1
|
Cao L, Dong X, Chen F, Li G, Fang J, Han Z, Wang J. Increased Plasma Pyruvate Kinase M2 (PK-M2) in Heart Failure: A Novel Biomarker Related to Cardiac Function and its Clinical Implications. J Am Heart Assoc 2025; 14:e036170. [PMID: 39817549 DOI: 10.1161/jaha.124.036170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 11/15/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND The purpose of this study was to investigate whether circulating pyruvate kinase M2 (PK-M2) levels are elevated in the peripheral blood and to assess their association with diagnosis and prognosis in patients with heart failure (HF). METHODS AND RESULTS We conducted a prospective investigation involving 222 patients with HF and 103 control subjects, measuring PK-M2 concentrations using ELISA. The primary outcome, assessed over a median follow-up of 2 years (interquartile range: 776 to 926 days), was the time to the first occurrence of either rehospitalization for worsening HF or cardiovascular death. Patients with HF had higher PK-M2 levels than controls (17.4±4.1 versus 7.8±2.3 U/mL, P <0.001), and these levels correlated with HF severity (New York Heart Association cardiac function class). Patients with reduced left ventricular ejection fraction had higher PK-M2 concentrations than those with preserved ejection fraction (18.3±4.5 versus 16.7±3.6 U/mL, P <0.01). In a subset of patients with HF (n=52), PK-M2 levels significantly decreased following standardized HF treatment (mean difference, -4.3±0.5 U/mL, P <0.001). A high PK-M2 level had a 1.913-fold higher risk of the primary outcome (P=0.033) after adjusting for multiple cardiovascular risk factors, but not with cardiovascular death. Additionally, PK-M2 added incremental prognostic value beyond clinical predictors and N-terminal pro-brain natriuretic peptide (P <0.05). CONCLUSIONS Elevated PK-M2 levels are associated with primary outcomes and rehospitalization for worsening heart failure in patients with HF. These findings suggest that PK-M2 is a potential biomarker for HF diagnosis and prognosis, warranting consideration for serial patient assessment.
Collapse
Affiliation(s)
- Lu Cao
- Department of Cardiology The First Affiliated Hospital of Nanjing Medical University Nanjing China
- Department of Cardiology Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Xiaoyu Dong
- Department of Cardiology The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Fuzhong Chen
- Department of Cardiology The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Guangjuan Li
- Department of Cardiology The First Affiliated Hospital of Nanjing Medical University Nanjing China
- Department of Cardiology The Friendship Hospital of Ili Kazak Autonomous Prefecture Yining China
| | - Jiale Fang
- Department of Cardiology The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Zhijun Han
- Department of Clincal Research Center Jiangnan University Medical Center Wuxi Jiangsu Province China
| | - Junhong Wang
- Department of Cardiology The First Affiliated Hospital of Nanjing Medical University Nanjing China
- Department of Cardiology Liyang People's Hospital Liyang China
| |
Collapse
|
2
|
Zhang G, Sun X, Zhang D, Zhang X, Yu K. SerpinA3 Promotes Myocardial Infarction in Rat and Cell-based Models. Mol Biotechnol 2025; 67:92-103. [PMID: 38006519 DOI: 10.1007/s12033-023-00982-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
This study aimed to examine the role and molecular mechanism of the nuclear factor κB (NFκB)/serine protease inhibitor A3 (SerpinA3) interaction in myocardial ischemia-reperfusion (IR) injury. First, a rat model for myocardial ischemia-reperfusion injury was established, using 2,3,5-triphenyltetrazolium chloride to measure the size of the myocardial infarction. Pathological variations in myocardial tissue were detected using hematoxylin-eosin staining. Flow cytometry and terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining were used to measure cell death in the rat model. The SerpinA3 mRNA and protein expressions in the myocardium of IR-model rats were remarkably higher than those in the control group. Furthermore, the oxidative, inflammatory, and apoptotic activities of the myocardial tissue of SerpinA3-knockdown (KD) rats were significantly improved compared to those in the WT group. SerpinA3-KD also contributed to the recovery of cardiac function in IR-model rats. Additionally, silencing of SerpinA3 inhibited p65 phosphorylation in myocardial tissues and reduced H2O2-induced inflammation, oxidative stress, and apoptosis in myocardial cells. The expression of SerpinA3 increased in myocardial tissue after IR stimulation. Knockdown of SerpinA3 can deactivate NF-κB and reduce inflammation, oxidative stress, and apoptosis in vivo and in vitro, thereby lessening myocardial injury caused by IR. In conclusion, SerpinA3 promotes myocardial infarction in rat and cell-based models by activating NF-κB. However, the mechanism by which increased Serpina3 expression causes downstream NF-κB activation to mediate the proposed, pathological effects in myocardial IR injury remain untested and worthy of future investigations.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1, Huanghe Xi Lu, Huaiyin District, Huaian City, 223300, Jiangsu Province, China
| | - Xiaofeng Sun
- Department of Pediatric, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Dongying Zhang
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1, Huanghe Xi Lu, Huaiyin District, Huaian City, 223300, Jiangsu Province, China
| | - Xiwen Zhang
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1, Huanghe Xi Lu, Huaiyin District, Huaian City, 223300, Jiangsu Province, China
| | - Kun Yu
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1, Huanghe Xi Lu, Huaiyin District, Huaian City, 223300, Jiangsu Province, China.
| |
Collapse
|
3
|
Gouveia M, Schmidt C, Basilio PG, Aveiro SS, Domingues P, Xia K, Colón W, Vitorino R, Ferreira R, Santos M, Vieira SI, Ribeiro F. Exercise training decreases the load and changes the content of circulating SDS-resistant protein aggregates in patients with heart failure with reduced ejection fraction. Mol Cell Biochem 2024; 479:2711-2722. [PMID: 37902886 PMCID: PMC11455743 DOI: 10.1007/s11010-023-04884-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/15/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Heart failure (HF) often disrupts the protein quality control (PQC) system leading to protein aggregate accumulation. Evidence from tissue biopsies showed that exercise restores PQC system in HF; however, little is known about its effects on plasma proteostasis. AIM To determine the effects of exercise training on the load and composition of plasma SDS-resistant protein aggregates (SRA) in patients with HF with reduced ejection fraction (HFrEF). METHODS Eighteen patients with HFrEF (age: 63.4 ± 6.5 years; LVEF: 33.4 ± 11.6%) participated in a 12-week combined (aerobic plus resistance) exercise program (60 min/session, twice per week). The load and content of circulating SRA were assessed using D2D SDS-PAGE and mass spectrometry. Cardiorespiratory fitness, quality of life, and circulating levels of high-sensitive C-reactive protein, N-terminal pro-B-type natriuretic peptide (NT-proBNP), haptoglobin and ficolin-3, were also evaluated at baseline and after the exercise program. RESULTS The exercise program decreased the plasma SRA load (% SRA/total protein: 38.0 ± 8.9 to 36.1 ± 9.7%, p = 0.018; % SRA/soluble fraction: 64.3 ± 27.1 to 59.8 ± 27.7%, p = 0.003). Plasma SRA of HFrEF patients comprised 31 proteins, with α-2-macroglobulin and haptoglobin as the most abundant ones. The exercise training significantly increased haptoglobin plasma levels (1.03 ± 0.40 to 1.11 ± 0.46, p = 0.031), while decreasing its abundance in SRA (1.83 ± 0.54 × 1011 to 1.51 ± 0.59 × 1011, p = 0.049). Cardiorespiratory fitness [16.4(5.9) to 19.0(5.2) ml/kg/min, p = 0.002], quality of life, and circulating NT-proBNP [720.0(850.0) to 587.0(847.3) pg/mL, p = 0.048] levels, also improved after the exercise program. CONCLUSION Exercise training reduced the plasma SRA load and enhanced PQC, potentially via haptoglobin-mediated action, while improving cardiorespiratory fitness and quality of life of patients with HFrEF.
Collapse
Affiliation(s)
- Marisol Gouveia
- Department of Medical Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, Building 30, Agras do Crasto - Campus Universitário de Santiago, Aveiro, 3810-193, Portugal.
| | - Cristine Schmidt
- Surgery and Physiology Department, Faculty of Medicine, University of Porto, Porto, Portugal
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Priscilla Gois Basilio
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - Susana S Aveiro
- Mass Spectrometry Centre, Department of Chemistry, LAQV REQUIMTE, University of Aveiro, Aveiro, Portugal
- GreenCoLab - Green Ocean Association, University of Algarve, Faro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, Department of Chemistry, LAQV REQUIMTE, University of Aveiro, Aveiro, Portugal
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA
- Centre for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Wilfredo Colón
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA
- Centre for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Rui Vitorino
- Department of Medical Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, Building 30, Agras do Crasto - Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
- Surgery and Physiology Department, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rita Ferreira
- Department of Chemistry, QOPNA & LAQV-REQUIMTE, University of Aveiro, Aveiro, Portugal
| | - Mário Santos
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Serviço de Cardiologia, Hospital Santo António, Centro Hospitalar Universitário do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, UMIB, University of Porto, Porto, Portugal
| | - Sandra I Vieira
- Department of Medical Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, Building 30, Agras do Crasto - Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Fernando Ribeiro
- School of Health Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
4
|
Sugiura T, Shahannaz DC, Ferrell BE. Current Status of Cardiac Regenerative Therapy Using Induced Pluripotent Stem Cells. Int J Mol Sci 2024; 25:5772. [PMID: 38891960 PMCID: PMC11171475 DOI: 10.3390/ijms25115772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Heart failure (HF) is a life-threatening disorder and is treated by drug therapies and surgical interventions such as heart transplantation and left ventricular assist device (LVAD). However, these treatments can lack effectiveness in the long term and are associated with issues such as donor shortage in heart transplantation, and infection, stroke, or gastrointestinal bleeding in LVADs. Therefore, alternative therapeutic strategies are still needed. In this respect, stem cell therapy has been introduced for the treatment of HF and numerous preclinical and clinical studies are employing a range of stem cell varieties. These stem cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have been shown to improve cardiac function and attenuate left ventricular remodeling. IPSCs, which have a capacity for unlimited proliferation and differentiation into cardiomyocytes, are a promising cell source for myocardial regeneration therapy. In this review, we discuss the following topics: (1) what are iPSCs; (2) the limitations and solutions for the translation of iPSC-CMs practically; and (3) the current therapeutic clinical trials.
Collapse
Affiliation(s)
- Tadahisa Sugiura
- Department of Cardiothoracic and Vascular Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, New York, NY 10467, USA; (D.C.S.); (B.E.F.)
| | | | | |
Collapse
|
5
|
Zheng X, Su F, Lei M, Li J, Zhang C, Zhang Y, Wei M, Li W, Chen S, Liu Y, Gao Q, Hao L. The novel peptide athycaltide-1 attenuates Ang II-induced pathological myocardial hypertrophy by reducing ROS and inhibiting the activation of CaMKII and ERK1/2. Eur J Pharmacol 2023; 957:175969. [PMID: 37567457 DOI: 10.1016/j.ejphar.2023.175969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Pathological myocardial hypertrophy initially develops as an adaptive response to cardiac stress, which can be induced by many diseases. It is accompanied by adverse cardiovascular events, including heart failure, arrhythmias, and death. The purpose of this research was to explore the molecular mechanism of a novel peptide Athycaltide-1 (ATH-1) in the treatment of Ang II-induced pathological myocardial hypertrophy. In this study, the mRNA of Control group, Ang II group, ATH-1 group and Losartan group mice were sequenced by high-throughput sequencing technology. The results showed that the differentially expressed genes (DEGs) were significantly enriched in cell response to oxidative stress, regulation of reactive oxygen species metabolism and calmodulin binding. Then, the oxidation level of mouse hearts and H9c2 cardiomyocytes in each group and the expression of key proteins of CaMKII/HDAC/MEF2C and ERK1/2 signaling pathways were detected to preliminarily verify the positive effect of ATH-1. At the same time, the effect of ATH-1 was further determined by adding reactive oxygen species (ROS) inhibitor N-acetylcysteine (NAC) and CaMKII inhibitor AIP in vitro. The results showed that ATH-1 could significantly reduce the level of oxidative stress in hypertrophic cardiomyocytes and inhibiting the activation of CaMKII and ERK1/2.
Collapse
Affiliation(s)
- Xi Zheng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China; Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Fuxiang Su
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China; Department of Cardiology, Shengjing Hospital, China Medical University, Shenyang, 110000, China
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research of Southwest Medical University, Luzhou, 64600, China
| | - Jingyuan Li
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China; Department of Clinical Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Chenyang Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yujia Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ming Wei
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wei Li
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Sichong Chen
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yunzhu Liu
- Department of Emergency, The First Hospital of China Medical University, Shenyang, 110002, China
| | - Qinghua Gao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China; Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China.
