1
|
Jiang Y, Palaniyappan L, Luo C, Chang X, Zhang J, Tang Y, Zhang T, Li C, Zhou E, Yu X, Li W, An D, Zhou D, Huang CC, Tsai SJ, Lin CP, Cheng J, Wang J, Yao D, Cheng W, Feng J. Neuroimaging epicenters as potential sites of onset of the neuroanatomical pathology in schizophrenia. SCIENCE ADVANCES 2024; 10:eadk6063. [PMID: 38865456 PMCID: PMC11168466 DOI: 10.1126/sciadv.adk6063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Schizophrenia lacks a clear definition at the neuroanatomical level, capturing the sites of origin and progress of this disorder. Using a network-theory approach called epicenter mapping on cross-sectional magnetic resonance imaging from 1124 individuals with schizophrenia, we identified the most likely "source of origin" of the structural pathology. Our results suggest that the Broca's area and adjacent frontoinsular cortex may be the epicenters of neuroanatomical pathophysiology in schizophrenia. These epicenters can predict an individual's response to treatment for psychosis. In addition, cross-diagnostic similarities based on epicenter mapping over of 4000 individuals diagnosed with neurological, neurodevelopmental, or psychiatric disorders appear to be limited. When present, these similarities are restricted to bipolar disorder, major depressive disorder, and obsessive-compulsive disorder. We provide a comprehensive framework linking schizophrenia-specific epicenters to multiple levels of neurobiology, including cognitive processes, neurotransmitter receptors and transporters, and human brain gene expression. Epicenter mapping may be a reliable tool for identifying the potential onset sites of neural pathophysiology in schizophrenia.
Collapse
Affiliation(s)
- Yuchao Jiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China
| | - Lena Palaniyappan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Quebec, Canada
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, PR China
- Research Unit of NeuroInformation (2019RU035), Chinese Academy of Medical Sciences, Chengdu, PR China
| | - Xiao Chang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Enpeng Zhou
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China
| | - Xin Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China
| | - Wei Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Dongmei An
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, PR China
- Shanghai Changning Mental Health Center, Shanghai, PR China
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, PR China
- Research Unit of NeuroInformation (2019RU035), Chinese Academy of Medical Sciences, Chengdu, PR China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, PR China
- Fudan ISTBI—ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, PR China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China
- Fudan ISTBI—ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, PR China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, PR China
- Zhangjiang Fudan International Innovation Center, Shanghai, PR China
- School of Data Science, Fudan University, Shanghai, PR China
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
2
|
Collins HM, Greenfield S. Rodent Models of Alzheimer's Disease: Past Misconceptions and Future Prospects. Int J Mol Sci 2024; 25:6222. [PMID: 38892408 PMCID: PMC11172947 DOI: 10.3390/ijms25116222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with no effective treatments, not least due to the lack of authentic animal models. Typically, rodent models recapitulate the effects but not causes of AD, such as cholinergic neuron loss: lesioning of cholinergic neurons mimics the cognitive decline reminiscent of AD but not its neuropathology. Alternative models rely on the overexpression of genes associated with familial AD, such as amyloid precursor protein, or have genetically amplified expression of mutant tau. Yet transgenic rodent models poorly replicate the neuropathogenesis and protein overexpression patterns of sporadic AD. Seeding rodents with amyloid or tau facilitates the formation of these pathologies but cannot account for their initial accumulation. Intracerebral infusion of proinflammatory agents offer an alternative model, but these fail to replicate the cause of AD. A novel model is therefore needed, perhaps similar to those used for Parkinson's disease, namely adult wildtype rodents with neuron-specific (dopaminergic) lesions within the same vulnerable brainstem nuclei, 'the isodendritic core', which are the first to degenerate in AD. Site-selective targeting of these nuclei in adult rodents may recapitulate the initial neurodegenerative processes in AD to faithfully mimic its pathogenesis and progression, ultimately leading to presymptomatic biomarkers and preventative therapies.
Collapse
Affiliation(s)
- Helen M. Collins
- Neuro-Bio Ltd., Building F5 The Culham Campus, Abingdon OX14 3DB, UK;
| | | |
Collapse
|
3
|
Ho K, Bodi NE, Sharma TP. Normal-Tension Glaucoma and Potential Clinical Links to Alzheimer's Disease. J Clin Med 2024; 13:1948. [PMID: 38610712 PMCID: PMC11012506 DOI: 10.3390/jcm13071948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Glaucoma is a group of optic neuropathies and the world's leading cause of irreversible blindness. Normal-tension glaucoma (NTG) is a subtype of glaucoma that is characterized by a typical pattern of peripheral retinal loss, in which the patient's intraocular pressure (IOP) is considered within the normal range (<21 mmHg). Currently, the only targetable risk factor for glaucoma is lowering IOP, and patients with NTG continue to experience visual field loss after IOP-lowering treatments. This demonstrates the need for a better understanding of the pathogenesis of NTG and underlying mechanisms leading to neurodegeneration. Recent studies have found significant connections between NTG and cerebral manifestations, suggesting NTG as a neurodegenerative disease beyond the eye. Gaining a better understanding of NTG can potentially provide new Alzheimer's Disease diagnostics capabilities. This review identifies the epidemiology, current biomarkers, altered fluid dynamics, and cerebral and ocular manifestations to examine connections and discrepancies between the mechanisms of NTG and Alzheimer's Disease.
Collapse
Affiliation(s)
- Kathleen Ho
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Nicole E. Bodi
- Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Tasneem P. Sharma
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Stark Neurosciences Research Institute, Indianapolis, IN 46202, USA
| |
Collapse
|
4
|
Arvidsson I, Strandberg O, Palmqvist S, Stomrud E, Cullen N, Janelidze S, Tideman P, Heyden A, Åström K, Hansson O, Mattsson-Carlgren N. Comparing a pre-defined versus deep learning approach for extracting brain atrophy patterns to predict cognitive decline due to Alzheimer's disease in patients with mild cognitive symptoms. Alzheimers Res Ther 2024; 16:61. [PMID: 38504336 PMCID: PMC10949809 DOI: 10.1186/s13195-024-01428-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Predicting future Alzheimer's disease (AD)-related cognitive decline among individuals with subjective cognitive decline (SCD) or mild cognitive impairment (MCI) is an important task for healthcare. Structural brain imaging as measured by magnetic resonance imaging (MRI) could potentially contribute when making such predictions. It is unclear if the predictive performance of MRI can be improved using entire brain images in deep learning (DL) models compared to using pre-defined brain regions. METHODS A cohort of 332 individuals with SCD/MCI were included from the Swedish BioFINDER-1 study. The goal was to predict longitudinal SCD/MCI-to-AD dementia progression and change in Mini-Mental State Examination (MMSE) over four years. Four models were evaluated using different predictors: (1) clinical data only, including demographics, cognitive tests and APOE ε4 status, (2) clinical data plus hippocampal volume, (3) clinical data plus all regional MRI gray matter volumes (N = 68) extracted using FreeSurfer software, (4) a DL model trained using multi-task learning with MRI images, Jacobian determinant images and baseline cognition as input. A double cross-validation scheme, with five test folds and for each of those ten validation folds, was used. External evaluation was performed on part of the ADNI dataset, including 108 patients. Mann-Whitney U-test was used to determine statistically significant differences in performance, with p-values less than 0.05 considered significant. RESULTS In the BioFINDER cohort, 109 patients (33%) progressed to AD dementia. The performance of the clinical data model for prediction of progression to AD dementia was area under the curve (AUC) = 0.85 and four-year cognitive decline was R2 = 0.14. The performance was improved for both outcomes when adding hippocampal volume (AUC = 0.86, R2 = 0.16). Adding FreeSurfer brain regions improved prediction of four-year cognitive decline but not progression to AD (AUC = 0.83, R2 = 0.17), while the DL model worsened the performance for both outcomes (AUC = 0.84, R2 = 0.08). A sensitivity analysis showed that the Jacobian determinant image was more informative than the MRI image, but that performance was maximized when both were included. In the external evaluation cohort from ADNI, 23 patients (21%) progressed to AD dementia. The results for predicted progression to AD dementia were similar to the results for the BioFINDER test data, while the performance for the cognitive decline was deteriorated. CONCLUSIONS The DL model did not significantly improve the prediction of clinical disease progression in AD, compared to regression models with a single pre-defined brain region.
Collapse
Affiliation(s)
- Ida Arvidsson
- Centre for Mathematical Sciences, Lund University, Lund, Sweden.
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Nicholas Cullen
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Pontus Tideman
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Anders Heyden
- Centre for Mathematical Sciences, Lund University, Lund, Sweden
| | - Karl Åström
- Centre for Mathematical Sciences, Lund University, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
- Department of Neurology, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
5
|
Davidson TL, Stevenson RJ. Vulnerability of the Hippocampus to Insults: Links to Blood-Brain Barrier Dysfunction. Int J Mol Sci 2024; 25:1991. [PMID: 38396670 PMCID: PMC10888241 DOI: 10.3390/ijms25041991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The hippocampus is a critical brain substrate for learning and memory; events that harm the hippocampus can seriously impair mental and behavioral functioning. Hippocampal pathophysiologies have been identified as potential causes and effects of a remarkably diverse array of medical diseases, psychological disorders, and environmental sources of damage. It may be that the hippocampus is more vulnerable than other brain areas to insults that are related to these conditions. One purpose of this review is to assess the vulnerability of the hippocampus to the most prevalent types of insults in multiple biomedical domains (i.e., neuroactive pathogens, neurotoxins, neurological conditions, trauma, aging, neurodegenerative disease, acquired brain injury, mental health conditions, endocrine disorders, developmental disabilities, nutrition) and to evaluate whether these insults affect the hippocampus first and more prominently compared to other brain loci. A second purpose is to consider the role of hippocampal blood-brain barrier (BBB) breakdown in either causing or worsening the harmful effects of each insult. Recent research suggests that the hippocampal BBB is more fragile compared to other brain areas and may also be more prone to the disruption of the transport mechanisms that act to maintain the internal milieu. Moreover, a compromised BBB could be a factor that is common to many different types of insults. Our analysis indicates that the hippocampus is more vulnerable to insults compared to other parts of the brain, and that developing interventions that protect the hippocampal BBB may help to prevent or ameliorate the harmful effects of many insults on memory and cognition.
