1
|
Natale P, Palmer SC, Navaneethan SD, Craig JC, Strippoli GF. Angiotensin-converting-enzyme inhibitors and angiotensin receptor blockers for preventing the progression of diabetic kidney disease. Cochrane Database Syst Rev 2024; 4:CD006257. [PMID: 38682786 PMCID: PMC11057222 DOI: 10.1002/14651858.cd006257.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
BACKGROUND Guidelines suggest that adults with diabetes and kidney disease receive treatment with angiotensin-converting-enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARB). This is an update of a Cochrane review published in 2006. OBJECTIVES We compared the efficacy and safety of ACEi and ARB therapy (either as monotherapy or in combination) on cardiovascular and kidney outcomes in adults with diabetes and kidney disease. SEARCH METHODS We searched the Cochrane Kidney and Transplants Register of Studies to 17 March 2024 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal, and ClinicalTrials.gov. SELECTION CRITERIA We included studies evaluating ACEi or ARB alone or in combination, compared to each other, placebo or no treatment in people with diabetes and kidney disease. DATA COLLECTION AND ANALYSIS Two authors independently assessed the risk of bias and extracted data. Summary estimates of effect were obtained using a random-effects model, and results were expressed as risk ratios (RR) and their 95% confidence intervals (CI) for dichotomous outcomes and mean difference (MD) or standardised mean difference (SMD) and 95% CI for continuous outcomes. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS One hundred and nine studies (28,341 randomised participants) were eligible for inclusion. Overall, the risk of bias was high. Compared to placebo or no treatment, ACEi may make little or no difference to all-cause death (24 studies, 7413 participants: RR 0.91, 95% CI 0.73 to 1.15; I2 = 23%; low certainty) and with similar withdrawals from treatment (7 studies, 5306 participants: RR 1.03, 95% CI 0.90 to 1.19; I2 = 0%; low certainty). ACEi may prevent kidney failure (8 studies, 6643 participants: RR 0.61, 95% CI 0.39 to 0.94; I2 = 0%; low certainty). Compared to placebo or no treatment, ARB may make little or no difference to all-cause death (11 studies, 4260 participants: RR 0.99, 95% CI 0.85 to 1.16; I2 = 0%; low certainty). ARB have uncertain effects on withdrawal from treatment (3 studies, 721 participants: RR 0.85, 95% CI 0.58 to 1.26; I2 = 2%; low certainty) and cardiovascular death (6 studies, 878 participants: RR 3.36, 95% CI 0.93 to 12.07; low certainty). ARB may prevent kidney failure (3 studies, 3227 participants: RR 0.82, 95% CI 0.72 to 0.94; I2 = 0%; low certainty), doubling of serum creatinine (SCr) (4 studies, 3280 participants: RR 0.84, 95% CI 0.72 to 0.97; I2 = 32%; low certainty), and the progression from microalbuminuria to macroalbuminuria (5 studies, 815 participants: RR 0.44, 95% CI 0.23 to 0.85; I2 = 74%; low certainty). Compared to ACEi, ARB had uncertain effects on all-cause death (15 studies, 1739 participants: RR 1.13, 95% CI 0.68 to 1.88; I2 = 0%; low certainty), withdrawal from treatment (6 studies, 612 participants: RR 0.91, 95% CI 0.65 to 1.28; I2 = 0%; low certainty), cardiovascular death (13 studies, 1606 participants: RR 1.15, 95% CI 0.45 to 2.98; I2 = 0%; low certainty), kidney failure (3 studies, 837 participants: RR 0.56, 95% CI 0.29 to 1.07; I2 = 0%; low certainty), and doubling of SCr (2 studies, 767 participants: RR 0.88, 95% CI 0.52 to 1.48; I2 = 0%; low certainty). Compared to ACEi plus ARB, ACEi alone has uncertain effects on all-cause death (6 studies, 1166 participants: RR 1.08, 95% CI 0.49 to 2.40; I2 = 20%; low certainty), withdrawal from treatment (2 studies, 172 participants: RR 0.78, 95% CI 0.33 to 1.86; I2 = 0%; low certainty), cardiovascular death (4 studies, 994 participants: RR 3.02, 95% CI 0.61 to 14.85; low certainty), kidney failure (3 studies, 880 participants: RR 1.36, 95% CI 0.79 to 2.32; I2 = 0%; low certainty), and doubling of SCr (2 studies, 813 participants: RR 1.14, 95% CI 0.70 to 1.85; I2 = 0%; low certainty). Compared to ACEi plus ARB, ARB alone has uncertain effects on all-cause death (7 studies, 2607 participants: RR 1.02, 95% CI 0.76 to 1.37; I2 = 0%; low certainty), withdrawn from treatment (3 studies, 1615 participants: RR 0.81, 95% CI 0.53 to 1.24; I2 = 0%; low certainty), cardiovascular death (4 studies, 992 participants: RR 3.03, 95% CI 0.62 to 14.93; low certainty), kidney failure (4 studies, 2321 participants: RR 1.15, 95% CI 0.67 to 1.95; I2 = 29%; low certainty), and doubling of SCr (3 studies, 2252 participants: RR 1.18, 95% CI 0.85 to 1.64; I2 = 0%; low certainty). Comparative effects of different ACEi or ARB and low-dose versus high-dose ARB were rarely evaluated. No study compared different doses of ACEi. Adverse events of ACEi and ARB were rarely reported. AUTHORS' CONCLUSIONS ACEi or ARB may make little or no difference to all-cause and cardiovascular death compared to placebo or no treatment in people with diabetes and kidney disease but may prevent kidney failure. ARB may prevent the doubling of SCr and the progression from microalbuminuria to macroalbuminuria compared with a placebo or no treatment. Despite the international guidelines suggesting not combining ACEi and ARB treatment, the effects of ACEi or ARB monotherapy compared to dual therapy have not been adequately assessed. The limited data availability and the low quality of the included studies prevented the assessment of the benefits and harms of ACEi or ARB in people with diabetes and kidney disease. Low and very low certainty evidence indicates that it is possible that further studies might provide different results.
Collapse
Affiliation(s)
- Patrizia Natale
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari Aldo Moro, Bari, Italy
| | - Suetonia C Palmer
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | | | - Jonathan C Craig
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Giovanni Fm Strippoli
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari Aldo Moro, Bari, Italy
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| |
Collapse
|
2
|
Jaimes Campos MA, Mavrogeorgis E, Latosinska A, Eder S, Buchwinkler L, Mischak H, Siwy J, Rossing P, Mayer G, Jankowski J. Urinary peptide analysis to predict the response to blood pressure medication. Nephrol Dial Transplant 2024; 39:873-883. [PMID: 37930730 PMCID: PMC11181870 DOI: 10.1093/ndt/gfad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND The risk of diabetic kidney disease (DKD) progression is significant despite treatment with renin-angiotensin system (RAS) blocking agents. Current clinical tools cannot predict whether or not patients will respond to treatment with RAS inhibitors (RASi). We aimed to investigate whether proteome analysis could identify urinary peptides as biomarkers that could predict the response to angiotensin-converting enzyme inhibitor and angiotensin-receptor blockers treatment to avoid DKD progression. Furthermore, we investigated the comparability of the estimated glomerular filtration rate (eGFR), calculated using four different GFR equations, for DKD progression. METHODS We evaluated urine samples from a discovery cohort of 199 diabetic patients treated with RASi. DKD progression was defined based on eGFR percentage slope results between visits (∼1 year) and for the entire period (∼3 years) based on the eGFR values of each GFR equation. Urine samples were analysed using capillary electrophoresis-coupled mass spectrometry. Statistical analysis was performed between the uncontrolled (patients who did not respond to RASi treatment) and controlled kidney function groups (patients who responded to the RASi treatment). Peptides were combined in a support vector machine-based model. The area under the receiver operating characteristic curve was used to evaluate the risk prediction models in two independent validation cohorts treated with RASi. RESULTS The classification of patients into uncontrolled and controlled kidney function varies depending on the GFR equation used, despite the same sample set. We identified 227 peptides showing nominal significant difference and consistent fold changes between uncontrolled and controlled patients in at least three methods of eGFR calculation. These included fragments of collagens, alpha-1-antitrypsin, antithrombin-III, CD99 antigen and uromodulin. A model based on 189 of 227 peptides (DKDp189) showed a significant prediction of non-response to the treatment/DKD progression in two independent cohorts. CONCLUSIONS The DKDp189 model demonstrates potential as a predictive tool for guiding treatment with RASi in diabetic patients.
Collapse
Affiliation(s)
- Mayra Alejandra Jaimes Campos
- Mosaiques Diagnostics GmbH, Hannover, Germany
- University Hospital RWTH Aachen, Institute for Molecular Cardiovascular Research, Aachen, Germany
| | - Emmanouil Mavrogeorgis
- Mosaiques Diagnostics GmbH, Hannover, Germany
- University Hospital RWTH Aachen, Institute for Molecular Cardiovascular Research, Aachen, Germany
| | | | - Susanne Eder
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Lukas Buchwinkler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | | | | | - Peter Rossing
- Steno Diabetes Center Copenhagen, Complications Research, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gert Mayer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Joachim Jankowski
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, The Netherlands
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
3
|
Li X, Fu YH, Tong XW, Zhang YT, Shan YY, Xu YX, Pu SD, Gao XY. RAAS in diabetic retinopathy: mechanisms and therapies. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e230292. [PMID: 38652701 PMCID: PMC11081058 DOI: 10.20945/2359-4292-2023-0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/23/2023] [Indexed: 04/25/2024]
Abstract
Diabetic retinopathy (DR) is a complication of diabetes with a complex pathophysiology and multiple factors involved. Recently, it has been found that the upregulation of the renin-angiotensin-aldosterone system (RAAS) leads to overexpression of angiotensin II (Ang II), which induces oxidative stress, inflammation, and angiogenesis in the retina. Therefore, RAAS may be a promising therapeutic target in DR. Notably, RAAS inhibitors are often used in the treatment of hypertension. Still, the potential role and mechanism of DR must be further studied. In this review, we discuss and summarize the pathology and potential therapeutic goals of RAAS in DR.
Collapse
Affiliation(s)
- Xin Li
- First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Department of Endocrinology, Harbin, China
| | - Yu-Hong Fu
- First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Department of Endocrinology, Harbin, China
| | - Xue-Wei Tong
- First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Department of Endocrinology, Harbin, China
| | - Yi-Tong Zhang
- First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Department of Endocrinology, Harbin, China
| | - Yong-Yan Shan
- First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Department of Endocrinology, Harbin, China
| | - Yu-Xin Xu
- First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Department of Endocrinology, Harbin, China
| | - Sheng-Dan Pu
- First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Department of Endocrinology, Harbin, China
| | - Xin-Yuan Gao
- First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Department of Endocrinology, Harbin, China,
| |
Collapse
|
4
|
Ahmed R, de Souza RJ, Li V, Banfield L, Anand SS. Twenty years of participation of racialised groups in type 2 diabetes randomised clinical trials: a meta-epidemiological review. Diabetologia 2024; 67:443-458. [PMID: 38177564 PMCID: PMC10844363 DOI: 10.1007/s00125-023-06052-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/16/2023] [Indexed: 01/06/2024]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes mellitus prevalence is increasing globally and the greatest burden is borne by racialised people. However, there are concerns that the enrolment of racialised people into RCTs is limited, resulting in a lack of ethnic and racial diversity. This may differ depending whether an RCT is government funded or industry funded. The aim of this study was to review the proportions of racialised and white participants included in large RCTs of type 2 diabetes pharmacotherapies relative to the disease burden of type 2 diabetes in these groups. METHODS The Ovid MEDLINE database was searched from 1 January 2000 to 31 December 2020. English language reports of RCTs of type 2 diabetes pharmacotherapies published in select medical journals were included. Studies were included in this review if they had a sample size of at least 100 participants and all participants were adults with type 2 diabetes. Industry-funded trials must have recruited participants from at least two countries. Government-funded trials were not held to the same standard because they are typically conducted in a single country. Data including the numbers and proportions of participants by ethnicity and race were extracted from trial reports. The participation-to-prevalence ratio (PPR) was calculated for each trial by dividing the percentage of white and racialised participants in each trial by the percentage of white and racialised participants with type 2 diabetes, respectively, for the regions of recruitment. A random-effects meta-analysis was used to generate the pooled PPRs and 95% CIs across study types. A PPR <0.80 indicates under-representation and a PPR >1.20 indicates over-representation. Risk of bias assessments were not conducted for this study as the objective was to examine recruitment of racialised and white participants rather than evaluate the trustworthiness of clinical trial outcomes. RESULTS A total of 83 trials were included, involving 283,122 participants, of which 15 were government-funded and 68 were industry-funded trials. In government-funded trials, the PPR for white participants was 1.11 (95% CI 0.99, 1.24) and the PPR for racialised participants was 0.72 (95% CI 0.60, 0.86). In industry-funded trials, the PPR for white participants was 1.95 (95% CI 1.74, 2.18) and the PPR for racialised participants was 0.36 (95% CI 0.32, 0.42). The limitations of this study include the reliance on investigator-reported ethnicity and race to classify participants as 'white' or 'racialised', the use of estimates for type 2 diabetes prevalence and demographic data, and the high levels of heterogeneity of pooled estimates. However, despite these limitations, the results were consistent with respect to direction. CONCLUSIONS/INTERPRETATION Racialised participants are under-represented in government- and industry-funded type 2 diabetes trials. Strategies to improve recruitment and enrolment of racialised participants into RCTs should be developed. REGISTRATION Open Science Framework registration no. f59mk ( https://osf.io/f59mk ) FUNDING: The authors received no financial support for this research or authorship of the article.