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
6
|
Zhang Y, Wang Y, Li J, Li C, Liu W, Long X, Wang Z, Zhao R, Ge J, Shi B. ANNEXIN A2 FACILITATES NEOVASCULARIZATION TO PROTECT AGAINST MYOCARDIAL INFARCTION INJURY VIA INTERACTING WITH MACROPHAGE YAP AND ENDOTHELIAL INTEGRIN Β3. Shock 2023; 60:573-584. [PMID: 37832154 DOI: 10.1097/shk.0000000000002198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
ABSTRACT Cardiac macrophages with different polarization phenotypes regulate ventricular remodeling and neovascularization after myocardial infarction (MI). Annexin A2 (ANXA2) promotes macrophage polarization to the repair phenotype and regulates neovascularization. However, whether ANXA2 plays any role in post-MI remodeling and its underlying mechanism remains obscure. In this study, we observed that expression levels of ANXA2 were dynamically altered in mouse hearts upon MI and peaked on the second day post-MI. Using adeno-associated virus vector-mediated overexpression or silencing of ANXA2 in the heart, we also found that elevation of ANXA2 in the infarcted myocardium significantly improved cardiac function, reduced cardiac fibrosis, and promoted peri-infarct angiogenesis, compared with controls. By contrast, reduction of cardiac ANXA2 exhibited opposite effects. Furthermore, using in vitro coculture system, we found that ANXA2-engineered macrophages promoted cardiac microvascular endothelial cell (CMEC) proliferation, migration, and neovascularization. Mechanistically, we identified that ANXA2 interacted with yes-associated protein (YAP) in macrophages and skewed them toward pro-angiogenic phenotype by inhibiting YAP activity. In addition, ANXA2 directly interacted with integrin β3 in CMECs and enhanced their growth, migration, and tubule formation. Our results indicate that increased expression of ANXA2 could confer protection against MI-induced injury by promoting neovascularization in the infarcted area, partly through the inhibition of YAP in macrophages and activation of integrin β3 in endothelial cells. Our study provides new therapeutic strategies for the treatment of MI injury.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Yan Wang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Jiao Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Weiwei Liu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Xianping Long
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Zhenglong Wang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| |
Collapse
|
7
|
Røsjø H, Meessen J, Ottesen AH, Latini R, Omland T. Prognostic value of secretoneurin in chronic heart failure. Data from the GISSI-Heart Failure trial. Clin Biochem 2023:110595. [PMID: 37277028 DOI: 10.1016/j.clinbiochem.2023.110595] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Circulating secretoneurin (SN) concentrations have been found to provide prognostic information in patients with acute heart failure. We wanted to assess whether SN would improve prognostication also in patients with chronic heart failure (HF) in a large multicenter trial. METHODS We measured plasma SN concentrations at randomization (n=1224) and after 3 months (n=1103) in patients with chronic, stable HF from the GISSI-HF study. The co-primary endpoints were (1) time to death or (2) admission to hospital for cardiovascular reasons. RESULTS Mean age was 67 years and 80% were male. Median (quartile 1-3) SN concentrations were 42.6 (35.0-62.8) pmol/L on randomization and 42.0 (34.5-53.1) pmol/L after 3 months, which are higher than SN concentrations in healthy subjects. Higher SN concentrations at randomization were associated with lower body-mass index (BMI), lower systolic blood pressure, lower estimated glomerular filtration rate (eGFR), higher B-type natriuretic peptide (BNP) concentrations, and diagnosis of chronic obstructive pulmonary disease. During median follow-up of 3.9 years, 344 patients (27.0%) died. After adjusting for age, sex, left ventricular ejection fraction, BMI, functional class, ischemic etiology, heart rate, blood pressure, eGFR, bilirubin, comorbidities, and BNP concentrations, logarithmically transformed SN concentrations on randomization were associated with mortality (HR 2.60 (95% CI 1.01-6.70), p=0.047). SN concentrations were also associated with admission to hospital for cardiovascular reasons, but the association was attenuated and no longer significant in multivariable analysis. CONCLUSION Plasma SN concentrations provided incremental prognostic information to established risk indices and biomarkers in a large cohort of chronic HF patients.
Collapse
Affiliation(s)
- Helge Røsjø
- Division of Research and Innovation, Akershus University Hospital, Lorenskog, Norway; K. G. Jebsen Center for Cardiac Biomarkers, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jennifer Meessen
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Anett Hellebø Ottesen
- Division of Research and Innovation, Akershus University Hospital, Lorenskog, Norway; K. G. Jebsen Center for Cardiac Biomarkers, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Roberto Latini
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Torbjørn Omland
- K. G. Jebsen Center for Cardiac Biomarkers, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cardiology, Division of Medicine, Akershus University Hospital, Lorenskog, Norway.
| |
Collapse
|
8
|
Cui H, Han S, Dai Y, Xie W, Zheng R, Sun Y, Xia X, Deng X, Cao Y, Zhang M, Shang H. Gut microbiota and integrative traditional Chinese and western medicine in prevention and treatment of heart failure. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154885. [PMID: 37302262 DOI: 10.1016/j.phymed.2023.154885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND Heart failure (HF) is the terminal stage of multiple cardiovascular diseases, with high mortality and morbidity. More and more studies have proved that gut microbiota may play a role in the process of HF, which is expected to become a new therapeutic target. The combination of traditional Chinese and Western medicine has vast therapeutic potential of complementation against HF. PURPOSE This manuscript expounds on the research progress of mechanisms of gut microbiota participating in the occurrence and prognosis of HF and the role of integrative traditional Chinese and Western medicine from 1987 to 2022. The combination of traditional Chinese and Western medicine in the prevention and treatment of HF from the perspective of gut microbiota has been discussed. METHODS Studies focusing on the effects and their mechanisms of gut microbiota in HF and the role of integrative traditional Chinese and Western medicine were identified and summarized, including contributions from February 1987 until August 2022. The investigation was carried out in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. We searched PubMed, Embase, Cochrane Library, CNKI, Wanfang, and VIP databases up to April 2023 by using the relevant keywords and operators. RESULTS A total of 34 articles were finally included in this review.16 RCTs and 13 basic researches, and 3 clinical research studies involving 7 relevant outcome indicators(cardiac function evaluation index, changes in gut microbiota, inflammatory factors, metabolites of gut microbiota, serum nutritional index protein, quality of life score, intestinal permeability and all-cause mortality). Compared with healthy controls, serum TNF-α and TMAO levels were significantly higher in patients with heart failure [MD = 5.77, 95%CI(4.97, 6.56), p < 0.0001; SMD = 1.92, 95%CI(1.70, 2.14), p < 0.0001]. Escherichia coli and Thick-walled bacteria increased significantly [SMD = -0.99, 95%CI(-1.38, -0.61), p < 0.0001, SMD = 2.58, 95%CI(2.23, 2.93), p < 0.0001];The number of bacteroides and lactobacillus decreased [SMD = -2.29, 95%CI(-2.54, -2.04), p < 0.0001; SMD = -1.55, 95%CI(-1.8, -1.3), p < 0.0001]. There was no difference in bifidobacterium [SMD = 0.16, 95%CI(-0.22, 0.54), p = 0.42]. In the published literature, it is not difficult to see that most of the results are studied and proved based on animal experiments or clinical trials, involving the cellular level, while the mechanism and mode of action of the molecular biology of traditional Chinese medicine are less elaborated, which is related to the characteristics of multi-components and multi-targets of traditional Chinese medicine. The above are the shortcomings of published literature, which can also be the direction of future research. CONCLUSION Heart failure patients have decreased beneficial bacteria such as Bacillus mimics and Lactobacillus in the intestinal flora and increased harmful flora like thick-walled flora. And increase the inflammatory response of the body and the expression of trimethylamine oxide (TMAO) in the serum. And The prevention and treatment of integrative traditional Chinese and Western medicine against heart failure based on gut microbiota and its metabolites is a promising research direction.
Collapse
Affiliation(s)
- Herong Cui
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China; School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Songjie Han
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yanan Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wei Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rui Zheng
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yang Sun
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiaofeng Xia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaopeng Deng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yaru Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mei Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
9
|
Kang H, Jiang W. β-catenin ameliorates myocardial infarction by preventing YAP-associated apoptosis. Clinics (Sao Paulo) 2023; 78:100189. [PMID: 37015185 PMCID: PMC10757297 DOI: 10.1016/j.clinsp.2023.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/30/2023] [Accepted: 03/02/2023] [Indexed: 04/04/2023] Open
Abstract
OBJECTIVE To explore whether the effect of β-catenin on MI and MI-induced cardiomyocyte apoptosis is YAP-dependent. METHODS The authors established an MI rat model by ligating the anterior descending branch of the left coronary artery, and an MI cell model by treating cardiomyocytes with H2O2. RESULTS β-catenin downregulation was observed in MI cardiac tissues and in H2O2-treated cardiomyocytes. Lentiviral-CTNNB1 was administered to MI rats to upregulate β-catenin expression in MI cardiac tissue. β-catenin recovery reduced the myocardial infarct area, fibrosis, and apoptotic cell death in MI rats. H2O2 treatment attenuated cell viability and induced cell death in cardiomyocytes, whereas β-catenin overexpression partially reversed these changes. Moreover, H2O2 treatment caused the deactivation of Yes-Associated Protein (YAP), as detected by increased YAP phosphorylation and reduced the nuclear localization of YAP. Upregulation of β-catenin expression reactivated YAP in H2O2-treated cardiomyocytes. Reactivation of YAP was achieved by administration of Mitochonic Acid-5 (MA-5) to H2O2-treated cardiomyocytes, and deactivation of YAP by CIL56 treatment in β-catenin-overexpressing H2O2-treated cardiomyocytes. MA-5 administration increased cell viability and repressed apoptosis in H2O2-treated cardiomyocytes, whereas CIL56 treatment counteracted the effects of β-catenin overexpression on cell survival and apoptosis. CONCLUSIONS The present data indicate that β-catenin and YAP are effective treatment targets for MI, blocking the apoptotic death of cardiomyocytes.
Collapse
Affiliation(s)
- Haofei Kang
- Department of Cardiovascular Medicine, Yantaishan Hospital, Yantai, China
| | - Weiwei Jiang
- Department of Cardiovascular Medicine, The 970th Hospital of the Joint Logistic Support Force of the People's Liberation Army, Yantai, China.
| |
Collapse
|
10
|
Saati-Zarei A, Damirchi A, Tousi SMTR, Babaei P. Myocardial angiogenesis induced by concurrent vitamin D supplementation and aerobic-resistance training is mediated by inhibiting miRNA-15a, and miRNA-146a and upregulating VEGF/PI3K/eNOS signaling pathway. Pflugers Arch 2023; 475:541-555. [PMID: 36689014 DOI: 10.1007/s00424-023-02788-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/01/2022] [Accepted: 11/24/2022] [Indexed: 01/24/2023]
Abstract
This study aimed to investigate the effects of co-treatment of aerobic-resistance training (ART), vitamin D3 (VD3) on cardiovascular function considering the involvement of microRNA-15a and microRNA-146a, vascular endothelial growth factor (VEGF), phosphatidylinositol-3 kinase (PI3K), and endothelial nitric oxide synthase (eNOS) after myocardial infarction (MI) in rats. To induce MI, male Wistar rats subcutaneously received isoproterenol for 2 days, then MI was confirmed by echocardiography. MI rats were divided into six groups (n = 8/group). MI + VD3, MI + sesame oil (Veh), MI + ART, MI + VD3 + ART, and MI + Veh + ART, and received the related treatments for 8 weeks. Exercise tests, echocardiography, real-time quantitative polymerase chain reaction (qRT-PCR), western blotting, and histological staining were performed after the end of treatments. The highest ejection fraction (EF%), fractional shortening (FS%), exercise capacity (EC), and maximal load test (MLT) amounts were observed in the groups treated with VD3, ART, and VD3 + ART (P < 0.05). These were accompanied by a significantly increased angiogenesis post-MI. Furthermore, the levels of circulating microRNA-15a and microRNA-146a were significantly decreased in these groups compared to MI rats that were together with a significant upregulation of cardiac VEGF, PI3K, and eNOS expression. Overall, the best results were observed in the group treated with VD3 + ART. Concurrent VD3 supplementation and ART attenuated microRNA-15a and microRNA-146a and induced angiogenesis via VEGF/PI3K/eNOS axis. This data demonstrate that concurrent VD3 supplementation and ART is a more efficient strategy than monotherapy to improve cardiac function post-MI.
Collapse
Affiliation(s)
- Alireza Saati-Zarei
- Department of Sport Physiology, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran
| | - Arsalan Damirchi
- Department of Sport Physiology, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran
| | - Seyed Mohammad Taghi Razavi Tousi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.,Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parvin Babaei
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran. .,Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht , Iran. .,Department of Physiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
11
|
Sun J, Ge Y, Chao T, Bai R, Wang C. The Role of miRNA in the Regulation of Angiogenesis in Ischemic Heart Disease. Curr Probl Cardiol 2023; 48:101637. [PMID: 36773949 DOI: 10.1016/j.cpcardiol.2023.101637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
Despite continued improvements in primary prevention and treatment, ischemic heart disease (IHD) is the most common cause of mortality in both developing and developed countries. Promoting angiogenesis and reconstructing vascular network in ischemic myocardium are critical process of postischemic tissue repair. Effective strategies to promote survival and avoid apoptosis of endothelial cells in the ischemic myocardium can help to achieve long-term cardiac angiogenesis. Therefore, it is of great importance to investigate the molecular pathophysiology of angiogenesis in-depth and to find the key targets that promote angiogenesis. Recently years, many studies have found that microRNAs play important regulatory roles in almost all process of angiogenesis, including vascular sprouting, proliferation, survival and migration of vascular endothelial cells, recruitment of vascular progenitor cells, and control of angiopoietin expression. This review presents detailed information about the regulatory role of miRNAs in the angiogenesis of IHD in recent years, and provides new therapeutic ideas for the treatment of IHD.