Collapse
Affiliation(s)
- Terry L. Davidson
- Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Avenue, NW, Washington, DC 20016, USA
| | | |
Collapse
|
6
|
Arvidsson I, Strandberg O, Palmqvist S, Stomrud E, Cullen N, Janelidze S, Tideman P, Heyden A, Åström K, Hansson O, Mattsson-Carlgren N. Comparing a pre-defined versus deep learning approach for extracting brain atrophy patterns to predict cognitive decline due to Alzheimer's disease in patients with mild cognitive symptoms. RESEARCH SQUARE 2023:rs.3.rs-3569391. [PMID: 37986841 PMCID: PMC10659533 DOI: 10.21203/rs.3.rs-3569391/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background Predicting future Alzheimer's disease (AD)-related cognitive decline among individuals with subjective cognitive decline (SCD) or mild cognitive impairment (MCI) is an important task for healthcare. Structural brain imaging as measured by magnetic resonance imaging (MRI) could potentially contribute when making such predictions. It is unclear if the predictive performance of MRI can be improved using entire brain images in deep learning (DL) models compared to using pre-defined brain regions. Methods A cohort of 332 individuals with SCD/MCI were included from the Swedish BioFINDER-1 study. The goal was to predict longitudinal SCD/MCI-to-AD dementia progression and change in Mini-Mental State Examination (MMSE) over four years. Four models were evaluated using different predictors: 1) clinical data only, including demographics, cognitive tests and APOE e4 status, 2) clinical data plus hippocampal volume, 3) clinical data plus all regional MRI gray matter volumes (N=68) extracted using FreeSurfer software, 4) a DL model trained using multi-task learning with MRI images, Jacobian determinant images and baseline cognition as input. Models were developed on 80% of subjects (N=267) and tested on the remaining 20% (N=65). Mann-Whitney U-test was used to determine statistically significant differences in performance, with p-values less than 0.05 considered significant. Results In the test set, 21 patients (32.3%) progressed to AD dementia. The performance of the clinical data model for prediction of progression to AD dementia was area under the curve (AUC)=0.87 and four-year cognitive decline was R2=0.17. The performance was significantly improved for both outcomes when adding hippocampal volume (AUC=0.91, R2=0.26, p-values <0.05) or FreeSurfer brain regions (AUC=0.90, R2=0.27, p-values <0.05). Conversely, the DL model did not show any significant difference from the clinical data model (AUC=0.86, R2=0.13). A sensitivity analysis showed that the Jacobian determinant image was more informative than the MRI image, but that performance was maximized when both were included. Conclusions The DL model did not significantly improve the prediction of clinical disease progression in AD, compared to regression models with a single pre-defined brain region.
Collapse
|
7
|
Delvenne JF, Scally B, Rose Burke M. Splenium tract projections of the corpus callosum to the parietal cortex classifies Alzheimer's disease and mild cognitive impairment. Neurosci Lett 2023; 810:137331. [PMID: 37302566 PMCID: PMC10862691 DOI: 10.1016/j.neulet.2023.137331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
The corpus callosum (CC) is the largest bundle of white matter tracts in the brain connecting the left and right cerebral hemispheres. The posterior region of the CC, known as the splenium, seems to be relatively preserved throughout the lifespan and is regularly examined for indications of various pathologies, including Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI). However, the splenium has rarely been investigated in terms of its distinct inter-hemispheric tract bundles that project to bilateral occipital, parietal and temporal areas of the cortex. The aim of the present study was to determine if any of these sub-splenium tract bundles are specifically affected by individuals with AD and MCI compared to normal controls. Diffusion Tensor Imaging was used to directly examine the integrity of these distinct tract bundles and their diffusion metrics were compared between groups of MCI, AD, and control individuals. Results revealed that differences between MCI, AD, and controls were particularly evident at parietal tracts of the CC splenium and were consistent with an interpretation of compromised white matter integrity. Combined parietal tract diffusivity and density information strongly discriminated between AD patients and controls with an accuracy (AUC) of 97.19%. Combined parietal tract diffusivity parameters correctly classified MCI subjects against controls with an accuracy of 74.97%. These findings demonstrated the potential of examining the CC splenium in terms of its distinct inter-hemispheric tract bundles for the diagnosis of AD and MCI.
Collapse
Affiliation(s)
| | - Brian Scally
- School of Psychology, University of Leeds, United Kingdom
| | | |
Collapse
|
8
|
Islam A, Saito T, Saido T, Ali AB. Presubiculum principal cells are preserved from degeneration in knock-in APP/TAU mouse models of Alzheimer's disease. Semin Cell Dev Biol 2023; 139:55-72. [PMID: 35292192 PMCID: PMC10439011 DOI: 10.1016/j.semcdb.2022.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 12/31/2022]
Abstract
The presubiculum (PRS) is an integral component of the perforant pathway that has recently been recognised as a relatively unscathed region in clinical Alzheimer's disease (AD), despite neighbouring components of the perforant pathway, CA1 and the entorhinal cortex, responsible for formation of episodic memory and storage, showing severe hallmarks of AD including, amyloid-beta (Aβ) plaques, tau tangles and marked gliosis. However, the question remains whether this anatomical resilience translates into functional resilience of the PRS neurons. Using neuroanatomy combined with whole-cell electrophysiological recordings, we investigated whether the unique spatial profile of the PRS was replicable in two knock-in mouse models of AD, APPNL-F/NL-F, and APPNL-F/MAPTHTAU and whether the intrinsic properties and morphological integrity of the PRS principal neurons was maintained compared to the lateral entorhinal cortex (LEC) and hippocampal CA1 principal cells. Our data revealed an age-dependent Aβ and tau pathology with neuroinflammation in the LEC and CA1, but a presence of fleece-like Aβ deposits with an absence of tau tangles and cellular markers of gliosis in the PRS of the mouse models at 11-16 and 18-22 months. These observations were consistent in human post-mortem AD tissue. This spatial profile also correlated with functional resilience of strong burst firing PRS pyramidal cells that showed unaltered sub- and suprathreshold intrinsic biophysical membrane properties and gross morphology in the AD models that were similar to the properties of pyramidal cells recorded in age-matched wild-type mice (11-14 months). This was in contrast to the LEC and CA1 principal cells which showed altered subthreshold intrinsic properties such as a higher input resistance, longer membrane time constants and hyperexcitability in response to suprathreshold stimulation that correlated with atrophied dendrites in both AD models. In conclusion, our data show for the first time that the unique anatomical profile of the PRS constitutes a diffuse AD pathology that is correlated with the preservation of principal pyramidal cell intrinsic biophysical and morphological properties despite alteration of LEC and CA1 pyramidal cells in two distinct genetic models of AD. Understanding the underlying mechanisms of this resilience could be beneficial in preventing the spread of disease pathology before cognitive deficits are precipitated in AD.
Collapse
Affiliation(s)
- Anam Islam
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Takaomi Saido
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Afia B Ali
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
9
|
Segura-Uribe JJ, García-de la Torre P, Castillo-Mendieta T, Bribiesca-Cruz I, Orozco-Suárez S, Soriano-Ursúa MA, Pinto-Almazán R, Fuentes-Venado CE, Guerra-Araiza C. Tibolone Improves Memory and Decreases the Content of Amyloid-β Peptides and Tau Protein in the Hippocampus of a Murine Model of Alzheimer's Disease. J Alzheimers Dis 2022; 90:1437-1447. [PMID: 36278346 DOI: 10.3233/jad-220434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) affects women more than men and consequently has been associated with menopause. Tibolone (TIB) has been used as a hormone replacement therapy to alleviate climacteric symptoms. Neuroprotective effects of TIB have also been reported in some animal models. OBJECTIVE This study aimed to assess the effect of TIB on memory and Aβ peptides and tau protein content in the hippocampus and cerebellum of transgenic 3xTgAD ovariectomized mice. METHODS Three-month-old female mice were ovariectomized. Ten days after surgery, animals were divided into four groups: wild-type (WT)+vehicle; WT+TIB (1 mg/kg); 3xTgAD+vehicle; and 3xTgAD+TIB (1 mg/kg). TIB was administered for three months, and memory was evaluated using the object-in-context recognition task. Subsequently, animals were decapitated, and the hippocampus and cerebellum were dissected. Using commercial ELISA kits, these brain structures were homogenized in a PBS buffer for quantifying Aβ40 and Aβ42 and phosphorylated and total tau.ResultsA long-term memory deficit was observed in the 3xTgAD+vehicle group. In contrast, TIB treatment improved long-term memory in the 3xTgAD+TIB group than those treated with vehicle (p < 0.05). Furthermore, TIB treatment decreased Aβ and tau content in the hippocampus of 3xTgAD mice compared to vehicle-treated groups (p < 0.05). No significant changes were observed in the cerebellum. CONCLUSION Chronic treatment with TIB showed neuroprotective effects and delayed AD neuropathology in the 3xTgAD mice. Our results support hormone replacement therapy with TIB in menopausal women for neuroprotection.
Collapse
Affiliation(s)
- Julia J Segura-Uribe
- Subdirección de Gestión de la Investigación, Hospital Infantil de Mexico Federico Gómez, Secretarya de Salud, Mexico City, Mexico
| | - Paola García-de la Torre
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Tzayaka Castillo-Mendieta
- Unidad de Investigación Médica en Farmacologya, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Iván Bribiesca-Cruz
- Unidad de Investigación Médica en Farmacologya, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Sandra Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Marvin A Soriano-Ursúa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rodolfo Pinto-Almazán
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Claudia E Fuentes-Venado
- Servicio de Medicina Física y Rehabilitación, Hospital General de Zona No 197, Texcoco, State of Mexico, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacologya, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
10
|
Pitchai M, Teja C, Nawaz Khan FR. Montmorillonite Catalyzed Tandem Synthesis of 1,1,3-Trisubstituted-1H-Isochromenes from 3-Phenylisochromenones. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1898991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Manivel Pitchai
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Organic and Medicinal Chemistry Research Laboratory, Vellore, Tamil Nadu, India
| | - Chitrala Teja
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Organic and Medicinal Chemistry Research Laboratory, Vellore, Tamil Nadu, India
| | - Fazlur-Rahman Nawaz Khan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Organic and Medicinal Chemistry Research Laboratory, Vellore, Tamil Nadu, India
| |
Collapse
|
11
|
LaDage LD. Seasonal variation in gonadal hormones, spatial cognition, and hippocampal attributes: More questions than answers. Horm Behav 2022; 141:105151. [PMID: 35299119 DOI: 10.1016/j.yhbeh.2022.105151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 11/04/2022]
Abstract
A large body of research has been dedicated to understanding the factors that modulate spatial cognition and attributes of the hippocampus, a highly plastic brain region that underlies spatial processing abilities. Variation in gonadal hormones impacts spatial memory and hippocampal attributes in vertebrates, although the direction of the effect has not been entirely consistent. To add complexity, individuals in the field must optimize fitness by coordinating activities with the appropriate environmental cues, and many of these behaviors are correlated tightly with seasonal variation in gonadal hormone release. As such, it remains unclear if the relationship among systemic gonadal hormones, spatial cognition, and the hippocampus also exhibits seasonal variation. This review presents an overview of the relationship among gonadal hormones, the hippocampus, and spatial cognition, and how the seasonal release of gonadal hormones correlates with seasonal variation in spatial cognition and hippocampal attributes. Additionally, this review presents other neuroendocrine mechanisms that may be involved in modulating the relationship among seasonality, gonadal hormone release, and the hippocampus and spatial cognition, including seasonal rhythms of steroid hormone binding globulins, neurosteroids, sex steroid hormone receptor expression, and hormone interactions. Here, endocrinology, ecology, and behavioral neuroscience are brought together to present an overview of the research demonstrating the mechanistic effects of systemic gonadal hormones on spatial cognition and the hippocampus, while, at a functional level, superimposing seasonal effects to examine ecologically-relevant circannual changes in gonadal hormones and spatial behaviors.
