1
|
Goddard ET, Linde MH, Srivastava S, Klug G, Shabaneh TB, Iannone S, Grzelak CA, Marsh S, Riggio AI, Shor RE, Linde IL, Guerrero M, Veatch JR, Snyder AG, Welm AL, Riddell SR, Ghajar CM. Immune evasion of dormant disseminated tumor cells is due to their scarcity and can be overcome by T cell immunotherapies. Cancer Cell 2024; 42:119-134.e12. [PMID: 38194912 PMCID: PMC10864018 DOI: 10.1016/j.ccell.2023.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 10/06/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
The period between "successful" treatment of localized breast cancer and the onset of distant metastasis can last many years, representing an unexploited window to eradicate disseminated disease and prevent metastases. We find that the source of recurrence-disseminated tumor cells (DTCs) -evade endogenous immunity directed against tumor neoantigens. Although DTCs downregulate major histocompatibility complex I, this does not preclude recognition by conventional T cells. Instead, the scarcity of interactions between two relatively rare populations-DTCs and endogenous antigen-specific T cells-underlies DTC persistence. This scarcity is overcome by any one of three immunotherapies that increase the number of tumor-specific T cells: T cell-based vaccination, or adoptive transfer of T cell receptor or chimeric antigen receptor T cells. Each approach achieves robust DTC elimination, motivating discovery of MHC-restricted and -unrestricted DTC antigens that can be targeted with T cell-based immunotherapies to eliminate the reservoir of metastasis-initiating cells in patients.
Collapse
Affiliation(s)
- Erica T Goddard
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Miles H Linde
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Center for Metastasis Research eXcellence (MET-X), Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Shivani Srivastava
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Center for Metastasis Research eXcellence (MET-X), Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Grant Klug
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Tamer B Shabaneh
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Santino Iannone
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Center for Metastasis Research eXcellence (MET-X), Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Candice A Grzelak
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Center for Metastasis Research eXcellence (MET-X), Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sydney Marsh
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Center for Metastasis Research eXcellence (MET-X), Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Alessandra I Riggio
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ryann E Shor
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ian L Linde
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Center for Metastasis Research eXcellence (MET-X), Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Marissa Guerrero
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Joshua R Veatch
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Annelise G Snyder
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Center for Metastasis Research eXcellence (MET-X), Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Stanley R Riddell
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Center for Metastasis Research eXcellence (MET-X), Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| | - Cyrus M Ghajar
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Center for Metastasis Research eXcellence (MET-X), Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
2
|
Jiang X, Wang S, Liang Q, Liu Y, Liu L. Unraveling the multifaceted role of EpCAM in colorectal cancer: an integrated review of its function and interplay with non-coding RNAs. Med Oncol 2023; 41:35. [PMID: 38151631 DOI: 10.1007/s12032-023-02273-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
The epithelial cell adhesion molecule (EpCAM) is a critical glycoprotein involved in cell cycle progression, proliferation, differentiation, migration, and immune evasion. Its role as a target for bispecific antibodies has shown promise in annihilating cancer cells. EpCAM's potential as a biomarker for tumor-initiating cells, characterized by self-renewal and tumorigenic capabilities, underscores its value in early cancer detection, immunotherapy, and targeted drug delivery. While EpCAM monotherapies have been met with limited success, bispecific antibodies targeting both EpCAM and other proteins have exhibited encouraging results in colorectal cancer (CRC) research. The integration of EpCAM-directed nanotechnology in drug delivery systems has emerged as a pivotal innovation in CRC treatment. Moreover, developing chimeric antigen receptor (CAR) T-cell and CAR natural killer (NK) cell therapies opens promising therapeutic avenues for EpCAM-positive CRC patients. Although preliminary, this review sets the stage for future advances. Additionally, this study advances our understanding of the role of non-coding RNAs in CRC, which may be pivotal in gene regulation and could provide insights into the molecular underpinning. The findings suggest that lncRNA, miRNA, and circRNA could serve as novel therapeutic targets or biomarkers, further enriching the landscape of CRC diagnostics and therapeutics.
Collapse
Affiliation(s)
- Xingyu Jiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Sumeng Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Qi Liang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Yiqian Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.
| | - Lingxiang Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Niazi SK. A Critical Analysis of the FDA's Omics-Driven Pharmacodynamic Biomarkers to Establish Biosimilarity. Pharmaceuticals (Basel) 2023; 16:1556. [PMID: 38004421 PMCID: PMC10675618 DOI: 10.3390/ph16111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 11/26/2023] Open
Abstract
Demonstrating biosimilarity entails comprehensive analytical assessment, clinical pharmacology profiling, and efficacy testing in patients for at least one medical indication, as required by the U.S. Biologics Price Competition and Innovation Act (BPCIA). The efficacy testing can be waived if the drug has known pharmacodynamic (PD) markers, leaving most therapeutic proteins out of this concession. To overcome this, the FDA suggests that biosimilar developers discover PD biomarkers using omics technologies such as proteomics, glycomics, transcriptomics, genomics, epigenomics, and metabolomics. This approach is redundant since the mode-action-action biomarkers of approved therapeutic proteins are already available, as compiled in this paper for the first time. Other potential biomarkers are receptor binding and pharmacokinetic profiling, which can be made more relevant to ensure biosimilarity without requiring biosimilar developers to conduct extensive research, for which they are rarely qualified.
Collapse
Affiliation(s)
- Sarfaraz K Niazi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Liu Y, Wang Y, Sun S, Chen Z, Xiang S, Ding Z, Huang Z, Zhang B. Understanding the versatile roles and applications of EpCAM in cancers: from bench to bedside. Exp Hematol Oncol 2022; 11:97. [PMID: 36369033 PMCID: PMC9650829 DOI: 10.1186/s40164-022-00352-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) functions not only in physiological processes but also participates in the development and progression of cancer. In recent decades, extensive efforts have been made to decipher the role of EpCAM in cancers. Great advances have been achieved in elucidating its structure, molecular functions, pathophysiological mechanisms, and clinical applications. Beyond its well-recognized role as a biomarker of cancer stem cells (CSCs) or circulating tumor cells (CTCs), EpCAM exhibits novel and promising value in targeted therapy. At the same time, the roles of EpCAM in cancer progression are found to be highly context-dependent and even contradictory in some cases. The versatile functional modules of EpCAM and its communication with other signaling pathways complicate the study of this molecule. In this review, we start from the structure of EpCAM and focus on communication with other signaling pathways. The impacts on the biology of cancers and the up-to-date clinical applications of EpCAM are also introduced and summarized, aiming to shed light on the translational prospects of EpCAM.
Collapse
Affiliation(s)
- Yiyang Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufei Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Sun
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyu Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Xiang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
5
|
Barzaman K, Vafaei R, Samadi M, Kazemi MH, Hosseinzadeh A, Merikhian P, Moradi-Kalbolandi S, Eisavand MR, Dinvari H, Farahmand L. Anti-cancer therapeutic strategies based on HGF/MET, EpCAM, and tumor-stromal cross talk. Cancer Cell Int 2022; 22:259. [PMID: 35986321 PMCID: PMC9389806 DOI: 10.1186/s12935-022-02658-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 07/19/2022] [Indexed: 02/08/2023] Open
Abstract
As an intelligent disease, tumors apply several pathways to evade the immune system. It can use alternative routes to bypass intracellular signaling pathways, such as nuclear factor-κB (NF-κB), Wnt, and mitogen-activated protein (MAP)/phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR). Therefore, these mechanisms lead to therapeutic resistance in cancer. Also, these pathways play important roles in the proliferation, survival, migration, and invasion of cells. In most cancers, these signaling pathways are overactivated, caused by mutation, overexpression, etc. Since numerous molecules share these signaling pathways, the identification of key molecules is crucial to achieve favorable consequences in cancer therapy. One of the key molecules is the mesenchymal-epithelial transition factor (MET; c-Met) and its ligand hepatocyte growth factor (HGF). Another molecule is the epithelial cell adhesion molecule (EpCAM), which its binding is hemophilic. Although both of them are involved in many physiologic processes (especially in embryonic stages), in some cancers, they are overexpressed on epithelial cells. Since they share intracellular pathways, targeting them simultaneously may inhibit substitute pathways that tumor uses to evade the immune system and resistant to therapeutic agents.
Collapse
|
6
|
Identification, Culture and Targeting of Cancer Stem Cells. Life (Basel) 2022; 12:life12020184. [PMID: 35207472 PMCID: PMC8879966 DOI: 10.3390/life12020184] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Chemoresistance, tumor progression, and metastasis are features that are frequently seen in cancer that have been associated with cancer stem cells (CSCs). These cells are a promising target in the future of cancer therapy but remain largely unknown. Deregulation of pathways that govern stemness in non-tumorigenic stem cells (SCs), such as Notch, Wnt, and Hedgehog pathways, has been described in CSC pathogenesis, but it is necessary to conduct further studies to discover potential new therapeutic targets. In addition, some markers for the identification and characterization of CSCs have been suggested, but the search for specific CSC markers in many cancer types is still under development. In addition, methods for CSC cultivation are also under development, with great heterogeneity existing in the protocols used. This review focuses on the most recent aspects of the identification, characterization, cultivation, and targeting of human CSCs, highlighting the advances achieved in the clinical implementation of therapies targeting CSCs and remarking those potential areas where more research is still required.
