimmune disease (22.34% vs. 18.75%, p < 0.0001) and osteoarthritis and allied disorders (16.31% vs. 12.98%, p < 0.0001). Besides, RT patients had a higher percentage of underlying Crohn's disease (0.25% vs. 0.05%, p = 0.0230). Although almost all selected factors were not statistically significant, they presented the positive risk of SCRC for those under RP compared with those among RT. Besides, for PC patients in clinical stage I and II, patients with RP may have borderline significantly protective effects of SCRC compared with those under RT (stage I, HR: 0.14; 95% C.I.:0.01-1.39; p = 0.0929; stage II, HR: 1.92; 95% C.I.:0.93-3.95; p = 0.0775). Kaplan-Meier curves for a 3-year-period, which demonstrated no statistical difference in the risk of SCRC free between PC patients undergoing RT and RP (p = 0.9766). Conclusion: Whether or not pelvic RT for PC is associated with an increased risk for SCRC on a population-based level remains a matter of considerable debate. From a clinical perspective, these PC survivors should be counseled accordingly and received continued cancer surveillance with regular colonoscopy follow-up.
Collapse
Affiliation(s)
- Chung-Han Ho
- Department of Medical Research, Chi Mei Medical Center, Tainan 71004, Taiwan
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Kuo-Chen Cheng
- Department of Internal Medicine, Chi Mei Medical Center, Tainan 71004, Taiwan
- Department of Safety, Health and Environment, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
| | - Chien-Ming Chao
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying 73657, Taiwan
- Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan 71004, Taiwan
- Department of Dental Laboratory Technology, Min-Hwei College of Health Care Management, Tainan 73657, Taiwan
| | - Chih-Cheng Lai
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Tainan Branch, Tainan 71004, Taiwan
| | - Shyh-Ren Chiang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan 71004, Taiwan
- Departments of General Education, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Chin-Ming Chen
- Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan 71004, Taiwan
| | - Kuang-Ming Liao
- Department of Internal Medicine, Chi Mei Medical Center, Chiali 72263, Taiwan
| | - Jhi-Joung Wang
- Department of Medical Research, Chi Mei Medical Center, Tainan 71004, Taiwan
- AI Biomed Center, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Po-Huang Lee
- Department of Surgery, E-Da Hospital. I-Shou University, Kaohsiung 82400, Taiwan
| | - Chao-Ming Hung
- Department of General Surgery, E-Da Cancer Hospital, I-Shou University, Kaohsiung 82400, Taiwan
| | - Chi-Ming Tai
- Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82400, Taiwan
| | - Chong-Chi Chiu
- Department of General Surgery, E-Da Cancer Hospital, I-Shou University, Kaohsiung 82400, Taiwan
- ✉ Corresponding author: Chong-Chi Chiu, MD, Professor, Department of General Surgery, E-Da Cancer Hospital, I-Shou University, Kaohsiung, 82400, Taiwan. Mail address: P. O. Box 174 Shanhua, Tainan City, 74199, Taiwan. E-mail: ; Telephone: +886-76150022-6046; Fax: +886-7615-0940
| |
Collapse
|
37
|
From tea to treatment; epigallocatechin gallate and its potential involvement in minimizing the metabolic changes in cancer. Nutr Res 2019; 74:23-36. [PMID: 31918176 DOI: 10.1016/j.nutres.2019.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 01/09/2023]
Abstract
As the most abundant bioactive polyphenol in green tea, epigallocatechin gallate (EGCG) is a promising natural product that should be used in the discovery and development of potential drug leads. Due to its association with chemoprevention, EGCG may find a role in the development of therapeutics for prostate cancer. Natural products have long been used as a scaffold for drug design, as their already noted bioactivity can help accelerate the development of novel treatments. Green tea and the EGCG contained within have become associated with chemoprevention, and both in vitro and in vivo studies have correlated EGCG to inhibiting cell growth and increasing the metabolic stress of cancer cells, possibly giving merit to its long utilized therapeutic use in traditional therapies. There is accumulating evidence to suggest EGCG's role as an inhibitor of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin signaling cascade, acting upon major axis points within cancer survival pathways. The purpose of this review is to examine the research conducted on tea along with EGCG in the areas of the treatment of and/or prevention of cancer. This review discusses Camellia sinensis as well as the bioactive phytochemical compounds contained within. Clinical uses of tea are explored, and possible pathways for activity are discussed before examining the evidence for EGCG's potential for acting on these processes. EGCG is identified as being a possible lead phytochemical for future drug design investigations.