Collapse
Affiliation(s)
- Lara D LaDage
- Penn State Altoona, Division of Mathematics & Natural Sciences, 3000 Ivyside Dr., Altoona, PA 16601, USA.
| |
Collapse
|
12
|
Woodworth DC, Sheikh-Bahaei N, Scambray KA, Phelan MJ, Perez-Rosendahl M, Corrada MM, Kawas CH, Sajjadi SA. Dementia is associated with medial temporal atrophy even after accounting for neuropathologies. Brain Commun 2022; 4:fcac052. [PMID: 35350552 PMCID: PMC8952251 DOI: 10.1093/braincomms/fcac052] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/30/2021] [Accepted: 03/03/2022] [Indexed: 11/18/2022] Open
Abstract
Brain atrophy is associated with degenerative neuropathologies and the clinical status of dementia. Whether dementia is associated with atrophy independent of neuropathologies is not known. In this study, we examined the pattern of atrophy associated with dementia while accounting for the most common dementia-related neuropathologies. We used data from National Alzheimer's Coordinating Center (n = 129) and Alzheimer's Disease Neuroimaging Initiative (n = 47) participants with suitable in vivo 3D-T1w MRI and autopsy data. We determined dementia status at the visit closest to MRI. We examined the following dichotomized neuropathological variables: Alzheimer's disease neuropathology, hippocampal sclerosis, Lewy bodies, cerebral amyloid angiopathy and atherosclerosis. Voxel-based morphometry identified areas associated with dementia after accounting for neuropathologies. Identified regions of interest were further analysed. We used multiple linear regression models adjusted for neuropathologies and demographic variables. We also examined models with dementia and Clinical Dementia Rating sum of the boxes as the outcome and explored the potential mediating effect of medial temporal lobe structure volumes on the relationship between pathology and cognition. We found strong associations for dementia with volumes of the hippocampus, amygdala and parahippocampus (semi-partial correlations ≥ 0.28, P < 0.0001 for all regions in National Alzheimer's Coordinating Center; semi-partial correlations ≥ 0.35, P ≤ 0.01 for hippocampus and parahippocampus in Alzheimer's Disease Neuroimaging Initiative). Dementia status accounted for more unique variance in atrophy in these structures (∼8%) compared with neuropathological variables; the only exception was hippocampal sclerosis which accounted for more variance in hippocampal atrophy (10%). We also found that the volumes of the medial temporal lobe structures contributed towards explaining the variance in Clinical Dementia Rating sum of the boxes (ranging from 5% to 9%) independent of neuropathologies and partially mediated the association between Alzheimer's disease neuropathology and cognition. Even after accounting for the most common neuropathologies, dementia still had among the strongest associations with atrophy of medial temporal lobe structures. This suggests that atrophy of the medial temporal lobe is most related to the clinical status of dementia rather than Alzheimer's disease or other neuropathologies, with the potential exception of hippocampal sclerosis.
Collapse
Affiliation(s)
- Davis C. Woodworth
- Department of Neurology, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Nasim Sheikh-Bahaei
- Department of Radiology, University of Southern California, Los Angeles, CA, USA
| | - Kiana A. Scambray
- Department of Neurology, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Michael J. Phelan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Mari Perez-Rosendahl
- Department of Neurology, University of California, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - María M. Corrada
- Department of Neurology, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Epidemiology, University of California, Irvine, CA, USA
| | - Claudia H. Kawas
- Department of Neurology, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Seyed Ahmad Sajjadi
- Department of Neurology, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | | |
Collapse
|
13
|
Rao YL, Ganaraja B, Murlimanju BV, Joy T, Krishnamurthy A, Agrawal A. Hippocampus and its involvement in Alzheimer's disease: a review. 3 Biotech 2022; 12:55. [PMID: 35116217 PMCID: PMC8807768 DOI: 10.1007/s13205-022-03123-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/16/2022] [Indexed: 12/12/2022] Open
Abstract
Hippocampus is the significant component of the limbic lobe, which is further subdivided into the dentate gyrus and parts of Cornu Ammonis. It is the crucial region for learning and memory; its sub-regions aid in the generation of episodic memory. However, the hippocampus is one of the brain areas affected by Alzheimer's (AD). In the early stages of AD, the hippocampus shows rapid loss of its tissue, which is associated with the functional disconnection with other parts of the brain. In the progression of AD, atrophy of medial temporal and hippocampal regions are the structural markers in magnetic resonance imaging (MRI). Lack of sirtuin (SIRT) expression in the hippocampal neurons will impair cognitive function, including recent memory and spatial learning. Proliferation, differentiation, and migrations are the steps involved in adult neurogenesis. The microglia in the hippocampal region are more immunologically active than the other regions of the brain. Intrinsic factors like hormones, glia, and vascular nourishment are instrumental in the neural stem cell (NSC) functions by maintaining the brain's microenvironment. Along with the intrinsic factors, many extrinsic factors like dietary intake and physical activity may also influence the NSCs. Hence, pro-neurogenic lifestyle could delay neurodegeneration.
Collapse
Affiliation(s)
- Y. Lakshmisha Rao
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - B. Ganaraja
- Department of Physiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - B. V. Murlimanju
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Teresa Joy
- Department of Anatomy, College of Medicine, American University of Antigua, Coolidge, Antigua, Antigua and Barbuda
| | - Ashwin Krishnamurthy
- Department of Anatomy, K.S. Hegde Medical Academy, Deralakatte, Nitte University, Mangalore, Karnataka India
| | - Amit Agrawal
- Department of Neurosurgery, All India Institute of Medical Sciences, Saket Nagar, Bhopal, 462020 Madhya Pradesh India
| |
Collapse
|
14
|
Radhakrishnan RK, Kandasamy M. SARS-CoV-2-Mediated Neuropathogenesis, Deterioration of Hippocampal Neurogenesis and Dementia. Am J Alzheimers Dis Other Demen 2022; 37:15333175221078418. [PMID: 35133907 PMCID: PMC10581113 DOI: 10.1177/15333175221078418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A significant portion of COVID-19 patients and survivors display marked clinical signs of neurocognitive impairments. SARS-CoV-2-mediated peripheral cytokine storm and its neurotropism appear to elicit the activation of glial cells in the brain proceeding to neuroinflammation. While adult neurogenesis has been identified as a key cellular basis of cognitive functions, neuroinflammation-induced aberrant neuroregenerative plasticity in the hippocampus has been implicated in progressive memory loss in ageing and brain disorders. Notably, recent histological studies of post-mortem human and experimental animal brains indicate that SARS-CoV-2 infection impairs neurogenic process in the hippocampus of the brain due to neuroinflammation. Considering the facts, this article describes the prominent neuropathogenic characteristics and neurocognitive impairments in COVID-19 and emphasizes a viewpoint that neuroinflammation-mediated deterioration of hippocampal neurogenesis could contribute to the onset and progression of dementia in COVID-19. Thus, it necessitates the unmet need for regenerative medicine for the effective management of neurocognitive deficits in COVID-19.
Collapse
Affiliation(s)
- Risna K. Radhakrishnan
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
- Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, India
| |
Collapse
|
15
|
Finney CA, Shvetcov A, Westbrook RF, Morris MJ, Jones NM. Tamoxifen offers long-term neuroprotection after hippocampal silent infarct in male rats. Horm Behav 2021; 136:105085. [PMID: 34749277 DOI: 10.1016/j.yhbeh.2021.105085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/19/2022]
Abstract
Silent infarcts (SI) are a cerebral small vessel disease characterized by small subcortical infarcts. These occur in the absence of typical ischemia symptoms but are linked to cognitive decline and dementia. While there are no approved treatments for SI, recent results from our laboratory suggest that tamoxifen, a selective estrogen receptor modulator, is a viable candidate. In the present study, we induced SI in the dorsal hippocampal CA1 region of rats and assessed the effects of systemic administration of tamoxifen (5 mg/kg, twice) 21 days after injury on cognitive and pathophysiological measures, including cell loss, apoptosis, gliosis and estrogen receptors (ERs). We found that tamoxifen protected against the SI-induced cognitive dysfunction on the hippocampal-dependent, place recognition task, cell and ER loss, and increased apoptosis and gliosis in the CA1. Exploratory data analyses using a scatterplot matrix and principal component analysis indicated that SI-tamoxifen rats were indistinguishable from sham controls while they differed from SI rats, who were characterized by enhanced cell loss, apoptosis and gliosis, lower ERs, and recognition memory deficit. Supervised machine learning using support vector machine (SVM) determined predictors of progression from the early ischemic state to the dementia-like state. It showed that caspase-3 and ERα in the CA1 and exploration proportion were reliable and accurate predictors of this progression. Importantly, tamoxifen ameliorated SI-induced effects on all three of these variables, providing further evidence for its viability as a candidate treatment for SI and prevention of associated dementia.
Collapse
|
16
|
Robbins M, Clayton E, Kaminski Schierle GS. Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathol Commun 2021; 9:149. [PMID: 34503576 PMCID: PMC8428049 DOI: 10.1186/s40478-021-01246-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss the synaptic aspects of Tau pathology occurring during Alzheimer's disease (AD) and how this may relate to memory impairment, a major hallmark of AD. Whilst the clinical diagnosis of AD patients is a loss of working memory and long-term declarative memory, the histological diagnosis is the presence of neurofibrillary tangles of hyperphosphorylated Tau and Amyloid-beta plaques. Tau pathology spreads through synaptically connected neurons to impair synaptic function preceding the formation of neurofibrillary tangles, synaptic loss, axonal retraction and cell death. Alongside synaptic pathology, recent data suggest that Tau has physiological roles in the pre- or post- synaptic compartments. Thus, we have seen a shift in the research focus from Tau as a microtubule-stabilising protein in axons, to Tau as a synaptic protein with roles in accelerating spine formation, dendritic elongation, and in synaptic plasticity coordinating memory pathways. We collate here the myriad of emerging interactions and physiological roles of synaptic Tau, and discuss the current evidence that synaptic Tau contributes to pathology in AD.
Collapse
|
17
|
Paquola C, Royer J, Lewis LB, Lepage C, Glatard T, Wagstyl K, DeKraker J, Toussaint PJ, Valk SL, Collins L, Khan AR, Amunts K, Evans AC, Dickscheid T, Bernhardt B. The BigBrainWarp toolbox for integration of BigBrain 3D histology with multimodal neuroimaging. eLife 2021; 10:e70119. [PMID: 34431476 PMCID: PMC8445620 DOI: 10.7554/elife.70119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/23/2021] [Indexed: 01/03/2023] Open
Abstract
Neuroimaging stands to benefit from emerging ultrahigh-resolution 3D histological atlases of the human brain; the first of which is 'BigBrain'. Here, we review recent methodological advances for the integration of BigBrain with multi-modal neuroimaging and introduce a toolbox, 'BigBrainWarp', that combines these developments. The aim of BigBrainWarp is to simplify workflows and support the adoption of best practices. This is accomplished with a simple wrapper function that allows users to easily map data between BigBrain and standard MRI spaces. The function automatically pulls specialised transformation procedures, based on ongoing research from a wide collaborative network of researchers. Additionally, the toolbox improves accessibility of histological information through dissemination of ready-to-use cytoarchitectural features. Finally, we demonstrate the utility of BigBrainWarp with three tutorials and discuss the potential of the toolbox to support multi-scale investigations of brain organisation.