Collapse
Affiliation(s)
- Jinghui Sun
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yaru Ge
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiantian Chao
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruina Bai
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Chenglong Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
12
|
[The biomarkers BNP and NT-proBNP]. ZENTRALBLATT FUR ARBEITSMEDIZIN, ARBEITSSCHUTZ UND ERGONOMIE 2023; 73:89-95. [PMID: 36686644 PMCID: PMC9842207 DOI: 10.1007/s40664-022-00491-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/18/2023]
Abstract
The present review of the biomarkers BNP and NT-pro-BNP is published in the series "biomarkers" of the Zentralblatt für Arbeitsmedizin, Arbeitsschutz und Ergonomie, which deals with the increasing use of the determination of specific markers in so-called manager preventive and check-up examinations. In principle, BNP and NT-pro-BNP are fundamentally suitable as markers for diagnosing acute and chronic heart failure and for assessing the course. In this context these show a high sensitivity and specificity.
Collapse
|
13
|
Luo Y, Lu J, Wang Z, Wang L, Wu G, Guo Y, Dong Z. Small ubiquitin-related modifier (SUMO)ylation of SIRT1 mediates (-)-epicatechin inhibited- differentiation of cardiac fibroblasts into myofibroblasts. PHARMACEUTICAL BIOLOGY 2022; 60:1762-1770. [PMID: 36086802 PMCID: PMC9467557 DOI: 10.1080/13880209.2022.2101672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT (-)-Epicatechin (EPI) is a crucial substance involved in the protective effects of flavanol-rich foods. Previous studies have indicated EPI has a cardioprotective effect, but the molecular mechanisms in inhibition of cardiac fibrosis are unclear. OBJECTIVE We evaluated the effect of EPI in preventing cardiac fibrosis and the underlying molecular mechanism related to the SIRT1-SUMO1/AKT/GSK3β pathway. MATERIALS AND METHODS Cardiac fibrosis mice model was established with transaortic constriction (TAC). Male C57BL/6 mice were randomly separated into 4 groups. Mice received 1 mg/kg/day of EPI or vehicle orally for 4 weeks. The acutely isolated cardiac fibroblasts were induced to myofibroblasts with 1 µM angiotensin II (Ang II). The cardiac function was measured with the ultrasonic instrument. Histological analysis of mice's hearts was determined with H&E or Masson method. The protein level of fibrosis markers, SUMOylation of SIRT1, and AKT/GSK3β pathway were quantified by immunofluorescence and western blot. RESULTS EPI treatment (1 mg/kg/day) could reverse the TAC-induced decline in LVEF (TAC, 61.28% ± 1.33% vs. TAC + EPI, 74.00% ± 1.64%), LVFS (TAC, 28.16% ± 0.89% vs. TAC + EPI, 37.18% ± 1.29%). Meantime, we found that 10 µM EPI blocks Ang II-induced transformation of cardiac fibroblasts into myofibroblasts. The underlying mechanism of EPI-inhibited myofibroblasts transformation involves activation of SUMOylation of SIRT1 through SP1. Furthermore, SUMOylation of SIRT1 inhibited Ang II-induced fibrogenic effect via the AKT/GSK3β pathway. CONCLUSION EPI plays a protective effect on cardiac fibrosis by regulating the SUMO1-dependent modulation of SIRT1, which provides a theoretical basis for use in clinical therapies.
Collapse
Affiliation(s)
- Yingchun Luo
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jing Lu
- Department of Pharmacy, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zeng Wang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Lu Wang
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Guodong Wu
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yuanyuan Guo
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zengxiang Dong
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Hu Y, Lu H, Li H, Ge J. Molecular basis and clinical implications of HIFs in cardiovascular diseases. Trends Mol Med 2022; 28:916-938. [PMID: 36208988 DOI: 10.1016/j.molmed.2022.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
Oxygen maintains the homeostasis of an organism in a delicate balance in different tissues and organs. Under hypoxic conditions, hypoxia-inducible factors (HIFs) are specific and dominant factors in the spatiotemporal regulation of oxygen homeostasis. As the most basic functional unit of the heart at the cellular level, the cardiomyocyte relies on oxygen and nutrients delivered by the microvasculature to keep the heart functioning properly. Under hypoxic stress, HIFs are involved in acute and chronic myocardial pathology because of their spatiotemporal specificity, thus granting them therapeutic potential. Most adult animals lack the ability to regenerate their myocardium entirely following injury, and complete regeneration has long been a goal of clinical treatment for heart failure. The precise manipulation of HIFs (considering their dynamic balance and transformation) and the development of HIF-targeted drugs is therefore an extremely attractive cardioprotective therapy for protecting against myocardial ischemic and hypoxic injury, avoiding myocardial remodeling and heart failure, and promoting recovery of cardiac function.
Collapse
Affiliation(s)
- Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Hua Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Thiele A, Luettges K, Ritter D, Beyhoff N, Smeir E, Grune J, Steinhoff JS, Schupp M, Klopfleisch R, Rothe M, Wilck N, Bartolomaeus H, Migglautsch AK, Breinbauer R, Kershaw EE, Grabner GF, Zechner R, Kintscher U, Foryst-Ludwig A. Pharmacological inhibition of adipose tissue adipose triglyceride lipase by Atglistatin prevents catecholamine-induced myocardial damage. Cardiovasc Res 2022; 118:2488-2505. [PMID: 34061169 PMCID: PMC9890462 DOI: 10.1093/cvr/cvab182] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 02/05/2023] Open
Abstract
AIMS Heart failure (HF) is characterized by an overactivation of β-adrenergic signalling that directly contributes to impairment of myocardial function. Moreover, β-adrenergic overactivation induces adipose tissue lipolysis, which may further worsen the development of HF. Recently, we demonstrated that adipose tissue-specific deletion of adipose triglyceride lipase (ATGL) prevents pressure-mediated HF in mice. In this study, we investigated the cardioprotective effects of a new pharmacological inhibitor of ATGL, Atglistatin, predominantly targeting ATGL in adipose tissue, on catecholamine-induced cardiac damage. METHODS AND RESULTS Male 129/Sv mice received repeated injections of isoproterenol (ISO, 25 mg/kg BW) to induce cardiac damage. Five days prior to ISO application, oral Atglistatin (2 mmol/kg diet) or control treatment was started. Two and twelve days after the last ISO injection cardiac function was analysed by echocardiography. The myocardial deformation was evaluated using speckle-tracking-technique. Twelve days after the last ISO injection, echocardiographic analysis revealed a markedly impaired global longitudinal strain, which was significantly improved by the application of Atglistatin. No changes in ejection fraction were observed. Further studies included histological-, WB-, and RT-qPCR-based analysis of cardiac tissue, followed by cell culture experiments and mass spectrometry-based lipidome analysis. ISO application induced subendocardial fibrosis and a profound pro-apoptotic cardiac response, as demonstrated using an apoptosis-specific gene expression-array. Atglistatin treatment led to a dramatic reduction of these pro-fibrotic and pro-apoptotic processes. We then identified a specific set of fatty acids (FAs) liberated from adipocytes under ISO stimulation (palmitic acid, palmitoleic acid, and oleic acid), which induced pro-apoptotic effects in cardiomyocytes. Atglistatin significantly blocked this adipocytic FA secretion. CONCLUSION This study demonstrates cardioprotective effects of Atglistatin in a mouse model of catecholamine-induced cardiac damage/dysfunction, involving anti-apoptotic and anti-fibrotic actions. Notably, beneficial cardioprotective effects of Atglistatin are likely mediated by non-cardiac actions, supporting the concept that pharmacological targeting of adipose tissue may provide an effective way to treat cardiac dysfunction.
Collapse
Affiliation(s)
- Arne Thiele
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
| | - Katja Luettges
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
| | - Daniel Ritter
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
| | - Niklas Beyhoff
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
| | - Elia Smeir
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
| | - Jana Grune
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Physiology, 10115 Berlin, Germany
| | - Julia S Steinhoff
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
| | - Michael Schupp
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Pathology, College of Veterinary Medicine, Freie
Universität, 14163 Berlin, Germany
| | | | - Nicola Wilck
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation of
Max-Delbrück Center for Molecular Medicine, Charité - Universitätsmedizin
Berlin, 13125 Berlin, Germany
- Division of Nephrology and Internal Intensive Care Medicine, Charité -
Universitätsmedizin Berlin, 10117 Berlin,
Germany
| | - Hendrik Bartolomaeus
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation of
Max-Delbrück Center for Molecular Medicine, Charité - Universitätsmedizin
Berlin, 13125 Berlin, Germany
| | - Anna K Migglautsch
- Institute of Organic Chemistry, Graz University of
Technology, 8010 Graz, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of
Technology, 8010 Graz, Austria
| | - Erin E Kershaw
- Division of Endocrinology and Metabolism, University of
Pittsburgh, PA, USA
| | - Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz,
8010 Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz,
8010 Graz, Austria
| | - Ulrich Kintscher
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
| | - Anna Foryst-Ludwig
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
| |
Collapse
|
16
|
Micro RNA-411 Expression Improves Cardiac Phenotype Following Myocardial Infarction in Mice. JACC Basic Transl Sci 2022; 7:859-875. [PMID: 36317138 PMCID: PMC9617134 DOI: 10.1016/j.jacbts.2022.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 01/23/2023]
Abstract
Induction of endogenous regenerative capacity has emerged as one promising approach to repair damaged hearts following myocardial infarction (MI). Re-expression of factors that are exclusively expressed during embryonic development may reactivate the ability of adult cardiomyocytes to regenerate. Here, we identified miR-411 as a potent inducer of cardiomyocyte proliferation. Overexpression of miR-411 in the heart significantly increased cardiomyocyte proliferation and survival in a model MI. We found that miR-411 enhances the activity of YAP, the main downstream effector of the Hippo pathway, in cardiomyocytes. In conclusion, miR-411 induces cardiomyocyte regeneration and improves cardiac function post-MI likely by modulating the Hippo/YAP pathway.
Collapse
Key Words
- CVEC, cardiac vascular endothelial cells
- EdU, 5-ethynyl-2'-deoxyuridine
- Hippo pathway
- LAD, left anterior descending coronary artery
- MI, myocardial infarction
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- NFAT, nuclear factor of activated T cells
- NRCF, neonatal rat cardiac fibroblast
- NRCM, neonatal rat cardiomyocytes
- PCR, polymerase chain reaction
- PEI, polyethylenimine
- cTnI, cardiac troponin I
- cardiac remodeling
- heart failure
- miRNA, microRNA
- microRNA-411
- myocardial infarction
- pHH3, phosphohistone H3
- qPCR, quantitative PCR
Collapse
|
17
|
Ding B, Niu W, Wang S, Zhang F, Wang H, Chen X, Chen S, Ma S, Kang W, Wang M, Li L, Xiao W, Guo Z, Wang Y. Centella asiatica (L.) Urb. attenuates cardiac hypertrophy and improves heart function through multi-level mechanisms revealed by systems pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115106. [PMID: 35181485 DOI: 10.1016/j.jep.2022.115106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiac hypertrophy (CH) is an incurable heart disease, contributing to an increased risk of heart failure due to the lack of safe and effective strategies. Therefore, searching for new approaches to treat CH is urgent. Centella asiatica (L.) Urb. (CA), a traditional food and medicinal natural plant, has been turned out to be effective in the treatment of cardiovascular disease, but its efficacy and potential mechanisms in alleviating CH have not yet been investigated. AIM OF STUDY In this study, we aimed to elucidate the multi-level mechanisms underlying the effect of CA against CH. STUDY DESIGN AND METHODS A systems pharmacology approach was employed to screen active ingredients, identify potential targets, construct visual networks and systematically investigate the pathways and mechanisms of CA for CH treatment. The cardiac therapeutic potential and mechanism of action of CA on CH were verified with in vivo and in vitro experiments. RESULTS Firstly, we demonstrated the therapeutic effect of CA on CH and then screened 13 active compounds of CA according to the pharmacokinetic properties. Then, asiatic acid (AA) was identified as the major active molecule of CA for CH treatment. Afterwards, network and functional enrichment analyses showed that CA exerted cardioprotective effects by modulating multiple pathways mainly involved in anti-apoptotic, antioxidant and anti-inflammatory processes. Finally, in vivo, the therapeutic effects of AA and its action on the YAP/PI3K/AKT axis and NF-κB signaling pathway were validated using an isoproterenol-induced CH mouse model. In vitro, AA decreased ROS levels in hydrogen peroxide-treated HL-1 cells. CONCLUSION Overall, the multi-level mechanisms of CA for CH treatment were demonstrated by systems pharmacology approach, which provides a paradigm for systematically deciphering the mechanisms of action of natural plants in the treatment of diseases and offers a new idea for the development of medicinal and food products.
Collapse
Affiliation(s)
- Bojiao Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China; College of Pharmacy, Heze University, Heze, Shandong, 274015, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, Jiangsu, 222002, China.
| | - Weiqing Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Siyi Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Fan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Haiqing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Xuetong Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Sen Chen
- School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Shuangxin Ma
- School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Wenhui Kang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Mingjuan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Liang Li
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, Jiangsu, 222002, China.