Collapse
|
38
|
A Novel Calcium-Mediated EMT Pathway Controlled by Lipids: An Opportunity for Prostate Cancer Adjuvant Therapy. Cancers (Basel) 2019; 11:cancers11111814. [PMID: 31752242 PMCID: PMC6896176 DOI: 10.3390/cancers11111814] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/31/2019] [Accepted: 11/12/2019] [Indexed: 01/26/2023] Open
Abstract
The composition of periprostatic adipose tissue (PPAT) has been shown to play a role in prostate cancer (PCa) progression. We recently reported an inverse association between PCa aggressiveness and elevated PPAT linoleic acid (LA) and eicosapentaenoic acid (EPA) content. In the present study, we identified a new signaling pathway with a positive feedback loop between the epithelial-to-mesenchymal transition (EMT) transcription factor Zeb1 and the Ca2+-activated K+ channel SK3, which leads to an amplification of Ca2+ entry and cellular migration. Using in vitro experiments and ex vivo cultures of human PCa slices, we demonstrated that LA and EPA exert anticancer effects, by modulating Ca2+ entry, which was involved in Zeb1 regulation and cancer cellular migration. This functional approach using human prostate tumors highlights the clinical relevance of our observations, and may allow us to consider the possibility of targeting cancer spread by altering the lipid microenvironment.
Collapse
|
39
|
Hassani M, Hajari Taheri F, Sharifzadeh Z, Arashkia A, Hadjati J, van Weerden WM, Abdoli S, Modarressi MH, Abolhassani M. Engineered Jurkat Cells for Targeting Prostate-Specific Membrane Antigen on Prostate Cancer Cells by Nanobody-Based Chimeric Antigen Receptor. IRANIAN BIOMEDICAL JOURNAL 2019. [PMID: 31677604 PMCID: PMC6984713 DOI: 10.29252/ibj.24.2.81] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background: Recently, modification of T cells with CAR has been an attractive approach for adoptive immunotherapy of cancers. Typically, CARs contain a scFv. Most often, scfvs are derived from a monoclonal antibody of murine origin and may be a trigger for host immune system that leads to the T-cell clearance. Nanobody is a specific antigen-binding fragment derived from camelid that has great homology to human VH and low immunogenic potential. Therefore, in this study, nanobody was employed instead of scFv in CAR construct. Methods: In this study, a CAR was constructed based on a nanobody against PSMA (NBPII-CAR). At first, Jurkat cells were electroporated with NBPII-CAR, and then flow cytometry was performed for NBPII-CAR expression. For functional analysis, CAR T cells were co-cultured with prostate cancer cells and analyzed for IL-2 secretion, CD25 expression, and cell proliferation. Results: Flow cytometry results confirmed the expression of NBPII-CAR on the transfected Jurkat cells. Our data showed the specificity of engineered Jurkat cells against prostate cancer cells by not only increasing the IL-2 cytokine (about 370 pg/ml) but also expressing the T-cell activation marker CD25 (about 30%). In addition, proliferation of engineered Jurkat cells increased nearly 60% when co-cultured with LNCaP (PSMA+), as compared with DU145 (PSMA-). Conclusion: Here, we describe the ability of nanobody-based CAR to recognize PSMA that leads to the activation of Jurkat cells. This construct might be used as a promising candidate for clinical applications in prostate cancer therapy.