Collapse
Affiliation(s)
- Rabeeyah Ahmed
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Chanchlani Research Centre, McMaster University, Hamilton, ON, Canada
| | - Russell J de Souza
- Chanchlani Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Vincent Li
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Laura Banfield
- Health Sciences Library, McMaster University, Hamilton, ON, Canada
| | - Sonia S Anand
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
- Chanchlani Research Centre, McMaster University, Hamilton, ON, Canada.
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
5
|
Lv Y, Zhai C, Sun G, He Y. Chitosan as a promising materials for the construction of nanocarriers for diabetic retinopathy: an updated review. J Biol Eng 2024; 18:18. [PMID: 38388386 PMCID: PMC10885467 DOI: 10.1186/s13036-024-00414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Diabetic retinopathy (DR) is a condition that causes swelling of the blood vessels of the retina and leaks blood and fluids. It is the most severe form of diabetic eye disease. It causes vision loss in its advanced stage. Diabetic retinopathy is responsible for causing 26% of blindness. Very insufficient therapies are accessible for the treatment of DR. As compared to the conventional therapies, there should be enhanced research on the controlled release, shorter duration, and cost-effective therapy of diabetic retinopathy. The expansion of advanced nanocarriers-based drug delivery systems has been now employed to exploit as well as regulate the transport of many therapeutic agents to target sites via the increase in penetration or the extension of the duration of contact employing production by enclosing as well as distributing tiny molecules in nanostructured formulation. Various polymers have been utilized for the manufacturing of these nanostructured formulations. Chitosan possesses incredible biological and chemical properties, that have led to its extensive use in pharmaceutical and biomedical applications. Chitosan has been used in many studies because of its enhanced mucoadhesiveness and non-toxicity. Multiple studies have used chitosan as the best candidate for manufacturing nanocarriers and treating diabetic retinopathy. Numerous nanocarriers have been formulated by using chitosan such as nanostructured lipid carriers, solid lipid nanoparticles, liposomes, and dendrimers for treating diabetic retinopathy. This current review elaborates on the recent advancements of chitosan as a promising approach for the manufacturing of nanocarriers that can be used for treating diabetic retinopathy.
Collapse
Affiliation(s)
- Yan Lv
- Department of Ophthalmology, Jilin Province FAW General Hospital, Changchun, 130011, China
| | - Chenglei Zhai
- Department of Orthopaedics, Jilin Province FAW General Hospital, Changchun, 130011, China
| | - Gang Sun
- Department of General Surgery, Jilin Province FAW General Hospital, Changchun, 130011, China.
| | - Yangfang He
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun, 130000, China
| |
Collapse
|
6
|
Simó R, Hernández C. What else can we do to prevent diabetic retinopathy? Diabetologia 2023; 66:1614-1621. [PMID: 37277664 PMCID: PMC10390367 DOI: 10.1007/s00125-023-05940-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/31/2023] [Indexed: 06/07/2023]
Abstract
The classical modifiable factors associated with the onset and progression of diabetic retinopathy are the suboptimal control of blood glucose levels and hypertension, as well as dyslipidaemia. However, there are other less recognised modifiable factors that can play a relevant role, such as the presence of obesity or the abnormal distribution of adipose tissue, and others related to lifestyle such as the type of diet, vitamin intake, exercise, smoking and sunlight exposure. In this article we revisit the prevention of diabetic retinopathy based on modulating the modifiable risk factors, as well as commenting on the potential impact of glucose-lowering drugs on the condition. The emerging concept that neurodegeneration is an early event in the development of diabetic retinopathy points to neuroprotection as a potential therapeutic strategy to prevent the advanced stages of the disease. In this regard, the better phenotyping of very early stages of diabetic retinopathy and the opportunity of arresting its progression using treatments targeting the neurovascular unit (NVU) are discussed.
Collapse
Affiliation(s)
- Rafael Simó
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Barcelona, Spain.
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM, ID CB15/00071), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Cristina Hernández
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Barcelona, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM, ID CB15/00071), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
7
|
Goyal JL, Gupta A, Gandhi P. Ocular manifestations in renal diseases. Indian J Ophthalmol 2023; 71:2938-2943. [PMID: 37530260 PMCID: PMC10538849 DOI: 10.4103/ijo.ijo_3234_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/22/2023] [Accepted: 03/27/2023] [Indexed: 08/03/2023] Open
Abstract
The eyes and kidneys are the targets for end-organ damage in multiple pathologies. Both these organs develop during the same embryonic stage around the fourth to sixth week of gestation, thus sharing a strong correlation between both eye and kidney diseases. Both the eyes and kidneys can be the target of the systemic disease process; however, the eyes can also be affected as a consequence of renal disease or its treatment. Risk factors such as diabetes, hypertension, and smoking are commonly shared between kidney and eye diseases. Ocular manifestations can be predictive of renal disease, and/or patients with renal disease are at higher risk for developing ocular manifestations. Various congenital anomalies of the eyes and kidneys can also present as an oculorenal syndrome. This article summarizes the ocular pathology, which can be seen in renal diseases.
Collapse
Affiliation(s)
- Jawahar Lal Goyal
- Department of Ophthalmology, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Arushi Gupta
- Department of Ophthalmology, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Pulkit Gandhi
- Rochester General Hospital, Centre for Kidney Disease and Hypertension, Rochester, New York, USA
| |
Collapse
|
8
|
Gu XM, Lu CY, Pan J, Ye JZ, Zhu QH. Alteration of intestinal microbiota is associated with diabetic retinopathy and its severity: Samples collected from southeast coast Chinese. World J Diabetes 2023; 14:862-882. [PMID: 37383585 PMCID: PMC10294055 DOI: 10.4239/wjd.v14.i6.862] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/09/2023] [Accepted: 04/27/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Current approaches for the therapy of diabetic retinopathy (DR), which was one of leading causes of visual impairment, have their limitations. Animal experiments revealed that restructuring of intestinal microbiota can prevent retinopathy. AIM To explore the relationship between intestinal microbiota and DR among patients in the southeast coast of China, and provide clues for novel ways to prevention and treatment methods of DR. METHODS The fecal samples of non-diabetics (Group C, n = 15) and diabetics (Group DM, n = 30), including 15 samples with DR (Group DR) and 15 samples without DR (Group D), were analyzed by 16S rRNA sequencing. Intestinal microbiota compositions were compared between Group C and Group DM, Group DR and Group D, as well as patients with proliferative diabetic retinopathy (PDR) (Group PDR, n = 8) and patients without PDR (Group NPDR, n = 7). Spearman correlation analyses were performed to explore the associations between intestinal microbiota and clinical indicators. RESULTS The alpha and beta diversity did not differ significantly between Group DR and Group D as well as Group PDR and Group NPDR. At the family level, Fusobacteriaceae, Desulfovibrionaceae and Pseudomonadaceae were significantly increased in Group DR than in Group D (P < 0.05, respectively). At the genera level, Fusobacterium, Pseudomonas, and Adlercreutzia were increased in Group DR than Group D while Senegalimassilia was decreased (P < 0.05, respectively). Pseudomonas was negatively correlated with NK cell count (r = -0.39, P = 0.03). Further, the abundance of genera Eubacterium (P < 0.01), Peptococcus, Desulfovibrio, Acetanaerobacterium and Negativibacillus (P < 0.05, respectively) were higher in Group PDR compared to Group NPDR, while Pseudomonas, Alloprevotella and Tyzzerella (P < 0.05, respectively) were lower. Acetanaerobacterium and Desulfovibrio were positively correlated with fasting insulin (r = 0.53 and 0.61, respectively, P < 0.05), when Negativibacillus was negatively correlated with B cell count (r = -0.67, P < 0.01). CONCLUSION Our findings indicated that the alteration of gut microbiota was associated with DR and its severity among patients in the southeast coast of China, probably by multiple mechanisms such as producing short-chain fatty acids, influencing permeability of blood vessels, affecting levels of vascular cell adhesion molecule-1, hypoxia-inducible factor-1, B cell and insulin. Modulating gut microbiota composition might be a novel strategy for prevention of DR, particularly PDR in population above.
Collapse
Affiliation(s)
- Xue-Mei Gu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
- Wenzhou Key Laboratory of Diabetes Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Chao-Yin Lu
- Department of Endocrinology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang Province, China
| | - Jian Pan
- Department of Ophthalmology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Jian-Zhong Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Qi-Han Zhu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
- Wenzhou Key Laboratory of Diabetes Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
9
|
Ahmad S, Wright KN, VonCannon JL, Ferrario CM, Ola MS, Choudhary M, Malek G, Gustafson JR, Sappington RM. Internalization of Angiotensin-(1-12) in Adult Retinal Pigment Epithelial-19 Cells. J Ocul Pharmacol Ther 2023; 39:290-299. [PMID: 36944130 PMCID: PMC10178934 DOI: 10.1089/jop.2022.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/12/2023] [Indexed: 03/23/2023] Open
Abstract
Purpose: Angiotensin-(1-12) [Ang-(1-12)] serves as a primary substrate to generate angiotensin II (Ang II) by angiotensin-converting enzyme and/or chymase suggests it may be an unrecognized source of Ang II-mediated microvascular complication in hypertension-mediated retinopathy. We investigated Ang-(1-12) expression and internalization in adult retinal pigment epithelial-19 (ARPE-19) cultured cells. We performed the internalization of Ang-(1-12) in ARPE-19 cells in the presence of a highly specific monoclonal antibody (mAb) developed against the C-terminal end of the Ang-(1-12) sequence. Methods: All experiments were performed in confluent ARPE-19 cells (passage 28-35). We employed high-performance liquid chromatography to purify radiolabeled, 125I-Ang-(1-12) and immuno-neutralization with Ang-(1-12) mAb to demonstrate Ang-(1-12)'s internalization in ARPE-19 cells. Internalization was also demonstrated by immunofluorescence (IF) method. Results: These procedures revealed internalization of an intact 125I-Ang-(1-12) in ARPE-19 cells. A significant reduction (∼53%, P < 0.0001) in 125I-Ang-(1-12) internalization was detected in APRE-19 cells in the presence of the mAb. IF staining experiments further confirms internalization of Ang-(1-12) into the cells from the extracellular culture medium. No endogenous expression was detected in the ARPE-19 cells. An increased intensity of IF staining was detected in cells exposed to 1.0 μM Ang-(1-12) compared with 0.1 μM. Furthermore, we found hydrolysis of Ang-(1-12) into Ang II by ARPE-19 cells' plasma membranes. Conclusions: Intact Ang-(1-12) peptide is internalized from the extracellular spaces in ARPE-19 cells and metabolized into Ang II. The finding that a selective mAb blocks cellular internalization of Ang-(1-12) suggests alternate therapeutic approaches to prevent/reduce the RPE cells Ang II burden.