Collapse
|
7
|
Preclinical evaluation of [ 99mTc]Tc-labeled anti-EpCAM nanobody for EpCAM receptor expression imaging by immuno-SPECT/CT. Eur J Nucl Med Mol Imaging 2022; 49:1810-1821. [PMID: 35013776 DOI: 10.1007/s00259-021-05670-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/20/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE Overexpression of epithelial cell adhesion molecule (EpCAM) plays essential roles in tumorigenesis and tumor progression in almost all epithelium-derived cancer. Monitoring EpCAM expression in tumors can be used for the diagnosis, staging, and prognosis of cancer patients, as well as guiding the individualized treatment of EpCAM-targeted drugs. In this study, we described the synthesis and evaluation of a site-specifically [99mTc]Tc-labeled EpCAM-targeted nanobody for the SPECT/CT imaging of EpCAM expression. METHODS We first prepared the [99mTc]Tc-HYNIC-G4K; then, it was site-specifically connected to EpCAM-targeted nanobody NB4. The in vitro characteristics of [99mTc]Tc-NB4 were investigated in HT-29 (EpCAM positive) and HL-60 (EpCAM negative) cells, while the in vivo studies were performed using small-animal SPECT/CT in the subcutaneous tumor models and the lymph node metastasis model to verify the specific targeting capacity as well as the potential applications of [99mTc]Tc-NB4. RESULTS [99mTc]Tc-NB4 displayed a high EpCAM specificity both in vitro and in vivo. SPECT/CT imaging revealed that [99mTc]Tc-NB4 was cleared rapidly from the blood and normal organs except for the kidneys, and HT-29 tumors were clearly visualized in contrast with HL-60 tumors. The uptake value of [99mTc]Tc-NB4 in HT-29 tumors was increased continuously from 3.77 ± 0.39%ID/g at 0.5 h to 5.53 ± 0.82%ID/g at 12 h after injection. Moreover, the [99mTc]Tc-NB4 SPECT/CT could clearly image tumor-draining lymph nodes. CONCLUSION [99mTc]Tc-NB4 is a broad-spectrum, specific, and sensitive SPECT radiotracer for the noninvasive imaging of EpCAM expression in the epithelium-derived cancer and revealed a great potential for the clinical translation.
Collapse
|
8
|
Recurrence Risk after Radical Colorectal Cancer Surgery-Less Than before, But How High Is It? Cancers (Basel) 2020; 12:cancers12113308. [PMID: 33182510 PMCID: PMC7696064 DOI: 10.3390/cancers12113308] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Evidence indicates that recurrence risk after colon cancer today is less than it was when trials performed decades ago showed that adjuvant chemotherapy reduces the risk and prolong disease-free and overall survival. After rectal cancer surgery, local recurrence rates have decreased but it is unclear if systemic recurrences have. After a systematic review of available literature reporting recurrence risks after curative colorectal cancer surgery we report that the risks are lower today than they were in the past and that this risk reduction is not solely ascribed to the use of adjuvant therapy. Adjuvant therapy always means overtreatment of many patients, already cured by the surgery. Fewer recurrences mean that progress in the care of these patients has happened but also that the present guidelines giving recommendations based upon old data must be adjusted. The relative gains from adding chemotherapy are not altered, but the absolute number of patients gaining is less. Abstract Adjuvant chemotherapy aims at eradicating tumour cells sometimes present after radical surgery for a colorectal cancer (CRC) and thereby diminish the recurrence rate and prolong time to recurrence (TTR). Remaining tumour cells will lead to recurrent disease that is usually fatal. Adjuvant therapy is administered based upon the estimated recurrence risk, which in turn defines the need for this treatment. This systematic overview aims at describing whether the need has decreased since trials showing that adjuvant chemotherapy provides benefits in colon cancer were performed decades ago. Thanks to other improvements than the administration of adjuvant chemotherapy, such as better staging, improved surgery, the use of radiotherapy and more careful pathology, recurrence risks have decreased. Methodological difficulties including intertrial comparisons decades apart and the present selective use of adjuvant therapy prevent an accurate estimate of the magnitude of the decreased need. Furthermore, most trials do not report recurrence rates or TTR, only disease-free and overall survival (DFS/OS). Fewer colon cancer patients, particularly in stage II but also in stage III, today display a sufficient need for adjuvant treatment considering the burden of treatment, especially when oxaliplatin is added. In rectal cancer, neo-adjuvant treatment will be increasingly used, diminishing the need for adjuvant treatment.
Collapse
|
9
|
Roshan R, Naderi S, Behdani M, Cohan RA, Ghaderi H, Shokrgozar MA, Golkar M, Kazemi-Lomedasht F. Isolation and characterization of nanobodies against epithelial cell adhesion molecule as novel theranostic agents for cancer therapy. Mol Immunol 2020; 129:70-77. [PMID: 33183767 DOI: 10.1016/j.molimm.2020.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/12/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
Epithelial cell adhesion molecule (EpCAM) plays an important role in tumorigenesis. Camelids produce functional antibodies composed of heavy chains only that bind to their antigens via a single domain variable fragment known as nanobody. Nanobodies show multiple advantages over traditional monoclonal antibodies. Isolation of functional anti-EpCAM nanobodies (Nbs) was the main aim of this study. An immune nanobody library containing 108 members was constructed previously. Anti -EpCAM nanobodies were isolated from camel immune library using phage display. Four consecutive rounds of biopanning were performed on immobilized EpCAM. Four nanobodies (Nb4, Nb5, Nb22, and Nb23) with highest signal intensity in monoclonal phage ELISA were selected. Affinity of these selected nanobodies for EpCAM was in the nanomolar range. Selected nanobodies significantly inhibited proliferation of MCF-7 cells. The in vivo study revealed that a significant reduction in tumor size occurred when treated with nanobodies Nb4 and Nb5, after 14 days monitoring. Our data revealed that nanobodies Nb4 and Nb5 could be considered as attractive theranostic agents for EpCAM overexpressing cancers.
Collapse
Affiliation(s)
- Reyhaneh Roshan
- Biotechnology Research Center, Biotechnology Department, Venom & Biotherapeutics Molecules Lab., Pasteur Institute of Iran, Tehran, Iran
| | - Shamsi Naderi
- Biotechnology Research Center, Biotechnology Department, Venom & Biotherapeutics Molecules Lab., Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Behdani
- Biotechnology Research Center, Biotechnology Department, Venom & Biotherapeutics Molecules Lab., Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Hajarsadat Ghaderi
- Biotechnology Research Center, Biotechnology Department, Venom & Biotherapeutics Molecules Lab., Pasteur Institute of Iran, Tehran, Iran
| | | | - Majid Golkar
- Molecular Parasitology Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Kazemi-Lomedasht
- Biotechnology Research Center, Biotechnology Department, Venom & Biotherapeutics Molecules Lab., Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
10
|
Gires O, Pan M, Schinke H, Canis M, Baeuerle PA. Expression and function of epithelial cell adhesion molecule EpCAM: where are we after 40 years? Cancer Metastasis Rev 2020; 39:969-987. [PMID: 32507912 PMCID: PMC7497325 DOI: 10.1007/s10555-020-09898-3] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
EpCAM (epithelial cell adhesion molecule) was discovered four decades ago as a tumor antigen on colorectal carcinomas. Owing to its frequent and high expression on carcinomas and their metastases, EpCAM serves as a prognostic marker, a therapeutic target, and an anchor molecule on circulating and disseminated tumor cells (CTCs/DTCs), which are considered the major source for metastatic cancer cells. Today, EpCAM is reckoned as a multi-functional transmembrane protein involved in the regulation of cell adhesion, proliferation, migration, stemness, and epithelial-to-mesenchymal transition (EMT) of carcinoma cells. To fulfill these functions, EpCAM is instrumental in intra- and intercellular signaling as a full-length molecule and following regulated intramembrane proteolysis, generating functionally active extra- and intracellular fragments. Intact EpCAM and its proteolytic fragments interact with claudins, CD44, E-cadherin, epidermal growth factor receptor (EGFR), and intracellular signaling components of the WNT and Ras/Raf pathways, respectively. This plethora of functions contributes to shaping intratumor heterogeneity and partial EMT, which are major determinants of the clinical outcome of carcinoma patients. EpCAM represents a marker for the epithelial status of primary and systemic tumor cells and emerges as a measure for the metastatic capacity of CTCs. Consequentially, EpCAM has reclaimed potential as a prognostic marker and target on primary and systemic tumor cells.