Collapse
Affiliation(s)
- Mahmoud Hassani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Sharifzadeh
- Department of Immunology, Hybridoma Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Arash Arashkia
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Mohammad Hossein Modarressi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Abolhassani
- Department of Immunology, Hybridoma Lab, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
40
|
Carneiro I, Quintela-Vieira F, Lobo J, Moreira-Barbosa C, Menezes FD, Martins AT, Oliveira J, Silva R, Jerónimo C, Henrique R. Expression of EMT-Related Genes CAMK2N1 and WNT5A is increased in Locally Invasive and Metastatic Prostate Cancer. J Cancer 2019; 10:5915-5925. [PMID: 31762801 PMCID: PMC6856586 DOI: 10.7150/jca.34564] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose: Prostate cancer (PCa) varies clinically from very indolent, not requiring therapeutic intervention, to highly aggressive, entailing radical treatment. Currently, stratification of PCa aggressiveness is mostly based on Gleason score, serum PSA and TNM stage, but outcome prediction in an individual basis is suboptimal. Thus, perfecting pre-therapeutic discrimination between indolent and aggressive PCa, avoiding overtreatment is a major challenge. Epithelial to mesenchymal transition (EMT) allows epithelial cells to acquire mesenchymal properties, constituting a critical step in tumor invasion and metastization. Thus, we hypothesized that EMT-related markers might allow for improved assessment of PCa aggressiveness. Methods and Results: Using RealTime ready Custom Panel 384 assay, 93 EMT-related genes were assessed in normal prostate tissues (NPT, n=5), stage pT2a+b-PCa (n=5) and stage pT3b-PCa (n=5), from which CAMK2N1, CD44, KRT14, TGFβ3 and WNT5A genes emerged as the most significantly altered. Expression levels were then evaluated in a larger series (16 NPT and 94 PCa) of frozen tissues using quantitative RT-PCR. Globally, CAMK2N1, CD44 and WNT5A displayed higher expression levels at higher stages and less differentiated PCa. CAMK2N1 and WNT5A immunoexpression analysis disclosed significantly lower expression in NPT and increasing proportion of high-expression cases from pT2a+b to pT3b and metastatic PCa. Furthermore, higher CAMK2N1 and WNT5A transcript levels associated with shorter disease-free and disease-specific survival. In multivariable analysis, a trend for WNT5A expression levels to independently predict DFS was disclosed (p=0.056). Conclusions: Globally, our findings suggest an association between PCa aggressiveness and increased expression of CAMK2N1 and WNT5A, reflecting the acquisition of effective EMT characteristics by PCa cells.
Collapse
Affiliation(s)
- Isa Carneiro
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Filipa Quintela-Vieira
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,School of Health, Polytechnic of Porto (ESS), R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513, Porto, Portugal
| | - Catarina Moreira-Barbosa
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Francisco Duarte Menezes
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Ana Teresa Martins
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Jorge Oliveira
- Department of Urology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Regina Silva
- School of Health, Polytechnic of Porto (ESS), R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513, Porto, Portugal
| |
Collapse
|
41
|
Liu N, Du P, Xiao X, Liu Y, Peng Y, Yang C, Yue T. Microfluidic-Based Mechanical Phenotyping of Androgen-Sensitive and Non-sensitive Prostate Cancer Cells Lines. MICROMACHINES 2019; 10:E602. [PMID: 31547397 PMCID: PMC6780375 DOI: 10.3390/mi10090602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022]
Abstract
Cell mechanical properties have been identified to characterize cells pathologic states. Here, we report our work on high-throughput mechanical phenotyping of androgen-sensitive and non-sensitive human prostate cancer cell lines based on a morphological rheological microfluidic method. The theory for extracting cells' elastic modulus from their deformation and area, and the used experimental parameters were analyzed. The mechanical properties of three types of prostate cancer cells lines with different sensitivity to androgen including LNCaP, DU145, and PC3 were quantified. The result shows that LNCaP cell was the softest, DU145 was the second softest, and PC3 was the stiffest. Furthermore, atomic force microscopy (AFM) was used to verify the effectiveness of this high-throughput morphological rheological method.