Collapse
Affiliation(s)
- Sarfaraz Ahmad
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Kendra N. Wright
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Jessica L. VonCannon
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Carlos M. Ferrario
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Mohammad S. Ola
- Department of Biochemistry, King Saud University, Riyadh, Saudi Arabia
| | - Mayur Choudhary
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jenna R. Gustafson
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Rebecca M. Sappington
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
10
|
Do DV, Han G, Abariga SA, Sleilati G, Vedula SS, Hawkins BS. Blood pressure control for diabetic retinopathy. Cochrane Database Syst Rev 2023; 3:CD006127. [PMID: 36975019 PMCID: PMC10049880 DOI: 10.1002/14651858.cd006127.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
BACKGROUND Diabetic retinopathy is a common complication of diabetes and a leading cause of visual impairment and blindness. Research has established the importance of blood glucose control to prevent development and progression of the ocular complications of diabetes. Concurrent blood pressure control has been advocated for this purpose, but individual studies have reported varying conclusions regarding the effects of this intervention. OBJECTIVES To summarize the existing evidence regarding the effect of interventions to control blood pressure levels among diabetics on incidence and progression of diabetic retinopathy, preservation of visual acuity, adverse events, quality of life, and costs. SEARCH METHODS We searched several electronic databases, including CENTRAL, and trial registries. We last searched the electronic databases on 3 September 2021. We also reviewed the reference lists of review articles and trial reports selected for inclusion. SELECTION CRITERIA We included randomized controlled trials (RCTs) in which either type 1 or type 2 diabetic participants, with or without hypertension, were assigned randomly to more intense versus less intense blood pressure control; to blood pressure control versus usual care or no intervention on blood pressure (placebo); or to one class of antihypertensive medication versus another or placebo. DATA COLLECTION AND ANALYSIS Pairs of review authors independently reviewed the titles and abstracts of records identified by the electronic and manual searches and the full-text reports of any records identified as potentially relevant. The included trials were independently assessed for risk of bias with respect to outcomes reported in this review. MAIN RESULTS We included 29 RCTs conducted in North America, Europe, Australia, Asia, Africa, and the Middle East that had enrolled a total of 4620 type 1 and 22,565 type 2 diabetic participants (sample sizes from 16 to 4477 participants). In all 7 RCTs for normotensive type 1 diabetic participants, 8 of 12 RCTs with normotensive type 2 diabetic participants, and 5 of 10 RCTs with hypertensive type 2 diabetic participants, one group was assigned to one or more antihypertensive agents and the control group to placebo. In the remaining 4 RCTs for normotensive participants with type 2 diabetes and 5 RCTs for hypertensive type 2 diabetic participants, methods of intense blood pressure control were compared to usual care. Eight trials were sponsored entirely and 10 trials partially by pharmaceutical companies; nine studies received support from other sources; and two studies did not report funding source. Study designs, populations, interventions, lengths of follow-up (range less than one year to nine years), and blood pressure targets varied among the included trials. For primary review outcomes after five years of treatment and follow-up, one of the seven trials for type 1 diabetics reported incidence of retinopathy and one trial reported progression of retinopathy; one trial reported a combined outcome of incidence and progression (as defined by study authors). Among normotensive type 2 diabetics, four of 12 trials reported incidence of diabetic retinopathy and two trials reported progression of retinopathy; two trials reported combined incidence and progression. Among hypertensive type 2 diabetics, six of the 10 trials reported incidence of diabetic retinopathy and two trials reported progression of retinopathy; five of the 10 trials reported combined incidence and progression. The evidence supports an overall benefit of more intensive blood pressure intervention for five-year incidence of diabetic retinopathy (11 studies; 4940 participants; risk ratio (RR) 0.82, 95% confidence interval (CI) 0.73 to 0.92; I2 = 15%; moderate certainty evidence) and the combined outcome of incidence and progression (8 studies; 6212 participants; RR 0.78, 95% CI 0.68 to 0.89; I2 = 42%; low certainty evidence). The available evidence did not support a benefit regarding five-year progression of diabetic retinopathy (5 studies; 5144 participants; RR 0.94, 95% CI 0.78 to 1.12; I2 = 57%; moderate certainty evidence), incidence of proliferative diabetic retinopathy, clinically significant macular edema, or vitreous hemorrhage (9 studies; 8237 participants; RR 0.92, 95% CI 0.82 to 1.04; I2 = 31%; low certainty evidence), or loss of 3 or more lines on a visual acuity chart with a logMAR scale (2 studies; 2326 participants; RR 1.15, 95% CI 0.63 to 2.08; I2 = 90%; very low certainty evidence). Hypertensive type 2 diabetic participants realized more benefit from intense blood pressure control for three of the four outcomes concerning incidence and progression of diabetic retinopathy. The adverse event reported most often (13 of 29 trials) was death, yielding an estimated RR 0.87 (95% CI 0.76 to 1.00; 13 studies; 13,979 participants; I2 = 0%; moderate certainty evidence). Hypotension was reported in two trials, with an RR of 2.04 (95% CI 1.63 to 2.55; 2 studies; 3323 participants; I2 = 37%; low certainty evidence), indicating an excess of hypotensive events among participants assigned to more intervention on blood pressure. AUTHORS' CONCLUSIONS Hypertension is a well-known risk factor for several chronic conditions for which lowering blood pressure has proven to be beneficial. The available evidence supports a modest beneficial effect of intervention to reduce blood pressure with respect to preventing diabetic retinopathy for up to five years, particularly for hypertensive type 2 diabetics. However, there was a paucity of evidence to support such intervention to slow progression of diabetic retinopathy or to affect other outcomes considered in this review among normotensive diabetics. This weakens any conclusion regarding an overall benefit of intervening on blood pressure in diabetic patients without hypertension for the sole purpose of preventing diabetic retinopathy or avoiding the need for treatment for advanced stages of diabetic retinopathy.
Collapse
Affiliation(s)
- Diana V Do
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, California, USA
| | - Genie Han
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Samuel A Abariga
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | | | - Barbara S Hawkins
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Yuen YS, Gilhotra JS, Dalton M, Aujla JS, Mehta H, Wickremasinghe S, Uppal G, Arnold J, Chen F, Chang A, Fraser-Bell S, Lim L, Shah J, Bowditch E, Broadhead GK. Diabetic Macular Oedema Guidelines: An Australian Perspective. J Ophthalmol 2023; 2023:6329819. [PMID: 36824442 PMCID: PMC9943607 DOI: 10.1155/2023/6329819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 02/16/2023] Open
Abstract
The number of people living with diabetes is expected to rise to 578 million by 2030 and to 700 million by 2045, exacting a severe socioeconomic burden on healthcare systems around the globe. This is also reflected in the increasing numbers of people with ocular complications of diabetes (namely, diabetic macular oedema (DMO) and diabetic retinopathy (DR)). In one study examining the global prevalence of DR, 35% of people with diabetes had some form of DR, 7% had PDR, 7% had DMO, and 10% were affected by these vision-threatening stages. In many regions of the world (Australia included), DR is one of the top three leading causes of vision loss amongst working age adults (20-74 years). In the management of DMO, the landmark ETDRS study demonstrated that moderate visual loss, defined as doubling of the visual angle, can be reduced by 50% or more by focal/grid laser photocoagulation. However, over the last 20 years, antivascular endothelial growth factor (VEGF) and corticosteroid therapies have emerged as alternative options for the management of DMO and provided patients with choices that have higher chances of improving vision than laser alone. In Australia, since the 2008 NHMRC guidelines, there have been significant developments in both the treatment options and treatment schedules for DMO. This working group was therefore assembled to review and address the current management options available in Australia.
Collapse
Affiliation(s)
| | | | | | - Jaskirat S. Aujla
- South Australian Institute of Ophthalmology, Adelaide, SA, Australia
| | - Hemal Mehta
- Save Sight Registries, University of Sydney, Sydney, NSW, Australia
- Strathfield Retina Clinic, Sydney, Australia
| | - Sanj Wickremasinghe
- Centre for Eye Research Australia, The Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Australia
| | - Gurmit Uppal
- Moreton Eye Group, Brisbane, Queensland, Australia
| | | | - Fred Chen
- Centre for Ophthalmology and Visual Sciences (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Victoria, Australia
| | - Andrew Chang
- Sydney Institute of Vision Science, University of Sydney, Sydney, NSW, Australia
- Sydney Retina Clinic and Day Surgery, University of Sydney, Sydney, NSW, Australia
- Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Samantha Fraser-Bell
- Department of Ophthalmology, Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Lyndell Lim
- Centre for Eye Research Australia, The Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Australia
| | - Janika Shah
- Sydney Eye Hospital, Sydney, Australia
- Singapore National Eye Centre, Singapore
| | - Ellie Bowditch
- Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
12
|
Angiotensin Receptor Blocker Associated with a Decreased Risk of Lung Cancer: An Updated Meta-Analysis. J Pers Med 2023; 13:jpm13020243. [PMID: 36836477 PMCID: PMC9961472 DOI: 10.3390/jpm13020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
INTRODUCTION There have been disputes in the association between angiotensin receptor blockers (ARB) and the incidence of lung cancer. Our meta-analysis reevaluated this problem from the perspectives of race, age, drug type, comparison objects and smoking. METHOD We used the following databases to carry out our literature search: Pubmed, Medline, Cochrane Library, and Ovid (From 1 January 2020 to 28 November 2021). The correlation between ARBs and the incidence rate of lung cancer was calculated by risk ratios (RRs). Confidence intervals were selected with 95% confidence intervals. RESULTS A total of 10 randomized controlled trials (RCTs), 18 retrospective studies and 3 case-control studies were found to satisfy the inclusion criteria. The use of ARB drugs reduced the incidence of lung cancer. The pooled results of 10 retrospective studies revealed a decreased lung cancer incidence in patients treated with ARBs, especially in patients using Valsartan. A significantly lower lung cancer incidence was found in the ARB drugs than in calcium channel blockers (CCBs) and angiotensin-converting enzyme inhibitors (ACEIs). Lung cancer occurrence was lower in Asian-based studies, especially in Mongolian-dominated and Caucasian-dominated patient populations. No significant decrease in lung cancer occurrence was found in RCTs or in patients receiving telmisartan, losartan, candesartan, irbesartan, or other placebo or in American and European-dominated patient populations. CONCLUSION Compared with ACEIs and CCBs, ARBs significantly reduce the risk of lung cancer, especially in Asian and Mongolian populations. Valsartan has the best effect in reducing the risk of lung cancer in ARB drugs.
Collapse
|
13
|
Fletcher EL, Dixon MA, Mills SA, Jobling AI. Anomalies in neurovascular coupling during early diabetes: A review. Clin Exp Ophthalmol 2023; 51:81-91. [PMID: 36349522 PMCID: PMC10947109 DOI: 10.1111/ceo.14190] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Diabetic retinopathy is the most feared complication for those with diabetes. Although visible vascular pathology traditionally defines the management of this condition, it is now recognised that a range of cellular changes occur in the retina from an early stage of diabetes. One of the most significant functional changes that occurs in those with diabetes is a loss of vasoregulation in response to changes in neural activity. There are several retinal cell types that are critical for mediating so-called neurovascular coupling, including Müller cells, microglia and pericytes. Although there is a great deal of evidence that suggests that Müller cells are integral to regulating the vasculature, they only modulate part of the vascular tree, highlighting the complexity of vasoregulation within the retina. Recent studies suggest that retinal immune cells, microglia, play an important role in mediating vasoconstriction. Importantly, retinal microglia contact both the vasculature and neural synapses and induce vasoconstriction in response to neurally expressed chemokines such as fractalkine. This microglial-dependent regulation occurs via the vasomediator angiotensinogen. Diabetes alters the way microglia regulate the retinal vasculature, by increasing angiotensinogen expression, causing capillary vasoconstriction and contributing to a loss of vascular reactivity to physiological signals. This article summarises recent studies showing changes in vascular regulation during diabetes, the potential mechanisms by which this occurs and the significance of these early changes to the progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Erica L. Fletcher
- Department of Anatomy and PhysiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Michael A. Dixon
- Department of Anatomy and PhysiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Samuel A. Mills
- Department of Anatomy and Developmental BiologyMonash UniversityMelbourneVictoriaAustralia
| | - Andrew I. Jobling
- Department of Anatomy and PhysiologyThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
14
|
Blonde L, Umpierrez GE, Reddy SS, McGill JB, Berga SL, Bush M, Chandrasekaran S, DeFronzo RA, Einhorn D, Galindo RJ, Gardner TW, Garg R, Garvey WT, Hirsch IB, Hurley DL, Izuora K, Kosiborod M, Olson D, Patel SB, Pop-Busui R, Sadhu AR, Samson SL, Stec C, Tamborlane WV, Tuttle KR, Twining C, Vella A, Vellanki P, Weber SL. American Association of Clinical Endocrinology Clinical Practice Guideline: Developing a Diabetes Mellitus Comprehensive Care Plan-2022 Update. Endocr Pract 2022; 28:923-1049. [PMID: 35963508 PMCID: PMC10200071 DOI: 10.1016/j.eprac.2022.08.002] [Citation(s) in RCA: 170] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The objective of this clinical practice guideline is to provide updated and new evidence-based recommendations for the comprehensive care of persons with diabetes mellitus to clinicians, diabetes-care teams, other health care professionals and stakeholders, and individuals with diabetes and their caregivers. METHODS The American Association of Clinical Endocrinology selected a task force of medical experts and staff who updated and assessed clinical questions and recommendations from the prior 2015 version of this guideline and conducted literature searches for relevant scientific papers published from January 1, 2015, through May 15, 2022. Selected studies from results of literature searches composed the evidence base to update 2015 recommendations as well as to develop new recommendations based on review of clinical evidence, current practice, expertise, and consensus, according to established American Association of Clinical Endocrinology protocol for guideline development. RESULTS This guideline includes 170 updated and new evidence-based clinical practice recommendations for the comprehensive care of persons with diabetes. Recommendations are divided into four sections: (1) screening, diagnosis, glycemic targets, and glycemic monitoring; (2) comorbidities and complications, including obesity and management with lifestyle, nutrition, and bariatric surgery, hypertension, dyslipidemia, retinopathy, neuropathy, diabetic kidney disease, and cardiovascular disease; (3) management of prediabetes, type 2 diabetes with antihyperglycemic pharmacotherapy and glycemic targets, type 1 diabetes with insulin therapy, hypoglycemia, hospitalized persons, and women with diabetes in pregnancy; (4) education and new topics regarding diabetes and infertility, nutritional supplements, secondary diabetes, social determinants of health, and virtual care, as well as updated recommendations on cancer risk, nonpharmacologic components of pediatric care plans, depression, education and team approach, occupational risk, role of sleep medicine, and vaccinations in persons with diabetes. CONCLUSIONS This updated clinical practice guideline provides evidence-based recommendations to assist with person-centered, team-based clinical decision-making to improve the care of persons with diabetes mellitus.