Collapse
Affiliation(s)
- Casey Paquola
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontréalCanada
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum JülichJülichGermany
| | - Jessica Royer
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontréalCanada
| | - Lindsay B Lewis
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontréalCanada
| | - Claude Lepage
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontréalCanada
| | - Tristan Glatard
- Department of Computer Science and Software Engineering, Concordia UniversityMontrealCanada
| | - Konrad Wagstyl
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
| | - Jordan DeKraker
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontréalCanada
- Brain and Mind Institute, University of Western OntarioOntarioCanada
| | - Paule-J Toussaint
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontréalCanada
| | - Sofie L Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Institute of Neuroscience and Medicine (INM-7), Forschungszentrum JülichJülichGermany
| | - Louis Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontréalCanada
| | - Ali R Khan
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western OntarioLondonCanada
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum JülichJülichGermany
| | - Alan C Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontréalCanada
| | - Timo Dickscheid
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum JülichJülichGermany
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontréalCanada
| |
Collapse
|
18
|
Bae J, Stocks J, Heywood A, Jung Y, Jenkins L, Hill V, Katsaggelos A, Popuri K, Rosen H, Beg MF, Wang L. Transfer learning for predicting conversion from mild cognitive impairment to dementia of Alzheimer's type based on a three-dimensional convolutional neural network. Neurobiol Aging 2021; 99:53-64. [PMID: 33422894 PMCID: PMC7902477 DOI: 10.1016/j.neurobiolaging.2020.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/09/2020] [Accepted: 12/05/2020] [Indexed: 01/02/2023]
Abstract
Dementia of Alzheimer's type (DAT) is associated with devastating and irreversible cognitive decline. Predicting which patients with mild cognitive impairment (MCI) will progress to DAT is an ongoing challenge in the field. We developed a deep learning model to predict conversion from MCI to DAT. Structural magnetic resonance imaging scans were used as input to a 3-dimensional convolutional neural network. The 3-dimensional convolutional neural network was trained using transfer learning; in the source task, normal control and DAT scans were used to pretrain the model. This pretrained model was then retrained on the target task of classifying which MCI patients converted to DAT. Our model resulted in 82.4% classification accuracy at the target task, outperforming current models in the field. Next, we visualized brain regions that significantly contribute to the prediction of MCI conversion using an occlusion map approach. Contributory regions included the pons, amygdala, and hippocampus. Finally, we showed that the model's prediction value is significantly correlated with rates of change in clinical assessment scores, indicating that the model is able to predict an individual patient's future cognitive decline. This information, in conjunction with the identified anatomical features, will aid in building a personalized therapeutic strategy for individuals with MCI.
Collapse
Affiliation(s)
- Jinhyeong Bae
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Jane Stocks
- Department of Psychology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ashley Heywood
- Department of Psychology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Lisanne Jenkins
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Virginia Hill
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Karteek Popuri
- School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Howie Rosen
- School of Medicine, University of California, San Francisco, CA, USA
| | - M Faisal Beg
- School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Lei Wang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
19
|
In vivo exploration of brain phosphorus 31 metabolism in patients with senile dementia of Alzheimer type. Eur Psychiatry 2020. [DOI: 10.1017/s092493380000184x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
SummaryIn vivo NMR 31p spectroscopy is a non invasive, non ionizing method of exploration of energy and phospholipid metabolism in the brain. This study consisted of comparing 31p spectra in five patients with Senile Dementia of Alzheimer Type (SDAT) with those of four controls of similar ages. Abnormal phosphonionocsters (PME) concentrations, either high or low, were found in the patients, but statistical analysis did not elicit any significant difference relative to controls.
Collapse
|
20
|
Abstract
A hallmark feature of Alzheimer’s disease (AD) and other tauopathies is the misfolding, aggregation and cerebral accumulation of tau deposits. Compelling evidence indicates that misfolded tau aggregates are neurotoxic, producing synaptic loss and neuronal damage. Misfolded tau aggregates are able to spread the pathology from cell-to-cell by a prion like seeding mechanism. The factors implicated in the initiation and progression of tau misfolding and aggregation are largely unclear. In this study, we evaluated the effect of DNA extracted from diverse prokaryotic and eukaryotic cells in tau misfolding and aggregation. Our results show that DNA from various, unrelated gram-positive and gram-negative bacteria results in a more pronounced tau misfolding compared to eukaryotic DNA. Interestingly, a higher effect in promoting tau aggregation was observed for DNA extracted from certain bacterial species previously detected in the brain, CSF or oral cavity of patients with AD. Our findings indicate that microbial DNA may play a previously overlooked role in the propagation of tau protein misfolding and AD pathogenesis, providing a new conceptual framework that positions the compromised blood-brain and intestinal barriers as important sources of microbial DNA in the CNS, opening novel opportunities for therapeutic interventions.
Collapse
|
21
|
Differential annualized rates of hippocampal subfields atrophy in aging and future Alzheimer's clinical syndrome. Neurobiol Aging 2020; 90:75-83. [PMID: 32107063 DOI: 10.1016/j.neurobiolaging.2020.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 01/22/2023]
Abstract
Several studies have investigated the differential vulnerability of hippocampal subfields during aging and Alzheimer's disease (AD). Results were often contradictory, mainly because these works were based on concatenations of cross-sectional measures in cohorts with different ages or stages of AD, in the absence of a longitudinal design. Here, we investigated 327 participants from a population-based cohort of nondemented older adults with a 14-year clinical follow-up. MRI at baseline and 4 years later were assessed to measure the annualized rates of hippocampal subfields atrophy in each participant using an automatic segmentation pipeline with subsequent quality control. On the one hand, CA4 dentate gyrus was significantly more affected than the other subfields in the whole population (CA1-3: -0.68%/year; subiculum: -0.99%/year; and CA4-DG: -1.39%/year; p < 0.0001). On the other hand, the annualized rate of CA1-3 atrophy was associated with an increased risk of developing Alzheimer's clinical syndrome over time, independently of age, gender, educational level, and ApoE4 genotype (HR = 2.0; CI 95% 1.4-3.0). These results illustrate the natural history of hippocampal subfields atrophy during aging and AD by showing that the dentate gyrus is the most vulnerable subfield to the effects of aging while the cornu-ammonis is the primary target of AD pathophysiological processes, years before symptom onset.
Collapse
|
22
|
Kwak K, Yun HJ, Park G, Lee JM. Multi-Modality Sparse Representation for Alzheimer's Disease Classification. J Alzheimers Dis 2019; 65:807-817. [PMID: 29562503 DOI: 10.3233/jad-170338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) and mild cognitive impairment (MCI) are age-related neurodegenerative diseases characterized by progressive loss of memory and irreversible cognitive functions. The hippocampus, a brain area critical for learning and memory processes, is especially susceptible to damage at early stages of AD. OBJECTIVE We aimed to develop prediction model using a multi-modality sparse representation approach. METHODS We proposed a sparse representation approach to the hippocampus using structural T1-weighted magnetic resonance imaging (MRI) and 18-fluorodeoxyglucose-positron emission tomography (FDG-PET) to distinguish AD/MCI from healthy control subjects (HCs). We considered structural and function information for the hippocampus and applied a sparse patch-based approach to effectively reduce the dimensions of neuroimaging biomarkers. RESULTS In experiments using Alzheimer's Disease Neuroimaging Initiative data, our proposed method demonstrated more reliable than previous classification studies. The effects of different parameters on segmentation accuracy were also evaluated. The mean classification accuracy obtained with our proposed method was 0.94 for AD/HCs, 0.82 for MCI/HCs, and 0.86 for AD/MCI. CONCLUSION We extracted multi-modal features from automatically defined hippocampal regions of training subjects and found this method to be discriminative and robust for AD and MCI classification. The extraction of features in T1 and FDG-PET images is expected to improve classification performance due to the relationship between brain structure and function.
Collapse
Affiliation(s)
- Kichang Kwak
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Hyuk Jin Yun
- Fetal Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gilsoon Park
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | | |
Collapse
|
23
|
NMDA receptor in the hippocampus alters neurobehavioral phenotypes through inflammatory cytokines in rats with sporadic Alzheimer-like disease. Physiol Behav 2019; 202:52-61. [DOI: 10.1016/j.physbeh.2019.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/06/2019] [Accepted: 01/09/2019] [Indexed: 12/28/2022]
|
24
|
Amani M, Shokouhi G, Salari AA. Minocycline prevents the development of depression-like behavior and hippocampal inflammation in a rat model of Alzheimer's disease. Psychopharmacology (Berl) 2019; 236:1281-1292. [PMID: 30515523 DOI: 10.1007/s00213-018-5137-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/23/2018] [Indexed: 12/28/2022]
Abstract
RATIONALE Considerable clinical and experimental studies have shown that depression-related disorders are the most common neuropsychiatric symptoms in Alzheimer's disease (AD), affecting as many as 20-40% of patients. An increasing amount of evidence shows that monoamine-based antidepressant treatments are not completely effective for depression treatment in patients with dementia. Minocycline, a second-generation tetracycline antibiotic, has been gaining research and clinical attention for the treatment of different neuropsychiatric disorders, and more recently depression symptom in humans. METHODS In the present study, we investigated the effects of Aβ1-42 administration alone or in combination with minocycline treatment on depression-like behaviors and anti/pro-inflammatory cytokines such as interleukin(IL)-10, IL-β, and tumor necrosis factor (TNF)-α in the hippocampus of rats. RESULTS Our results showed that Aβ1-42 administration increased depression-related behaviors in sucrose preference test, tail suspension test, novelty-suppressed feeding test, and forced swim test. We also found significant increases in IL-1β and TNF-α levels in the hippocampus of Aβ1-42-treated rats. Interestingly, minocycline treatment significantly reversed depression-related behaviors and the levels of hippocampal cytokines in Aβ1-42-treated rats. CONCLUSION These findings support the idea that there is a significant relationship among AD, depression-related symptoms, and pro-inflammatory cytokines in the brain, and suggest that antidepressant-like impacts of minocycline could be due to its anti-inflammatory properties. This drug could be of potential interest for the treatment of depression in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Mohammad Amani
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Anatomy and Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Ghaffar Shokouhi
- Drug Applied Research Center, Tabriz University of Medical Sciences, P.O. Box 51656-65811, Tabriz, Iran
| | - Ali-Akbar Salari
- Drug Applied Research Center, Tabriz University of Medical Sciences, P.O. Box 51656-65811, Tabriz, Iran. .,Salari Institute of Cognitive and Behavioral Disorders (SICBD), Alborz, Iran.