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, Jiangsu, 222002, China.
| | - Zihu Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Yonghua Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China; College of Pharmacy, Heze University, Heze, Shandong, 274015, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, Jiangsu, 222002, China.
| |
Collapse
|
18
|
Xu C, Jia Z, Cao X, Wang S, Wang J, an L. Hsa_circ_0007059 promotes apoptosis and inflammation in cardiomyocytes during ischemia by targeting microRNA-378 and microRNA-383. Cell Cycle 2022; 21:1003-1019. [PMID: 35192424 PMCID: PMC9037457 DOI: 10.1080/15384101.2022.2040122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNA molecules that are associated with not only normal physiological functions but also various diseases, including cardiac diseases such as myocardial infarction (MI). The present study explored the potential role of circRNA_0007059 (circ_0007059) during MI pathogenesis using in vitro studies. Microarray and quantitative PCR analyses demonstrated elevated circ_0007059 expression and downregulated miR-378 and miR-383 expression in H2O2-treated mice cardiomyocytes and infarcted hearts of MI mouse model as compared those in relevant controls. Moreover, circ_0007059 knockdown improved cardiomyocyte viability after H2O2 treatment as revealed by the CCK-8 and colony formation assays. Flow cytometry and caspase activity assays demonstrated that circ_0007059 suppressed H2O2-induced cardiomyocyte apoptosis. Enzyme-linked immunosorbent assays and Western blotting revealed that inflammatory cytokine (interleukin-1β, interleukin-18 and C-C motif chemokine ligand 5) expression was induced by H2O2 treatment and that circ_0007059 repressed H2O2-induced inflammation. Bioinformatics analyses and dual-luciferase reporter assays showed that circ_0000759 acts as a miR-378 and miR-383 sponge. Furthermore, the upregulation or suppression of miR-378 and miR-383 expression in H2O2-treated cardiomyocytes had similar effects on the apoptosis and inflammation of cardiomyocytes as that of circ_0007059 knockdown or overexpression, respectively. Additionally, lentiviral shRNA-circ_0007059 administration to mice with MI considerably reduced the size of infarcted regions and promoted cardiac activity. Collectively, our findings suggest that circ_0007059 expression is upregulated in mice cardiomyocytes in response to oxidative stress and cardiac tissues of MI mouse model, suggesting its involvement in the pathogenesis of MI by targeting miR-378 and miR-383.
Collapse
Affiliation(s)
- Chaorui Xu
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Zhuowen Jia
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Xuefei Cao
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Sha Wang
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Jipeng Wang
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Liping an
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China,CONTACT Liping An Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, No. 82 Zhongshan Road, Xiangfang District, Harbin, Heilongjiang150036, China
| |
Collapse
|
19
|
Normalization strategy for selection of reference genes for RT-qPCR analysis in left ventricles of failing human hearts. BMC Cardiovasc Disord 2022; 22:180. [PMID: 35439923 PMCID: PMC9019989 DOI: 10.1186/s12872-022-02614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Quantitative RT-PCR is a valuable tool for assessing the gene expression in different human tissues, particularly due to its exceptional sensitivity, accuracy and reliability. However, the choice of adequate control for normalization is a crucial step, greatly affecting the results of all subsequent analyses. So far, only a few studies were focused on the selection of optimal reference genes in left ventricles of failing human hearts, leading to several disparities in experimental results focused on differential gene expression in this area. Therefore, the main objective of this study was to identify a set of suitable reference genes in normal and failing left ventricle tissues, which could increase the reliability of RT-qPCR-based studies in the future. Methods We analyzed the expression of 15 commonly used housekeeping genes (ACTB, B2M, GAPDH, GUSB, HMBS, HPRT1, IPO8, PGK1, POLR2A, PPIA, RPLP0, TBP, TFRC, UBC and YWHAZ) in left ventricles of normal and failed hearts with two-step approach. In the first step, we excluded genes which are variantly expressed using ANOVA-based statistical method. Afterwards, the remaining genes were analyzed using geNorm, NormFinder and BestKeeper algorithms, together with delta Cq method. Finally, the geometric mean of gene rankings across all methods was calculated. Results Our analysis identified IPO8 and POLR2A as the most stably expressed genes, whereas ACTB and B2M were found to be expressed variantly, suggesting a potential role of these genes in the pathophysiological processes in failing human hearts. Discussion/conclusion Using our two-step approach, we identified and validated two reference genes expressed invariantly in left ventricles of both healthy and failing human hearts, as well as provided a guideline for the selection of reference genes in studies comparing gene expression in these types of tissues. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02614-9.
Collapse
|
20
|
Liu S, Meng X, Li G, Gokulnath P, Wang J, Xiao J. Exercise Training after Myocardial Infarction Attenuates Dysfunctional Ventricular Remodeling and Promotes Cardiac Recovery. Rev Cardiovasc Med 2022; 23:148. [PMID: 39076229 PMCID: PMC11273682 DOI: 10.31083/j.rcm2304148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/26/2022] [Accepted: 04/07/2022] [Indexed: 07/31/2024] Open
Abstract
Recent evidences have shown that exercise training not only plays a necessary role in maintaining cardiac homeostasis, but also promotes cardiac repair after myocardial infarction. Post-myocardial infarction, exercise training has been observed to effectively increase the maximum cardiac output, and protect myocardial cells against necrosis and apoptosis, thus leading to an improved quality of life of myocardial infarction patients. In fact, exercise training has received more attention as an adjunct therapeutic strategy for both treatment and prevention of myocardial infarction. This review summarizes the experimental evidence of the effects of exercise training in ventricular remodeling after myocardial infarction, and tries to provide theoretical basis along with suitable references for the exercise prescription aimed at prevention and therapy of myocardial infarction.
Collapse
Affiliation(s)
- Shuqing Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, 226011 Nantong, Jiangsu, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 200444 Shanghai, China
| | - Xinxiu Meng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, 226011 Nantong, Jiangsu, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 200444 Shanghai, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Priyanka Gokulnath
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jing Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, 226011 Nantong, Jiangsu, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 200444 Shanghai, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, 226011 Nantong, Jiangsu, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 200444 Shanghai, China
| |
Collapse
|
21
|
Mongirdienė A, Skrodenis L, Varoneckaitė L, Mierkytė G, Gerulis J. Reactive Oxygen Species Induced Pathways in Heart Failure Pathogenesis and Potential Therapeutic Strategies. Biomedicines 2022; 10:602. [PMID: 35327404 PMCID: PMC8945343 DOI: 10.3390/biomedicines10030602] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
With respect to structural and functional cardiac disorders, heart failure (HF) is divided into HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF). Oxidative stress contributes to the development of both HFrEF and HFpEF. Identification of a broad spectrum of reactive oxygen species (ROS)-induced pathways in preclinical models has provided new insights about the importance of ROS in HFrEF and HFpEF development. While current treatment strategies mostly concern neuroendocrine inhibition, recent data on ROS-induced metabolic pathways in cardiomyocytes may offer additional treatment strategies and targets for both of the HF forms. The purpose of this article is to summarize the results achieved in the fields of: (1) ROS importance in HFrEF and HFpEF pathophysiology, and (2) treatments for inhibiting ROS-induced pathways in HFrEF and HFpEF patients. ROS-producing pathways in cardiomyocytes, ROS-activated pathways in different HF forms, and treatment options to inhibit their action are also discussed.
Collapse
Affiliation(s)
- Aušra Mongirdienė
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50161 Kaunas, Lithuania
| | - Laurynas Skrodenis
- Medical Academy, Lithuanian University of Health Sciences, Mickevičiaus str. 9, LT-44307 Kaunas, Lithuania
| | - Leila Varoneckaitė
- Medical Academy, Lithuanian University of Health Sciences, Mickevičiaus str. 9, LT-44307 Kaunas, Lithuania
| | - Gerda Mierkytė
- Medical Academy, Lithuanian University of Health Sciences, Mickevičiaus str. 9, LT-44307 Kaunas, Lithuania
| | - Justinas Gerulis
- Medical Academy, Lithuanian University of Health Sciences, Mickevičiaus str. 9, LT-44307 Kaunas, Lithuania
| |
Collapse
|
22
|
He S, Chen R, Peng L, Jiang Z, Liu H, Chen Z, Zhao T, Orgah JO, Ren J, Zhang P, Wang Y, Gao X, Zhu Y. Differential action of pro-angiogenic and anti-angiogenic components of Danhong injection in ischemic vascular disease or tumor models. Chin Med 2022; 17:4. [PMID: 34983572 PMCID: PMC8725508 DOI: 10.1186/s13020-021-00557-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE We investigate the chemical basis and mechanism of angiogenesis regulation by a multicomponent Chinese medicine Danhong injection (DHI). METHODS DHI was fractionated and screened for angiogenesis activities by in vitro tube formation and migration assays. The composition of DHI components was determined by UPLC. The effects of the main active monomers on angiogenesis-related gene and protein expression in endothelial cells were determined by qPCR and Western blotting analyses. Mouse hind limb ischemia and tumor implant models were used to verify the angiogenesis effects in vivo by Laser Doppler and bioluminescent imaging, respectively. RESULTS Two distinct chemical components, one promoting (pro-angiogenic, PAC) and the other inhibiting (anti-angiogenic, AAC) angiogenesis, were identified in DHI. PAC enhanced angiogenesis and improved recovery of ischemic limb perfusion while AAC reduced Lewis lung carcinoma growth in vivo in VEGFR-2-Luc mice. Among the PAC or AAC monomers, caffeic acid and rosmarinic acid upregulated TSP1 expression and downregulated KDR and PECAM expression. Caffeic acid and rosmarinic acid significantly decreased while protocatechuic aldehyde increased CXCR4 expression, which are consistent with their differential effects on EC migration. CONCLUSIONS DHI is capable of bi-directional regulation of angiogenesis in disease-specific manner. The pro-angiogenesis activity of DHI promotes the repair of ischemic vascular injury, whereas the anti-angiogenesis activity inhibits tumor growth. The active pro- and anti-angiogenesis activities are composed of unique chemical combinations that differentially regulate angiogenesis-related gene networks.
Collapse
Affiliation(s)
- Shuang He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, TEDA, 220 Dongting Road, Tianjin, 300457, China
| | - Rongrong Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, TEDA, 220 Dongting Road, Tianjin, 300457, China
| | - Li Peng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, TEDA, 220 Dongting Road, Tianjin, 300457, China
| | - Zhenzuo Jiang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, TEDA, 220 Dongting Road, Tianjin, 300457, China
| | - Haixin Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, TEDA, 220 Dongting Road, Tianjin, 300457, China
| | - Zihao Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, TEDA, 220 Dongting Road, Tianjin, 300457, China
| | - Tiechan Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, TEDA, 220 Dongting Road, Tianjin, 300457, China
| | - John Owoicho Orgah
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, TEDA, 220 Dongting Road, Tianjin, 300457, China
| | - Jie Ren
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, TEDA, 220 Dongting Road, Tianjin, 300457, China
| | - Peng Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, TEDA, 220 Dongting Road, Tianjin, 300457, China
| | - Yuefei Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, TEDA, 220 Dongting Road, Tianjin, 300457, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, TEDA, 220 Dongting Road, Tianjin, 300457, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China. .,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, TEDA, 220 Dongting Road, Tianjin, 300457, China.
| |
Collapse
|
23
|
Kazakov YM, Chekalina NI, Plaksa VM. INFLUENCE OF POSTMENOPAUSE ON THE FORMATION OF CHRONIC HEART FAILURE IN WOMEN WITH ARTERIAL HYPERTENSION. BULLETIN OF PROBLEMS BIOLOGY AND MEDICINE 2022. [DOI: 10.29254/2077-4214-2022-3-166-45-50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Sakata T, Mazurek R, Mavropoulos SA, Romeo FJ, Ravichandran AJ, Ishikawa K. Assessing the Effect of Cardiac Gene Therapy Using Catheter-Based Pressure-Volume Measurement in Large Animals. Methods Mol Biol 2022; 2573:313-321. [PMID: 36040605 DOI: 10.1007/978-1-0716-2707-5_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Gene therapy for heart failure targets various pathways that modulate cardiac function. Its detailed evaluation is crucial for proving the efficacy of cardiac gene therapies. Parameters that can be obtained by noninvasive approaches are generally influenced by loading conditions of the heart. In contrast, catheter-based left ventricular pressure-volume assessment provides a unique option to minimally invasively assess intrinsic myocardial function in a load-insensitive manner. In this chapter, we describe procedural steps for performing pressure-volume measurements and analysis in a preclinical large animal model.
Collapse
Affiliation(s)
- Tomoki Sakata
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Renata Mazurek
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Spyros A Mavropoulos
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francisco J Romeo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anjali J Ravichandran
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kiyotake Ishikawa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
25
|
Zhang Y, Wang D, Zhao Z, Liu L, Xia G, Ye T, Chen Y, Xu C, Jin X, Shen C. Nephronectin promotes cardiac repair post myocardial infarction via activating EGFR/JAK2/STAT3 pathway. Int J Med Sci 2022; 19:878-892. [PMID: 35693734 PMCID: PMC9149649 DOI: 10.7150/ijms.71780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/01/2022] [Indexed: 11/05/2022] Open
Abstract
Background: ECM proteins are instrumental for angiogenesis, which plays momentous roles during development and repair in various organs, including post cardiac insult. After a screening based on an open access RNA-seq database, we identified Nephronectin (NPNT), an extracellular protein, might be involved in cardiac repair post myocardial infarction (MI). However, the specific impact of nephronectin during cardiac repair in MI remains elusive. Methods and Results: In the present study, we established a system overexpressing NPNT locally in mouse heart by utilizing a recombinant adeno-associated virus. One-to-four weeks post MI induction, we observed improved cardiac function, limited infarct size, alleviated cardiac fibrosis, with promoted angiogenesis in infarct border zone in NPNT overexpressed mice. And NPNT treatment enhanced human umbilical vascular endothelial cell (HUVEC) migration and tube formation, putatively through advocating phosphorylation of EGFR/JAK2/STAT3. The migration and capillary-like tube formation events could be readily revoked by EGFR or STAT3 inhibition. Notably, phosphorylation of EGFR, JAK2 and STAT3 were markedly upregulated in AAV2/9-cTnT-NPNT-treated mice with MI. Conclusions: Our study thus identifies the beneficial effects of NPNT on angiogenesis and cardiac repair post MI by enhancing the EGFR/JAK2/STAT3 signaling pathway, implying the potential therapeutic application of NPNT on myocardial dysfunction post MI.