Collapse
Affiliation(s)
| | | | - S Sethu Reddy
- Central Michigan University, Mount Pleasant, Michigan
| | | | | | | | | | | | - Daniel Einhorn
- Scripps Whittier Diabetes Institute, La Jolla, California
| | | | | | - Rajesh Garg
- Lundquist Institute/Harbor-UCLA Medical Center, Torrance, California
| | | | | | | | | | | | - Darin Olson
- Colorado Mountain Medical, LLC, Avon, Colorado
| | | | | | - Archana R Sadhu
- Houston Methodist; Weill Cornell Medicine; Texas A&M College of Medicine; Houston, Texas
| | | | - Carla Stec
- American Association of Clinical Endocrinology, Jacksonville, Florida
| | | | - Katherine R Tuttle
- University of Washington and Providence Health Care, Seattle and Spokane, Washington
| | | | | | | | - Sandra L Weber
- University of South Carolina School of Medicine-Greenville, Prisma Health System, Greenville, South Carolina
| |
Collapse
|
15
|
Jung CY, Yoo TH. Novel biomarkers for diabetic kidney disease. Kidney Res Clin Pract 2022; 41:S46-S62. [DOI: 10.23876/j.krcp.22.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/17/2022] [Indexed: 11/04/2022] Open
Abstract
Although diabetic kidney disease (DKD) remains one of the leading causes of reduced lifespan in patients with diabetes mellitus; its prevalence has failed to decline over the past 30 years. To identify those at high risk of developing DKD and disease progression at an early stage, extensive research has been ongoing in the search for prognostic and surrogate endpoint biomarkers for DKD. Although biomarkers are not used routinely in clinical practice or prospective clinical trials, many biomarkers have been developed to improve the early identification and prognostication of patients with DKD. Novel biomarkers that capture one specific mechanism of the DKD disease process have been developed, and studies have evaluated the prognostic value of assay-based biomarkers either in small sets or in combinations involving multiple biomarkers. More recently, several studies have assessed the prognostic value of omics- based biomarkers that include proteomics, metabolomics, and transcriptomics. This review will first describe the biomarkers used in current practice and their limitations, and then summarize the current status of novel biomarkers for DKD with respect to assay- based protein biomarkers, proteomics, metabolomics, and transcriptomics.
Collapse
|
16
|
New Insights into Treating Early and Advanced Stage Diabetic Retinopathy. Int J Mol Sci 2022; 23:ijms23158513. [PMID: 35955655 PMCID: PMC9368971 DOI: 10.3390/ijms23158513] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of preventable blindness in the working-age population. The disease progresses slowly, and we can roughly differentiate two stages: early-stage (ESDR), in which there are mild retinal lesions and visual acuity is generally preserved, and advanced-stage (ASDR), in which the structural lesions are significant and visual acuity is compromised. At present, there are no specific treatments for ESDR and the current recommended action is to optimize metabolic control and maintain close control of blood pressure. However, in the coming years, it is foreseeable that therapeutic strategies based in neuroprotection will be introduced in the clinical arena. This means that screening aimed at identifying patients in whom neuroprotective treatment might be beneficial will be crucial. Regarding the treatment of ASDR, the current primary course is based on laser photocoagulation and intravitreal injections of anti-angiogenic factors or corticosteroids. Repeated intravitreal injections of anti-VEGF agents as the first-line treatment would be replaced by more cost-effective and personalized treatments based on the results of “liquid biopsies” of aqueous humor. Finally, topical administration (i.e., eye drops) of neuroprotective, anti-inflammatory and anti-angiogenic agents will represent a revolution in the treatment of DR in the coming decade. In this article, all these approaches and others will be critically discussed from a holistic perspective.
Collapse
|
17
|
Lin Z, Wen L, Wang Y, Li D, Zhai G, Moonasar N, Wang F, Liang Y. Incidence, progression and regression of diabetic retinopathy in a northeastern Chinese population. Br J Ophthalmol 2022; 107:bjophthalmol-2022-321384. [PMID: 35864776 DOI: 10.1136/bjo-2022-321384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/27/2022] [Indexed: 11/04/2022]
Abstract
AIM To determine the incidence, progression and regression of diabetic retinopathy (DR), with corresponding risk factors, in a northeastern Chinese population of patients with type 2 diabetes. METHODS Among 2006 patients who completed baseline examinations in 2012-2013 and underwent re-examination after a mean interval of 21.2 months, 1392 patients with gradable fundus photographs for both baseline and follow-up examinations were included. Incidence was defined as new development of any DR among patients without DR at baseline. An increase of ≥2 scales (concatenating Early Treatment Diabetic Retinopathy Study levels of both eyes) in eyes with DR at baseline was defined as progression, while a reduction of ≥2 scales was defined as regression. RESULTS The age- and sex-standardised incidence, progression and regression were 5.8% (95% CI 4.7% to 6.9%), 26.8% (95% CI 24.8% to 28.8%) and 10.0% (95% CI 8.6% to 11.3%), respectively. In addition to poor blood glucose control, wider central retinal venular equivalent was associated with both incidence (relative risk (RR) 2.17, 95% CI 1.09 to 4.32, for ≥250 µm vs <210 µm) and progression (RR 2.00, 95% CI 1.02 to 3.96, for ≥250 µm vs <210 µm). Patients without insulin therapy (RR 0.64, 95% CI 0.43 to 0.97) and patients with wider central retinal arteriolar equivalent (RR 1.14, 95% CI 1.02 to 1.26, per 10 µm increase) were likely to exhibit DR regression. CONCLUSION We determined the incidence, progression and regression of DR among northeastern Chinese patients with type 2 diabetes. Retinal vessel diameters, in addition to blood glucose level, influence the natural evolution of DR.
Collapse
Affiliation(s)
- Zhong Lin
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
| | - Liang Wen
- Department of Ophthalmology, Fushun Eye Hospital, Fushun, Liaoning, China
| | - Yu Wang
- Department of Ophthalmology, Fushun Eye Hospital, Fushun, Liaoning, China
| | - Dong Li
- Department of Ophthalmology, Fushun Eye Hospital, Fushun, Liaoning, China
| | - Gang Zhai
- Department of Ophthalmology, Fushun Eye Hospital, Fushun, Liaoning, China
| | | | - Fenghua Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuanbo Liang
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
| |
Collapse
|
18
|
Ma Y, Lin C, Cai X, Hu S, Zhu X, Lv F, Yang W, Ji L. The association between the use of sodium glucose cotransporter 2 inhibitor and the risk of diabetic retinopathy and other eye disorders: a systematic review and meta-analysis. Expert Rev Clin Pharmacol 2022; 15:877-886. [PMID: 35839519 DOI: 10.1080/17512433.2022.2102973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To assess the association between the use of sodium-glucose cotransporter 2 inhibitor (SGLT2i) and the incidence of diabetic retinopathy (DR). RESEARCH DESIGN AND METHODS Pubmed, Medline, Embase, the Cochrane Central Register of Controlled Trials and Clinicaltrial.gov were searched from inception to October 2021. Randomized controlled trials (RCTs) with reports of incidence of DR and other eye disorders between SGLT2i users and non-SGLT2i users with type 2 diabetes mellitus were included. RESULTS In general, the incidences of DR were comparable between SGLT2i users and non-SGLT2i users (OR=0.80, 95%CI 0.61 to 1.06, P=0.12). However, compared with non-SGLT2i users, the incidence of DR was significantly reduced in SGLT2i users with diabetes duration less than 10 years (OR=0.32, 95%CI 0.13 to 0.76, P=0.01). Weight reduction in SGLT2i users was associated with the decreased risk of retinal detachment. Moreover, longer study duration was associated with lower incidence of cataract and retinal vasculopathy in SGLT2i users. CONCLUSIONS In general, the use of SGLT2i was not associated with the incidence of DR. However, a reduced risk of DR was observed in SGLT2i users with diabetes duration less than 10 years. An early initiation of SGLT2i might be more likely to provide with ocular benefits.
Collapse
Affiliation(s)
- Yunke Ma
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Chu Lin
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Suiyuan Hu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Xingyun Zhu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Fang Lv
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Wenjia Yang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| |
Collapse
|
19
|
Wei Q, Qiu W, Liu Q, Jiang Y. Relationship Between Risk Factors and Macular Thickness in Patients with Early Diabetic Retinopathy. Int J Gen Med 2022; 15:6021-6029. [PMID: 35818578 PMCID: PMC9270927 DOI: 10.2147/ijgm.s366348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Qingquan Wei
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, People’s Republic of China
| | - Wei Qiu
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, People’s Republic of China
| | - Qing Liu
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, People’s Republic of China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, People’s Republic of China
- Correspondence: Qing Liu; Yanyun Jiang, Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200335, People’s Republic of China, Tel +8618121226956, Email ;
| | - Yanyun Jiang
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, People’s Republic of China
| |
Collapse
|
20
|
Liu S, Ju Y, Gu P. Experiment-Based Interventions to Diabetic Retinopathy: Present and Advances. Int J Mol Sci 2022; 23:ijms23137005. [PMID: 35806008 PMCID: PMC9267063 DOI: 10.3390/ijms23137005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetic retinopathy is the major blinding disease among working-age populations, which is becoming more significant due to the growth of diabetes. The metabolic-induced oxidative and inflammatory stress leads to the insult of neovascular unit, resulting in the core pathophysiology of diabetic retinopathy. Existing therapies focus on the inflammation, oxidation, and angiogenesis phenomena of diabetic retinopathy, without effect to radically cure the disease. This review also summarizes novel therapeutic attempts for diabetic retinopathy along with their advantages and disadvantages, mainly focusing on those using cellular and genetic techniques to achieve remission on a fundamental level of disease.
Collapse
Affiliation(s)
- Siwei Liu
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (S.L.); (Y.J.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Yahan Ju
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (S.L.); (Y.J.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (S.L.); (Y.J.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
- Correspondence:
| |
Collapse
|
21
|
Jaworska K, Kopacz W, Koper M, Szudzik M, Gawryś-Kopczyńska M, Konop M, Hutsch T, Chabowski D, Ufnal M. Enalapril Diminishes the Diabetes-Induced Changes in Intestinal Morphology, Intestinal RAS and Blood SCFA Concentration in Rats. Int J Mol Sci 2022; 23:ijms23116060. [PMID: 35682739 PMCID: PMC9181110 DOI: 10.3390/ijms23116060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Evidence suggests that microbiota-derived metabolites, including short-chain fatty acids (SCFAs) and trimethylamine-oxide (TMAO), affect the course of diabetic multiorgan pathology. We hypothesized that diabetes activates the intestinal renin–angiotensin system (RAS), contributing to gut pathology. Twelve-week-old male rats were divided into three groups: controls, diabetic (streptozotocin-induced) and diabetic treated with enalapril. Histological examination and RT-qPCR were performed to evaluate morphology and RAS expression in the jejunum and the colon. SCFA and TMAO concentrations in stools, portal and systemic blood were evaluated. In comparison to the controls, the diabetic rats showed hyperplastic changes in jejunal and colonic mucosa, increased plasma SCFA, and slightly increased plasma TMAO. The size of the changes was smaller in enalapril-treated rats. Diabetic rats had a lower expression of Mas receptor (MasR) and angiotensinogen in the jejunum whereas, in the colon, the expression of MasR and renin was greater in diabetic rats. Enalapril-treated rats had a lower expression of MasR in the colon. The expression of AT1a, AT1b, and AT2 receptors was similar between groups. In conclusion, diabetes produces morphological changes in the intestines, increases plasma SCFA, and alters the expression of renin and MasR. These alterations were reduced in enalapril-treated rats. Future studies need to evaluate the clinical significance of intestinal pathology in diabetes.
Collapse
|
22
|
Ohashi K, Hayashi T, Utsunomiya K, Nishimura R. The Mineralocorticoid receptor signal could be a new molecular target for the treatment of diabetic retinal complication. Expert Opin Ther Targets 2022; 26:479-486. [PMID: 35487592 DOI: 10.1080/14728222.2022.2072730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Activation of the mineralocorticoid receptor (MR) is involved in the pathophysiology of diabetic vascular complications. In recent years, it has been indicated that the MR expressed in retinal Müller cells plays an important role in regulating the potassium and water balance in the retina. Therefore, it has also been speculated that abnormal MR signaling contributes to edematous diseases of the retina. RESEARCH DESIGN AND METHODS We examined the effect of high-glucose conditions on MR protein and mRNA levels in human retinal Müller cells and changes in cell size in vitro. We also investigated MR transcriptional activity and signaling in high-glucose conditions. RESULTS The MR protein increased by 2.2-fold with high-glucose treatment. Additionally, high-glucose treatment induced Müller cell swelling. Aldosterone-induced MR transcriptional activity was enhanced in high-glucose conditions, resulting in the upregulation of αENaC, AQP4 and Kir4.1 mRNA. Treatment with an MR antagonist led to the suppression of aldosterone-induced cell swelling, MR transcriptional activity and upregulation of the target genes in high-glucose conditions. CONCLUSIONS High glucose induces Müller cell swelling through activation of MR signaling, which could be associated with aggravation of macular edema. Thus, Müller cell swelling and diabetic macular edema may represent a target for treatment with MR antagonists.