Collapse
Affiliation(s)
- Na Liu
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Panpan Du
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Xiaoxiao Xiao
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Yuanyuan Liu
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Yan Peng
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Chen Yang
- Fudan Institute of Urology, Fudan University, Shanghai 200433, China.
| | - Tao Yue
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
42
|
The evaluation of oxidative stress parameters in the benign prostatic hyperplasia, prostatitis and prostate cancer. ACTA ACUST UNITED AC 2019. [DOI: 10.21601/ortadogutipdergisi.462457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Reduced dose of cabazitaxel in metastatic castration-resistant prostate cancer: from PROSELICA trial to the real life: A single institution experience. Anticancer Drugs 2019; 30:854-858. [PMID: 31356228 DOI: 10.1097/cad.0000000000000805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The phase III PROSELICA trial showed that cabazitaxel 20 mg/m (C20) was not inferior and better tolerated compared to cabazitaxel 25 mg/m (C25) in patients with metastatic castration-resistant prostate cancer (mCRPC) who had progressed during or after docetaxel. Here, we report on a real-world retrospective analysis concerning the safety and the activity of C20 schedule in patients with mCRPC treated at our Institution. We identified 35 patients with mCRPC who received C20 as baseline dose treatment because they were frail or experienced serious toxicities to previous treatments. Adverse events assessment was performed at each visit during the treatment. Progression-free survival (PFS) and overall survival (OS) curves were obtained using the Kaplan-Meyer product-limit estimator. Median age was 71 years. All patients received a previous treatment with docetaxel; 19 patients (54%) received one additional line of therapy and 9 (26%) two or more. Patients received a median of 4 cycles (range: 2-10). Only one patient experienced grade 3 neutropenia (3%), two patients grade 3 anemia (6%), and one patient grade 3 fatigue (3%); three patients were treated with prophylactic Granulocyte colony-stimulating factor (9%). The most frequent adverse events of all grades were: anemia (39%), fatigue (33%), and diarrhea (15%). Median PFS was 3.7 months [95% confidence interval (CI): 3.31-4.09]; median OS was 10.3 months (95% CI: 4.63-15.97). Our real-world analysis confirms that C20 is a feasible option for elderly and heavily pretreated patients with mCRPC, showing activity and good tolerability.
Collapse
|
44
|
Wang Q, Zhao Y, Yang Q, Du D, Yang H, Lin Y. Amperometric sarcosine biosensor with strong anti-interference capabilities based on mesoporous organic-inorganic hybrid materials. Biosens Bioelectron 2019; 141:111431. [PMID: 31212197 DOI: 10.1016/j.bios.2019.111431] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/05/2019] [Accepted: 06/08/2019] [Indexed: 12/16/2022]
Abstract
Amperometric enzyme biosensors are some of the simplest and cheapest types of medical devices used in the rapid detection of biomarkers that have been developed in the past fifty years. When the concentrations of biomarkers are at micromoles per liter, such as for sarcosine, which was recently discovered as a biomarker for prostate cancer, the response signal of the interferences is huge, and the biosensor is hard to satisfy the requirements of practical applications. In this manuscript, we describe a strategy for synthesizing a surface electronegative organic-inorganic hybrid mesoporous material, which could reduce the interference signal much better than Nafion and Chitosan. We verify that the surface potential of the carrier nanomaterial plays an important role in excluding anionic interferences. We also prepare a sensitive (16.35 μA mM-1), low LOD (0.13 μM) and wide linear range (1-70 μM) amperometric sarcosine biosensor with excellent anti-interference properties. This mesoporous material provides a bio-composite platform for the development of simple amperometric biosensors for detecting micromoles per liter of analytes in serum or urine.
Collapse
Affiliation(s)
- Qia Wang
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Shenzhen University, Shenzhen, 518060, PR China
| | - Yuting Zhao
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Shenzhen University, Shenzhen, 518060, PR China
| | - Qingui Yang
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Shenzhen University, Shenzhen, 518060, PR China
| | - Dan Du
- School of Mechanical and Material Engineering, Washington State University, Pullman, WA, 99164, United States
| | - Haipeng Yang
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Shenzhen University, Shenzhen, 518060, PR China.
| | - Yuehe Lin
- School of Mechanical and Material Engineering, Washington State University, Pullman, WA, 99164, United States.