| |
Collapse
|
25
|
Cabinio M, Saresella M, Piancone F, LaRosa F, Marventano I, Guerini FR, Nemni R, Baglio F, Clerici M. Association between Hippocampal Shape, Neuroinflammation, and Cognitive Decline in Alzheimer’s Disease. J Alzheimers Dis 2018; 66:1131-1144. [DOI: 10.3233/jad-180250] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Monia Cabinio
- Laboratory of Molecular Medicine and Imaging in Rehabilitation, IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Marina Saresella
- Laboratory of Molecular Medicine and Imaging in Rehabilitation, IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Federica Piancone
- Laboratory of Molecular Medicine and Imaging in Rehabilitation, IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Francesca LaRosa
- Laboratory of Molecular Medicine and Imaging in Rehabilitation, IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Ivana Marventano
- Laboratory of Molecular Medicine and Imaging in Rehabilitation, IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Franca Rosa Guerini
- Laboratory of Molecular Medicine and Imaging in Rehabilitation, IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Raffaello Nemni
- Neurorehabilitation Unit, IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Francesca Baglio
- Laboratory of Molecular Medicine and Imaging in Rehabilitation, IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Clerici
- Laboratory of Molecular Medicine and Imaging in Rehabilitation, IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
26
|
Ghorbanian D, Gol M, Pourghasem M, Faraji J, Pourghasem K, Soltanpour N. Spatial Memory and Antioxidant Protective Effects of Raisin (Currant) in Aged Rats. Prev Nutr Food Sci 2018; 23:196-205. [PMID: 30386747 PMCID: PMC6195892 DOI: 10.3746/pnf.2018.23.3.196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/04/2018] [Indexed: 01/23/2023] Open
Abstract
Diets rich in fruits and vegetables can prevent age-related diseases. This research was conducted to evaluate the effects of raisin consumption on the spatial memory and morphometric parameters of brain tissue in aging rats. Old rats (20 months of age) were divided into 2 groups: control and raisin, with 6 rats in each group. The raisin group received 6 g of raisins daily in addition to their food and water for 90 days. After treatments, all animals were evaluated by behavioral tests to assess spatial memory and learning alongside other tests including the ferric reducing antioxidant power (FRAP), malondialdehyde, and histological examinations. The results showed that there are significant differences in the Morris water task and passive avoidance learning of behavioral tests and biochemical tests (FRAP and thiobarbituric acid reactive substances) between the two groups. The histological study indicated that the cell count of the hippocampus, the diameter of the lateral ventricle, and area of the corpus callosum in the raisin group changed in comparison with the control group but they were not significant. The results demonstrated that raisins significantly raise antioxidant levels in blood and promotes cognitive and motor performance in aging rats.
Collapse
Affiliation(s)
- Davoud Ghorbanian
- Cellular and Molecular Biology Research Center (CMBRC), Babol University of Medical Sciences, Babol 47176-47745, Islamic Republic of Iran.,Department of Anatomical Sciences, Babol University of Medical Sciences, Babol 47176-47745, Islamic Republic of Iran
| | - Mohammed Gol
- Cellular and Molecular Biology Research Center (CMBRC), Babol University of Medical Sciences, Babol 47176-47745, Islamic Republic of Iran.,Department of Anatomical Sciences, Babol University of Medical Sciences, Babol 47176-47745, Islamic Republic of Iran
| | - Mohsen Pourghasem
- Cellular and Molecular Biology Research Center (CMBRC), Babol University of Medical Sciences, Babol 47176-47745, Islamic Republic of Iran.,Department of Anatomical Sciences, Babol University of Medical Sciences, Babol 47176-47745, Islamic Republic of Iran
| | - Jamshid Faraji
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Kaveh Pourghasem
- Department of Medical Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Nabiollah Soltanpour
- Cellular and Molecular Biology Research Center (CMBRC), Babol University of Medical Sciences, Babol 47176-47745, Islamic Republic of Iran.,Department of Anatomical Sciences, Babol University of Medical Sciences, Babol 47176-47745, Islamic Republic of Iran
| |
Collapse
|
27
|
Yang J, Hu C, Guo N, Dutta J, Vaina LM, Johnson KA, Sepulcre J, Fakhri GE, Li Q. Partial volume correction for PET quantification and its impact on brain network in Alzheimer's disease. Sci Rep 2017; 7:13035. [PMID: 29026139 PMCID: PMC5638902 DOI: 10.1038/s41598-017-13339-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/21/2017] [Indexed: 12/28/2022] Open
Abstract
Amyloid positron emission tomography (PET) imaging is a valuable tool for research and diagnosis in Alzheimer’s disease (AD). Partial volume effects caused by the limited spatial resolution of PET scanners degrades the quantitative accuracy of PET image. In this study, we have applied a method to evaluate the impact of a joint-entropy based partial volume correction (PVC) technique on brain networks learned from a clinical dataset of AV-45 PET image and compare network properties of both uncorrected and corrected image-based brain networks. We also analyzed the region-wise SUVRs of both uncorrected and corrected images. We further performed classification tests on different groups using the same set of algorithms with same parameter settings. PVC has sometimes been avoided due to increased noise sensitivity in image registration and segmentation, however, our results indicate that appropriate PVC may enhance the brain network structure analysis for AD progression and improve classification performance.
Collapse
Affiliation(s)
- Jiarui Yang
- Boston University, Department of Biomedical Engineering, Boston, 02215, USA.,Massachusetts General Hospital, Department of Radiology, Boston, 02114, USA
| | - Chenhui Hu
- Massachusetts General Hospital, Department of Radiology, Boston, 02114, USA
| | - Ning Guo
- Massachusetts General Hospital, Department of Radiology, Boston, 02114, USA
| | - Joyita Dutta
- Massachusetts General Hospital, Department of Radiology, Boston, 02114, USA.,University of Massachusetts Lowell, Department of Electrical and Computer Engineering, Lowell, 01854, USA
| | - Lucia M Vaina
- Boston University, Department of Biomedical Engineering, Boston, 02215, USA.,Massachusetts General Hospital, Department of Radiology, Boston, 02114, USA
| | - Keith A Johnson
- Massachusetts General Hospital, Department of Radiology, Boston, 02114, USA.,Harvard Medical School, Department of Radiology, Boston, 02115, USA
| | - Jorge Sepulcre
- Massachusetts General Hospital, Department of Radiology, Boston, 02114, USA.,Harvard Medical School, Department of Radiology, Boston, 02115, USA
| | - Georges El Fakhri
- Massachusetts General Hospital, Department of Radiology, Boston, 02114, USA.,Harvard Medical School, Department of Radiology, Boston, 02115, USA
| | - Quanzheng Li
- Massachusetts General Hospital, Department of Radiology, Boston, 02114, USA. .,Harvard Medical School, Department of Radiology, Boston, 02115, USA.
| |
Collapse
|
28
|
Principal component analysis of the shape deformations of the hippocampus in Alzheimer's disease. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:4013-4016. [PMID: 28269165 DOI: 10.1109/embc.2016.7591607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this paper, we present the principal component analysis (PCA) of shape deformations of bilateral hippocampi in Alzheimer's disease (AD) as derived in the large deformation diffeomorphic metric mapping setting. We investigated the PCA patterns (the scores and loadings) of the bilateral hippocampi for 51 subjects, 28 of which had AD while 23 were normal aging. Student's t-tests were used to select the components displaying significant group difference for a more purposed analysis. Our findings revealed that the head part of the hippocampus in each hemisphere, to be specific the CA1 and subiculum subregions, contributed the most to the significant group differences. To further our analysis, we examined the classification accuracy yielded by these shape deformation patterns when either solely PCA or PCA followed by a Student's t-test was utilized as the approach to dimension reduction. Linear discriminant analysis (LDA) and support vector machine (SVM) were used as candidates for the classification technique. According to our leave-one-out cross-validation experiments, SVM had a much higher accuracy than LDA, with the best performance (overall accuracy: 94.1% (48/51); sensitivity: 92.9% (26/28); and specificity: 95.7% (22/23)) achieved by SVM when using both the left and the right hippocampal shape deformation patterns and employing solely PCA for dimension reduction.
Collapse
|
29
|
Ebel DL, Torkilsen CG, Ostrowski TD. Blunted Respiratory Responses in the Streptozotocin-Induced Alzheimer's Disease Rat Model. J Alzheimers Dis 2017; 56:1197-1211. [PMID: 28106557 DOI: 10.3233/jad-160974] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is known for the progressive decline of cognition and memory. In addition to these disease-defining symptoms, impairment of respiratory function is frequently observed and often expressed by sleep-disordered breathing or reduced ability to adjust respiration when oxygen demand is elevated. The mechanisms for this are widely unknown. Postmortem analysis from the brainstem of AD patients reveals pathological alterations, including in nuclei responsible for respiratory control. In this study, we analyzed respiratory responses and morphological changes in brainstem nuclei following intracerebroventricular (ICV) injections of streptozotocin (STZ), a rat model commonly used to mimic sporadic AD. ICV-STZ induced significant astrogliosis in the commissural part of the nucleus tractus solitarii, an area highly involved in respiration control. The astrogliosis was identified by a significant increase in S100B-immunofluorescence that is similar to the astrogliosis found in the CA1 region of the hippocampus. Using plethysmography, the control group displayed a typical age-dependent decrease of ventilation that was absent in the STZ rat group. This is indicative of elevated minute ventilation at rest after STZ treatment. Peripheral chemoreflex responses were significantly blunted in STZ rats as seen by a reduced respiratory rate and minute ventilation to hypoxia. Central chemoreflex responses to hypercapnia, on the other hand, only decreased in respiratory rate following STZ treatment. Overall, our results show that ICV-STZ induces respiratory dysfunction at rest and in response to hypoxia. This provides a new tool to study the underlying mechanisms of breathing disorders in clinical AD.
Collapse
|
30
|
Reiter K, Nielson KA, Durgerian S, Woodard JL, Smith JC, Seidenberg M, Kelly DA, Rao SM. Five-Year Longitudinal Brain Volume Change in Healthy Elders at Genetic Risk for Alzheimer's Disease. J Alzheimers Dis 2017; 55:1363-1377. [PMID: 27834774 PMCID: PMC5924681 DOI: 10.3233/jad-160504] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neuropathological changes associated with Alzheimer's disease (AD) precede symptom onset by more than a decade. Possession of an apolipoprotein E (APOE) ɛ4 allele is the strongest genetic risk factor for late onset AD. Cross-sectional studies of cognitively intact elders have noted smaller hippocampal/medial temporal volumes in ɛ4 carriers (ɛ4+) compared to ɛ4 non-carriers (ɛ4-). Few studies, however, have examined long-term, longitudinal, anatomical brain changes comparing healthy ɛ4+ and ɛ4- individuals. The current five-year study examined global and regional volumes of cortical and subcortical grey and white matter and ventricular size in 42 ɛ4+ and 30 ɛ4- individuals. Cognitively intact participants, ages 65-85 at study entry, underwent repeat anatomical MRI scans on three occasions: baseline, 1.5, and 4.75 years. Results indicated no between-group volumetric differences at baseline. Over the follow-up interval, the ɛ4+ group experienced a greater rate of volume loss in total grey matter, bilateral hippocampi, right hippocampal subfields, bilateral lingual gyri, bilateral parahippocampal gyri, and right lateral orbitofrontal cortex compared to the ɛ4- group. Greater loss in grey matter volumes in ɛ4+ participants were accompanied by greater increases in lateral, third, and fourth ventricular volumes. Rate of change in white matter volumes did not differentiate the groups. The current results indicate that longitudinal measurements of brain atrophy can serve as a sensitive biomarker for identifying neuropathological changes in persons at genetic risk for AD and potentially, for assessing the efficacy of treatments designed to slow or prevent disease progression during the preclinical stage of AD.