Collapse
Affiliation(s)
- Kennosuke Ohashi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine
| | - Takeshi Hayashi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine
| | | | - Rimei Nishimura
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine
| |
Collapse
|
23
|
Pöstyéni E, Ganczer A, Kovács-Valasek A, Gabriel R. Relevance of Peptide Homeostasis in Metabolic Retinal Degenerative Disorders: Curative Potential in Genetically Modified Mice. Front Pharmacol 2022; 12:808315. [PMID: 35095518 PMCID: PMC8793341 DOI: 10.3389/fphar.2021.808315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
The mammalian retina contains approximately 30 neuropeptides that are synthetized by different neuronal cell populations, glia, and the pigmented epithelium. The presence of these neuropeptides leaves a mark on normal retinal molecular processes and physiology, and they are also crucial in fighting various pathologies (e.g., diabetic retinopathy, ischemia, age-related pathologies, glaucoma) because of their protective abilities. Retinal pathologies of different origin (metabolic, genetic) are extensively investigated by genetically manipulated in vivo mouse models that help us gain a better understanding of the molecular background of these pathomechanisms. These models offer opportunities to manipulate gene expression in different cell types to help reveal their roles in the preservation of retinal health or identify malfunction during diseases. In order to assess the current status of transgenic technologies available, we have conducted a literature survey focused on retinal disorders of metabolic origin, zooming in on the role of retinal neuropeptides in diabetic retinopathy and ischemia. First, we identified those neuropeptides that are most relevant to retinal pathologies in humans and the two clinically most relevant models, mice and rats. Then we continued our analysis with metabolic disorders, examining neuropeptide-related pathways leading to systemic or cellular damage and rescue. Last but not least, we reviewed the available literature on genetically modified mouse strains to understand how the manipulation of a single element of any given pathway (e.g., signal molecules, receptors, intracellular signaling pathways) could lead either to the worsening of disease conditions or, more frequently, to substantial improvements in retinal health. Most attention was given to studies which reported successful intervention against specific disorders. For these experiments, a detailed evaluation will be given and the possible role of converging intracellular pathways will be discussed. Using these converging intracellular pathways, curative effects of peptides could potentially be utilized in fighting metabolic retinal disorders.
Collapse
Affiliation(s)
- Etelka Pöstyéni
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Alma Ganczer
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
24
|
Xie Z, Xiao X. Novel biomarkers and therapeutic approaches for diabetic retinopathy and nephropathy: Recent progress and future perspectives. Front Endocrinol (Lausanne) 2022; 13:1065856. [PMID: 36506068 PMCID: PMC9732104 DOI: 10.3389/fendo.2022.1065856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
The global burden due to microvascular complications in patients with diabetes mellitus persists and even increases alarmingly, the intervention and management are now encountering many difficulties and challenges. This paper reviews the recent advancement and progress in novel biomarkers, artificial intelligence technology, therapeutic agents and approaches of diabetic retinopathy and nephropathy, providing more insights into the management of microvascular complications.
Collapse
|
25
|
Abstract
The first reports of a link between thiamine and diabetes date back to the 1940s. Some years later, a role for thiamine deficiency in diabetic neuropathy became evident, and some pilot studies evaluated the putative effects of thiamine supplementation. However, the administration of thiamine and its lipophilic derivative benfotiamine for the treatment of this complication gained consensus only at the end of the '90 s. The first evidence of the beneficial effects of thiamine on microvascular cells involved in diabetic complications dates to 1996: from then on, several papers based on in vitro and animal models have addressed the potential use of this vitamin in counteracting diabetic microangiopathy. A few pilot studies in humans reported beneficial effects of thiamine administration on diabetic nephropathy, but, despite all promising proofs-of-concept, the possible role of thiamine in counteracting development or progression of retinopathy has not been addressed until now. Thiamine is a water-soluble vitamin, rapidly expelled from the body, with no issues of over-dosage or accumulation; unfortunately, it is non-patentable, and neither industry nor independent donors are interested in investing in large-scale randomized controlled clinical trials to investigate its potential in diabetes and its complications. Consequently, science will not be able to disprove a promising hypothesis and, more importantly, diabetic people remain deprived of a possible way to ameliorate their condition.
Collapse
Affiliation(s)
- Elena Beltramo
- Dept. Medical Sciences, University of Torino, Corso AM Dogliotti 14, 10126, Torino, Italy.
| | - Aurora Mazzeo
- Dept. Medical Sciences, University of Torino, Corso AM Dogliotti 14, 10126, Torino, Italy
| | - Massimo Porta
- Dept. Medical Sciences, University of Torino, Corso AM Dogliotti 14, 10126, Torino, Italy
| |
Collapse
|
26
|
|
27
|
Behl T, Kumar K, Singh S, Sehgal A, Sachdeva M, Bhatia S, Al-Harrasi A, Buhas C, Teodora Judea-Pusta C, Negrut N, Alexandru Munteanu M, Brisc C, Bungau S. Unveiling the role of polyphenols in diabetic retinopathy. J Funct Foods 2021. [DOI: https://doi.org/10.1016/j.jff.2021.104608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
28
|
Rotbain Curovic V, Magalhães P, He T, Hansen TW, Mischak H, Rossing P. Urinary peptidome and diabetic retinopathy in the DIRECT-Protect 1 and 2 trials. Diabet Med 2021; 38:e14634. [PMID: 34228837 DOI: 10.1111/dme.14634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Given the association of diabetic retinopathy (DR) and kidney disease, we investigated the urinary peptidome to presence and deterioration of DR in a post hoc analysis of trials investigating the effect of candesartan on progression of DR in type 1 and type 2 diabetes, respectively. METHODS Baseline urinary peptidomic analysis was performed on a random selection of 783 and 792 subjects in two randomized controlled trials, DIRECT-Protect 1 and 2, respectively. End points were two-step (RET2) and three-step (RET3) change in Early Treatment of Diabetic Retinopathy Study protocol (ETDRS) defined level. Peptide levels were correlated to baseline EDTRS level in a discovery set of 2/3 of the participants from DIRECT-Protect 1. The identified peptides were then validated cross-sectionally in the remaining 1/3 from DIRECT-Protect 1. Thereafter, peptides identified in the discovery set were assessed in the entire DIRECT-Protect 1 and 2 cohorts and significant peptides were tested longitudinally. RESULTS Follow-up ranged 4.0-4.7 years. 24 peptides were associated with baseline DR in the discovery set. COL3A1 (seq: NTG~) and COL4A1 (seq: DGA~) were associated with baseline DR in the validation set (Rho: -.223, p < 0.001 and Rho: -.141, p = 0.024). Neither was significantly associated with end points. Assessing the 24 identified peptides in the entire cohorts, several collagen peptides were associated with baseline DR and end points; however, there was no overlap across diabetes types. CONCLUSIONS We identified several urinary peptides (mainly collagen) associated with the presence of DR, however they could not be conclusively associated with worsening of DR.
Collapse
Affiliation(s)
| | | | - Tianlin He
- Mosaiques Diagnostics, Hannover, Germany
- Institute for Molecular Cardiovascular Research, University of Aachen, Aachen, Germany
| | | | | | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Genetics of Diabetic Retinopathy, a Leading Cause of Irreversible Blindness in the Industrialized World. Genes (Basel) 2021; 12:genes12081200. [PMID: 34440374 PMCID: PMC8394456 DOI: 10.3390/genes12081200] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/29/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetic retinopathy (DR) is a chronic complication of diabetes and a leading cause of blindness in the industrialized world. Traditional risk factors, such as glycemic control and duration of diabetes, are unable to explain why some individuals remain protected while others progress to a more severe form of the disease. Differences are also observed in DR heritability as well as the response to anti-vascular endothelial growth factor (VEGF) treatment. This review discusses various aspects of genetics in DR to shed light on DR pathogenesis and treatment. First, we discuss the global burden of DR followed by a discussion on disease pathogenesis as well as the role genetics plays in the prevalence and progression of DR. Subsequently, we provide a review of studies related to DR’s genetic contribution, such as candidate gene studies, linkage studies, and genome-wide association studies (GWAS) as well as other clinical and meta-analysis studies that have identified putative candidate genes. With the advent of newer cutting-edge technologies, identifying the genetic components in DR has played an important role in understanding DR incidence, progression, and response to treatment, thereby developing newer therapeutic targets and therapies.
Collapse
|
30
|
Anton N, Doroftei B, Ilie OD, Ciuntu RE, Bogdănici CM, Nechita-Dumitriu I. A Narrative Review of the Complex Relationship between Pregnancy and Eye Changes. Diagnostics (Basel) 2021; 11:1329. [PMID: 34441264 PMCID: PMC8394444 DOI: 10.3390/diagnostics11081329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Pregnancy is a condition often characterized by changes that occur in different parts of the body. Generally, the eyes suffer several changes during pregnancy that are usually transient but may become permanent at times. This may occur due to the release of placental hormones and those of maternal endocrine glands and fetal adrenal glands. Due to hormonal influences, physiological ocular changes during pregnancy have been shown in Caucasian women, so corneal sensitivity, refractive status, intraocular pressure, and visual acuity may change during pregnancy. Within this review, all studies that referred to physiological aspects and to changes of ocular pathology of pregnancy, the effect of the pregnancy on pre-existing (diabetic retinopathy, neuro-ophthalmic disorders) eye disorders, postpartum ocular changes, the intraocular pressure and the effect of hypotensive ophthalmic medicine during pregnancy, the connection between pregnancy and the neuro-ophthalmic pathology, as well as the role of anesthesia were analyzed.
Collapse
Affiliation(s)
- Nicoleta Anton
- Department of Ophthalmology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No. 16, 700115 Iasi, Romania; (N.A.); (R.-E.C.); (C.M.B.); (I.N.-D.)
- Ophthalmology Clinic, “Saint Spiridon” Emergency Clinic Hospital, Independence Avenue, No. 1, 700111 Iasi, Romania
| | - Bogdan Doroftei
- Department of Mother and Child Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No. 16, 700115 Iasi, Romania
- Origyn Fertility Center, Palace Street, No. 3C, 700032 Iasi, Romania
| | - Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, No. 20A, 700505 Iasi, Romania;
| | - Roxana-Elena Ciuntu
- Department of Ophthalmology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No. 16, 700115 Iasi, Romania; (N.A.); (R.-E.C.); (C.M.B.); (I.N.-D.)
- Ophthalmology Clinic, “Saint Spiridon” Emergency Clinic Hospital, Independence Avenue, No. 1, 700111 Iasi, Romania
| | - Camelia Margareta Bogdănici
- Department of Ophthalmology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No. 16, 700115 Iasi, Romania; (N.A.); (R.-E.C.); (C.M.B.); (I.N.-D.)
- Ophthalmology Clinic, “Saint Spiridon” Emergency Clinic Hospital, Independence Avenue, No. 1, 700111 Iasi, Romania
| | - Ionela Nechita-Dumitriu
- Department of Ophthalmology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No. 16, 700115 Iasi, Romania; (N.A.); (R.-E.C.); (C.M.B.); (I.N.-D.)
- Ophthalmology Clinic, “Saint Spiridon” Emergency Clinic Hospital, Independence Avenue, No. 1, 700111 Iasi, Romania
| |
Collapse
|
31
|
Diabetic retinopathy and diabetic macular oedema pathways and management: UK Consensus Working Group. Eye (Lond) 2021; 34:1-51. [PMID: 32504038 DOI: 10.1038/s41433-020-0961-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The management of diabetic retinopathy (DR) has evolved considerably over the past decade, with the availability of new technologies (diagnostic and therapeutic). As such, the existing Royal College of Ophthalmologists DR Guidelines (2013) are outdated, and to the best of our knowledge are not under revision at present. Furthermore, there are no other UK guidelines covering all available treatments, and there seems to be significant variation around the UK in the management of diabetic macular oedema (DMO). This manuscript provides a summary of reviews the pathogenesis of DR and DMO, including role of vascular endothelial growth factor (VEGF) and non-VEGF cytokines, clinical grading/classification of DMO vis a vis current terminology (of centre-involving [CI-DMO], or non-centre involving [nCI-DMO], systemic risks and their management). The excellent UK DR Screening (DRS) service has continued to evolve and remains world-leading. However, challenges remain, as there are significant variations in equipment used, and reproducible standards of DMO screening nationally. The interphase between DRS and the hospital eye service can only be strengthened with further improvements. The role of modern technology including optical coherence tomography (OCT) and wide-field imaging, and working practices including virtual clinics and their potential in increasing clinic capacity and improving patient experiences and outcomes are discussed. Similarly, potential roles of home monitoring in diabetic eyes in the future are explored. The role of pharmacological (intravitreal injections [IVT] of anti-VEGFs and steroids) and laser therapies are summarised. Generally, IVT anti-VEGF are offered as first line pharmacologic therapy. As requirements of diabetic patients in particular patient groups may vary, including pregnant women, children, and persons with learning difficulties, it is important that DR management is personalised in such particular patient groups. First choice therapy needs to be individualised in these cases and may be intravitreal steroids rather than the standard choice of anti-VEGF agents. Some of these, but not all, are discussed in this document.