| |
Collapse
|
45
|
MPSSS impairs the immunosuppressive function of cancer-associated fibroblasts via the TLR4-NF-κB pathway. Biosci Rep 2019; 39:BSR20182171. [PMID: 30992392 PMCID: PMC6509060 DOI: 10.1042/bsr20182171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/29/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
The polysaccharides MPSSS was extracted from Lentinus edodes and has been reported to effectively inhibit tumor growth and eliminate the function of myeloid-derived immune suppressor cell-mediated T cell inhibition, thus improving the efficacy of cancer therapy. The exploration of how MPSSS affects the functions of cancer-associated fibroblasts (CAFs) will provide a new perspective for understanding the antitumor effects of MPSSS. In the present study, prostate CAFs were selected as target cells to study whether MPSSS affected cell proliferation and function. The results showed that MPSSS did not directly inhibit the growth of prostate CAFs but interfered with CAF-mediated T cell inhibition and affected the immunosuppressive function of prostate CAFs. Mechanistic studies were further performed and showed that MPSSS activated key node proteins in the NF-κB pathway that were dependent on MyD88, and a TLR4 inhibitor blocked the changes in these proteins and the effect of MPSSS. We hypothesize that MPSSS can activate the MyD88-dependent TLR4-NF-κB signaling pathway to change the function of CAFs. In conclusion, these results demonstrate that MPSSS can not only effectively inhibit the growth of prostate cancer as we previously reported but also alter the function of prostate CAFs by activating the TLR4-NF-κB pathway, providing a new strategy for the comprehensive treatment of tumors.
Collapse
|
46
|
Strmiska V, Michalek P, Eckschlager T, Stiborova M, Adam V, Krizkova S, Heger Z. Prostate cancer-specific hallmarks of amino acids metabolism: Towards a paradigm of precision medicine. Biochim Biophys Acta Rev Cancer 2019; 1871:248-258. [PMID: 30708041 DOI: 10.1016/j.bbcan.2019.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 02/08/2023]
Abstract
So far multiple differences in prostate cancer-specific amino acids metabolism have been discovered. Moreover, attempts to utilize these alterations for prostate cancer diagnosis and treatment have been made. The prostate cancer metabolism and biosynthesis of amino acids are particularly focused on anaplerosis more than on energy production. Other crucial requirements on amino acids pool come from the serine, one‑carbon cycle, glycine synthesis pathway and folate metabolism forming major sources of interproducts for synthesis of nucleobases necessary for rapidly proliferating cells. Considering the lack of some amino acids biosynthetic pathways and/or their extraordinary importance for prostate cancer cells, there is a widespread potential for targeted therapeutic applications with no effect on non-malignant cells. This review summarizes the up-to-date knowledge of the importance of amino acids for prostate cancer pathogenesis with a special emphasis on potential applications of metabolic variabilities in the new oncologic paradigm of precision medicine.
Collapse
Affiliation(s)
- Vladislav Strmiska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Petr Michalek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2(nd) Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, CZ-150 06 Prague, 5, Czech Republic
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-128 40 Prague 2, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic.
| |
Collapse
|
47
|
Hassani M, Hajari Taheri F, Sharifzadeh Z, Arashkia A, Hadjati J, van Weerden WM, Modarressi MH, Abolhassani M. Construction of a chimeric antigen receptor bearing a nanobody against prostate a specific membrane antigen in prostate cancer. J Cell Biochem 2019; 120:10787-10795. [PMID: 30672018 DOI: 10.1002/jcb.28370] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022]
Abstract
Adoptive transfer of T cells expressing chimeric antigen receptors (CARs) is considered to be a novel anticancer therapy. To date, in most cases, single-chain variable fragments (scFvs) of murine origin have been used in CARs. However, this structure has limitations relating to the potential immunogenicity of mouse antigens in humans and the relatively large size of scFvs. For the first time, we used camelid nanobody (VHH) to construct CAR T cells against prostate specific membrane antigen (PSMA). The nanobody against PSMA (NBP) was used to show the feasibility of CAR T cells against prostate cancer cells. T cells were transfected, and then the surface expression of the CAR T cells was confirmed. Then, the functions of VHH-CAR T cell were evaluated upon coculture with prostate cancer cells. At the end, the cytotoxicity potential of NBPII-CAR in T cells was approximated by determining the cell surface expression of CD107a after encountering PSMA. Our data show the specificity of VHH-CAR T cells against PSMA+ cells (LNCaP), not only by increasing the interleukin 2 (IL-2) cytokine (about 400 pg/mL), but also the expression of CD69 by almost 38%. In addition, VHH-CAR T cells were proliferated by nearly 60% when cocultured with LNCaP, as compared with PSMA negative prostate cancer cell (DU-145), which led to the upregulation of CD107a in T cells upto 31%. These results clearly show the possibility of using VHH-based CAR T cells for targeted immunotherapy, which may be developed to target virtually any tumor-associated antigen for adoptive T-cell immunotherapy of solid tumors.