Collapse
Affiliation(s)
| | - Kristy A. Nielson
- Department of Psychology, Marquette University
- Department of Neurology, Medical College of Wisconsin
| | | | | | - J. Carson Smith
- Department of Kinesiology, School of Public Health, University of Maryland
| | | | - Dana A. Kelly
- Department of Psychology, Rosalind Franklin University
| | - Stephen M. Rao
- Schey Center for Cognitive Neuroimaging, Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic
| |
Collapse
|
31
|
Pelliccioli G, Parnetti L, Chiarini P, Floridi P, Campanella S, Guercini G, Leone F. Riferimenti neuroradiologici nella diagnostica differenziale delle demenze dell'età avanzata. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/197140099600900415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Allo scopo di fornire un contributo nella diagnostica delle demenze dell'età avanzata abbiamo valutato con risonanza magnetica i due reperti di maggiore interesse nell'invecchiamento cerebrale, volumetria ippocampale e lesioni iperintense della sostanza bianca e dei nuclei della base, in 12 pazienti affetti da malattia di Alzheimer (AD), in 9 da demenza vascolare (VD), in 12 con Age Associated Memory Impairment (AAMI), entità clinica di riscontro relativamente frequente nell'anziano su cui non esistono ancora pareri univoci, e in 9 soggetti di controllo di analoga fascia di età. I gruppi AD e AAMI sono risultati indistinguibili, in quanto entrambi hanno presentato una significativa riduzione del volume ippocampale rispetto agli altri gruppi ed una presenza di iperintensità della sostanza bianca analoga ai controlli. Nel gruppo VD al contrario la presenza di iperintensità della sostanza bianca, distinte dalla parete ventricolare, è risultata significativamente superiore rispetto a tutti gli altri gruppi; analogo andamento è stato osservato anche per le iperintensità dei nuclei della base ed infratentoriali. Le iperintensità periventricolari si sono invece dimostrate reperto meramente associato all'età. Questi risultati sembrano indicare che un esame RM, basato sulla combinazione di uno studio volumetrico ippocampale e di una valutazione semiquantitativa delle lesioni iperintense, offre fondamentali elementi «in positivo» nella diagnostica differenziale delle demenze. In particolare la AD e la VD sono ben caratterizzate e l'AAMI sembra essere una fase precoce di AD piuttosto che un'entità a se stante.
Collapse
Affiliation(s)
| | - L. Parnetti
- Istituto di Gerontologia e Geriatria, Università degli Studi; Perugia
| | | | | | | | | | | |
Collapse
|
32
|
Vedagiri A, Thangarajan S. Mitigating effect of chrysin loaded solid lipid nanoparticles against Amyloid β25-35 induced oxidative stress in rat hippocampal region: An efficient formulation approach for Alzheimer's disease. Neuropeptides 2016; 58:111-25. [PMID: 27021394 DOI: 10.1016/j.npep.2016.03.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 03/10/2016] [Accepted: 03/13/2016] [Indexed: 01/28/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. Amyloid-β25-35 (Aβ25-35), a well-established neurotoxicant, is reported to be involved in the etiology of AD. Chrysin (CN) with its wide range of biological activities in terms of reversing the neuronal damage once induced is limited due to its compromised bioavailability. Solid lipid nanoparticles (SLNs) on the other hand due to its improved protein stability, avoids proteolytic degradation, as well as sustained release of the incorporated molecules could be widely applied as a drug delivery vehicle. Hence, in the present investigation, we prepared CN loaded SLNs (CN-SLNs) and investigated its therapeutic role in alleviating Aβ25-35 administered neuronal damage. All the antioxidant enzymes and non-antioxidant enzyme in hippocampus were reduced significantly (P<0.01) in the Aβ25-35 injected group, whereas lipid peroxidation and acetylcholine esterase were increased significantly (P<0.01). These changes were restored significantly (P<0.01) by CN-SLNs (5mg/kg and 10mg/kg) and (P<0.05) by free CN (50mg/kg and 100mg/kg). Aβ25-35 also resulted in poor memory retention in behavioral tasks and histopathological sections of the hippocampal region showed the extent of neuronal loss which was thereby restored back on treatment with CN-SLNs and free CN. Our findings demonstrate that the therapeutic efficacy of CN could be attained at lower dose and also its oral bioavailability could be increased by encapsulating CN in SLNs. Thus the results suggest that CN-SLNs could be used as a potential therapeutic and a brain targeting strategy to combat the global burden of Alzheimer's disease.
Collapse
Affiliation(s)
- Aishwarya Vedagiri
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, Tamil Nadu, India
| | - Sumathi Thangarajan
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, Tamil Nadu, India.
| |
Collapse
|
33
|
Opposite monosynaptic scaling of BLP-vCA1 inputs governs hopefulness- and helplessness-modulated spatial learning and memory. Nat Commun 2016; 7:11935. [PMID: 27411738 PMCID: PMC4947155 DOI: 10.1038/ncomms11935] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 05/13/2016] [Indexed: 12/27/2022] Open
Abstract
Different emotional states lead to distinct behavioural consequences even when faced with the same challenging events. Emotions affect learning and memory capacities, but the underlying neurobiological mechanisms remain elusive. Here we establish models of learned helplessness (LHL) and learned hopefulness (LHF) by exposing animals to inescapable foot shocks or with anticipated avoidance trainings. The LHF animals show spatial memory potentiation with excitatory monosynaptic upscaling between posterior basolateral amygdale (BLP) and ventral hippocampal CA1 (vCA1), whereas the LHL show memory deficits with an attenuated BLP-vCA1 connection. Optogenetic disruption of BLP-vCA1 inputs abolishes the effects of LHF and impairs synaptic plasticity. By contrast, targeted BLP-vCA1 stimulation rescues the LHL-induced memory deficits and mimics the effects of LHF. BLP-vCA1 stimulation increases synaptic transmission and dendritic plasticity with the upregulation of CREB and intrasynaptic AMPA receptors in CA1. These findings indicate that opposite excitatory monosynaptic scaling of BLP-vCA1 controls LHF- and LHL-modulated spatial memory, revealing circuit-specific mechanisms linking emotions to memory.
Collapse
|
34
|
Nam SM, Kim JW, Yoo DY, Kim W, Jung HY, Choi JH, Hwang IK, Seong JK, Yoon YS. Effects of aluminum on the reduction of neural stem cells, proliferating cells, and differentiating neuroblasts in the dentate gyrus of D-galactose-treated mice via increasing oxidative stress. J Vet Sci 2016; 17:127-36. [PMID: 26243606 PMCID: PMC4921660 DOI: 10.4142/jvs.2016.17.2.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/16/2015] [Accepted: 07/31/2015] [Indexed: 11/25/2022] Open
Abstract
Aluminum (Al) accumulation increases with aging, and long-term exposure to Al is regarded as a risk factor for Alzheimer's disease. In this study, we investigated the effects of Al and/or D-galactose on neural stem cells, proliferating cells, differentiating neuroblasts, and mature neurons in the hippocampal dentate gyrus. AlCl3 (40 mg/kg/day) was intraperitoneally administered to C57BL/6J mice for 4 weeks. In addition, vehicle (physiological saline) or D-galactose (100 mg/kg) was subcutaneously injected to these mice immediately after AlCl3 treatment. Neural stem cells, proliferating cells, differentiating neuroblasts, and mature neurons were detected using the relevant marker for each cell type, including nestin, Ki67, doublecortin, and NeuN, respectively, via immunohistochemistry. Subchronic (4 weeks) exposure to Al in mice reduced neural stem cells, proliferating cells, and differentiating neuroblasts without causing any changes to mature neurons. This Al-induced reduction effect was exacerbated in D-galactose-treated mice compared to vehicle-treated adult mice. Moreover, exposure to Al enhanced lipid peroxidation in the hippocampus and expression of antioxidants such as Cu, Zn- and Mn-superoxide dismutase in D-galactose-treated mice. These results suggest that Al accelerates the reduction of neural stem cells, proliferating cells, and differentiating neuroblasts in D-galactose-treated mice via oxidative stress, without inducing loss in mature neurons.
Collapse
Affiliation(s)
- Sung Min Nam
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea
| | - Jong Whi Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea
| | - Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea.,Korea Mouse Phenotyping Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea
| | - Je Kyung Seong
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea.,Korea Mouse Phenotyping Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea.,Korea Mouse Phenotyping Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea
| |
Collapse
|
35
|
Yin RH, Li J, Tan L, Wang HF, Tan MS, Yu WJ, Tan CC, Yu JT, Tan L. Impact of SORL1 genetic variations on MRI markers in non-demented elders. Oncotarget 2016; 7:31689-98. [PMID: 27177090 PMCID: PMC5077969 DOI: 10.18632/oncotarget.9300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/16/2016] [Indexed: 12/11/2022] Open
Abstract
The sorting protein-related receptor 1 (SORL1 or LR11) gene has been verified to play an important role in the pathologic process of β-amyloid (Aβ) formation and trafficking in Alzheimer's Disease (AD) by plenty of cytological and molecular biological studies. But there were few studies investigated the association of SORL1 gene and neurodegeneration features from a rather macroscopic perspective. In the present study, we explored the effect of SORL1 genotypes on AD-related brain atrophy. We recruited 812 individuals with both baseline and two-year follow-up information from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database and applied multiple linear regression models to examine the association between eight single nucleotide polymorphisms (SNPs) and neuroimaging phenotypes. Finally, four SNPs (rs11219350, rs2298813, rs3781836, rs3824968) showed trend of association with the volume of hippocampus and parahippocampal gyrus but failed to survive the false discovery rate (FDR) correction. Only rs1784933 and rs753780 showed significant association with right parahippocampal gyrus. According to our findings, SORL1 variations influence the atrophy of specific AD-related brain structures, which suggested the potential role of SORL1 in the neurodegeneration of cognitive related regions.
Collapse
Affiliation(s)
- Rui-Hua Yin
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Jun Li
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Lin Tan
- Department of Radiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Hui-Fu Wang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Wan-Jiang Yu
- Department of Radiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China
| | | |
Collapse
|
36
|
Regulation of the Postsynaptic Compartment of Excitatory Synapses by the Actin Cytoskeleton in Health and Its Disruption in Disease. Neural Plast 2016; 2016:2371970. [PMID: 27127658 PMCID: PMC4835652 DOI: 10.1155/2016/2371970] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/09/2016] [Indexed: 02/07/2023] Open
Abstract
Disruption of synaptic function at excitatory synapses is one of the earliest pathological changes seen in wide range of neurological diseases. The proper control of the segregation of neurotransmitter receptors at these synapses is directly correlated with the intact regulation of the postsynaptic cytoskeleton. In this review, we are discussing key factors that regulate the structure and dynamics of the actin cytoskeleton, the major cytoskeletal building block that supports the postsynaptic compartment. Special attention is given to the complex interplay of actin-associated proteins that are found in the synaptic specialization. We then discuss our current understanding of how disruption of these cytoskeletal elements may contribute to the pathological events observed in the nervous system under disease conditions with a particular focus on Alzheimer's disease pathology.