Collapse
|
32
|
Kallab M, Schuetzenberger K, Hommer N, Schäfer BJ, Schmidl D, Bergmeister H, Zeitlinger M, Tan A, Jansook P, Loftsson T, Stefansson E, Garhöfer G. Bio-Distribution and Pharmacokinetics of Topically Administered γ-Cyclodextrin Based Eye Drops in Rabbits. Pharmaceuticals (Basel) 2021; 14:ph14050480. [PMID: 34070168 PMCID: PMC8158513 DOI: 10.3390/ph14050480] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to evaluate the ocular pharmacokinetics, bio-distribution and local tolerability of γ-cyclodextrin (γCD) based irbesartan 1.5% eye drops and candesartan 0.15% eye drops after single and multiple topical administration in rabbit eyes. In this randomized, controlled study, a total number of 59 New Zealand White albino rabbits were consecutively assigned to two study groups. Group 1 (n = 31) received irbesartan 1.5% and group 2 (n = 28) candesartan 0.15% eye drops. In both groups, single dose and multiple administration pharmacokinetic studies were performed. Rabbits were euthanized at five predefined time points after single-dose administration, whereas multiple-dose animals were dosed for 5 days twice-daily and then euthanized 1 h after the last dose administration. Drug concentration was measured by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the retinal tissue, vitreous humor, aqueous humor, corneal tissue and in venous blood samples. Pharmacokinetic parameters including maximal drug concentration (Cmax), time of maximal drug concentration (Tmax), half-life and AUC were calculated. To assess local tolerability, six additional rabbits received 1.5% irbesartan eye drops twice daily in one eye for 28 days. Tolerability was assessed using a modified Draize test and corneal sensibility by Cochet Bonnet esthesiometry. Both γCD based eye drops were rapidly absorbed and distributed in the anterior and posterior ocular tissues. Within 0.5 h after single administration, the Cmax of irbesartan and candesartan in retinal tissue was 251 ± 142 ng/g and 63 ± 39 ng/g, respectively. In the vitreous humor, a Cmax of 14 ± 16 ng/g for irbesartan was reached 0.5 h after instillation while Cmax was below 2 ng/g for candesartan. For multiple dosing, the observed Cmean in retinal tissue was 338 ± 124 ng/g for irbesartan and 36 ± 10 ng/g for candesartan, whereas mean vitreous humor concentrations were 13 ± 5 ng/g and <2 ng/g, respectively. The highest plasma concentrations of both irbesartan (Cmax 5.64 ± 4.08 ng/mL) and candesartan (Cmax 4.32 ± 1.04 ng/mL) were reached 0.5 h (Tmax) after single administration. Local tolerability was favorable with no remarkable differences between the treated and the control eyes. These results indicate that irbesartan and candesartan in γCD based nanoparticle eye drops can be delivered to the retinal tissue of the rabbit’s eye in pharmacologically relevant concentrations. Moreover, safety and tolerability profiles appear to be favorable in the rabbit animal model.
Collapse
Affiliation(s)
- Martin Kallab
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (M.K.); (N.H.); (D.S.); (M.Z.)
| | - Kornelia Schuetzenberger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria; (K.S.); (B.J.S.)
- Christian Doppler Laboratory for Ocular and Dermal Effects of Thiomers, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Nikolaus Hommer
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (M.K.); (N.H.); (D.S.); (M.Z.)
| | - Bhavapriya Jasmin Schäfer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria; (K.S.); (B.J.S.)
- Christian Doppler Laboratory for Ocular and Dermal Effects of Thiomers, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Doreen Schmidl
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (M.K.); (N.H.); (D.S.); (M.Z.)
| | - Helga Bergmeister
- Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria;
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (M.K.); (N.H.); (D.S.); (M.Z.)
| | - Aimin Tan
- Nucro-Technics, Toronto, ON M1H 2W4, Canada;
| | - Phatsawee Jansook
- Pharmaceutics and Industrial Pharmacy, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Science, University of Iceland, 107 Reykjavik, Iceland;
| | - Einar Stefansson
- Department of Ophthalmology, University of Iceland, 101 Reykjavik, Iceland;
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (M.K.); (N.H.); (D.S.); (M.Z.)
- Correspondence: ; Tel.: +43-1-40400-29810
| |
Collapse
|
33
|
Li YT, Wang Y, Hu XJ, Chen JH, Li YY, Zhong QY, Cheng H, Mohammed BH, Liang XL, Hernandez J, Huang WY, Wang HHX. Association between Systolic Blood Pressure and Diabetic Retinopathy in Both Hypertensive and Normotensive Patients with Type 2 Diabetes: Risk Factors and Healthcare Implications. Healthcare (Basel) 2021; 9:580. [PMID: 34068355 PMCID: PMC8153301 DOI: 10.3390/healthcare9050580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 11/26/2022] Open
Abstract
A common diabetes-related microvascular complication is diabetic retinopathy (DR), yet associations between blood pressure (BP) and risks for DR in diabetic patients with normal BP received inadequate attention. This may lead to 'clinical inertia' in early DR prevention. We aimed to assess whether the extent to which systolic BP levels were associated with DR in patients with type 2 diabetes (T2DM) and normal BP were similar to that in those with concurrent hypertension. Data were collected from patients with T2DM attending ophthalmic check-up with primary care referral (n = 2510). BP measurements, clinical laboratory tests, and dilated fundus examination were conducted according to gold standard of diagnosis and routine clinical procedure. Of all subjects, over 40% were normotensive and one fifth were clinically diagnosed with DR. Systolic BP levels increased across DR categories of escalated severity irrespective of the coexistence of hypertension. Ordinal logistic regression analysis showed that an increased systolic BP was independently and significantly associated with DR (adjusted odds ratio [aOR] = 1.020, p < 0.001 for hypertensives; aOR = 1.019, p = 0.018 for normotensives), after adjusting for diabetes duration, sex, lifestyles, and haemoglobin A1c levels. Regular monitoring of systolic BP should not be neglected in routine diabetes management even when BP falls within the normal range. (200 words).
Collapse
Affiliation(s)
- Yu-Ting Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China; (Y.-T.L.); (X.-L.L.)
| | - Yi Wang
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (Y.W.); (X.-J.H.); (J.-H.C.); (Y.-Y.L.); (Q.-Y.Z.); (H.C.)
| | - Xiu-Jing Hu
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (Y.W.); (X.-J.H.); (J.-H.C.); (Y.-Y.L.); (Q.-Y.Z.); (H.C.)
| | - Jia-Heng Chen
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (Y.W.); (X.-J.H.); (J.-H.C.); (Y.-Y.L.); (Q.-Y.Z.); (H.C.)
| | - Yun-Yi Li
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (Y.W.); (X.-J.H.); (J.-H.C.); (Y.-Y.L.); (Q.-Y.Z.); (H.C.)
| | - Qi-Ya Zhong
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (Y.W.); (X.-J.H.); (J.-H.C.); (Y.-Y.L.); (Q.-Y.Z.); (H.C.)
| | - Hui Cheng
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (Y.W.); (X.-J.H.); (J.-H.C.); (Y.-Y.L.); (Q.-Y.Z.); (H.C.)
| | - Bedru H. Mohammed
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Xiao-Ling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China; (Y.-T.L.); (X.-L.L.)
| | - Jose Hernandez
- EDU, Digital Education Holdings Ltd., KKR-1320 Kalkara, Malta;
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK
| | - Wen-Yong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China; (Y.-T.L.); (X.-L.L.)
| | - Harry H. X. Wang
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (Y.W.); (X.-J.H.); (J.-H.C.); (Y.-Y.L.); (Q.-Y.Z.); (H.C.)
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- General Practice and Primary Care, Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 9LX, UK
| |
Collapse
|
34
|
Dambha-Miller H, Day A, Kinmonth AL, Griffin SJ. Primary care experience and remission of type 2 diabetes: a population-based prospective cohort study. Fam Pract 2021; 38:141-146. [PMID: 32918549 PMCID: PMC8006762 DOI: 10.1093/fampra/cmaa086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Remission of Type 2 diabetes is achievable through dietary change and weight loss. In the UK, lifestyle advice and referrals to weight loss programmes predominantly occur in primary care where most Type 2 diabetes is managed. OBJECTIVE To quantify the association between primary care experience and remission of Type 2 diabetes over 5-year follow-up. METHODS A prospective cohort study of adults with Type 2 diabetes registered to 49 general practices in the East of England, UK. Participants were followed-up for 5 years and completed the Consultation and Relational Empathy measure (CARE) on diabetes-specific primary care experiences over the first year after diagnosis of the disease. Remission at 5-year follow-up was measured with HbA1c levels. Univariable and multivariable logistic regression models were constructed to quantify the association between primary care experience and remission of diabetes. RESULTS Of 867 participants, 30% (257) achieved remission of Type 2 diabetes at 5 years. Six hundred twenty-eight had complete data at follow-up and were included in the analysis. Participants who reported higher CARE scores in the 12 months following diagnosis were more likely to achieve remission at 5 years in multivariable models; odds ratio = 1.03 (95% confidence interval = 1.01-1.05, P = 0.01). CONCLUSION Primary care practitioners should pay greater attention to delivering optimal patient experiences alongside clinical management of the disease as this may contribute towards remission of Type 2 diabetes. Further work is needed to examine which aspects of the primary care experience might be optimized and how these could be operationalized.
Collapse
Affiliation(s)
- Hajira Dambha-Miller
- Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.,MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.,Division of Primary Care and Population Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Alexander Day
- Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Ann Louise Kinmonth
- Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Simon J Griffin
- Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.,MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
35
|
Effect of Adding Losartan to Bevacizumab for Treating Diabetic Macular Edema. J Ophthalmol 2020; 2020:4528491. [PMID: 33062311 PMCID: PMC7547354 DOI: 10.1155/2020/4528491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/21/2020] [Accepted: 08/18/2020] [Indexed: 12/02/2022] Open
Abstract
Introduction Diabetic retinopathy is the most common cause of visual loss and blindness in the age group of 20 to 64 years. This study aimed to evaluate the efficacy of oral Losartan adjuvant therapy in combination with intravitreal injection of Bevacizumab in the treatment of diabetic macular edema. Methods In this randomized clinical trial, 61 eyes of 47 patients with normal blood pressure and diabetic macular edema and nonproliferative diabetic retinopathy were studied. Patients were randomly divided into Losartan (n = 33) and control (n = 28) groups. All patients received 3–6 intravitreal injections of Bevacizumab over 6 months. General examination including blood pressure and glycosylated hemoglobin measurements were performed in all patients. Complete ophthalmologic examination and macular OCT were performed at the first, third, and sixth months of treatment in all patients. Results The mean age of the patients studied was 57.1 ± 7.4 years and 37.7% of the patients were male. There was no significant difference between the two groups in terms of initial visual acuity, central macular thickness, and frequency of injections. There was no significant difference in visual acuity and central macular thickness between the two groups at the first, third, and sixth months of treatment. Age, frequency of injection, and initial macular thickness less than 450 microns were effective in patients' final visual acuity. Conclusion Short-term adjuvant treatment with Losartan in patients with diabetic macular edema and nonproliferative diabetic retinopathy has no greater effect than the standard treatment.
Collapse
|
36
|
Chan TC, Wilkinson Berka JL, Deliyanti D, Hunter D, Fung A, Liew G, White A. The role of reactive oxygen species in the pathogenesis and treatment of retinal diseases. Exp Eye Res 2020; 201:108255. [PMID: 32971094 DOI: 10.1016/j.exer.2020.108255] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) normally play an important physiological role in health regulating cellular processes and signal transduction. The amount of ROS is usually kept in fine balance with the generation of ROS largely being offset by the body's antioxidants. A tipping of this balance has increasingly been recognised as a contributor to human disease. The retina, as a result of its cellular anatomy and physical location, is a potent generator of ROS that has been linked to several major retinal diseases. This review will provide a summary of the role of oxidative stress in the pathogenesis of diabetic retinopathy, age-related macular degeneration, myopia, retinal vein occlusion, retinitis pigmentosa and retinopathy of prematurity. Therapies aimed at controlling oxidative stress in these diseases are also examined.