Collapse
Affiliation(s)
- Mahmoud Hassani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Sharifzadeh
- Department of Immunology, Hybridoma Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Arash Arashkia
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Hossein Modarressi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Abolhassani
- Department of Immunology, Hybridoma Lab, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
48
|
Goodarzi E, Khazaei Z, Sohrabivafa M, Momenabadi V, Moayed L. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide prostate cancers and their relationship with the human development index. ADVANCES IN HUMAN BIOLOGY 2019. [DOI: 10.4103/2321-8568.262891] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
49
|
Abubakar SO, Amoako YA, Tag N, Kotze T. False-positive prostate cancer bone metastases on magnetic resonance imaging correctly classified on gallium-68-prostate-specific membrane antigen positron emission tomography computed tomography. World J Nucl Med 2018; 17:305-307. [PMID: 30505233 PMCID: PMC6216739 DOI: 10.4103/wjnm.wjnm_89_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Imaging in prostate cancer is important in defining the local extent of disease, nodal involvement, and identifying metastases. Bone scan is the most commonly used modality for identification of bone metastasis in prostate cancer despite its reported low sensitivity and specificity compared to magnetic resonance imaging (MRI) which is the imaging gold standard for bone metastasis. Gallium-68 prostate-specific membrane antigen positron emission tomography-computed tomography (68Ga PSMA PET-CT) imaging is a relatively new addition to the imaging modalities in prostate cancer. This is a report of a patient with high-risk prostate cancer with features consistent with skeletal metastases on MRI but negative for skeletal metastases on bone scan and 68Ga PSMA PET CT. Histology confirmed the absence of skeletal metastases.
Collapse
Affiliation(s)
| | - Yaw Ampem Amoako
- Division of Nuclear Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Naima Tag
- Division of Nuclear Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Tessa Kotze
- Division of Nuclear Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
50
|
Hsiao CP, Chen MK, Daly B, Hoppel C. Integrated mitochondrial function and cancer-related fatigue in men with prostate cancer undergoing radiation therapy. Cancer Manag Res 2018; 10:6367-6377. [PMID: 30568498 PMCID: PMC6267769 DOI: 10.2147/cmar.s185706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Introduction Fatigue experienced by cancer patients is one of the most common symptoms with the greatest adverse effect on quality of life, but arguably the least understood. The purpose of this study was to explore changes in integrated mitochondrial function and fatigue in non-metastatic prostate cancer patients receiving localized radiation therapy (XRT). Materials and methods We proposed a mitochondrial bioenergetics mechanism of radiation-induced fatigue linking impaired oxidative phosphorylation (OXPHOS) through complex III and decreased adenosine triphosphate (ATP) production as consequences of XRT. Integrated mitochondrial function was measured as mitochondrial OXPHOS from patients’ peripheral blood mononuclear cells. Fatigue was measured using the revised Piper Fatigue Scale. Data were collected before (day 0) and at day 21 of XRT. Results At day 21 of XRT, fatigue symptom intensified in 15 prostate cancer patients (P<0.05). Mitochondrial OXPHOS complex III-linked and uncoupled complex III rates were significantly decreased in mononuclear cells at day 21 during XRT compared to that before XRT (P<0.05). Additionally, increased fatigue appeared to be associated with decreased OXPHOS complex III-linked respiration in patients undergoing XRT. Conclusion Fatigue was associated with OXPHOS complex III-linked oxidation and a defect in oxidation starting at complex III in mononuclear cell mitochondria was revealed at day 21 of XRT in 15 prostate cancer patients. Complex III is a potential target for pharmacological and, in particular, nutraceutical interventions, eg, Q10, for design of interventions for CRF.
Collapse
Affiliation(s)
- Chao-Pin Hsiao
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA,
| | - Mei-Kuang Chen
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Barbara Daly
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA,
| | - Charles Hoppel
- Center for Mitochondrial Disease, Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|