Collapse
Affiliation(s)
- Yaping Zhang
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Di Wang
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhe Zhao
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Liang Liu
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Guofang Xia
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Tianbao Ye
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yu Chen
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Congfeng Xu
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xian Jin
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chengxing Shen
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
26
|
Röning T, Magga J, Laitakari A, Halmetoja R, Tapio J, Dimova EY, Szabo Z, Rahtu-Korpela L, Kemppi A, Walkinshaw G, Myllyharju J, Kerkelä R, Koivunen P, Serpi R. Activation of the hypoxia response pathway protects against age-induced cardiac hypertrophy. J Mol Cell Cardiol 2021; 164:148-155. [PMID: 34919895 DOI: 10.1016/j.yjmcc.2021.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 11/15/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022]
Abstract
AIMS We have previously demonstrated protection against obesity, metabolic dysfunction, atherosclerosis and cardiac ischemia in a hypoxia-inducible factor (HIF) prolyl 4-hydroxylase-2 (Hif-p4h-2) deficient mouse line, attributing these protective effects to activation of the hypoxia response pathway in a normoxic environment. We intended here to find out whether the Hif-p4h-2 deficiency affects the cardiac health of these mice upon aging. METHODS AND RESULTS When the Hif-p4h-2 deficient mice and their wild-type littermates were monitored during normal aging, the Hif-p4h-2 deficient mice had better preserved diastolic function than the wild type at one year of age and less cardiomyocyte hypertrophy at two years. On the mRNA level, downregulation of hypertrophy-associated genes was detected and shown to be associated with upregulation of Notch signaling, and especially of the Notch target gene and transcriptional repressor Hairy and enhancer-of-split-related basic helix-loop-helix (Hey2). Blocking of Notch signaling in cardiomyocytes isolated from Hif-p4h-2 deficient mice with a gamma-secretase inhibitor led to upregulation of the hypertrophy-associated genes. Also, targeting Hey2 in isolated wild-type rat neonatal cardiomyocytes with siRNA led to upregulation of hypertrophic genes and increased leucine incorporation indicative of increased protein synthesis and hypertrophy. Finally, oral treatment of wild-type mice with a small molecule inhibitor of HIF-P4Hs phenocopied the effects of Hif-p4h-2 deficiency with less cardiomyocyte hypertrophy, upregulation of Hey2 and downregulation of the hypertrophy-associated genes. CONCLUSIONS These results indicate that activation of the hypoxia response pathway upregulates Notch signaling and its target Hey2 resulting in transcriptional repression of hypertrophy-associated genes and less cardiomyocyte hypertrophy. This is eventually associated with better preserved cardiac function upon aging. Activation of the hypoxia response pathway thus has therapeutic potential for combating age-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Tapio Röning
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Johanna Magga
- Biocenter Oulu and Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | - Anna Laitakari
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Riikka Halmetoja
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Joona Tapio
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Elitsa Y Dimova
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Zoltan Szabo
- Biocenter Oulu and Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | - Lea Rahtu-Korpela
- Biocenter Oulu and Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | - Anna Kemppi
- Biocenter Oulu and Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | | | - Johanna Myllyharju
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Risto Kerkelä
- Biocenter Oulu and Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | - Peppi Koivunen
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.
| | - Raisa Serpi
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland; Faculty of Medicine, University of Oulu, Oulu, Finland; Biobank Borealis of Northern Finland, Oulu University Hospital, Finland
| |
Collapse
|
27
|
Bin-Jumah MN, Gilani SJ, Hosawi S, Al-Abbasi FA, Zeyadi M, Imam SS, Alshehri S, Ghoneim MM, Nadeem MS, Kazmi I. Pathobiological Relationship of Excessive Dietary Intake of Choline/L-Carnitine: A TMAO Precursor-Associated Aggravation in Heart Failure in Sarcopenic Patients. Nutrients 2021; 13:3453. [PMID: 34684454 PMCID: PMC8540684 DOI: 10.3390/nu13103453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 02/04/2023] Open
Abstract
The microecological environment of the gastrointestinal tract is altered if there is an imbalance between the gut microbiota phylases, resulting in a variety of diseases. Moreover, progressive age not only slows down physical activity but also reduces the fat metabolism pathway, which may lead to a reduction in the variety of bacterial strains and bacteroidetes' abundance, promoting firmicutes and proteobacteria growth. As a result, dysbiosis reduces physiological adaptability, boosts inflammatory markers, generates ROS, and induces the destruction of free radical macromolecules, leading to sarcopenia in older patients. Research conducted at various levels indicates that the microbiota of the gut is involved in pathogenesis and can be considered as the causative agent of several cardiovascular diseases. Local and systematic inflammatory reactions are caused in patients with heart failure, as ischemia and edema are caused by splanchnic hypoperfusion and enable both bacterial metabolites and bacteria translocation to enter from an intestinal barrier, which is already weakened, to the blood circulation. Multiple diseases, such as HF, include healthy microbe-derived metabolites. These key findings demonstrate that the gut microbiota modulates the host's metabolism, either specifically or indirectly, by generating multiple metabolites. Currently, the real procedures that are an analogy to the symptoms in cardiac pathologies, such as cardiac mass dysfunctions and modifications, are investigated at a minimum level in older patients. Thus, the purpose of this review is to summarize the existing knowledge about a particular diet, including trimethylamine, which usually seems to be effective for the improvement of cardiac and skeletal muscle, such as choline and L-carnitine, which may aggravate the HF process in sarcopenic patients.
Collapse
Affiliation(s)
- May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.H.); (F.A.A.-A.); (M.Z.); (M.S.N.)
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.H.); (F.A.A.-A.); (M.Z.); (M.S.N.)
| | - Mustafa Zeyadi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.H.); (F.A.A.-A.); (M.Z.); (M.S.N.)
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.H.); (F.A.A.-A.); (M.Z.); (M.S.N.)
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.H.); (F.A.A.-A.); (M.Z.); (M.S.N.)
| |
Collapse
|
28
|
Xi Y, Hao M, Liang Q, Li Y, Gong DW, Tian Z. Dynamic resistance exercise increases skeletal muscle-derived FSTL1 inducing cardiac angiogenesis via DIP2A-Smad2/3 in rats following myocardial infarction. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:594-603. [PMID: 33246164 PMCID: PMC8500809 DOI: 10.1016/j.jshs.2020.11.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/13/2020] [Accepted: 10/09/2020] [Indexed: 05/16/2023]
Abstract
PURPOSE The aim of this study was to investigate the potential of dynamic resistance exercise to generate skeletal muscle-derived follistatin like-1 (FSTL1), which may induce cardioprotection in rats following myocardial infarction (MI) by inducing angiogenesis. METHODS Male, adult Sprague-Dawley rats were randomly divided into 5 groups (n = 12 in each group): sham group (S), sedentary MI group (MI), MI + resistance exercise group (MR), MI + adeno-associated virus (AAV)-FSTL1 injection group (MA), and MI + AAV-FSTL1 injection + resistance exercise group (MAR). The AAV-FSTL1 vector was prepared by molecular biology methods and injected into the anterior tibialis muscle. The MI model was established by ligation of the left anterior descending coronary artery. Rats in the MR and MAR groups underwent 4 weeks of dynamic resistance exercise training using a weighted climbing-up ladder. Heart function was evaluated by hemodynamic measures. Collagen volume fraction of myocardium was observed and analyzed by Masson's staining. Human umbilical vein vessel endothelial cells culture and recombinant human FSTL1 protein or transforming growth factor-β receptor 1 (TGFβR1) inhibitor treatment were used to elucidate the molecular signaling mechanism of FSTL1. Angiogenesis, cell proliferation, and disco interacting protein 2 homolog A (DIP2A) location were observed by immunofluorescence staining. The expression of FSTL1, DIP2A, and the activation of signaling pathways were detected by Western blotting. Angiogenesis of endothelial cells was observed by tubule experiment. One-way analysis of variance and Student's t test were used for statistical analysis. RESULTS Resistance exercise stimulated the secretion of skeletal muscle FSTL1, which promoted myocardial angiogenesis, inhibited pathological remodeling, and protected cardiac function in MI rats. Exercise facilitated skeletal muscle FSTL1 to play a role in protecting the heart. Exogenous FSTL1 promoted the human umbilical vein vessel endothelial cells proliferation and up-regulated the expression of DIP2A, while TGFβR1 inhibitor intervention down-regulated the phosphorylation level of Smad2/3 and the expression of vascular endothelial growth factor-A, which was not conducive to angiogenesis. FSTL1 bound to the receptor, DIP2A, to regulate angiogenesis mainly through the Smad2/3 signaling pathway. FSTL1-DIP2A directly activated Smad2/3 and was not affected by TGFβR1. CONCLUSION Dynamic resistance exercise stimulates the expression of skeletal muscle-derived FSTL1, which could supplement the insufficiency of cardiac FSTL1 and promote cardiac rehabilitation through the DIP2A-Smad2/3 signaling pathway in MI rats.
Collapse
Affiliation(s)
- Yue Xi
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Meili Hao
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an 710119, China; School of Physical Education, Luoyang Normal University, Luoyang 471934, China
| | - Qiaoqin Liang
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Yongxia Li
- School of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Da-Wei Gong
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
29
|
Weissman D, Maack C. Redox signaling in heart failure and therapeutic implications. Free Radic Biol Med 2021; 171:345-364. [PMID: 34019933 DOI: 10.1016/j.freeradbiomed.2021.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/17/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022]
Abstract
Heart failure is a growing health burden worldwide characterized by alterations in excitation-contraction coupling, cardiac energetic deficit and oxidative stress. While current treatments are mostly limited to antagonization of neuroendocrine activation, more recent data suggest that also targeting metabolism may provide substantial prognostic benefit. However, although in a broad spectrum of preclinical models, oxidative stress plays a causal role for the development and progression of heart failure, no treatment that targets reactive oxygen species (ROS) directly has entered the clinical arena yet. In the heart, ROS derive from various sources, such as NADPH oxidases, xanthine oxidase, uncoupled nitric oxide synthase and mitochondria. While mitochondria are the primary source of ROS in the heart, communication between different ROS sources may be relevant for physiological signalling events as well as pathologically elevated ROS that deteriorate excitation-contraction coupling, induce hypertrophy and/or trigger cell death. Here, we review the sources of ROS in the heart, the modes of pathological activation of ROS formation as well as therapeutic approaches that may target ROS specifically in mitochondria.
Collapse
Affiliation(s)
- David Weissman
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany; Department of Internal Medicine 1, University Clinic Würzburg, Würzburg, Germany.
| |
Collapse
|
30
|
Wen H, Peng L, Chen Y. The effect of immune cell-derived exosomes in the cardiac tissue repair after myocardial infarction: Molecular mechanisms and pre-clinical evidence. J Cell Mol Med 2021; 25:6500-6510. [PMID: 34092017 PMCID: PMC8278122 DOI: 10.1111/jcmm.16686] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022] Open
Abstract
After a myocardial infarction (MI), the inflammatory responses are induced and assist to repair ischaemic injury and restore tissue integrity, but excessive inflammatory processes promote abnormal cardiac remodelling and progress towards heart failure. Thus, a timely resolution of inflammation and a firmly regulated balance between regulatory and inflammatory mechanisms can be helpful. Molecular- and cellular-based approaches modulating immune response post-MI have emerged as a promising therapeutic strategy. Exosomes are essential mediators of cell-to-cell communications, which are effective in modulating immune responses and immune cells following MI, improving the repair process of infarcted myocardium and maintaining ventricular function via the crosstalk among immune cells or between immune cells and myocardial cells. The present review aimed to seek the role of immune cell-secreted exosomes in infarcted myocardium post-MI, together with mechanisms behind their repairing impact on the damaged myocardium. The exosomes we focus on are secreted by classic immune cells including macrophages, dendritic cells, regulatory T cells and CD4+ T cells; however, further research is demanded to determine the role of exosomes secreted by other immune cells, such as B cells, neutrophils and mast cells, in infarcted myocardium after MI. This knowledge can assist in the development of future therapeutic strategies, which may benefit MI patients.