Collapse
|
37
|
Hsu PJ, Shou H, Benzinger T, Marcus D, Durbin T, Morris JC, Sheline YI. Amyloid burden in cognitively normal elderly is associated with preferential hippocampal subfield volume loss. J Alzheimers Dis 2016; 45:27-33. [PMID: 25428255 DOI: 10.3233/jad-141743] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The earliest sites of brain atrophy in Alzheimer's disease are in the medial temporal lobe, following widespread cerebral cortical amyloid deposition. We assessed 74 cognitively normal participants with clinical measurements, amyloid-β-PET imaging, MRI, and a newly developed technique for MRI-based hippocampal subfield segmentation to determine the differential association of amyloid deposition and hippocampal subfield volume. Compared to amyloid-negative participants, amyloid-positive participants had significantly smaller hippocampal tail, presubiculum, subiculum, and total hippocampal gray matter volumes. We conclude that, prior to the development of cognitive impairment, atrophy in particular hippocampal subfields occurs preferentially with amyloid-β accumulation.
Collapse
Affiliation(s)
- Phillip J Hsu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Haochang Shou
- Departments of Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Tammie Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Marcus
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tony Durbin
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yvette I Sheline
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA Departments of Radiology, Neurology, and Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
38
|
Catalan-Figueroa J, Palma-Florez S, Alvarez G, Fritz HF, Jara MO, Morales JO. Nanomedicine and nanotoxicology: the pros and cons for neurodegeneration and brain cancer. Nanomedicine (Lond) 2015; 11:171-87. [PMID: 26653284 DOI: 10.2217/nnm.15.189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Current strategies for brain diseases are mostly symptomatic and noncurative. Nanotechnology has the potential to facilitate the transport of drugs across the blood-brain barrier and to enhance their pharmacokinetic profile. However, to reach clinical application, an understanding of nanoneurotoxicity in terms of oxidative stress and inflammation is required. Emerging evidence has also shown that nanoparticles have the ability to alter autophagy, which can induce inflammation and oxidative stress, or vice versa. These effects may increase neurodegenerative processes damage, but on the other hand, they may have benefits for brain cancer therapies. In this review, we emphasize how nanomaterials may induce neurotoxic effects focusing on neurodegeneration, and how these effects could be exploited toward brain cancer treatment.
Collapse
Affiliation(s)
- Johanna Catalan-Figueroa
- Department of Pharmaceutical Science & Technology, School of Chemical & Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile.,Laboratory of Neuroplasticity & Neurogenetics, School of Chemical & Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile
| | | | - Gonzalo Alvarez
- Department of Pharmaceutical Science & Technology, School of Chemical & Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile
| | - Hans F Fritz
- Department of Pharmaceutical Science & Technology, School of Chemical & Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile
| | - Miguel O Jara
- Department of Pharmaceutical Science & Technology, School of Chemical & Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile
| | - Javier O Morales
- Department of Pharmaceutical Science & Technology, School of Chemical & Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380494, Chile
| |
Collapse
|
39
|
Béduer A, Joris P, Mosser S, Fraering PC, Renaud P. Detection of Alzheimer’s disease amyloid-beta plaque deposition by deep brain impedance profiling. J Neural Eng 2015; 12:024001. [DOI: 10.1088/1741-2560/12/2/024001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
40
|
Tang X, Holland D, Dale AM, Younes L, Miller MI. The diffeomorphometry of regional shape change rates and its relevance to cognitive deterioration in mild cognitive impairment and Alzheimer's disease. Hum Brain Mapp 2015; 36:2093-117. [PMID: 25644981 DOI: 10.1002/hbm.22758] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/07/2014] [Accepted: 01/26/2015] [Indexed: 01/21/2023] Open
Abstract
We proposed a diffeomorphometry-based statistical pipeline to study the regional shape change rates of the bilateral hippocampus, amygdala, and ventricle in mild cognitive impairment (MCI) and Alzheimer's disease (AD) compared with healthy controls (HC), using sequential magnetic resonance imaging (MRI) scans of 713 subjects (3,123 scans in total). The subgroup shape atrophy rates of the bilateral hippocampus and amygdala, as well as the expansion rates of the bilateral ventricles, for a majority of vertices were found to follow the order of AD>MCI>HC. The bilateral hippocampus and the left amygdala were subsegmented into multiple functionally meaningful subregions with the help of high-field MRI scans. The largest group differences in localized shape atrophy rates on the hippocampus were found to occur in CA1, followed by subiculum, CA2, and finally CA3/dentate gyrus, which is consistent with the neurofibrillary tangle accumulation trajectory. Highly nonuniform group differences were detected on the amygdala; vertices on the core amygdala (basolateral and lateral nucleus) revealed much larger atrophy rates, whereas those on the noncore amygdala (mainly centromedial) displayed similar or even smaller atrophy rates in AD relative to HC. The temporal horns of the ventricles were observed to have the largest localized ventricular expansion rate differences; with the AD group showing larger localized expansion rates on the anterior horn and the body part of the ventricles as well. Significant correlations were observed between the localized shape change rates of each of these six structures and the cognitive deterioration rates as quantified by the Alzheimer's Disease Assessment Scale-Cognitive Behavior Section increase rate and the Mini Mental State Examination decrease rate.
Collapse
Affiliation(s)
- Xiaoying Tang
- Whiting School of Engineering, Center for Imaging Science, Johns Hopkins University, Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Alzheimer's disease/senile dementia of the Alzheimer type (AD/SDAT) is the most common neuropathologic substrate of dementia. It is characterized by synapse loss (predominantly within neocortex) as well as deposition of certain distinctive lesions (the result of protein misfolding) throughout the brain. The latter include senile plaques, composed mainly of an amyloid (Aβ) core and a neuritic component; neurofibrillary tangles, composed predominantly of hyperphosphorylated tau; and cerebral amyloid angiopathy, a microangiopathy affecting both cerebral cortical capillaries and arterioles and resulting from Aβ deposition within their walls or (in the case of capillaries) immediately adjacent brain parenchyma. In this article, I discuss the hypothesized role these lesions play in causing cerebral dysfunction, as well as CSF and neuroimaging biomarkers (for dementia) that are especially relevant as immunotherapeutic approaches are being developed to remove Aβ from the brain parenchyma. In addition, I address the role of neuropathology in characterizing the sequelae of new AD/SDAT therapies and helping to validate CSF and neuroimaging biomarkers of disease. Comorbidity of AD/SDAT and various types of cerebrovascular disease is a major theme in dementia research, especially as cognitive impairment develops in the oldest old, who are especially vulnerable to ischemic and hemorrhagic brain lesions.
Collapse
Affiliation(s)
- Harry V Vinters
- Department of Pathology and Laboratory Medicine (Neuropathology), UCLA Medical Center, Los Angeles, California 90095-1732;
| |
Collapse
|
42
|
Structural imaging biomarkers of Alzheimer's disease: predicting disease progression. Neurobiol Aging 2014; 36 Suppl 1:S23-31. [PMID: 25260851 DOI: 10.1016/j.neurobiolaging.2014.04.034] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 01/18/2023]
Abstract
Optimized magnetic resonance imaging (MRI)-based biomarkers of Alzheimer's disease (AD) may allow earlier detection and refined prediction of the disease. In addition, they could serve as valuable tools when designing therapeutic studies of individuals at risk of AD. In this study, we combine (1) a novel method for grading medial temporal lobe structures with (2) robust cortical thickness measurements to predict AD among subjects with mild cognitive impairment (MCI) from a single T1-weighted MRI scan. Using AD and cognitively normal individuals, we generate a set of features potentially discriminating between MCI subjects who convert to AD and those who remain stable over a period of 3 years. Using mutual information-based feature selection, we identify 5 key features optimizing the classification of MCI converters. These features are the left and right hippocampi gradings and cortical thicknesses of the left precuneus, left superior temporal sulcus, and right anterior part of the parahippocampal gyrus. We show that these features are highly stable in cross-validation and enable a prediction accuracy of 72% using a simple linear discriminant classifier, the highest prediction accuracy obtained on the baseline Alzheimer's Disease Neuroimaging Initiative first phase cohort to date. The proposed structural features are consistent with Braak stages and previously reported atrophic patterns in AD and are easy to transfer to new cohorts and to clinical practice.
Collapse
|
43
|
Abstract
There is increasing interest in finding markers of Alzheimer's disease (AD) that are discriminative even at an early, pre-dementia stage. This interest is driven partly by a desire to improve clinical diagnosis in more mildly affected individuals, and also by the recent paradigm shift in thinking about clinical trials for AD. This shift is a result of concern that the recent failures of high-profile clinical trials conducted in patients with mild to moderate AD may have been because therapy was “too little, too late.” The implication being that if only treatments had been trialled earlier they would have had a greater chance of success. Certainly, lessons from other aspects of medicine have shown that treatments may be most, or in some cases only, effective if given early in disease. If we did have therapies that could slow disease progression at a very early stage that would increase the interest in early markers of disease. Ideally, such therapies would be given when the minimum of functional decline and irreversible neuronal loss had already occurred. From economic and public health standpoints, delaying symptom onset would be very important: a delay of five years has been estimated to reduce projections for prevalence of symptomatic AD by about 50% (Brookmeyer et al., 1998).
Collapse
|
44
|
Casanova MF. Autism as a sequence: from heterochronic germinal cell divisions to abnormalities of cell migration and cortical dysplasias. Med Hypotheses 2014; 83:32-8. [PMID: 24780284 PMCID: PMC4070182 DOI: 10.1016/j.mehy.2014.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/11/2014] [Accepted: 04/06/2014] [Indexed: 02/07/2023]
Abstract
The considerable heterogeneity in the number and severity of symptoms observed in autism spectrum disorders (ASD) has been regarded as an obstacle to any future research. Some authors believe that clinical heterogeneity results from the complex interplay of the many genetic and environmental factors that themselves define a condition as multifactorial. However, it is important to note that neuropathological findings in both idiopathic and syndromic autism suggests a single pathophysiological mechanism acting during brain development: the heterochronic division of germinal cells and subsequent migrational abnormalities of daughter cells to their target fields. Multiple exogenous (e.g., viruses, drugs) and endogenous (e.g., genetic mutations) factors are known to disrupt the division of germinal cells and provide for an autism phenotype. The variety of endogenous and exogenous factors, their timing of action during brain development, and the genetic susceptibility of affected individuals (a Triple Hit hypothesis) may all account for the clinical heterogeneity of ASD.