Collapse
Affiliation(s)
- Olivier Gires
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer", Helmholtz Zentrum, Neuherberg, Germany.
| | - Min Pan
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Henrik Schinke
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Patrick A Baeuerle
- Institute for Immunology, LMU Munich, Grosshadernerstr. 9, 82152 Planegg, Martinsried, Germany
- MPM Capital, Cambridge MA, 450 Kendall Street, Cambridge, MA, 02142, USA
| |
Collapse
|
11
|
Eslami-S Z, Cortés-Hernández LE, Alix-Panabières C. Epithelial Cell Adhesion Molecule: An Anchor to Isolate Clinically Relevant Circulating Tumor Cells. Cells 2020; 9:cells9081836. [PMID: 32764280 PMCID: PMC7464831 DOI: 10.3390/cells9081836] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
In the last few decades, the epithelial cell adhesion molecule (EpCAM) has received increased attention as the main membrane marker used in many enrichment technologies to isolate circulating tumor cells (CTCs). Although there has been a great deal of progress in the implementation of EpCAM-based CTC detection technologies in medical settings, several issues continue to limit their clinical utility. The biology of EpCAM and its role are not completely understood but evidence suggests that the expression of this epithelial cell-surface protein is crucial for metastasis-competent CTCs and may not be lost completely during the epithelial-to-mesenchymal transition. In this review, we summarize the most significant advantages and disadvantages of using EpCAM as a marker for CTC enrichment and its potential biological role in the metastatic cascade.
Collapse
|
12
|
Mohtar MA, Syafruddin SE, Nasir SN, Yew LT. Revisiting the Roles of Pro-Metastatic EpCAM in Cancer. Biomolecules 2020; 10:biom10020255. [PMID: 32046162 PMCID: PMC7072682 DOI: 10.3390/biom10020255] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is a cell surface protein that was discovered as a tumour marker of epithelial origins nearly four decades ago. EpCAM is expressed at basal levels in the basolateral membrane of normal epithelial cells. However, EpCAM expression is upregulated in solid epithelial cancers and stem cells. EpCAM can also be found in disseminated tumour cells and circulating tumour cells. Various OMICs studies have demonstrated that EpCAM plays roles in several key biological processes such as cell adhesion, migration, proliferation and differentiation. Additionally, EpCAM can be detected in the bodily fluid of cancer patients suggesting that EpCAM is a pathophysiologically relevant anti-tumour target as well as being utilized as a diagnostic/prognostic agent for a variety of cancers. This review will focus on the structure-features of EpCAM protein and discuss recent evidence on the pathological and physiological roles of EpCAM in modulating cell adhesion and signalling pathways in cancers as well as deliberating the clinical implication of EpCAM as a therapeutic target.
Collapse
|
13
|
Barbato L, Bocchetti M, Di Biase A, Regad T. Cancer Stem Cells and Targeting Strategies. Cells 2019; 8:cells8080926. [PMID: 31426611 PMCID: PMC6721823 DOI: 10.3390/cells8080926] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/05/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Chemoresistance is a major problem in cancer therapy as cancer cells develop mechanisms that counteract the effect of chemotherapeutic compounds, leading to relapse and the development of more aggressive cancers that contribute to poor prognosis and survival rates of treated patients. Cancer stem cells (CSCs) play a key role in this event. Apart from their slow proliferative property, CSCs have developed a range of cellular processes that involve drug efflux, drug enzymatic inactivation and other mechanisms. In addition, the microenvironment where CSCs evolve (CSC niche), effectively contributes to their role in cancer initiation, progression and chemoresistance. In the CSC niche, immune cells, mesenchymal stem cells (MSCs), endothelial cells and cancer associated fibroblasts (CAFs) contribute to the maintenance of CSC malignancy via the secretion of factors that promote cancer progression and resistance to chemotherapy. Due to these factors that hinder successful cancer therapies, CSCs are a subject of intense research that aims at better understanding of CSC behaviour and at developing efficient targeting therapies. In this review, we provide an overview of cancer stem cells, their role in cancer initiation, progression and chemoresistance, and discuss the progress that has been made in the development of CSC targeted therapies.
Collapse
Affiliation(s)
- Luisa Barbato
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Marco Bocchetti
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Anna Di Biase
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Tarik Regad
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| |
Collapse
|
14
|
Fluorescence-guided tumor detection with a novel anti-EpCAM targeted antibody fragment: Preclinical validation. Surg Oncol 2018; 28:1-8. [PMID: 30851880 DOI: 10.1016/j.suronc.2018.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 09/13/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022]
Abstract
Tumor-specific fluorescent imaging agents are moving towards the clinic, supporting surgeons with real-time intraoperative feedback about tumor locations. The epithelial cell adhesion molecule (EpCAM) is considered as one of the most promising tumor-specific proteins due its high overexpression on epithelial-derived cancers. This study describes the development and evaluation of EpCAM-F800, a novel fluorescent anti-EpCAM antibody fragment, for intraoperative tumor imaging. Fab production, conjugation to the fluorophore IRDye 800CW, and binding capacities were determined and validated using HPLC, spectrophotometry and cell-based assays. In vivo, dose escalation-, blocking-, pharmacokinetic- and biodistribution studies (using both fluorescence and radioactivity) were performed, next to imaging of clinically relevant orthotopic xenografts for breast and colorectal cancer. EpCAM-F800 targets EpCAM with high specificity in vitro, which was validated using in vivo blocking experiments with a 10x higher dose of unlabeled Fab. The optimal dose range for fluorescence tumor detection in mice was 1-5 nmol (52-260 μg), which corresponds to a human equivalent dose of 0.2-0.8 mg/kg. Biodistribution showed high accumulation of EpCAM-F800 in tumors and metabolizing organs. Breast and colorectal tumors could clearly be visualized within 8 h post-injection and up to 96 h, while the agent already showed homogenous tumor distribution within 4 h. The blood half-life was 4.5 h. This study describes the development and evaluation of a novel EpCAM-targeting agent and the feasibility to visualize breast and colorectal tumors by fluorescence imaging during resections. EpCAM-F800 will be translated for clinical use, considering its abundance in a broad range of tumor types.
Collapse
|
15
|
Herreros-Pomares A, Aguilar-Gallardo C, Calabuig-Fariñas S, Sirera R, Jantus-Lewintre E, Camps C. EpCAM duality becomes this molecule in a new Dr. Jekyll and Mr. Hyde tale. Crit Rev Oncol Hematol 2018; 126:52-63. [DOI: 10.1016/j.critrevonc.2018.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 02/08/2023] Open
|
16
|
EpCAM Immunotherapy versus Specific Targeted Delivery of Drugs. Cancers (Basel) 2018; 10:cancers10010019. [PMID: 29329202 PMCID: PMC5789369 DOI: 10.3390/cancers10010019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 02/07/2023] Open
Abstract
The epithelial cell adhesion molecule (EpCAM), or CD326, was one of the first cancer associated biomarkers to be discovered. In the last forty years, this biomarker has been investigated for use in personalized cancer therapy, with the first monoclonal antibody, edrecolomab, being trialled in humans more than thirty years ago. Since then, several other monoclonal antibodies have been raised to EpCAM and tested in clinical trials. However, while monoclonal antibody therapy has been investigated against EpCAM for almost 40 years as primary or adjuvant therapy, it has not shown as much promise as initially heralded. In this review, we look at the reasons why and consider alternative targeting options, such as aptamers, to turn this almost ubiquitously expressed epithelial cancer biomarker into a viable target for future personalized therapy.
Collapse
|
17
|
Henri JL, Macdonald J, Strom M, Duan W, Shigdar S. Aptamers as potential therapeutic agents for ovarian cancer. Biochimie 2017; 145:34-44. [PMID: 29224849 DOI: 10.1016/j.biochi.2017.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/05/2017] [Indexed: 12/30/2022]
Abstract
Current therapy for ovarian cancer typically involves indiscriminate chemotherapies that can have severe off target effects on healthy tissue and are still plagued by aggressive recurrence. Recent shifts towards targeted therapies offer the possibility of circumventing the obstacles experienced by these traditional treatments. While antibodies are the pioneering agents in targeted therapies, clinical experience has demonstrated that their antitumor efficacy is limited due to their high immunogenicity, large molecular size, and costly and laborious production. In contrast, nucleic acid based chemical antibodies, also known as aptamers, are ideal for this application given their small size, lack of immunogenicity and in vitro production. As aptamers have begun to demonstrate their promise through targeting Epithelial Cell Adhesion Molecule (EpCAM), as well as a number of ovarian cancer biomarkers, in in vivo and in vitro models, their clinical applicability is slowly being realised. This review explores some of the current progress of aptamers targeting cancer biomarkers and their potential role as ovarian cancer therapeutics.