Collapse
Affiliation(s)
- Heling Wen
- Department of CardiologySichuan Academy of Medical Science & Sichuan Provincial People's HospitalChengduChina
| | - Lei Peng
- Department of NephrologySichuan Academy of Medical Science & Sichuan Provincial People's HospitalChengduChina
| | - Yu Chen
- Department of CardiologySichuan Academy of Medical Science & Sichuan Provincial People's HospitalChengduChina
| |
Collapse
|
31
|
Wang J, Deng B, Liu J, Liu Q, Guo Y, Yang Z, Fang C, Lu L, Chen Z, Xian S, Wang L, Huang Y. Xinyang Tablet inhibits MLK3-mediated pyroptosis to attenuate inflammation and cardiac dysfunction in pressure overload. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114078. [PMID: 33798659 DOI: 10.1016/j.jep.2021.114078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/25/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xinyang tablet (XYT) has been traditionally used in the treatment of cardiovascular diseases (CVDs). Our previous study indicated that XYT exhibited protective effects in heart failure (HF). AIM OF THE STUDY The aim of the present study was to determine the protective effects of XYT in pressure overload induced HF and to elucidate its underlying mechanisms of action. MATERIALS AND METHODS We analyzed XYT content using high-performance liquid chromatography (HPLC.). Mice were subjected to transverse aortic constriction (TAC) to generate pressure overload-induced cardiac remodeling and were then orally administered XYT or URMC-099 for 1 week after the operation. HL1 mouse cardiomyoblasts were induced by lipopolysaccharides (LPS) to trigger pyroptosis and were then treated with XYT or URMC-099. We used echocardiography (ECG), hematoxylin and eosin (H&E) staining, Masson's trichrome staining and a terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay to evaluate the effects of XYT. Messenger ribonucleic acid (mRNA) levels of collagen metabolism biomarkers and inflammation-related factors were detected. We determined protein levels of inflammation- and pyroptosis-related signaling pathway members via Western blot (WB). Caspase-1 activity was measured in cell lysate using a Caspase-1 Activity Assay Kit. Subsequently, to define the candidate ingredients in XYT that regulate mixed-lineage kinase-3 (MLK3), we used molecular docking (MD) to predict and evaluate binding affinity with MLK3. Finally, we screened 24 active potential compounds that regulate MLK3 via MD. RESULTS ECG, H&E staining, Masson's trichrome staining and TUNEL assay results showed that XYT remarkably improved heart function, amelorated myocardial fibrosis and inhibited apoptosis in vivo. Moreover, it reduced expression of proteins or mRNAs related to collagen metabolism, including collagen type 1 (COL1), fibronectin (FN), alpha smooth-muscle actin (α-SMA), and matrix metalloproteinases-2 and -9 (MMP-2, MMP-9). XYT also inhibited inflammation and the induction of pyroptosis at an early stage, as well as attenuated inflammation and pyroptosis levels in vitro. CONCLUSION Our data indicated that XYT exerted protective effects against pressure overload induced myocardial fibrosis (MF), which might be associated with the induction of pyroptosis-mediated MLK3 signaling.
Collapse
Affiliation(s)
- Junyan Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Bo Deng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Jing Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Qing Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Yining Guo
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Zhongqi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Chongkai Fang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Zixin Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Shaoxiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Lingjun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Yusheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
32
|
Translational Studies on the Potential of a VEGF Nanoparticle-Loaded Hyaluronic Acid Hydrogel. Pharmaceutics 2021; 13:pharmaceutics13060779. [PMID: 34067451 PMCID: PMC8224549 DOI: 10.3390/pharmaceutics13060779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure has a five-year mortality rate approaching 50%. Inducing angiogenesis following a myocardial infarction is hypothesized to reduce cardiomyocyte death and tissue damage, thereby preventing heart failure. Herein, a novel nano-in-gel delivery system for vascular endothelial growth factor (VEGF), composed of star-shaped polyglutamic acid-VEGF nanoparticles in a tyramine-modified hyaluronic acid hydrogel (nano-VEGF-HA-TA), is investigated. The ability of the nano-VEGF-HA-TA system to induce angiogenesis is assessed in vivo using a chick chorioallantoic membrane model (CAM). The formulation is then integrated with a custom-made, clinically relevant catheter suitable for minimally invasive endocardial delivery and the effect of injection on hydrogel properties is examined. Nano-VEGF-HA-TA is biocompatible on a CAM assay and significantly improves blood vessel branching (p < 0.05) and number (p < 0.05) compared to a HA-TA hydrogel without VEGF. Nano-VEGF-HA-TA is successfully injected through a 1.2 m catheter, without blocking or breaking the catheter and releases VEGF for 42 days following injection in vitro. The released VEGF retains its bioactivity, significantly improving total tubule length on a Matrigel® assay and human umbilical vein endothelial cell migration on a Transwell® migration assay. This VEGF-nano in a HA-TA hydrogel delivery system is successfully integrated with an appropriate device for clinical use, demonstrates promising angiogenic properties in vivo and is suitable for further clinical translation.
Collapse
|
33
|
H 2S Pretreatment Is Promigratory and Decreases Ischemia/Reperfusion Injury in Human Microvascular Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8886666. [PMID: 33953839 PMCID: PMC8068530 DOI: 10.1155/2021/8886666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/23/2020] [Accepted: 04/01/2021] [Indexed: 12/03/2022]
Abstract
Endothelial cell injury and vascular function strongly correlate with cardiac function following ischemia/reperfusion injury. Several studies indicate that endothelial cells are more sensitive to ischemia/reperfusion compared to cardiomyocytes and are critical mediators of cardiac ischemia/reperfusion injury. H2S is involved in the regulation of cardiovascular system homeostasis and can act as a cytoprotectant during ischemia/reperfusion. Activation of ERK1/2 in endothelial cells after H2S stimulation exerts an enhancement of angiogenesis while its inhibition significantly decreases H2S cardioprotective effects. In this work, we investigated how H2S pretreatment for 24 hours prevents the ischemia/reperfusion injury and promotes angiogenesis on microvascular endothelial cells following an ischemia/reperfusion protocol in vitro, using a hypoxic chamber and ischemic buffer to simulate the ischemic event. H2S preconditioning positively affected cell viability and significantly increased endothelial cell migration when treated with 1 μM H2S. Furthermore, mitochondrial function was preserved when cells were preconditioned. Since ERK1/2 phosphorylation was extremely enhanced in ischemia/reperfusion condition, we inhibited ERK both directly and indirectly to verify how H2S triggers this pathway in endothelial cells. Taken together, our data suggest that H2S treatment 24 hours before the ischemic insult protects endothelial cells from ischemia/reperfusion injury and eventually decreases myocardial injury.
Collapse
|
34
|
Hypoxia-induced miR-27 and miR-195 regulate ATP consumption, viability, and metabolism of rat cardiomyocytes by targeting PPARγ and FASN expression. Aging (Albany NY) 2021; 13:10158-10174. [PMID: 33819184 PMCID: PMC8064185 DOI: 10.18632/aging.202778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/16/2021] [Indexed: 11/25/2022]
Abstract
This study examined whether hypoxia-induced microRNA (miRNA) upregulation was related to the inhibition of chondriosome aliphatic acid oxidation in myocardial cells under anoxia. We showed that anoxia induced high expression of hypoxia-inducible factor-1-alpha, muscle carnitine palmitoyltransferase I, and vascular endothelial growth factor in cardiomyocytes. Meanwhile, miR-27 and miR-195 were also upregulated in hypoxia-induced cardiomyocytes. Furthermore, hypoxia induction led to reductions in the adenosine triphosphate (ATP) consumption rate and oxidative metabolism as well as an increase in cardiomyocyte glycolysis. Metabolic reprogramming was reduced by hypoxia, as evidenced by the downregulation of sirtuin 1, forkhead box protein O1, sterol regulatory element-binding protein 1c, ATP citrate lyase, acetyl-coenzyme A carboxylase 2, adiponutrin, adipose triglyceride lipase, and glucose transporter type 4, while miR-27 and miR-195 inhibition partially recovered the expression of these transcription factors. In addition, hypoxia induction reduced cell viability and survival by triggering apoptosis; however, miR-27 and miR-195 inhibition partially increased cell viability. Moreover, miR-27 and miR-195 targeted the 3’untranslated regions of two key lipid-associated metabolic players, peroxisome proliferator-activated receptor gamma and fatty acid synthase. In conclusion, miR-27 and miR-195 are related to hypoxia-mediated ATP levels, glycolysis, oxidation, cell survival, and a cascade of transcription factors that control metabolism in cardiomyocytes.
Collapse
|
35
|
Wang J, Dong G, Chi W, Nie Y. MiR-96 promotes myocardial infarction-induced apoptosis by targeting XIAP. Biomed Pharmacother 2021; 138:111208. [PMID: 33752931 DOI: 10.1016/j.biopha.2020.111208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/01/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myocardial infarction (AMI) has becoming a common leading cause of sudden death worldwide. MiR-96 has been identified that can target anti-apoptotic related genes in various human diseases. However, its role in AMI remains unclear. In this study, we found that miR-96 was significantly upregulated in the ischemic heart of MI mice (mice with myocardial infarction) and also in the H2O2-treated neonatal rat ventricular cardiomyocytes (CMs). In response H2O2, miR-96 inhibitor could significantly promote cell viability and reduce cell apoptosis of CMs, and inhibit the expression of Cleaved caspase-3 and Bax, while promote Bcl-2 expression. In addition, downregulation of miR-96 remarkedly reduced the infarct size and the percentages of apoptotic cells in the heart tissues of MI mice, and then protected against the damaged cardiac function. Moreover, we identified that XIAP (X-linked inhibitor of apoptosis) acted as a direct target gene of miR-96, meanwhile si-XIAP could obviously reverse miR-96 inhibitor induced protective effect in H2O2-treated CMs Taken together, our study demonstrated that miR-96 promoted AMI progression by directly targeting XIAP, and inhibiting the anti-apoptotic function of XIAP (Graphical abstract), which provided a novel therapeutic target for AMI treatment.
Collapse
Affiliation(s)
- Jianxiu Wang
- Hiser Medical Center of Qingdao, Qingdao City, Shandong Province, 266033, PR China.
| | - Guiling Dong
- Hiser Medical Center of Qingdao, Qingdao City, Shandong Province, 266033, PR China
| | - Weifeng Chi
- Hiser Medical Center of Qingdao, Qingdao City, Shandong Province, 266033, PR China
| | - Yingying Nie
- Hiser Medical Center of Qingdao, Qingdao City, Shandong Province, 266033, PR China.
| |
Collapse
|
36
|
Immunomodulatory biomaterials and their application in therapies for chronic inflammation-related diseases. Acta Biomater 2021; 123:1-30. [PMID: 33484912 DOI: 10.1016/j.actbio.2021.01.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/05/2020] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
The degree of tissue injuries such as the level of scarring or organ dysfunction, and the immune response against them primarily determine the outcome and speed of healing process. The successful regeneration of functional tissues requires proper modulation of inflammation-producing immune cells and bioactive factors existing in the damaged microenvironment. In the tissue repair and regeneration processes, different types of biomaterials are implanted either alone or by combined with other bioactive factors, which will interact with the immune systems including immune cells, cytokines and chemokines etc. to achieve different results highly depending on this interplay. In this review article, the influences of different types of biomaterials such as nanoparticles, hydrogels and scaffolds on the immune cells and the modification of immune-responsive factors such as reactive oxygen species (ROS), cytokines, chemokines, enzymes, and metalloproteinases in tissue microenvironment are summarized. In addition, the recent advances of immune-responsive biomaterials in therapy of inflammation-associated diseases such as myocardial infarction, spinal cord injury, osteoarthritis, inflammatory bowel disease and diabetic ulcer are discussed.
Collapse
|
37
|
Liu D, Qiao C, Luo H. MicroRNA-1278 ameliorates the inflammation of cardiomyocytes during myocardial ischemia by targeting both IL-22 and CXCL14. Life Sci 2021; 269:118817. [PMID: 33275986 DOI: 10.1016/j.lfs.2020.118817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
AIMS This study aimed to elucidate the role of microRNAs (miRNAs) during myocardial infarction (MI) development in vivo and in vitro. MAIN METHODS Differentially expressed miRNAs between heart tissue from the MI mouse model and the control mouse were identified via microarray. Quantitative PCR (qPCR) and western blotting (WB) were performed to examine the expression levels of miRNAs and proteins, respectively. EdU-staining and colony formation assay were performed to assess cell viability and growth. Annexin V- and PI-staining-based flow cytometry was used to assess cell apoptosis. An MI mouse model was also established to study the function of miR-1278 in vivo. KEY FINDINGS The levels of miR-1278 were reduced in the infarct regions of heart tissues of the MI mouse model and in H2O2-treated newborn murine ventricular cardiomyocytes (NMVCs) compared to those in the heart tissues of healthy mice and non-treated NMVCs. H2O2 treatment suppressed the proliferation of NMVCs, while miR-1278 upregulation improved it. Moreover, we found that miR-1278 inhibited the upregulation of IL-22 and CXCL14 expression in H2O2-treated NMVCs by directly binding with the 3'-UTRs of both IL-22 and CXCL14. Furthermore, restoration of IL-22 and CXCL14 in H2O2-treated NMVCs promoted miR-1278-induced inflammation and apoptosis. Administration of agomiR-1278 to the MI mouse model significantly improved cardiac activity. SIGNIFICANCE Collectively, our findings illustrate that the expression of miR-1278 is low in H2O2-treated NMVCs and post-MI cardiac tissues, and the overexpression of miR-1278 in these protects against cell death by modulating IL-22 and CXCL14 expression.