Collapse
Affiliation(s)
- Thomas Cw Chan
- Discipline of Ophthalmology and Eye Health, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Jennifer L Wilkinson Berka
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Medical Building 181, Grattan Street, Parkville, Victoria, 3010, Australia; Department of Diabetes, The Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Devy Deliyanti
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Medical Building 181, Grattan Street, Parkville, Victoria, 3010, Australia; Department of Diabetes, The Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Damien Hunter
- Discipline of Ophthalmology and Eye Health, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia; Centre for Vision Research, Westmead Institute of Medical Research, New South Wales, Australia
| | - Adrian Fung
- Westmead and Central Clinical Schools, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia; Faculty of Medicine Health and Human Sciences, Macquarie University, New South Wales, Australia; Save Sight Institute, 8 Macquarie St, Sydney, Australia
| | - Gerald Liew
- Discipline of Ophthalmology and Eye Health, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia; Centre for Vision Research, Westmead Institute of Medical Research, New South Wales, Australia
| | - Andrew White
- Discipline of Ophthalmology and Eye Health, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia; Centre for Vision Research, Westmead Institute of Medical Research, New South Wales, Australia; Save Sight Institute, 8 Macquarie St, Sydney, Australia; Personal Eyes, Level 6, 34 Charles St, Parramatta, 2150, Australia.
| |
Collapse
|
37
|
Oxidative Stress and Vascular Dysfunction in the Retina: Therapeutic Strategies. Antioxidants (Basel) 2020; 9:antiox9080761. [PMID: 32824523 PMCID: PMC7465265 DOI: 10.3390/antiox9080761] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Many retinal diseases, such as diabetic retinopathy, glaucoma, and age-related macular (AMD) degeneration, are associated with elevated reactive oxygen species (ROS) levels. ROS are important intracellular signaling molecules that regulate numerous physiological actions, including vascular reactivity and neuron function. However, excessive ROS formation has been linked to vascular endothelial dysfunction, neuron degeneration, and inflammation in the retina. ROS can directly modify cellular molecules and impair their function. Moreover, ROS can stimulate the production of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) causing inflammation and cell death. However, there are various compounds with direct or indirect antioxidant activity that have been used to reduce ROS accumulation in animal models and humans. In this review, we report on the physiological and pathophysiological role of ROS in the retina with a special focus on the vascular system. Moreover, we present therapeutic approaches for individual retinal diseases targeting retinal signaling pathways involving ROS.
Collapse
|
38
|
Martins B, Amorim M, Reis F, Ambrósio AF, Fernandes R. Extracellular Vesicles and MicroRNA: Putative Role in Diagnosis and Treatment of Diabetic Retinopathy. Antioxidants (Basel) 2020; 9:E705. [PMID: 32759750 PMCID: PMC7463887 DOI: 10.3390/antiox9080705] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR) is a complex, progressive, and heterogenous retinal degenerative disease associated with diabetes duration. It is characterized by glial, neural, and microvascular dysfunction, being the blood-retinal barrier (BRB) breakdown a hallmark of the early stages. In advanced stages, there is formation of new blood vessels, which are fragile and prone to leaking. This disease, if left untreated, may result in severe vision loss and eventually legal blindness. Although there are some available treatment options for DR, most of them are targeted to the advanced stages of the disease, have some adverse effects, and many patients do not adequately respond to the treatment, which demands further research. Oxidative stress and low-grade inflammation are closely associated processes that play a critical role in the development of DR. Retinal cells communicate with each other or with another one, using cell junctions, adhesion contacts, and secreted soluble factors that can act in neighboring or long-distance cells. Another mechanism of cell communication is via secreted extracellular vesicles (EVs), through exchange of material. Here, we review the current knowledge on deregulation of cell-to-cell communication through EVs, discussing the changes in miRNA expression profiling in body fluids and their role in the development of DR. Thereafter, current and promising therapeutic agents for preventing the progression of DR will be discussed.
Collapse
Affiliation(s)
- Beatriz Martins
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (B.M.); (M.A.); (F.R.); (A.F.A.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Madania Amorim
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (B.M.); (M.A.); (F.R.); (A.F.A.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Flávio Reis
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (B.M.); (M.A.); (F.R.); (A.F.A.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - António Francisco Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (B.M.); (M.A.); (F.R.); (A.F.A.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| | - Rosa Fernandes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (B.M.); (M.A.); (F.R.); (A.F.A.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| |
Collapse
|
39
|
Liu X, Ma L, Li Z. Effects of renin-angiotensin system blockers on renal and cardiovascular outcomes in patients with diabetic nephropathy: a meta-analysis of randomized controlled trials. J Endocrinol Invest 2020; 43:959-972. [PMID: 31939197 DOI: 10.1007/s40618-020-01179-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/06/2020] [Indexed: 01/13/2023]
Abstract
PURPOSE This study aimed to evaluate the effect f angiotensin-converting enzyme inhibitors (ACEI) and angiotensin receptor blockers (ARB) on renal or cardiovascular outcomes in patients with diabetic nephropathy (DN). METHODS PubMed, Embase, and Cochrane Library were searched for randomized controlled trials (RCTs) evaluating the treatment effects of ACEI and ARB on renal or cardiovascular outcomes in patients with DN until August 2017. The outcomes included end-stage renal disease (ESRD), doubling of serum creatinine levels, all-cause mortality, major cardiovascular events (MACEs), myocardial infarction (MI), stroke, and cardiac death. Relative risks (RR) with 95% confidence intervals (CIs) were used for calculating the summary results using a random-effects model. RESULTS Twenty-four RCTs including 57,818 patients with DN and 891 events of ESRD, 1050 doubling of serum creatinine concentration, 4352 all-cause mortality, 6342 MACEs, 1073 MI, 2900 stroke, and 1674 cardiac deaths were reported. Overall, the summary results suggested that in patients with DN, receiving ACEI did not have a significant effect on ESRD, doubling of serum creatinine levels, all-cause mortality, MI, stroke, and cardiac death, while ACEI significantly reduced the risk of total MACEs. Furthermore, ARB therapy was associated with a low risk of ESRD and doubling of serum creatinine levels, while it did not differ significantly on all-cause mortality, MACEs, MI, stroke, and cardiac death in patients with DN. CONCLUSIONS Patients with DN receiving ACEI had significantly reduced the risk of total MACEs, and ARB could reduce the incidence of ESRD and the doubling of serum creatinine levels.
Collapse
Affiliation(s)
- X Liu
- Department of Nephrology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - L Ma
- Department of Nephrology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Z Li
- Department of Nephrology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
40
|
Elkjaer AS, Lynge SK, Grauslund J. Evidence and indications for systemic treatment in diabetic retinopathy: a systematic review. Acta Ophthalmol 2020; 98:329-336. [PMID: 32100477 DOI: 10.1111/aos.14377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/25/2020] [Indexed: 12/25/2022]
Abstract
Eye screening is mandatory in diabetes, but treatment is only indicated at the sight-threatening stages of diabetic retinopathy (DR). Treatments include intravitreal injections, laser photocoagulation and vitrectomy, which are all invasive options. In order to prevent or delay DR, it is important to investigate earlier, non-invasive managements prior to sight-threatening DR. The aim of this study is to evaluate the effect of systemic treatment on incident and progressive DR. The search in this systematic review was performed in PubMed and Embase using the keywords 'diabetic retinopathy' AND 'systemic therapy'. Two independent researchers identified 619 studies; 26 duplicates were removed, 579 articles were excluded based on title and abstract, and six were removed after full-text assessment. Five articles were added from reference screening, resolving in a total of 13 eligible articles. These were quality-assessed using the Cochrane Risk of Bias tool. Twelve randomized control trials and one follow-up study were included. Intensive glycaemic control (IGC), antihypertensive and lipid-lowering treatments were some of the main interventions tested in the studies. Three studies found statistically significant reduction of progression of DR by IGC, three by antihypertensive, and two by the lipid-lowering drug fenofibrate. Systemic intervention appears important in different stages of DR. While IGC seems effective in relation to incident and progressive DR, antihypertensive treatments may be valuable in the early stages of DR, as opposed to fenofibrate, which could benefit at a later stage.
Collapse
Affiliation(s)
- Anna Sofie Elkjaer
- Department of Ophthalmology Odense University Hospital Odense Denmark
- Research Unit of Ophthalmology Department of Clinical Research University of Southern Denmark Odense Denmark
| | - Sidsel Kirstine Lynge
- Department of Ophthalmology Odense University Hospital Odense Denmark
- Research Unit of Ophthalmology Department of Clinical Research University of Southern Denmark Odense Denmark
| | - Jakob Grauslund
- Department of Ophthalmology Odense University Hospital Odense Denmark
- Research Unit of Ophthalmology Department of Clinical Research University of Southern Denmark Odense Denmark
- Steno Diabetes Center Odense Odense University Hospital Odense Denmark
| |
Collapse
|
41
|
Wanas Y, Bashir R, Islam N, Furuya-Kanamori L. Assessing the risk of angiotensin receptor blockers on major cardiovascular events: a systematic review and meta-analysis of randomized controlled trials. BMC Cardiovasc Disord 2020; 20:188. [PMID: 32316917 PMCID: PMC7175553 DOI: 10.1186/s12872-020-01466-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/05/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Angiotensin receptor blockers (ARBs) are commonly used as a treatment for many cardiovascular diseases, but their safety has been called into question. The VALUE trial found an increased risk of myocardial infarction in participants receiving ARBs compared to other antihypertensive. The aim of the meta-analysis was to synthetize the available evidence of randomised controlled trials (RCTs) and elucidate if ARBs increase the risk of cardiovascular events. METHODS A comprehensive search was conducted to identify RCTs that assessed the safety of ARBs. Titles and abstracts of all papers were independently screened by two authors. Data extraction and quality assessment were also performed independently. The relative risk (RR) of all-cause mortality, myocardial infarction, and stroke were pooled using the IVhet model. Multiple sensitivity analyses were conducted to assess the effect of ARBs by restricting the analysis to different participants' characteristics. RESULTS Forty-five RCTs comprising of 170,794 participants were included in the analysis. The pooled estimates revealed that ARBs do not increase the risk of all-cause mortality (RR 1.00; 95%CI 0.97-1.04), myocardial infarction (RR 1.01; 95%CI 0.96-1.06), and stroke (RR 0.92; 95%CI 0.83-1.01). The sensitivity analysis did not yield a particular group of patients at increased risk of cardiovascular events with ARBs. Risk of all-cause mortality and stroke decreased with ARB when the proportion of smokers in a population was < 25% (RR 0.91; 95%CI 0.84-0.98) and in females (RR 0.76; 95%CI 0.68-0.84), respectively. CONCLUSIONS ARBs do not increase the risk of major cardiovascular events and are safe for use in patients.
Collapse
Affiliation(s)
- Yara Wanas
- Department of Population Medicine, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Rim Bashir
- Department of Population Medicine, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Nazmul Islam
- Department of Public Health, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.
| | - Luis Furuya-Kanamori
- Department of Population Medicine, College of Medicine, QU Health, Qatar University, Doha, Qatar.,Research School of Population Health, ANU College of Health and Medicine, Australian National University, Acton, Australia
| |
Collapse
|
42
|
Abstract
Diabetic retinopathy (DR) is one of the main causes of visual loss in individuals aged 20–64 years old. The aim of this study was to investigate, in a multicenter retrospective cross-sectional study, sex-gender difference in DR in a large sample of type 2 diabetic patients (T2DM). 20,611 T2DM regularly attending the units for the last three years were classified as having: (a) No DR (NDR), (b) nonproliferative DR (NPDR), or (c) preproliferative/proliferative DR (PPDR). DR of all grades was present in 4294 T2DM (20.8%), with a significant higher prevalence in men as compared to women (22.0% vs. 19.3% p < 0.0001). Among DR patients, both NPDR and PPDR were significantly more prevalent in men vs. women (p = 0.001 and p = 0.0016, respectively). Women had similar age and BMI, but longer diabetes duration, worse glycemic metabolic control, and more prevalence of hypertension and chronic renal failure (CRF) of any grade vs. men. No significant differences between sexes were evident in term of drug therapy for diabetes and associate pathologies. Conclusions: In this large sample of T2DM, men show higher prevalence of DR vs. women, in spite of less represented risk factors, suggesting that male sex per se might be a risk factor for DR development.
Collapse
|
43
|
Dambha-Miller H, Day AJ, Strelitz J, Irving G, Griffin SJ. Behaviour change, weight loss and remission of Type 2 diabetes: a community-based prospective cohort study. Diabet Med 2020; 37:681-688. [PMID: 31479535 PMCID: PMC7155116 DOI: 10.1111/dme.14122] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2019] [Indexed: 01/05/2023]
Abstract
AIM To quantify the association between behaviour change and weight loss after diagnosis of Type 2 diabetes, and the likelihood of remission of diabetes at 5-year follow-up. METHOD We conducted a prospective cohort study in 867 people with newly diagnosed diabetes aged 40-69 years from the ADDITION-Cambridge trial. Participants were identified via stepwise screening between 2002 and 2006, and underwent assessment of weight change, physical activity (EPAQ2 questionnaire), diet (plasma vitamin C and self-report), and alcohol consumption (self-report) at baseline and 1 year after diagnosis. Remission was examined at 5 years after diabetes diagnosis via HbA1c level. We constructed log binomial regression models to quantify the association between change in behaviour and weight over both the first year after diagnosis and the subsequent 1-5 years, as well as remission at 5-year follow-up. RESULTS Diabetes remission was achieved in 257 participants (30%) at 5-year follow-up. Compared with people who maintained the same weight, those who achieved ≥ 10% weight loss in the first year after diagnosis had a significantly higher likelihood of remission [risk ratio 1.77 (95% CI 1.32 to 2.38; p<0.01)]. In the subsequent 1-5 years, achieving ≥10% weight loss was also associated with remission [risk ratio 2.43 (95% CI 1.78 to 3.31); p<0.01]. CONCLUSION In a population-based sample of adults with screen-detected Type 2 diabetes, weight loss of ≥10% early in the disease trajectory was associated with a doubling of the likelihood of remission at 5 years. This was achieved without intensive lifestyle interventions or extreme calorie restrictions. Greater attention should be paid to enabling people to achieve weight loss following diagnosis of Type 2 diabetes.