Collapse
Affiliation(s)
- Justin Liam Henri
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Joanna Macdonald
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Mia Strom
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Wei Duan
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Sarah Shigdar
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia.
| |
Collapse
|
18
|
Rashidi SK, Mousavi Gargari SL, Ebrahimizadeh W. Targeting Colorectal Cancer Cell Lines Using Nanobodies; AgSK1as a Potential Target. IRANIAN JOURNAL OF BIOTECHNOLOGY 2017; 15:78-86. [PMID: 29845054 DOI: 10.15171/ijb.1472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 09/04/2016] [Accepted: 06/19/2017] [Indexed: 01/08/2023]
Abstract
Background: Colorectal cancer is the third most common type of aggressive cancers. Chemotherapy, surgery, and radiotherapy are the common therapeutic options for treating this cancer. Due to the adverse side-effects of these methods, immunotherapy is considered as an appropriate alternative therapeutic option. Treatment through the application of monoclonal antibodies is considered as a novel alternative therapeutic method for cancers. The variable fragments of the antibodies' heavy chain or VHHs have a wide application in molecular biology and biotechnology. VHHs are compatible with the phage display technology which allows rapid and high throughput screening for antibodies isolation. Objectives: We aimed to use naive VHH phage library to isolate a specific nanobody against colorectal tumor associated antigen; the AgSK1. Materials and Methods: In this research, naive VHH phage library was panned against two colorectal cell lines; Ls174T and HT29 expressing different levels of AgSK1 tumor associated marker. The high affinity binders were selected and subcloned for higher expression levels of the VHH. The affinity and specificity of the isolated VHH were tested using ELISA. The reactivity of the VHH toward cancer cells was analyzed by competitive ELISA applying sera isolated from colorectal cancer patients. Results: Results show that the isolated VHH recognizes and binds to the colorectal cancer cells with a high affinity. Moreover, the isolated nanobody is able to compete with the antibodies in the patient sera for the binding to the cancer cells. Conclusions: Results suggest that this nanobody has a specific reaction toward colorectal cells and can be used for further investigation on the tumor associated antigens or production of mimotopes useful for immunotherapy.
Collapse
Affiliation(s)
- Seyed Khalil Rashidi
- Department of Biology, Faculty of Basic Science, Shahed University, Tehran, Iran
| | | | - Walead Ebrahimizadeh
- Department of Biology, Faculty of Basic Science, Shahed University, Tehran, Iran
| |
Collapse
|
19
|
Wahab SR, Islam F, Gopalan V, Lam AKY. The Identifications and Clinical Implications of Cancer Stem Cells in Colorectal Cancer. Clin Colorectal Cancer 2017; 16:93-102. [DOI: 10.1016/j.clcc.2017.01.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/16/2016] [Accepted: 01/13/2017] [Indexed: 12/18/2022]
|
20
|
Vitale SG, Laganà AS, Capriglione S, Angioli R, La Rosa VL, Lopez S, Valenti G, Sapia F, Sarpietro G, Butticè S, Tuscano C, Fanale D, Tropea A, Rossetti D. Target Therapies for Uterine Carcinosarcomas: Current Evidence and Future Perspectives. Int J Mol Sci 2017; 18:ijms18051100. [PMID: 28531111 PMCID: PMC5455008 DOI: 10.3390/ijms18051100] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/13/2017] [Accepted: 05/16/2017] [Indexed: 01/04/2023] Open
Abstract
Carcinosarcomas (CS) in gynecology are very infrequent and represent only 2-5% of uterine cancers. Despite surgical cytoreduction and subsequent chemotherapy being the primary treatment for uterine CS, the overall five-year survival rate is 30 ± 9% and recurrence is extremely common (50-80%). Due to the poor prognosis of CS, new strategies have been developed in the last few decades, targeting known dysfunctional molecular pathways for immunotherapy. In this paper, we aimed to gather the available evidence on the latest therapies for the treatment of CS. We performed a systematic review using the terms "uterine carcinosarcoma", "uterine Malignant Mixed Müllerian Tumors", "target therapies", "angiogenesis therapy", "cancer stem cell therapy", "prognostic biomarker", and "novel antibody-drug". Based on our results, the differential expression and accessibility of epithelial cell adhesion molecule-1 on metastatic/chemotherapy-resistant CS cells in comparison to normal tissues and Human Epidermal Growth Factor Receptor 2 (HER2) open up new possibilities in the field of target therapy. Nevertheless, future investigations are needed to clarify the impact of these new therapies on survival rate and medium-/long-term outcomes.
Collapse
Affiliation(s)
- Salvatore Giovanni Vitale
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Antonio Simone Laganà
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Stella Capriglione
- Department of Obstetrics and Gynecology, Campus Bio Medico University of Rome, 00128 Rome, Italy.
| | - Roberto Angioli
- Department of Obstetrics and Gynecology, Campus Bio Medico University of Rome, 00128 Rome, Italy.
| | - Valentina Lucia La Rosa
- Unit of Psychodiagnostics and Clinical Psychology, University of Catania, 95124 Catania, Italy.
| | - Salvatore Lopez
- Department of Obstetrics and Gynecology, Campus Bio Medico University of Rome, 00128 Rome, Italy.
| | - Gaetano Valenti
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95124 Catania, Italy.
| | - Fabrizio Sapia
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95124 Catania, Italy.
| | - Giuseppe Sarpietro
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95124 Catania, Italy.
| | - Salvatore Butticè
- Department of Human Pathology, Unit of Urology, University of Messina, 98124 Messina, Italy.
| | - Carmelo Tuscano
- Radiation Oncology Department, AO "Bianchi-Melacrino-Morelli", 89124 Reggio Calabria, Italy.
| | - Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy.
| | - Alessandro Tropea
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95124 Catania, Italy.
| | - Diego Rossetti
- Unit of Gynecology and Obstetrics, Desenzano del Garda Hospital, Section of Gavardo, 25085 Gavardo, Brescia, Italy.
| |
Collapse
|
21
|
Lai Y, Wang R, Chen X, Tang D, Hu Y, Cai J, Zhang Q, Hu H. Emerging trends and new developments in monoclonal antibodies: A scientometric analysis (1980-2016). Hum Vaccin Immunother 2017; 13:1-10. [PMID: 28301271 DOI: 10.1080/21645515.2017.1286433] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This article aims to explore the intellectual landscape of the study of monoclonal antibody (mAb), mainly to identify thematic trends, landmark articles and emerging trends involving mAb. This work is based on 4 sets of bibliographic records retrieved from the Web of Science. The final data set, consisting of 7,385 bibliographic records, was combined from the 4 individual data sets. This study explores the document co-citation clusters of 7,385 bibliographic records to identify the origin of mAb and the hot research specialty of this domain by applying CiteSpace software. We examined the mAb evolution from 4 perspectives: (1) Clusters of cited references regarding mAb; (2) Cited authors as contributors to mAb research; (3) Institutions participating in mAb research; and (4) Cited journals regarding mAb. The technical development, drug development and clinical applications of mAbs were analyzed. Through data analysis, we have identified the new directions for the exploration of mAbs, interactions between mAb technologies and diseases, and evolving global collaboration among institutions.
Collapse
Affiliation(s)
- Yunfeng Lai
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao
| | - Ruibing Wang
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao
| | - Xin Chen
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao
| | - Daisheng Tang
- b School of Economics and Management, Beijing Jiaotong University , Beijing , China
| | - Yuanjia Hu
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao
| | - Jing Cai
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao
| | - Qingwen Zhang
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao
| | - Hao Hu
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao
| |
Collapse
|
22
|
An anti-EpCAM antibody EpAb2-6 for the treatment of colon cancer. Oncotarget 2016; 6:24947-68. [PMID: 26317650 PMCID: PMC4694806 DOI: 10.18632/oncotarget.4453] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/24/2015] [Indexed: 02/07/2023] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is known to be overexpressed in epithelial cancers associated with enhanced malignant potential, particularly colorectal carcinoma (CRC) and head and neck squamous cell carcinoma (HNSCC). However, it is unknown whether progression of malignance can be directly inhibited by targeting EpCAM. Here, we have generated five novel monoclonal antibodies (mAbs) against EpCAM. One of these anti-EpCAM mAbs, EpAb2-6, was found to induce cancer cell apoptosis in vitro, inhibit tumor growth, and prolong the overall survival of both a pancreatic cancer metastatic mouse model and mice with human colon carcinoma xenografts. EpAb2-6 also increases the therapeutic efficacy of irinotecan, fluorouracil, and leucovorin (IFL) therapy in a colon cancer animal model and gemcitabine therapy in a pancreatic cancer animal model. Furthermore, EpAb2-6, which binds to positions Y95 and D96 of the EGF-II/TY domain of EpCAM, inhibits production of EpICD, thereby decreasing its translocation and subsequent signal activation. Collectively, our results indicate that the novel anti-EpCAM mAb can potentially be used for cancer-targeted therapy.
Collapse
|
23
|
Wang A, Ramjeesingh R, Chen CH, Hurlbut D, Hammad N, Mulligan LM, Nicol C, Feilotter HE, Davey S. Reduction in membranous immunohistochemical staining for the intracellular domain of epithelial cell adhesion molecule correlates with poor patient outcome in primary colorectal adenocarcinoma. ACTA ACUST UNITED AC 2016; 23:e171-8. [PMID: 27330354 DOI: 10.3747/co.23.3028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Epithelial cell adhesion molecule (epcam) is a multifunctional transmembrane glycoprotein expressed on both normal epithelium and epithelial neoplasms such as gastric, breast, and renal carcinomas. Recent studies have proposed that the proteolytic cleavage of the intracellular domain of epcam (epcam-icd) can trigger signalling cascades leading to aggressive tumour behavior. The expression profile of epcam-icd has not been elucidated for primary colorectal carcinoma. In the present study, we examined epcam-icd immunohistochemical staining in a large cohort of patients with primary colorectal adenocarcinoma and assessed its performance as a potential prognostic marker. METHODS Immunohistochemical staining for epcam-icd was assessed on tissue microarrays consisting of 137 primary colorectal adenocarcinoma samples. Intensity of staining for each core was scored by 3 independent pathologists. The membranous epcam-icd staining score was calculated as a weighted average from 3 core samples per tumour. Univariate analysis of the average scores and clinical outcome measures was performed. RESULTS The level of membranous epcam-icd staining was positively associated with well-differentiated tumours (p = 0.01); low preoperative carcinoembryonic antigen (p = 0.001); and several measures of survival, including 2-year (p = 0.02) and 5-year survival (p = 0.05), and length of time post-diagnosis (p = 0.03). A number of other variables-including stage, grade, and lymph node status-showed correlations with epcam staining and markers of poor outcome, but did not reach statistical significance. CONCLUSIONS Low membranous epcam-icd staining might be a useful marker to identify tumours with aggressive clinical behavior and potential poor prognosis and might help to select candidates who could potentially benefit from treatment targeting epcam.