Collapse
Affiliation(s)
- Donghai Liu
- Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chenhui Qiao
- Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Hong Luo
- Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
38
|
Wang J, Feng Q, Liang D, Shi J. MiRNA-26a inhibits myocardial infarction-induced apoptosis by targeting PTEN via JAK/STAT pathways. Cells Dev 2021; 165:203661. [PMID: 33993982 DOI: 10.1016/j.cdev.2021.203661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/24/2020] [Accepted: 12/07/2020] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Acute myocardial infarction (MI) is a common cause of the morbidity and mortality of cardiovascular diseases in the world. Acute MI lead to cardiovascular output after formation of myocardial ischemia and circulatory arrest in coronary heart diseases. However, the mechanisms underlying MI injury are poorly understood. We explored the part played by miR-26a in myocardial infarction (MI). MATERIAL AND METHODS Decreased miR-26a expression in H2O2-treated newborn murine ventricular cardiomyocytes (NMVCs) was observed, as well as in the infarcted heart of MI mouse model, compared to untreated NMVCs and healthy mouse heart tissue, respectively. Conversely, the upregulation of phosphatase and tensin homolog (PTEN) was observed in H2O2-treated NMVCs, and in infarcted hearts. An MTT assay and BrdU staining showed that H2O2 treatment attenuated cell viability in NMVCs, whereas miR-26a overexpression increased cell viability. Both TUNEL assay and flow cytometry (FC) displayed that miR-26a expression suppressed H2O2-induced cell apoptosis. Besides, miR-26a overexpression suppressed the upregulation of PTEN expression in H2O2-treated NMVCs by directly binding to PTEN 3'-UTR. RESULTS PI3K/Akt and JAK/STAT signal transduction pathways were found to be regulated through cross-talk between miR-26a and PTEN. Furthermore, agomiR-26a treatment in MI mouse model considerably suppressed the size of the infarcted regions, and improved cardiac activity. CONCLUSIONS MiR-26a expression in MI cardiac tissues was downregulated in response to H2O2 stress, whereas it could still protect against cell death by modulation of the PI3K/Akt and JAK/STAT signal transduction pathways by directly targeting PTEN.
Collapse
Affiliation(s)
- Jianzhong Wang
- Intersive Care Unit, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, China
| | - Qilong Feng
- Departments of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Dongke Liang
- Department of Anesthesiology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Junfeng Shi
- Cardiovascular Medicine Department, XD Group Hospital, Xi'an, Shaanxi 710077, China.
| |
Collapse
|
39
|
Inhibition of fibroblast IL-6 production by ACKR4 deletion alleviates cardiac remodeling after myocardial infarction. Biochem Biophys Res Commun 2021; 547:139-147. [PMID: 33610913 DOI: 10.1016/j.bbrc.2021.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
Fibrotic scarring is tightly linked to the development of heart failure in patients with post-myocardial infarction (MI). Atypical chemokine receptor 4 (ACKR4) can eliminate chemokines, such as C-C chemokine ligand 21 (CCL21), which is independently associated with heart failure mortality. However, the role of ACKR4 in the heart during MI is unrevealed. This study aimed to determine whether ACKR4 modulates cardiac remodeling following MI and to illuminate the potential molecular mechanisms. The expression of ACKR4 was upregulated in the border/infarct area, and ACKR4 was predominantly expressed in cardiac fibroblasts (CFs). Knockout of ACKR4 protected against adverse ventricular remodeling in mice post-MI. These protective effects of ACKR4 deficiency were independent of dendritic cell immune response but could be attributed to downregulated CF-derived IL-6, affecting CF proliferation and endothelial cell (EC) functions, which consequently inhibited cardiac fibrosis. ACKR4 promoted IL-6 generation and proliferation of CFs. Besides, ACKR4 induced endothelial-to-mesenchymal transition (EndMT) in ECs through IL-6 paracrine effect. The p38 MAPK/NF-κB signaling pathway was involved in ACKR4 facilitated IL-6 generation. Moreover, ACKR4 overexpression in vivo via AAV9 carrying a periostin promoter aggravated heart functional impairment post-MI, which was abolished by IL-6 neutralizing antibody. Therefore, our study established a novel link between ACKR4 and IL-6 post-MI, indicating that ACKR4 may be a novel therapeutic target to ameliorate cardiac remodeling.
Collapse
|
40
|
Ruiz M, Khairallah M, Dingar D, Vaniotis G, Khairallah RJ, Lauzier B, Thibault S, Trépanier J, Shi Y, Douillette A, Hussein B, Nawaito SA, Sahadevan P, Nguyen A, Sahmi F, Gillis MA, Sirois MG, Gaestel M, Stanley WC, Fiset C, Tardif JC, Allen BG. MK2-Deficient Mice Are Bradycardic and Display Delayed Hypertrophic Remodeling in Response to a Chronic Increase in Afterload. J Am Heart Assoc 2021; 10:e017791. [PMID: 33533257 PMCID: PMC7955338 DOI: 10.1161/jaha.120.017791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Mitogen‐activated protein kinase–activated protein kinase‐2 (MK2) is a protein serine/threonine kinase activated by p38α/β. Herein, we examine the cardiac phenotype of pan MK2‐null (MK2−/−) mice. Methods and Results Survival curves for male MK2+/+ and MK2−/− mice did not differ (Mantel‐Cox test, P=0.580). At 12 weeks of age, MK2−/− mice exhibited normal systolic function along with signs of possible early diastolic dysfunction; however, aging was not associated with an abnormal reduction in diastolic function. Both R‐R interval and P‐R segment durations were prolonged in MK2‐deficient mice. However, heart rates normalized when isolated hearts were perfused ex vivo in working mode. Ca2+ transients evoked by field stimulation or caffeine were similar in ventricular myocytes from MK2+/+ and MK2−/− mice. MK2−/− mice had lower body temperature and an age‐dependent reduction in body weight. mRNA levels of key metabolic genes, including Ppargc1a, Acadm, Lipe, and Ucp3, were increased in hearts from MK2−/− mice. For equivalent respiration rates, mitochondria from MK2−/− hearts showed a significant decrease in Ca2+ sensitivity to mitochondrial permeability transition pore opening. Eight weeks of pressure overload increased left ventricular mass in MK2+/+ and MK2−/− mice; however, after 2 weeks the increase was significant in MK2+/+ but not MK2−/− mice. Finally, the pressure overload–induced decrease in systolic function was attenuated in MK2−/− mice 2 weeks, but not 8 weeks, after constriction of the transverse aorta. Conclusions Collectively, these results implicate MK2 in (1) autonomic regulation of heart rate, (2) cardiac mitochondrial function, and (3) the early stages of myocardial remodeling in response to chronic pressure overload.
Collapse
Affiliation(s)
- Matthieu Ruiz
- Department of Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Maya Khairallah
- Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Dharmendra Dingar
- Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - George Vaniotis
- Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | | | | | - Simon Thibault
- Faculté de Pharmacie Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Joëlle Trépanier
- Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Yanfen Shi
- Montreal Heart Institute Montréal Québec Canada
| | | | | | - Sherin Ali Nawaito
- Department of Pharmacology and Physiology Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada.,Department of Physiology Faculty of Medicine Suez Canal University Ismailia Egypt
| | - Pramod Sahadevan
- Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Albert Nguyen
- Department of Pharmacology and Physiology Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | | | | | - Martin G Sirois
- Department of Pharmacology and Physiology Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Matthias Gaestel
- Institute of Cell BiochemistryHannover Medical School Hannover Germany
| | | | - Céline Fiset
- Faculté de Pharmacie Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Jean-Claude Tardif
- Department of Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Bruce G Allen
- Department of Medicine Université de Montréal Québec Canada.,Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Department of Pharmacology and Physiology Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| |
Collapse
|
41
|
Ito J, Omiya S, Rusu MC, Ueda H, Murakawa T, Tanada Y, Abe H, Nakahara K, Asahi M, Taneike M, Nishida K, Shah AM, Otsu K. Iron derived from autophagy-mediated ferritin degradation induces cardiomyocyte death and heart failure in mice. eLife 2021; 10:e62174. [PMID: 33526170 PMCID: PMC7853718 DOI: 10.7554/elife.62174] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 01/08/2021] [Indexed: 12/29/2022] Open
Abstract
Heart failure is a major public health problem, and abnormal iron metabolism is common in patients with heart failure. Although iron is necessary for metabolic homeostasis, it induces a programmed necrosis. Iron release from ferritin storage is through nuclear receptor coactivator 4 (NCOA4)-mediated autophagic degradation, known as ferritinophagy. However, the role of ferritinophagy in the stressed heart remains unclear. Deletion of Ncoa4 in mouse hearts reduced left ventricular chamber size and improved cardiac function along with the attenuation of the upregulation of ferritinophagy-mediated ferritin degradation 4 weeks after pressure overload. Free ferrous iron overload and increased lipid peroxidation were suppressed in NCOA4-deficient hearts. A potent inhibitor of lipid peroxidation, ferrostatin-1, significantly mitigated the development of pressure overload-induced dilated cardiomyopathy in wild-type mice. Thus, the activation of ferritinophagy results in the development of heart failure, whereas inhibition of this process protects the heart against hemodynamic stress.
Collapse
Affiliation(s)
- Jumpei Ito
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of ExcellenceLondonUnited Kingdom
- Department of Pharmacology, Faculty of Medicine, Osaka Medical CollegeOsakaJapan
| | - Shigemiki Omiya
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of ExcellenceLondonUnited Kingdom
| | - Mara-Camelia Rusu
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of ExcellenceLondonUnited Kingdom
| | - Hiromichi Ueda
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka UniversityOsakaJapan
| | - Tomokazu Murakawa
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of ExcellenceLondonUnited Kingdom
| | - Yohei Tanada
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of ExcellenceLondonUnited Kingdom
| | - Hajime Abe
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of ExcellenceLondonUnited Kingdom
| | - Kazuki Nakahara
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of ExcellenceLondonUnited Kingdom
| | - Michio Asahi
- Department of Pharmacology, Faculty of Medicine, Osaka Medical CollegeOsakaJapan
| | - Manabu Taneike
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of ExcellenceLondonUnited Kingdom
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka UniversityOsakaJapan
| | - Kazuhiko Nishida
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of ExcellenceLondonUnited Kingdom
| | - Ajay M Shah
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of ExcellenceLondonUnited Kingdom
| | - Kinya Otsu
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of ExcellenceLondonUnited Kingdom
| |
Collapse
|
42
|
Zhang Y, Wang Y, Ke B, Du J. TMAO: how gut microbiota contributes to heart failure. Transl Res 2021; 228:109-125. [PMID: 32841736 DOI: 10.1016/j.trsl.2020.08.007] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/04/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022]
Abstract
An increasing amount of evidence reveals that the gut microbiota is involved in the pathogenesis and progression of various cardiovascular diseases. In patients with heart failure (HF), splanchnic hypoperfusion causes ischemia and intestinal edema, allowing bacterial translocation and bacterial metabolites to enter the blood circulation via an impaired intestinal barrier. This results in local and systemic inflammatory responses. Gut microbe-derived metabolites are implicated in the pathology of multiple diseases, including HF. These landmark findings suggest that gut microbiota influences the host's metabolic health, either directly or indirectly by producing several metabolites. In this review, we mainly discuss a newly identified gut microbiota-dependent metabolite, trimethylamine N-oxide (TMAO), which appears to participate in the pathologic processes of HF and can serve as an early warning marker to identify individuals who are at the risk of disease progression. We also discuss the potential of the gut-TMAO-HF axis as a new target for HF treatment and highlight the current controversies and potentially new and exciting directions for future research.
Collapse
Affiliation(s)
- Yixin Zhang
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing, China; Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Yuan Wang
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing, China; Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Bingbing Ke
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing, China; Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing, China; Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China.
| |
Collapse
|
43
|
Neurohumoral, cardiac and inflammatory markers in the evaluation of heart failure severity and progression. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2021; 18:47-66. [PMID: 33613659 PMCID: PMC7868913 DOI: 10.11909/j.issn.1671-5411.2021.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Heart failure is common in adult population, accounting for substantial morbidity and mortality worldwide. The main risk factors for heart failure are coronary artery disease, hypertension, obesity, diabetes mellitus, chronic pulmonary diseases, family history of cardiovascular diseases, cardiotoxic therapy. The main factor associated with poor outcome of these patients is constant progression of heart failure. In the current review we present evidence on the role of established and candidate neurohumoral biomarkers for heart failure progression management and diagnostics. A growing number of biomarkers have been proposed as potentially useful in heart failure patients, but not one of them still resembles the characteristics of the “ideal biomarker.” A single marker will hardly perform well for screening, diagnostic, prognostic, and therapeutic management purposes. Moreover, the pathophysiological and clinical significance of biomarkers may depend on the presentation, stage, and severity of the disease. The authors cover main classification of heart failure phenotypes, based on the measurement of left ventricular ejection fraction, including heart failure with preserved ejection fraction, heart failure with reduced ejection fraction, and the recently proposed category heart failure with mid-range ejection fraction. One could envisage specific sets of biomarker with different performances in heart failure progression with different left ventricular ejection fraction especially as concerns prediction of the future course of the disease and of left ventricular adverse/reverse remodeling. This article is intended to provide an overview of basic and additional mechanisms of heart failure progression will contribute to a more comprehensive knowledge of the disease pathogenesis.