Collapse
Affiliation(s)
- H Dambha-Miller
- Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge School of Clinical Medicine, Institute of Public Health, Cambridge, UK
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
- Primary Care and Population Sciences, University of Southampton, Southampton, UK
| | - A J Day
- Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge School of Clinical Medicine, Institute of Public Health, Cambridge, UK
| | - J Strelitz
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - G Irving
- Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge School of Clinical Medicine, Institute of Public Health, Cambridge, UK
| | - S J Griffin
- Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge School of Clinical Medicine, Institute of Public Health, Cambridge, UK
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Diabetic retinopathy (DR) is the leading cause of vision loss in working-age adults in the developed world. This review discusses the current approach to managing the disease, such as glycemic and blood pressure control, as well as laser photocoagulation, as well as emerging concepts and controversies on novel therapies. RECENT FINDINGS In recent years, the rise of intraocular anti-angiogenesis treatments is changing the paradigm of classic laser photocoagulation in the management of DR, but its long-term benefits remain an area of controversy. We also discuss new targets including anti-inflammation, neuroprotection, and novel laser technologies. Finally, we discuss new advances in retinal imaging that has vastly improved the diagnosis and management of DR. Diagnosis and management of diabetic retinopathy is a rapidly progressing field. Emerging concepts in ophthalmic imaging, medical treatments, and surgical approaches provide insights into how DR management will evolve in the near future.
Collapse
Affiliation(s)
- Michael Patrick Ellis
- Department of Ophthalmology and Vision Science, University of California Davis, 4860 Y Street Suite 2400, Sacramento, CA, 95817, USA
| | - Daniella Lent-Schochet
- Department of Ophthalmology and Vision Science, University of California Davis, 4860 Y Street Suite 2400, Sacramento, CA, 95817, USA
- California Northstate University College of Medicine, 9700 W Taron Drive, Elk Grove, CA, 95757, USA
| | - Therlinder Lo
- Department of Ophthalmology and Vision Science, University of California Davis, 4860 Y Street Suite 2400, Sacramento, CA, 95817, USA
- University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557-0357, USA
| | - Glenn Yiu
- Department of Ophthalmology and Vision Science, University of California Davis, 4860 Y Street Suite 2400, Sacramento, CA, 95817, USA.
| |
Collapse
|
45
|
Allingham MJ, Mettu PS, Cousins SW. Aldosterone as a mediator of severity in retinal vascular disease: Evidence and potential mechanisms. Exp Eye Res 2019; 188:107788. [PMID: 31479654 PMCID: PMC6802292 DOI: 10.1016/j.exer.2019.107788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/30/2019] [Indexed: 12/27/2022]
Abstract
Diabetic retinopathy (DR) and retinal vein occlusion (RVO) are the two most common retinal vascular diseases and are major causes of vision loss and blindness worldwide. Recent and ongoing development of medical therapies including anti-vascular endothelial growth factor and corticosteroid drugs for treatment of these diseases have greatly improved the care of afflicted patients. However, severe manifestations of retinal vascular disease result in persistent macular edema, progressive retinal ischemia and incomplete visual recovery. Additionally, choroidal vascular diseases including neovascular age-related macular degeneration (NVAMD) and central serous chorioretinopathy (CSCR) cause vision loss for which current treatments are incompletely effective in some cases and highly burdensome in others. In recent years, aldosterone has gained attention as a contributor to the various deleterious effects of retinal and choroidal vascular diseases via a variety of mechanisms in several retinal cell types. The following is a review of the role of aldosterone in retinal and choroidal vascular diseases as well as our current understanding of the mechanisms by which aldosterone mediates these effects.
Collapse
Affiliation(s)
- Michael J Allingham
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, United States.
| | - Priyatham S Mettu
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, United States
| | - Scott W Cousins
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
46
|
Fu X, Ou B. miR-152/LIN28B axis modulates high-glucose-induced angiogenesis in human retinal endothelial cells via VEGF signaling. J Cell Biochem 2019; 121:954-962. [PMID: 31609010 DOI: 10.1002/jcb.28978] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/27/2019] [Accepted: 04/11/2019] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy (DR) is a serious complication of diabetes contributing to blindness in patients. Inhibiting retinal neovascularization is a potent strategy for diabetic retinopathy treatment. Reportedly, the stable expression of lin-28 homolog B (LIN28B), a member of the highly conserved RNA-binding protein LIN28 family, could promote vascular endothelial growth factor (VEGF) expression; herein, we investigated the role and mechanism of LIN28B in diabetic retinopathy progression from the perspective of microRNA (miRNA) regulation. We identified miR-152 as a miRNA that may target the LIN28B 3'-untranslated region and can be significantly downregulated under high-glucose (HG) condition. The expression of miR-152 was remarkably suppressed, whereas the expression of LIN28B was significantly increased under HG condition within both human retinal endothelial cells (hRECs) and retinal microvascular endothelial cell line (hRMECs). miR-152 overexpression significantly suppressed, while LIN28B overexpression promoted the angiogenesis and the protein levels of proangiogenesis factors in both hRECs and hRMECs. More importantly, LIN28B overexpression could remarkably attenuate the effect of miR-152 overexpression. In summary, miR-152 overexpression could inhibit HG-induced angiogenesis in both hRECs and hRMECs via targeting LIN28B and suppressing VEGF signaling. Further, in vivo experiments are needed for the application of miR-152/LIN28B axis in the treatment for diabetic retinopathy.
Collapse
Affiliation(s)
- Xiaolin Fu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Ophthalmology, Hainan Western Central Hospital, Danzhou, Hainan, China
| | - Bo Ou
- Department of Ophthalmology, Hainan General Hospital, Haikou, Hainan, China
| |
Collapse
|
47
|
Liu X, Pan G. Roles of Drug Transporters in Blood-Retinal Barrier. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:467-504. [PMID: 31571172 PMCID: PMC7120327 DOI: 10.1007/978-981-13-7647-4_10] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Blood-retinal barrier (BRB) includes inner BRB (iBRB) and outer BRB (oBRB), which are formed by retinal capillary endothelial (RCEC) cells and by retinal pigment epithelial (RPE) cells in collaboration with Bruch's membrane and the choriocapillaris, respectively. Functions of the BRB are to regulate fluids and molecular movement between the ocular vascular beds and retinal tissues and to prevent leakage of macromolecules and other potentially harmful agents into the retina, keeping the microenvironment of the retina and retinal neurons. These functions are mainly attributed to absent fenestrations of RCECs, tight junctions, expression of a great diversity of transporters, and coverage of pericytes and glial cells. BRB existence also becomes a reason that systemic administration for some drugs is not suitable for the treatment of retinal diseases. Some diseases (such as diabetes and ischemia-reperfusion) impair BRB function via altering tight junctions, RCEC death, and transporter expression. This chapter will illustrate function of BRB, expressions and functions of these transporters, and their clinical significances.
Collapse
Affiliation(s)
- Xiaodong Liu
- grid.254147.10000 0000 9776 7793School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu China
| | - Guoyu Pan
- grid.9227.e0000000119573309Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, Shanghai China
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW To introduce recent advances in the understanding of diabetic retinopathy and to summarize current and emerging strategies to treat this common and complex cause of vision loss. RECENT FINDINGS Advances in retinal imaging and functional analysis indicate that retinal vascular and neural pathologies exist long before the development of clinically visible retinopathy. Such diagnostics could facilitate risk stratification and selective early intervention in high-risk patients. Antagonists of the vascular endothelial growth factor pathway effectively reduce vision loss in diabetes and promote regression of disease severity. Promising new strategies to treat diabetic retinopathy involve novel systemic diabetes therapy and ocular therapies that antagonize angiogenic growth factor signaling, improve blood-retina barrier function and neurovascular coupling, modulate neuroretinal metabolism, or provide neuroprotection. Long considered a pure microvasculopathy, diabetic retinopathy in fact affects the neural and vascular retina as well as neurovascular communication. Emerging therapies include those that target neuroretinal dysfunction in addition to those modulating vascular biology.
Collapse
Affiliation(s)
- Avinash Honasoge
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Ave. 8096, St. Louis, MO, 63108, USA
| | - Eric Nudleman
- Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA
| | - Morton Smith
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Ave. 8096, St. Louis, MO, 63108, USA
| | - Rithwick Rajagopal
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Ave. 8096, St. Louis, MO, 63108, USA.
| |
Collapse
|
49
|
Verma A, Zhu P, de Kloet A, Krause E, Sumners C, Li Q. Angiotensin receptor expression revealed by reporter mice and beneficial effects of AT2R agonist in retinal cells. Exp Eye Res 2019; 187:107770. [PMID: 31449794 DOI: 10.1016/j.exer.2019.107770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/08/2019] [Accepted: 08/17/2019] [Indexed: 02/08/2023]
Abstract
The renin-angiotensin system (RAS) plays a vital role in cardiovascular physiology and body homeostasis. In addition to circulating RAS, a local RAS exists in the retina. Dysfunction of local RAS, resulting in increased levels of Angiotensin II (Ang II) and activation of AT1R-mediated signaling pathways, contributes to tissue pathophysiology and end-organ damage. Activation of AT2R on other hand is known to counteract the effects of AT1R activation and produce anti-inflammatory and anti-oxidative effects. We examined the expression of angiotensin receptors in the retina by using transgenic dual reporter mice and by real-time RT-PCR. We further evaluated the effects of C21, a selective agonist of AT2R, in reducing Ang II, lipopolysaccharide (LPS) and hydrogen peroxide induced oxidative stress and inflammatory responses in cultured human ARPE-19 cells. We showed that both AT1Ra and AT2R positive cells are detected in different cell types of the eye, including the RPE/choroid complex, ciliary body/iris, and neural retina. AT1Ra is more abundantly expressed than AT2R in mouse retina, consistent with previous reports. In the neural retina, AT1Ra are also detected in photoreceptors whereas AT2R are mostly expressed in the inner retinal neurons and RGCs. In cultured human RPE cells, activation of AT2R with C21 significantly blocked Ang II, LPS and hydrogen peroxide -induced NF-κB activation and inflammatory cytokine expression; Ang II and hydrogen peroxide-induced reactive oxygen species (ROS) production and MG132-induced apoptosis, comparable to the effects of Angiotensin-(1-7) (Ang-(1-7)), another protective component of the RAS, although C21 is more potent in reducing some of the effects induced by Ang II, whereas Ang-(1-7) is more effective in reducing some of the LPS and hydrogen peroxide-induced effects. These results suggest that activation of AT2R may represent a new therapeutic approach for retinal diseases.
Collapse
Affiliation(s)
- Amrisha Verma
- Departments of Ophthalmology, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Ping Zhu
- Departments of Ophthalmology, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Annette de Kloet
- Physiology & Functional Genomics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Eric Krause
- College of Medicine, Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Colin Sumners
- Physiology & Functional Genomics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Qiuhong Li
- Departments of Ophthalmology, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
50
|
Wilkinson-Berka JL, Suphapimol V, Jerome JR, Deliyanti D, Allingham MJ. Angiotensin II and aldosterone in retinal vasculopathy and inflammation. Exp Eye Res 2019; 187:107766. [PMID: 31425690 DOI: 10.1016/j.exer.2019.107766] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
Abstract
Angiotensin II and aldosterone are the main effectors of the renin-angiotensin aldosterone system (RAAS) and have a central role in hypertension as well as cardiovascular and renal disease. The localization of RAAS components within the retina has led to studies investigating the roles of angiotensin II, aldosterone and the counter regulatory arm of the pathway in vision-threatening retinopathies. This review will provide a brief overview of RAAS components as well as the vascular pathology that develops in the retinal diseases, retinopathy of prematurity, diabetic retinopathy and neovascular age-related macular degeneration. The review will discuss pre-clinical and clinical evidence that modulation of the RAAS alters the development of vasculopathy and inflammation in the aforementioned retinopathies, as well as the emerging role of aldosterone and the mineralocorticoid receptor in central serous chorioretinopathy.
Collapse
Affiliation(s)
- Jennifer L Wilkinson-Berka
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia; Department of Diabetes, The Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Varaporn Suphapimol
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia; Department of Diabetes, The Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jack R Jerome
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia; Department of Diabetes, The Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Devy Deliyanti
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia; Department of Diabetes, The Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | | |
Collapse
|