Collapse
Affiliation(s)
- A Wang
- Departments of Pathology and Molecular Medicine and of Biomedical and Molecular Sciences, Queen's University, Kingston, ON
| | - R Ramjeesingh
- Department of Oncology, Kingston General Hospital, Queen's University, Kingston, ON
| | - C H Chen
- Departments of Pathology and Molecular Medicine and of Biomedical and Molecular Sciences, Queen's University, Kingston, ON
| | - D Hurlbut
- Departments of Pathology and Molecular Medicine and of Biomedical and Molecular Sciences, Queen's University, Kingston, ON
| | - N Hammad
- Department of Oncology, Kingston General Hospital, Queen's University, Kingston, ON
| | - L M Mulligan
- Departments of Pathology and Molecular Medicine and of Biomedical and Molecular Sciences, Queen's University, Kingston, ON
| | - C Nicol
- Departments of Pathology and Molecular Medicine and of Biomedical and Molecular Sciences, Queen's University, Kingston, ON
| | - H E Feilotter
- Departments of Pathology and Molecular Medicine and of Biomedical and Molecular Sciences, Queen's University, Kingston, ON
| | - S Davey
- Departments of Pathology and Molecular Medicine and of Biomedical and Molecular Sciences, Queen's University, Kingston, ON
| |
Collapse
|
24
|
Seeber A, Untergasser G, Spizzo G, Terracciano L, Lugli A, Kasal A, Kocher F, Steiner N, Mazzoleni G, Gastl G, Fong D. Predominant expression of truncated EpCAM is associated with a more aggressive phenotype and predicts poor overall survival in colorectal cancer. Int J Cancer 2016; 139:657-63. [PMID: 26996277 DOI: 10.1002/ijc.30099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/12/2016] [Accepted: 03/04/2016] [Indexed: 12/13/2022]
Abstract
Regulated intramembrane proteolysis (RIP) has been shown to be an important mechanism for oncogenic activation of EpCAM through nuclear translocation of the intracellular domain EpICD. Recently, we identified two different membranous EpCAM variants namely EpCAM(MF) (full-length) and EpCAM(MT) (truncated) to be expressed in the majority of human epithelial tumors. The aim of our study was to evaluate the potential role of these two protein variants as additional prognostic biomarkers in colorectal cancer. In most studies only one antibody targeting the extracellular domain of EpCAM (EpEX) has been used, whereas in the present study additionally an antibody which detects the intracellular domain (EpICD) was applied to discriminate between different EpCAM variants. Using immunohistochemistry, we analyzed the expression of EpCAM(MF) and EpCAM(MT) variants in 640 patients with colorectal cancer and determined their correlations with other prognostic factors and clinical outcome. A statistically significant association was observed for EpCAM(MT) with advanced tumor stage (p < 0.001), histological grade (p = 0.01), vascular (p < 0.001) and marginal (p = 0.002) invasion. Survival analysis demonstrated reduced overall survival (p < 0.004) in patients with tumors expressing the EpCAM(MT) phenotype when compared to patients with tumors expressing the EpCAM(MF) variant. In conclusion, this study for the first time indicates that expression of EpCAM(MT) is associated with a more aggressive phenotype and predicts poor survival in patients with colorectal cancer.
Collapse
Affiliation(s)
- Andreas Seeber
- Tyrolean Cancer Research Institute, Innsbruck, Austria.,Oncotyrol-Center for Personalized Cancer Medicine, Innsbruck, Austria.,Department of Haematology and Oncology, Medical University of Innsbruck, Austria
| | - Gerold Untergasser
- Tyrolean Cancer Research Institute, Innsbruck, Austria.,Department of Haematology and Oncology, Medical University of Innsbruck, Austria
| | - Gilbert Spizzo
- Tyrolean Cancer Research Institute, Innsbruck, Austria.,Oncotyrol-Center for Personalized Cancer Medicine, Innsbruck, Austria.,Department of Haematology and Oncology, Medical University of Innsbruck, Austria.,Haemato-Oncological Day Hospital, Hospital of Merano, Italy
| | - Luigi Terracciano
- Molecular Pathology Division, Institute of Pathology, University of Basel, Switzerland
| | - Alessandro Lugli
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Switzerland
| | - Armin Kasal
- Department of Pathology, Central Hospital of Bolzano, Italy
| | - Florian Kocher
- Tyrolean Cancer Research Institute, Innsbruck, Austria.,Department of Haematology and Oncology, Medical University of Innsbruck, Austria
| | - Normann Steiner
- Department of Haematology and Oncology, Medical University of Innsbruck, Austria
| | | | - Guenther Gastl
- Department of Haematology and Oncology, Medical University of Innsbruck, Austria
| | - Dominic Fong
- Tyrolean Cancer Research Institute, Innsbruck, Austria.,Oncotyrol-Center for Personalized Cancer Medicine, Innsbruck, Austria.,Department of Haematology and Oncology, Medical University of Innsbruck, Austria.,Haemato-Oncological Day Hospital, Hospital of Merano, Italy
| |
Collapse
|
25
|
Exploring Different Strategies for Efficient Delivery of Colorectal Cancer Therapy. Int J Mol Sci 2015; 16:26936-52. [PMID: 26569228 PMCID: PMC4661854 DOI: 10.3390/ijms161125995] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the fourth leading cause of cancer death in the world. Currently available chemotherapy of CRC usually delivers the drug to both normal as well as cancerous tissues, thus leading to numerous undesirable effects. Much emphasis is being laid on the development of effective drug delivery systems for achieving selective delivery of the active moiety at the anticipated site of action with minimized unwanted side effects. Researchers have employed various techniques (dependent on pH, time, pressure and/or bacteria) for targeting drugs directly to the colonic region. On the other hand, systemic drug delivery strategies to specific molecular targets (such as FGFR, EGFR, CD44, EpCAM, CA IX, PPARγ and COX-2) overexpressed by cancerous cells have also been shown to be effective. This review aims to put forth an overview of drug delivery technologies that have been, and may be developed, for the treatment of CRC.
Collapse
|
26
|
Production of monoclonal antibodies in plants for cancer immunotherapy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:306164. [PMID: 26550566 PMCID: PMC4624878 DOI: 10.1155/2015/306164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/02/2015] [Indexed: 12/17/2022]
Abstract
Plants are considered as an alternative platform for recombinant monoclonal antibody (mAb) production due to the improvement and diversification of transgenic techniques. The diversity of plant species offers a multitude of possibilities for the valorization of genetic resources. Moreover, plants can be propagated indefinitely, providing cheap biomass production on a large scale in controlled conditions. Thus, recent studies have shown the successful development of plant systems for the production of mAbs for cancer immunotherapy. However, their several limitations have to be resolved for efficient antibody production in plants.
Collapse
|
27
|
Tsaktanis T, Kremling H, Pavšič M, von Stackelberg R, Mack B, Fukumori A, Steiner H, Vielmuth F, Spindler V, Huang Z, Jakubowski J, Stoecklein NH, Luxenburger E, Lauber K, Lenarčič B, Gires O. Cleavage and cell adhesion properties of human epithelial cell adhesion molecule (HEPCAM). J Biol Chem 2015; 290:24574-91. [PMID: 26292218 DOI: 10.1074/jbc.m115.662700] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Indexed: 12/14/2022] Open
Abstract
Human epithelial cell adhesion molecule (HEPCAM) is a tumor-associated antigen frequently expressed in carcinomas, which promotes proliferation after regulated intramembrane proteolysis. Here, we describe extracellular shedding of HEPCAM at two α-sites through a disintegrin and metalloprotease (ADAM) and at one β-site through BACE1. Transmembrane cleavage by γ-secretase occurs at three γ-sites to generate extracellular Aβ-like fragments and at two ϵ-sites to release human EPCAM intracellular domain HEPICD, which is efficiently degraded by the proteasome. Mapping of cleavage sites onto three-dimensional structures of HEPEX cis-dimer predicted conditional availability of α- and β-sites. Endocytosis of HEPCAM warrants acidification in cytoplasmic vesicles to dissociate protein cis-dimers required for cleavage by BACE1 at low pH values. Intramembrane cleavage sites are accessible and not part of the structurally important transmembrane helix dimer crossing region. Surprisingly, neither chemical inhibition of cleavage nor cellular knock-out of HEPCAM using CRISPR-Cas9 technology impacted the adhesion of carcinoma cell lines. Hence, a direct function of HEPCAM as an adhesion molecule in carcinoma cells is not supported and appears to be questionable.