Collapse
Affiliation(s)
- Manuel F Casanova
- Department of Psychiatry, University of Louisville, 500 South Preston Street, Building A, Room 217, Louisville, KY 40202, United States.
| |
Collapse
|
45
|
Talati P, Rane S, Kose S, Gore J, Heckers S. Anterior-posterior cerebral blood volume gradient in human subiculum. Hippocampus 2014; 24:503-9. [PMID: 24677295 DOI: 10.1002/hipo.22257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/31/2014] [Accepted: 01/31/2014] [Indexed: 12/29/2022]
Abstract
The human hippocampal formation is characterized by anterior-posterior gradients of cell density, neurochemistry, and hemodynamics. In addition, some functions are associated with specific subfields (subiculum, CA1-4, dentate gyrus) and regions (anterior and posterior). We performed contrast-enhanced, high-resolution T1-weighted 3T steady state (SS) imaging to investigate cerebral blood volume (CBV) gradients of the hippocampal formation. We studied 14 healthy subjects and found significant CBV gradients (anterior > posterior) in the subiculum but not in other hippocampal subfields. Since CBV is a marker of basal metabolism, these results indicate a greater baseline activity in the anterior compared with the posterior subiculum. This gradient might be related to the role of the subiculum as the main outflow station of the hippocampal formation and might have implications for the mechanisms of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Pratik Talati
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Department of Psychiatry, Vanderbilt University, Nashville, Tennessee
| | | | | | | | | |
Collapse
|
46
|
Weon JB, Ko HJ, Ma CJ. The ameliorating effects of 2,3-dihydroxy-4-methoxyacetophenone on scopolamine-induced memory impairment in mice and its neuroprotective activity. Bioorg Med Chem Lett 2013; 23:6732-6. [DOI: 10.1016/j.bmcl.2013.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/23/2013] [Accepted: 10/18/2013] [Indexed: 11/27/2022]
|
47
|
Andrade-Moraes CH, Oliveira-Pinto AV, Castro-Fonseca E, da Silva CG, Guimarães DM, Szczupak D, Parente-Bruno DR, Carvalho LR, Polichiso L, Gomes BV, Oliveira LM, Rodriguez RD, Leite RE, Ferretti-Rebustini RE, Jacob-Filho W, Pasqualucci CA, Grinberg LT, Lent R. Cell number changes in Alzheimer's disease relate to dementia, not to plaques and tangles. Brain 2013; 136:3738-52. [PMID: 24136825 PMCID: PMC3859218 DOI: 10.1093/brain/awt273] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 08/04/2013] [Accepted: 08/04/2013] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease is the commonest cause of dementia in the elderly, but its pathological determinants are still debated. Amyloid-β plaques and neurofibrillary tangles have been implicated either directly as disruptors of neural function, or indirectly by precipitating neuronal death and thus causing a reduction in neuronal number. Alternatively, the initial cognitive decline has been attributed to subtle intracellular events caused by amyloid-β oligomers, resulting in dementia after massive synaptic dysfunction followed by neuronal degeneration and death. To investigate whether Alzheimer's disease is associated with changes in the absolute cell numbers of ageing brains, we used the isotropic fractionator, a novel technique designed to determine the absolute cellular composition of brain regions. We investigated whether plaques and tangles are associated with neuronal loss, or whether it is dementia that relates to changes of absolute cell composition, by comparing cell numbers in brains of patients severely demented with those of asymptomatic individuals-both groups histopathologically diagnosed as Alzheimer's-and normal subjects with no pathological signs of the disease. We found a great reduction of neuronal numbers in the hippocampus and cerebral cortex of demented patients with Alzheimer's disease, but not in asymptomatic subjects with Alzheimer's disease. We concluded that neuronal loss is associated with dementia and not the presence of plaques and tangles, which may explain why subjects with histopathological features of Alzheimer's disease can be asymptomatic; and exclude amyloid-β deposits as causes for the reduction of neuronal numbers in the brain. We found an increase of non-neuronal cell numbers in the cerebral cortex and subcortical white matter of demented patients with Alzheimer's disease when compared with asymptomatic subjects with Alzheimer's disease and control subjects, suggesting a reactive glial cell response in the former that may be related to the symptoms they present.
Collapse
Affiliation(s)
| | | | - Emily Castro-Fonseca
- 1 Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Camila G. da Silva
- 1 Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Daniel M. Guimarães
- 1 Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Diego Szczupak
- 1 Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | | | | | - Lívia Polichiso
- 2 Ageing Brain Study Group, Department of Pathology, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- 3 Department of Neurology, University of California, San Francisco, USA
| | - Bruna V. Gomes
- 1 Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Lays M. Oliveira
- 1 Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Roberta D. Rodriguez
- 2 Ageing Brain Study Group, Department of Pathology, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
| | - Renata E.P. Leite
- 2 Ageing Brain Study Group, Department of Pathology, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
| | - Renata E.L. Ferretti-Rebustini
- 2 Ageing Brain Study Group, Department of Pathology, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- 4 University of São Paulo Nursing School, São Paulo, Brazil
| | - Wilson Jacob-Filho
- 2 Ageing Brain Study Group, Department of Pathology, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- 5 Division of Geriatrics, University of São Paulo, Brazil
| | - Carlos A. Pasqualucci
- 2 Ageing Brain Study Group, Department of Pathology, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
| | - Lea T. Grinberg
- 2 Ageing Brain Study Group, Department of Pathology, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- 3 Department of Neurology, University of California, San Francisco, USA
| | - Roberto Lent
- 1 Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
- 6 National Institute of Translational Neuroscience, Ministry of Science and Technology, Brazil
| |
Collapse
|
48
|
Glodzik L, Rusinek H, Pirraglia E, McHugh P, Tsui W, Williams S, Cummings M, Li Y, Rich K, Randall C, Mosconi L, Osorio R, Murray J, Zetterberg H, Blennow K, de Leon M. Blood pressure decrease correlates with tau pathology and memory decline in hypertensive elderly. Neurobiol Aging 2013; 35:64-71. [PMID: 23969178 DOI: 10.1016/j.neurobiolaging.2013.06.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 01/01/2023]
Abstract
In hypertension (HTN), cerebral blood flow regulation limits are changed, and the threshold for blood pressure (BP) at which perfusion is safely maintained is higher. This shift may increase the brain's vulnerability to lower BP in subjects with vascular disease. We investigated whether longitudinal reduction in mean arterial pressure (MAP) was related to changes in cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease in a group of cognitively healthy elderly with and without HTN. The relationships among MAP, memory decline, and hippocampal atrophy were also examined. Seventy-seven subjects (age 63.4 ± 9.4, range 44-86 years; education 16.9 ± 2.1, range 10-22 years; 60% women) were assessed twice, 2 ± 0.5 years apart. At both time points, all subjects underwent full medical and neuropsychological evaluations, lumbar punctures, and magnetic resonance imaging examinations. Twenty-five subjects had HTN. Hyper- and normotensive subjects did not differ in their CSF biomarkers, hippocampal volumes (HipVs), or memory scores at baseline. In the entire study group, the increase in tau phosphorylated at threonine 181 (p-tau(181)) was associated with a decline in verbal episodic memory (β = -0.30, p = 0.01) and HipV reduction (β = -0.27, p = 0.02). However, longitudinal decrease in MAP was related to memory decline (β = 0.50, p = 0.01) and an increase in p-tau(181) (β = -0.50, p = 0.01) only in subjects with HTN. Our findings suggest that the hypertensive group may be sensitive to BP reductions.
Collapse
Affiliation(s)
- Lidia Glodzik
- Department of Psychiatry, Center for Brain Health, New York University School of Medicine, New York, NY, USA; Department of Radiology, New York University School of Medicine, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zimny A, Bladowska J, Neska M, Petryszyn K, Guziński M, Szewczyk P, Leszek J, Sąsiadek M. Quantitative MR evaluation of atrophy, as well as perfusion and diffusion alterations within hippocampi in patients with Alzheimer's disease and mild cognitive impairment. Med Sci Monit 2013; 19:86-94. [PMID: 23377218 PMCID: PMC3628917 DOI: 10.12659/msm.883757] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The aim of this study was to evaluate atrophy rates, perfusion, and diffusion disturbances within the hippocampus, which is the site of characteristic changes in Alzheimer’s disease (AD) and mild cognitive impairment (MCI). Material/Methods Thirty patients with AD (mean age 71.2 yrs) – 34 with MCI (mean age 67.7 yrs) and 20 healthy controls (mean age 68.1 yrs) – underwent structural MR examination followed by perfusion and diffusion-weighted imaging on a 1.5 T scanner. Visual rating of hippocampal atrophy, planimetric measurements of hippocampal formation (HF) and perihippocampal fluid spaces (PFSs), and values of relative cerebral blood volume (rCBV) and apparent diffusion coefficient (ADC) were assessed. The results were correlated with the MMSE scores. Results In AD we found decreased size of HF and increased diameters of PFSs and ADC values, compared to MCI and control group. Compared to normal controls, the MCI group showed decreased HF size and increased diameters of only medial PFS. There were no differences in rCBV values among all the subject groups. Planimetric measurements of hippocampal atrophy showed the highest accuracy in diagnosing AD and MCI. In all patients, the increased rates of hippocampal atrophy correlated with the increased ADC values. In MCI, MMSE scores correlated with the HF size and ADC values. Conclusions In AD and MCI, hippocampal atrophy is associated with decreased tissue integrity without coexisting perfusion disturbances. Of all evaluated hippocampal measurements, atrophy rates seem to be the most useful parameters in detecting changes among AD, MCI, and control subjects.
Collapse
Affiliation(s)
- Anna Zimny
- Department of General and Interventional Radiology, and Neuroradiology, Wroclaw Medical University, Wroclaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Haubold A, Peterson BS, Bansal R. Annual research review: progress in using brain morphometry as a clinical tool for diagnosing psychiatric disorders. J Child Psychol Psychiatry 2012; 53:519-35. [PMID: 22394424 PMCID: PMC4235515 DOI: 10.1111/j.1469-7610.2012.02539.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Brain morphometry in recent decades has increased our understanding of the neural bases of psychiatric disorders by localizing anatomical disturbances to specific nuclei and subnuclei of the brain. At least some of these disturbances precede the overt expression of clinical symptoms and possibly are endophenotypes that could be used to diagnose an individual accurately as having a specific psychiatric disorder. More accurate diagnoses could significantly reduce the emotional and financial burden of disease by aiding clinicians in implementing appropriate treatments earlier and in tailoring treatment to the individual needs. Several methods, especially those based on machine learning, have been proposed that use anatomical brain measures and gold-standard diagnoses of participants to learn decision rules that classify a person automatically as having one disorder rather than another. We review the general principles and procedures for machine learning, particularly as applied to diagnostic classification, and then review the procedures that have thus far attempted to diagnose psychiatric illnesses automatically using anatomical measures of the brain. We discuss the strengths and limitations of extant procedures and note that the sensitivity and specificity of these procedures in their most successful implementations have approximated 90%. Although these methods have not yet been applied within clinical settings, they provide strong evidence that individual patients can be diagnosed accurately using the spatial pattern of disturbances across the brain.
Collapse
Affiliation(s)
- Alexander Haubold
- Columbia College of Physicians & Surgeons and New York State Psychiatric Institute, New York, NY, USA
| | | | | |
Collapse
|