Collapse
|
44
|
Kainuma S, Miyagawa S, Toda K, Yoshikawa Y, Hata H, Yoshioka D, Kawamura T, Kawamura A, Kashiyama N, Ito Y, Iseoka H, Ueno T, Kuratani T, Nakamoto K, Sera F, Ohtani T, Yamada T, Sakata Y, Sawa Y. Long-term outcomes of autologous skeletal myoblast cell-sheet transplantation for end-stage ischemic cardiomyopathy. Mol Ther 2021; 29:1425-1438. [PMID: 33429079 PMCID: PMC8058489 DOI: 10.1016/j.ymthe.2021.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/30/2020] [Accepted: 01/02/2021] [Indexed: 12/11/2022] Open
Abstract
We evaluated the cardiac function recovery following skeletal myoblast cell-sheet transplantation and the long-term outcomes after applying this treatment in 23 patients with ischemic cardiomyopathy. We defined patients as “responders” when their left ventricular ejection fraction remained unchanged or improved at 6 months after treatment. At 6 months, 16 (69.6%) patients were defined as responders, and the average increase in left ventricular ejection fraction was 4.9%. The responders achieved greater improvement degrees in left ventricular and hemodynamic function parameters, and they presented improved exercise capacity. During the follow-up period (56 ± 28 months), there were four deaths and the overall 5-year survival rate was 95%. Although the responders showed higher freedom from mortality and/or heart failure admission (5-year, 81% versus 0%; p = 0.0002), both groups presented an excellent 5-year survival rate (5-year, 93% versus 100%; p = 0.297) that was higher than that predicted using the Seattle Heart Failure Model. The stepwise logistic regression analysis showed that the preoperative estimated glomerular filtration rate and the left ventricular end-systolic volume index were independently associated with the recovery progress. Approximately 70% of patients with “no-option” ischemic cardiomyopathy responded well to the cell-sheet transplantation. Preoperative renal and left ventricular function might predict the patients’ response to this treatment.
Collapse
Affiliation(s)
- Satoshi Kainuma
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Koichi Toda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yasushi Yoshikawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hiroki Hata
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Daisuke Yoshioka
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Ai Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Noriyuki Kashiyama
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshito Ito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hiroko Iseoka
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Takayoshi Ueno
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Toru Kuratani
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Kei Nakamoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Fusako Sera
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomohito Ohtani
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomomi Yamada
- Department of Medical Innovation, Osaka University Hospital, Suita, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
45
|
Zheng M, Wang M. A narrative review of the roles of the miR-15/107 family in heart disease: lessons and prospects for heart disease. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:66. [PMID: 33553359 PMCID: PMC7859774 DOI: 10.21037/atm-20-6073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heart disease is one of the leading causes of morbidity and mortality globally. To reduce morbidity and mortality among patients with heart disease, it is important to identify drug targets and biomarkers for more effective diagnosis, prognosis, and treatment. MicroRNAs (miRNAs) are characterized as a group of endogenous, small non-coding RNAs, which function by directly inhibiting target genes. The miR-15/107 family is a group of evolutionarily conserved miRNAs comprising 10 members that share an identical motif of AGCAGC, which determines overlapping target genes and cooperation in the biological process. Accumulating evidence has demonstrated the predominant dysregulation of the miR-15/107 family in cardiovascular disease, neurodegenerative disease, and cancer. In this review, we summarize the current understanding of the miR-15/107 family, focusing on its role in the regulation in the development of the heart and the progression of heart disease. We also discuss the potential of different members of the miR-15/107 family as biomarkers for diverse heart disease, as well as the current applications and challenges in the use of the miR-15/107 family in clinical trials for various disease. This paper hopes to explore the potential of the miR-15/107 family as therapeutic targets or biomarkers and to provide directions for future research.
Collapse
Affiliation(s)
- Manni Zheng
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min Wang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
46
|
Pharmacological Modulation of Cardiac Remodeling after Myocardial Infarction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8815349. [PMID: 33488934 PMCID: PMC7790555 DOI: 10.1155/2020/8815349] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/13/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
Cardiac remodeling describes a series of structural and functional changes in the heart after myocardial infarction (MI). Adverse post-MI cardiac remodeling directly jeopardizes the recovery of cardiac functions and the survival rate in MI patients. Several classes of drugs are proven to be useful to reduce the mortality of MI patients. However, it is an ongoing challenge to prevent the adverse effects of cardiac remodeling. The present review aims to identify the pharmacological therapies from the existing clinical drugs for the treatment of adverse post-MI cardiac remodeling. Post-MI cardiac remodeling is a complex process involving ischemia/reperfusion, inflammation, cell death, and deposition of extracellular matrix (ECM). Thus, the present review included two parts: (1) to examine the basic pathophysiology in the cardiovascular system and the molecular basis of cardiac remodeling and (2) to identify the pathological aspects of cardiac remodeling and the potential of the existing pharmacotherapies. Ultimately, the present review highlights drug repositioning as a strategy to discover effective therapies from the existing drugs against post-MI cardiac remodeling.
Collapse
|
47
|
Feng Q, Li X, Qin X, Yu C, Jin Y, Qian X. PTEN inhibitor improves vascular remodeling and cardiac function after myocardial infarction through PI3k/Akt/VEGF signaling pathway. Mol Med 2020; 26:111. [PMID: 33213359 PMCID: PMC7678076 DOI: 10.1186/s10020-020-00241-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/11/2020] [Indexed: 01/14/2023] Open
Abstract
Background Myocardial infarction (MI) is the leading cause of death from cardiovascular disease (CVD). Currently, the efficacy for MI treatment remains unsatisfactory. Therefore, it is urgent to develop a novel therapeutic strategy. Methods Left anterior descending arteries (LAD) of mice were ligated to induce MI. Another set of mice were intravenously injected with PTEN inhibitor BPV (1 mg/kg) 1 h after LAD ligation and continued to receive BPV injection daily for the following 6 days. Mice were performed echocardiography 14 days after surgery. Results Mice in MI group displayed an increased expression of PTEN with impaired cardiac function, enhanced cardiomyocyte apoptosis and decreased angiogenesis. BPV treatment significantly improved cardiac function, with reduced cardiomyocyte apoptosis, promoted angiogenesis, and activated PI3K/Akt/vascular endothelial growth factor (VEGF) signaling pathway. Conclusion PTEN inhibitor BPV could effectively prevent myocardial infarction in mice, highlighting its potential as a candidate therapeutic drug.
Collapse
Affiliation(s)
- Qiuting Feng
- Department of Cardiovascular, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No.68, Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Xing Li
- Department of Cardiovascular, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No.68, Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Xian Qin
- Department of Cardiovascular, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No.68, Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Cheng Yu
- Department of Cardiovascular, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No.68, Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Yan Jin
- Department of Cardiovascular, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No.68, Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Xiaojun Qian
- Department of Respiratory, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No.68, Zhongshan Road, Wuxi, 214002, Jiangsu, China.
| |
Collapse
|
48
|
Ma Y, Pan C, Tang X, Zhang M, Shi H, Wang T, Zhang Y. MicroRNA-200a represses myocardial infarction-related cell death and inflammation by targeting the Keap1/Nrf2 and β-catenin pathways. Hellenic J Cardiol 2020; 62:139-148. [PMID: 33197602 DOI: 10.1016/j.hjc.2020.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Acute myocardial infarction (MI) is a main cause of emergency death in the world. MicroRNAs (miRs/miRNAs) are a series of small non-coding RNA molecules, which regulate cardiovascular disorders that involve MI. In this study, we explored the function of miR-200a in MI treatment. METHODS We observed down-regulation of miR-200a levels and up-regulation of Keap1 and β-catenin levels in H2O2-treated newborn murine ventricular cardiomyocytes (NMVCs) and the infarcted heart tissues of MI mouse models, compared to the non-treated NMVCs and normal heart tissues of healthy mice. RESULTS CCK-8 and colony formation assays indicated the reduction in NMVC vitality due to H2O2 treatment and the recovery of cell vitality due to miR-200a overexpression, respectively. Flow cytometry with Annexin and PI staining indicated the inhibition of H2O2-triggered cell apoptosis through ectopically expressed miR-200a. Western blotting and ELISA analyses that detected pro-inflammatory cell factors [interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α] confirmed that miR-200a prevented H2O2-induced NMVC inflammation. Moreover, miR-200a inhibited up-regulation of Keap1 and β-catenin expression in H2O2-treated NMVCs by directly binding with the 3'-UTR regions of both Keap1 and β-catenin. Furthermore, overexpression of Keap1 and β-cateninin in H2O2-treated NMVCs with recovered miR-200a elevated inflammation and apoptosis, respectively. CONCLUSION The results showed that miR-200a expression was inhibited in murine cardiomyocytes due to H2O2 stress in MI cardiac tissues and overexpressed miR-200a could protect the cells from death by regulating the Keap1/Nrf2 and β-catenin signal transduction pathways.
Collapse
Affiliation(s)
- Yi Ma
- Department of Radiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213164, China.
| | - Changjie Pan
- Department of Radiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213164, China.
| | - Xiaoqiang Tang
- Department of Radiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213164, China.
| | - Ming Zhang
- Department of Radiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213164, China.
| | - Haifeng Shi
- Department of Radiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213164, China.
| | - Tao Wang
- Department of Radiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213164, China.
| | - Yong Zhang
- Department of Radiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213164, China.
| |
Collapse
|
49
|
Zhao Z, Qu F, Liu R, Xia Y. Differential expression of miR-142-3p protects cardiomyocytes from myocardial ischemia-reperfusion via TLR4/NFkB axis. J Cell Biochem 2020; 121:3679-3690. [PMID: 31746021 DOI: 10.1002/jcb.29506] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/10/2019] [Indexed: 01/24/2023]
Abstract
Our research aims to explore the impact of miR-142 on myocardial apoptosis in the mouse ischemia and reperfusion (IR) model and investigate the underlying mechanisms at the molecular level. A considerable downregulation of miR-142 was observed in the cardiac area of mice post IR modeling. To understand the regulatory function of IR-induced miR-142 downregulation, the animals were categorized into four groups: IR model group; IR + agomir-142 group (IR mice treated with agomir-142); IR + antagomir-142 group (IR mice treated with antagomir-142); IR + agomir-142 + negative control (NC) group (IR mice processed with agomir-NC). The results indicated that agomir-142 upregulation was capable of shrinking IR damage-triggered infarction of the ventriculus sinister, strengthening myocardial function, and guarding against cardiomyocyte apoptosis, whereas further decreased miR-142 with antagomir-142 infection displayed negative influence of miR-142 against mice IR damage. In the cellular assay, miR-142 overexpression significantly improved proliferation and inhibited the apoptosis of neonatal rat cardiomyocytes (NRCs). Moreover, we found that miR-142 reduced the Bcl-2/Bax ratio and upregulated hydrogen peroxide (H2 O2 )-induced caspase-3 expression. Furthermore, transfection with an miR-142 mimic prevented the upregulation of TLR4/NFkB expression and activation in H2 O2 -treated NRCs. Our findings also revealed that miR-142 is linked to the 3'-untranslated area of the TLR4 gene. In addition, TLR4 overexpression considerably ablated the protective effects of miR-142 in terms of the cell viability of H2 O2 -treated NRCs. Taken together, miR-142 agomir injection in mice and miR-142 mimic transfection in NRCs plays a role in protecting the heart from IR damage and malfunction via the TLR4/NFkB axis both in vivo and in vitro.
Collapse
Affiliation(s)
- Zhikun Zhao
- Division One, For Senior Officers, Fourth Medical Center of PLA General Hospital, Beijing, Haidian, China
| | - Feng Qu
- Department of Orthopedics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Runmei Liu
- Division One, For Senior Officers, Fourth Medical Center of PLA General Hospital, Beijing, Haidian, China
| | - Yunfeng Xia
- Division One, For Senior Officers, Fourth Medical Center of PLA General Hospital, Beijing, Haidian, China
| |
Collapse
|
50
|
Wesseling M, de Poel JH, de Jager SC. Growth differentiation factor 15 in adverse cardiac remodelling: from biomarker to causal player. ESC Heart Fail 2020; 7:1488-1501. [PMID: 32424982 PMCID: PMC7373942 DOI: 10.1002/ehf2.12728] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/06/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
Heart failure is a growing health issue as a negative consequence of improved survival upon myocardial infarction, unhealthy lifestyle, and the ageing of our population. The large and complex pathology underlying heart failure makes diagnosis and especially treatment very difficult. There is an urgent demand for discriminative biomarkers to aid disease management of heart failure. Studying cellular pathways and pathophysiological mechanisms contributing to disease initiation and progression is crucial for understanding the disease process and will aid to identification of novel biomarkers and potential therapeutic targets. Growth differentiation factor 15 (GDF15) is a proven valuable biomarker for different pathologies, including cancer, type 2 diabetes, and cardiovascular diseases. Although the prognostic value of GDF15 in heart failure is robust, the biological function of GDF15 in adverse cardiac remodelling is not fully understood. GDF15 is a distant member of the transforming growth factor-β family and involved in various biological processes including inflammation, cell cycle, and apoptosis. However, more research is suggesting a role in fibrosis, hypertrophy, and endothelial dysfunction. As GDF15 is a pleiotropic protein, elucidating the exact role of GDF15 in complex disease processes has proven to be a challenge. In this review, we provide an overview of the role GDF15 plays in various intracellular and extracellular processes underlying heart failure, and we touch upon crucial points that need consideration before GDF15 can be integrated as a biomarker in standard care or when considering GDF15 for therapeutic intervention.
Collapse
Affiliation(s)
- Marian Wesseling
- Laboratory for Experimental CardiologyUniversity Medical Centre UtrechtUtrechtThe Netherlands
- Laboratory for Clinical Chemistry and HematologyUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | - Julius H.C. de Poel
- Laboratory for Experimental CardiologyUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | - Saskia C.A. de Jager
- Laboratory for Experimental CardiologyUniversity Medical Centre UtrechtUtrechtThe Netherlands
- Laboratory for Translational ImmunologyUniversity Medical Centre UtrechtUtrechtThe Netherlands
| |
Collapse
|