Collapse
Affiliation(s)
- Thanos Tsaktanis
- From the Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center
| | - Heidi Kremling
- From the Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center
| | - Miha Pavšič
- the Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, SI-1000 Ljubljana, Slovenia
| | - Ricarda von Stackelberg
- From the Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center
| | - Brigitte Mack
- From the Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center
| | - Akio Fukumori
- the DZNE-German Center for Neurodegenerative Diseases, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Harald Steiner
- the DZNE-German Center for Neurodegenerative Diseases, Feodor-Lynen-Strasse 17, 81377 Munich, Germany, Biomedical Center, Biochemistry
| | | | | | - Zhe Huang
- From the Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center
| | - Jasmine Jakubowski
- From the Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, the Munich Center for Neurosciences, LMU Biocenter, AMGEN Scholars Programme, Ludwig-Maximilians-Universität Munich, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany, and
| | - Nikolas H Stoecklein
- the Department for General, Visceral, and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | - Elke Luxenburger
- From the Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center
| | - Kirsten Lauber
- Clinic for Radiotherapy and Radiation Oncology, and the Clinical Cooperation Group Personalized Radiotherapy of Head and Neck Tumors, Ludwig-Maximilians-University of Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Brigita Lenarčič
- the Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, SI-1000 Ljubljana, Slovenia
| | - Olivier Gires
- From the Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center,
| |
Collapse
|
28
|
Andrews TE, Wang D, Harki DA. Cell surface markers of cancer stem cells: diagnostic macromolecules and targets for drug delivery. Drug Deliv Transl Res 2015; 3:121-42. [PMID: 25787981 DOI: 10.1007/s13346-012-0075-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The recognition that the persistence of cancer stem cells (CSCs) in patients following chemotherapy can result in disease relapse underscores the necessity to develop therapeutics against those cells. CSCs display a unique repertoire of cell surface macromolecules, which have proven essential for their characterization and isolation. Additionally, CSC-specific cell surface macromolecules or markers provide targets for the development of specific agents to destroy them. In this review, we compiled those cell surface molecules that have been validated as CSC markers for many common blood and solid tumors. We describe the unique chemical and structural features of the most common cell surface markers, as well as recent efforts to deliver chemotherapeutic agents into CSCs by targeting those macromolecules.
Collapse
Affiliation(s)
- Timothy E Andrews
- Department of Medicinal Chemistry, University of Minnesota, 717 Delaware St SE, Minneapolis, MN, 55414, USA
| | | | | |
Collapse
|
29
|
McDougall ARA, Tolcos M, Hooper SB, Cole TJ, Wallace MJ. Trop2: from development to disease. Dev Dyn 2015; 244:99-109. [PMID: 25523132 DOI: 10.1002/dvdy.24242] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Trop2 was first discovered as a biomarker of invasive trophoblast cells. Since then most research has focused on its role in tumourigenesis because it is highly expressed in the vast majority of human tumours and animal models of cancer. It is also highly expressed in stem cells and in many organs during development. RESULTS We review the multifaceted role of Trop2 during development and tumourigenesis, including its role in regulating cell proliferation and migration, self-renewal, and maintenance of basement membrane integrity. We discuss the evolution of Trop2 and its related protein Epcam (Trop1), including their distinct roles. Mutation of Trop2 leads to gelatinous drop-like corneal dystrophy, whereas over-expression of Trop2 in human tumours promotes tumour aggressiveness and increases mortality. Although Trop2 expression is sufficient to promote tumour growth, the surprising discovery that Trop2-null mice have an increased risk of tumour development has highlighted the complexity of Trop2 signaling. Recently, studies have begun to identify the mechanisms underlying TROP2’s functions, including regulated intramembrane proteolysis or specific interactions with integrin b1 and claudin proteins. CONCLUSIONS Understanding the mechanisms underlying TROP2 signaling will clarify its role during development, aid in the development of better cancer treatments and unlock a promising new direction in regenerative medicine.
Collapse
|
30
|
Caruana I, Diaconu I, Dotti G. From monoclonal antibodies to chimeric antigen receptors for the treatment of human malignancies. Semin Oncol 2014; 41:661-6. [PMID: 25440610 DOI: 10.1053/j.seminoncol.2014.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Monoclonal antibodies (mAbs) and their directly derived cell-based application known as chimeric antigen receptors (CARs) ensue from the need to develop novel therapeutic strategies that retain high anti-tumor activity, but carry reduced toxicity compared to conventional chemo- and radiotherapies. In this concise review article, we will summarize the application of antibodies designed to target antigens expressed by tumor cells, and the transition from these antibodies to the generation of CARs.
Collapse
Affiliation(s)
- Ignazio Caruana
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Iulia Diaconu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; Departments of Medicine, Baylor College of Medicine, Houston, TX; Department of Immunology, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
31
|
Oberneder R, Siebels M, Hofstetter A. Adjuvante Therapie des Nierenzellkarzinoms. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s001310050213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Fanali C, Lucchetti D, Farina M, Corbi M, Cufino V, Cittadini A, Sgambato A. Cancer stem cells in colorectal cancer from pathogenesis to therapy: Controversies and perspectives. World J Gastroenterol 2014; 20:923-942. [PMID: 24574766 PMCID: PMC3921545 DOI: 10.3748/wjg.v20.i4.923] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/02/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer remains one of the most common and lethal malignancies worldwide despite the use of various therapeutic strategies. A better understanding of the mechanisms responsible for tumor initiation and progression is essential for the development of novel, more powerful therapies. The traditional, so-called “stochastic model” of tumor development, which assumes that each cancer cell is tumorigenic, has been deeply challenged during the past decade by the identification of cancer stem cells (CSCs), a biologically distinct subset of cells within the bulk of tumor mass. This discovery led to the development of the hierarchical model of tumorigenesis which assumes that only CSCs have the ability to initiate tumor growth, both at primary and metastatic sites. This model implies that the elimination of all CSCs is fundamental to eradicate tumors and that failure to do so might be responsible for the occurrence of relapses and/or metastases frequently observed in the clinical management of colorectal cancer patients. Identification and isolation of CSCs is essential for a better understanding of their role in the tumorigenetic process and for the development of CSC-specific therapies. Several methods have been used for this purpose and many efforts have been focused on the identification of specific CSC-surface markers. This review provides an overview of the proposed roles of CSC in human colorectal tumorigenesis focusing on the most important molecules identified as CSC-specific markers in colorectal cancer and on the potential strategies for the development of CSC-targeted therapy.
Collapse
|
33
|
Noguchi T, Ritter G, Nishikawa H. Antibody-based therapy in colorectal cancer. Immunotherapy 2013; 5:533-45. [PMID: 23638747 DOI: 10.2217/imt.13.35] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Treatment in patients with nonresectable and resectable colorectal cancer at the advanced stage is challenging, therefore intensive strategies such as chemotherapy, signaling inhibitors and monoclonal antibodies (mAbs) to control the disease are required. mAbs are particularly promising tools owing to their target specificities and strong antitumor activities through multiple mechanisms, as shown by rituximab in B-cell non-Hodgkin's lymphoma and trastuzumab in breast cancer. Three mAbs (cetuximab, bevacizumab and panitumumab) have been approved for the treatment of colorectal cancer in the USA and many other mAbs are being tested in clinical trials. The potential of antibody therapy is associated with several mechanisms including interference of vital signaling pathways targeted by the antibody and immune cytotoxicity selectively directed against tumor cells by tumor-bound antibody through the Fc portion of the antibody, such as antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. Moreover, recent experimental findings have shown that immune complexes formed by therapeutic mAbs with tumor-released antigens could augment the induction of tumor-specific cytotoxic CD8(+) T cells through activation of APCs. In addition, antibodies targeting immune checkpoints on hematopoietic cells have recently opened a new avenue for the treatment of cancer. In this review, we focus on mAb treatment in colorectal cancer and its immunological aspects.
Collapse
Affiliation(s)
- Takuro Noguchi
- Ludwig Institute for Cancer Research, New York Branch, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | |
Collapse
|
34
|
de Gramont A, Chibaudel B, Bonnetain F, Dumont S, Larsen AK, André T. Clinical Reasons for Initiation of Adjuvant Phase III Trials on Colon Cancer. CURRENT COLORECTAL CANCER REPORTS 2013. [DOI: 10.1007/s11888-013-0176-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
Hao H, Zhen Y, Wang Z, Chen F, Xie X. A novel therapeutic drug for colon cancer: EpCAM scFv-truncated protamine (tp)-siRNA. Cell Biol Int 2013; 37:860-4. [PMID: 23576466 DOI: 10.1002/cbin.10112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 03/29/2012] [Indexed: 12/15/2022]
Abstract
Colon cancer is a type of malignant tumor that causes considerable mortality worldwide. Epithelial cellular adhesion molecule (EpCAM), a tumor-associated antigen of colon tumors, is a target for colon cancer therapy. EpCAM-specific monoclonal antibodies (mAbs) have been applied in human colon cancer since the 1990s; however, the therapeutic effects are limited. EpCAM activates nuclear signaling pathways by releasing its intracellular domain (EpICD). The released EpICD stimulates the Wnt/β-catenin signaling pathway, which is also strongly associated with tumorigenesis. EpCAM is also a target gene of the Wnt/β-catenin signaling pathway. EpCAM and the Wnt/β-catenin signaling pathway form a functional interaction cycle in colon cancer. Thus, we propose a new therapeutic drug for colon cancer: an EpCAM single-chain fragment variable antibody (scFv)-truncated protamine-siRNA. EpCAM scFv can recognize and bind colon cancer cells through its EpCAM antigen activity. Furthermore, the specific siRNA transferred into colon cancer cells specifically inhibits Wnt/β-catenin signal transmission. Therefore, this new drug may efficiently interrupt the functional cycle between EpCAM and Wnt/β-catenin signaling and be an effective therapeutic strategy for colon cancer.
Collapse
Affiliation(s)
- Huiwen Hao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, 710069, China
| | | | | | | | | |
Collapse
|
36
|
Vallera DA, Zhang B, Gleason MK, Oh S, Weiner LM, Kaufman DS, McCullar V, Miller JS, Verneris MR. Heterodimeric bispecific single-chain variable-fragment antibodies against EpCAM and CD16 induce effective antibody-dependent cellular cytotoxicity against human carcinoma cells. Cancer Biother Radiopharm 2013; 28:274-82. [PMID: 23611188 DOI: 10.1089/cbr.2012.1329] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A heterodimeric bispecific biological recombinant drug was synthesized by splicing DNA fragments from two fully humanized single-chain variable-fragment (scFV) antibody fragments forming a novel drug simultaneously recognizing the CD16 natural killer (NK) cell marker and the cancer marker epithelial cell adhesion molecule (EpCAM). The drug precipitously enhanced the killing of human carcinomas of the prostate, breast, colon, head, and neck even at very low effector:target ratios. The drug EpCAM16 rendered even nonactivated NK cell-proficient killers and activated them to kill via degranulation and cytokine production. Studies show that bispecific antibodies can be used to induce proficient killing of the carcinoma targets that ordinarily are resistant to NK-mediated killing. Apparently, the innate immune system can be effectively recruited to kill cancer cells using the bispecific antibody platform and EpCAM targeting.
Collapse
Affiliation(s)
- Daniel A Vallera
- 1 Section of Molecular Cancer Therapeutics, Therapeutic Radiology-Radiation Oncology, University of Minnesota Masonic Cancer Center , Minneapolis, Minnesota
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bronte G, Cicero G, Cusenza S, Galvano A, Musso E, Rizzo S, Sortino G, Roselli M, Bazan V, Fiorentino E, Russo A. Monoclonal antibodies in gastrointestinal cancers. Expert Opin Biol Ther 2013; 13:889-900. [PMID: 23441760 DOI: 10.1517/14712598.2013.774367] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Among gastrointestinal cancers, colorectal and gastric neoplasms are the most frequent. The development of new targeted drugs improved the efficacy of systemic therapy in advanced stages of those malignancies. AREAS COVERED This review highlights the main biological processes implicated in gastrointestinal cancer development and progression, such as angiogenesis and epidermal growth factor receptor (EGFR) signaling pathway. On these bases, anti-EGFR and anti-vascular endothelial growth factor (VEGF) monoclonal antibodies in colorectal and gastric cancer are discussed. Data about further monoclonal antibodies in development are also reported. EXPERT OPINION The use of monoclonal antibodies in colorectal and gastric cancers showed the best outcomes when combined with chemotherapy, even though single agent anti-EGFR antibodies seem active in particular setting of metastatic colorectal cancer (CRC) patients. It is not well defined whether the addition of anti-VEGF and anti-EGFR to chemotherapy could improve outcome in those patients susceptible to CRC-related metastases resection. Little and conflicting data are available about the role of these drugs in adjuvant setting. Tests are available to select patients with higher probability to get benefit from these treatments. Further biomarkers need to be evaluated to improve this selection and achieve "tailorization" of systemic therapy.
Collapse
Affiliation(s)
- Giuseppe Bronte
- Università di Palermo, Section of Medical Oncology, Department of Surgical and Oncological Sciences, Via del Vespro 129, 90127 Palermo, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Simon M, Stefan N, Plückthun A, Zangemeister-Wittke U. Epithelial cell adhesion molecule-targeted drug delivery for cancer therapy. Expert Opin Drug Deliv 2013; 10:451-68. [PMID: 23316711 DOI: 10.1517/17425247.2013.759938] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION The epithelial cell adhesion molecule (EpCAM) is abundantly expressed in epithelial tumors, on cancer stem cells and circulating tumor cells. Together with its role in oncogenic signaling, this has sparked interest in its potential for tumor targeting with antibodies and drug conjugates for safe and effective cancer therapy. Recent advances in protein engineering, linker design and drug formulations have provided a multitude of EpCAM-targeting anticancer agents, several of them with good perspectives for clinical development. AREAS COVERED This article reviews the biological, therapeutic and technical aspects of EpCAM-targeted drug delivery for cancer therapy. The authors discuss seminal findings, which distinguish EpCAM as a target with oncogenic function and abundant expression in epithelial tumors. Moreover, recent trends in engineering improved anti-EpCAM antibodies, binding proteins that are not derived from immunoglobulins and drug conjugates derived from them are highlighted and their therapeutic potential based on reported preclinical and clinical data, originality of design and perspectives are critically assessed. EXPERT OPINION EpCAM has shown promise for safe and efficient targeting of solid tumors using antibodies, alternative binding molecules and novel drug conjugates. Among the myriad of EpCAM-targeting drug delivery systems investigated so far, several could demonstrate therapeutic benefit, other formulations engineered to become tailor-made missiles are on the brink.
Collapse
Affiliation(s)
- Manuel Simon
- University of Bern, Institute of Pharmacology, Friedbühlstrasse 49, CH-3010 Bern, Switzerland
| | | | | | | |
Collapse
|
39
|
|
40
|
Renner C, Pfreundschuh M. Status of Bispecific Monoclonal Antibodies for Cancer Therapy. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/bf03259313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
|
42
|
|
43
|
Heine M, Freund B, Nielsen P, Jung C, Reimer R, Hohenberg H, Zangemeister-Wittke U, Wester HJ, Lüers GH, Schumacher U. High interstitial fluid pressure is associated with low tumour penetration of diagnostic monoclonal antibodies applied for molecular imaging purposes. PLoS One 2012; 7:e36258. [PMID: 22590529 PMCID: PMC3348149 DOI: 10.1371/journal.pone.0036258] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 03/30/2012] [Indexed: 11/19/2022] Open
Abstract
The human epithelial cell adhesion molecule (EpCAM) is highly expressed in a variety of clinical tumour entities. Although an antibody against EpCAM has successfully been used as an adjuvant therapy in colon cancer, this therapy has never gained wide-spread use. We have therefore investigated the possibilities and limitations for EpCAM as possible molecular imaging target using a panel of preclinical cancer models. Twelve human cancer cell lines representing six tumour entities were tested for their EpCAM expression by qPCR, flow cytometry analysis and immunocytochemistry. In addition, EpCAM expression was analyzed in vivo in xenograft models for tumours derived from these cells. Except for melanoma, all cell lines expressed EpCAM mRNA and protein when grown in vitro. Although they exhibited different mRNA levels, all cell lines showed similar EpCAM protein levels upon detection with monoclonal antibodies. When grown in vivo, the EpCAM expression was unaffected compared to in vitro except for the pancreatic carcinoma cell line 5072 which lost its EpCAM expression in vivo. Intravenously applied radio-labelled anti EpCAM MOC31 antibody was enriched in HT29 primary tumour xenografts indicating that EpCAM binding sites are accessible in vivo. However, bound antibody could only be immunohistochemically detected in the vicinity of perfused blood vessels. Investigation of the fine structure of the HT29 tumour blood vessels showed that they were immature and prone for higher fluid flux into the interstitial space. Consistent with this hypothesis, a higher interstitial fluid pressure of about 12 mbar was measured in the HT29 primary tumour via "wick-in-needle" technique which could explain the limited diffusion of the antibody into the tumour observed by immunohistochemistry.
Collapse
Affiliation(s)
- Markus Heine
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Down-regulation of HLA-A mRNA in peripheral blood mononuclear cell of colorectal cancer. Int J Colorectal Dis 2012; 27:31-6. [PMID: 21947186 DOI: 10.1007/s00384-011-1315-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2011] [Indexed: 02/04/2023]
Abstract
PURPOSE It has been demonstrated that the alteration of human leukocyte antigen (HLA) class I expression frequently occurs in colorectal tumor. Previous studies mainly focused on the expression of HLA-A in tumor cells. The expression of HLA-A in peripheral blood mononuclear cells (PBMC) was unknown. To develop a non-invasive diagnostic method for colorectal cancer (CRC), this work investigated the expression of HLA-A mRNA in PBMC in patients with CRC. METHODS Real-time quantitative RT-PCR was used to study the expression of HLA-A mRNA in PBMC from 48 patients with colorectal cancer, 38 patients with benign colorectal lesions, 20 patients with rheumatoid arthritis, 20 patients with esophageal cancer and 40 healthy individuals. Protein chip was utilized to detect the levels of serum CEA, CA 19-9, and CA 242 in all the cases. Overall results from the two methods were compared. RESULTS The relative expression of HLA-A mRNA in PBMC was 1.11 ± 0.45 in healthy group, 0.81 ± 0.42 in benign colorectal lesion group, and 0.39 ± 0.34 in cancer group, respectively. The diagnostic sensitivity of HLA-A mRNA, CEA, CA19-9, and CA242 was 81%, 59%, 61%, and 63%, and their diagnostic specificity was 75%, 64%, 52%, and 67%, respectively. CONCLUSIONS The expression of HLA-A mRNA in PBMC from colorectal cancer group was significantly lower than those in both benign group and healthy group (P < 0.001). It could be potentially developed as a tumor assistant marker in future.
Collapse
|
45
|
Shen XG, Wang C, Li Y, Zhou B, Xu B, Yang L, Zhou ZG, Sun XF. Downregulation of caspase-10 predicting poor survival after resection of stage II colorectal cancer. Int J Colorectal Dis 2011; 26:1519-24. [PMID: 21559821 DOI: 10.1007/s00384-011-1239-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/03/2011] [Indexed: 02/05/2023]
Abstract
PURPOSE The aim of this study was to evaluate the prevalence and clinical significance of caspase-10 mRNA expression in stage II colorectal cancer. METHODS Quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) was used to analyze caspase-10 expression in cancer tissue and corresponding normal mucosa from 120 patients with stage II colorectal cancer. Variables were analyzed by Chi-square test or Fisher's exact test. Survival was evaluated with method of Kaplan-Meier. Multivariate analysis was performed with Cox's proportional hazards model. RESULTS The expression of caspase-10 mRNA was found to be downregulated in cancer tissue compared to normal mucosa (P = 0.001). Poorly differentiated cancer showed lower mRNA expression than cancer with greater differentiation (P = 0.031). Univariate survival curves, estimated using the method of Kaplan-Meier, defined a significant association between caspase-10 expression and both overall survival (P = 0.012) and disease-free survival (P = 0.021). A multivariate analysis, performed by Cox's proportional hazards regression model, confirmed that a low caspase-10 expression was the only significant factor to predict poor prognosis in patients with stage II colorectal cancer. CONCLUSION Our data indicate that caspase-10 expression, measured by quantitative real-time RT-PCR, is a possible prognostic factor in patients with stage II colorectal cancer.
Collapse
Affiliation(s)
- Xiao-Gang Shen
- Department of Gastrointestinal Surgery, Institute of Digestive Surgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Niedzwiecki D, Bertagnolli MM, Warren RS, Compton CC, Kemeny NE, Benson AB, Eckhardt SG, Alberts S, Porjosh GN, Kerr DJ, Fields A, Rougier P, Pipas JM, Schwartz JH, Atkins J, O'Rourke M, Perry MC, Goldberg RM, Mayer RJ, Colacchio TA. Documenting the natural history of patients with resected stage II adenocarcinoma of the colon after random assignment to adjuvant treatment with edrecolomab or observation: results from CALGB 9581. J Clin Oncol 2011; 29:3146-52. [PMID: 21747085 PMCID: PMC3157980 DOI: 10.1200/jco.2010.32.5357] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/28/2010] [Indexed: 01/25/2023] Open
Abstract
PURPOSE We conducted a randomized trial comparing adjuvant treatment with edrecolomab versus observation in patients with resected, low-risk, stage II colon cancer. This study also prospectively studied patient- and tumor-specific markers of treatment outcome. PATIENTS AND METHODS After surgical resection, patients with stage II colon cancer were randomly assigned to either five infusions of edrecolomab at 28-day intervals or observation without adjuvant therapy. RESULTS Final accrual included 1,738 patients; 865 patients received edrecolomab, and 873 patients were observed without adjuvant treatment. Median follow-up time was 7.9 years. There were no significant outcome differences between study arms (overall survival [OS], P = .71; disease-free survival, P = .64). The combined 5-year all-cause OS was 0.86 (95% CI, 0.84 to 0.88), and the combined 5-year disease-specific OS was 0.93 (95% CI, 0.91 to 0.94). The relationships between demographic and histopathologic factors and survival differed for all-cause and disease-specific survival outcomes, but no combined prognostic factor model was found to adequately classify patients at higher risk of recurrence or death as a result of colon cancer. CONCLUSION Edrecolomab did not prolong survival. Consequently, this large study with a long duration of follow-up provided unique data concerning the natural history of resected stage II colon cancer. Prognostic factors identified in previous retrospective and pooled analyses were associated with survival outcomes in this stage II patient cohort. Results from ongoing molecular marker studies may enhance our ability to determine the risk profile of these patients.
Collapse
Affiliation(s)
- Donna Niedzwiecki
- Cancer and Leukemia Group B Statistical Center, Duke University Medical Center, Hock Plaza, 2424 Erwin Rd, Room 8040, Durham, NC 27705, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Malignant ascites are the cancer-associated accumulation of fluids in the peritoneal cavity. The neoplasms most frequently associated with ascites are ovarian, breast, colon, stomach and pancreas adenocarcinomas. Symptoms are abdominal distention, nausea, vomiting, anorexia, dyspnea and limbs oedemas. Several pathophysiological mechanisms might be implicated such as peritoneal carcinomatosis, lymphatic vessels' obstruction, portal hypertension or heart failure. Its diagnosis is most often performed in a context of already known neoplasia. Malignant ascites are associated with a pejorative evolution. Ascites which cannot be mobilized or show early recurrence and cannot be prevented by medical treatment are defined as refractory ascites. Therefore, management of refractory malignant ascites takes place in the context of palliative care and aims at improving the quality of life of these patients. This review lists the current data reported on the pathophysiology of malignant ascites and describes the present and future options for refractory malignant ascites management.
Collapse
|
48
|
Di Fede G, Bronte G, Rizzo S, Rolfo Cervetto C, Cocorullo G, Gulotta G, Bazan V, Russo A. Monoclonal antibodies and antibody fragments: state of the art and future perspectives in the treatment of non-haematological tumors. Expert Opin Biol Ther 2011; 11:1433-45. [DOI: 10.1517/14712598.2011.594436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
49
|
Kim SK, Wu X, Ragupathi G, Gathuru J, Koide F, Cheung NK, Panageas K, Livingston PO. Impact of minimal tumor burden on antibody response to vaccination. Cancer Immunol Immunother 2011; 60:621-7. [PMID: 21267719 PMCID: PMC3734789 DOI: 10.1007/s00262-011-0975-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
Abstract
Four randomized phase III trials conducted recently in melanoma patients in the adjuvant setting have been based in part on the correlation between antibody responses in immunized patients and improved survival. Each of these randomized trials demonstrated no clinical benefit, although again there was a significant correlation between antibody response after vaccination and disease free and overall survival. To better understand this paradox, we established a surgical adjuvant model targeting GD2 ganglioside on EL4 lymphoma cells injected into the foot pad followed by amputation at variable intervals. Our findings are (1) comparable strong therapeutic benefit resulted from treatment of mice after amputation with a GD2-KLH conjugate vaccine or with anti-GD2 monoclonal antibody 3F8. (2) The strongest correlation was between antibody induction in response to vaccination and prolonged survival. (3) Antibody titers in response to vaccination in tumor challenged mice as compared to unchallenged mice were far lower despite the absence of detectable recurrences at the time. (4) The half life of administered 3F8 monoclonal antibody (but not control antibody) in challenged mice administered was significantly shorter than the half life of 3F8 antibody in unchallenged controls. The correlation between vaccine-induced antibody titers and prolonged survival may reflect, at least in part, increased tumor burden in antibody-negative mice. Absorption of vaccine-induced antibodies by increased, although not detected tumor burden may also explain the correlation between vaccine-induced antibody titers and survival in the adjuvant clinical trials described above.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Murine-Derived
- Antibodies, Neoplasm/biosynthesis
- Antibody-Dependent Cell Cytotoxicity
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Cell Line, Tumor
- Disease-Free Survival
- Enzyme-Linked Immunosorbent Assay
- Gangliosides/immunology
- Hemocyanins/immunology
- Immunoglobulin G/immunology
- Immunoglobulin G/therapeutic use
- Lymphoma/immunology
- Lymphoma/pathology
- Lymphoma/therapy
- Mice
- Mice, Inbred C57BL
- Tumor Burden
- Vaccination
- Vaccines, Conjugate/administration & dosage
- Vaccines, Conjugate/immunology
- Vaccines, Conjugate/therapeutic use
Collapse
Affiliation(s)
| | - Xiaohong Wu
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Govind Ragupathi
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | | | | - Nai-Kong Cheung
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Katherine Panageas
- Department of Biostatistics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Philip O. Livingston
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
50
|
Ralhan R, He HCH, So AKC, Tripathi SC, Kumar M, Hasan MR, Kaur J, Kashat L, MacMillan C, Chauhan SS, Freeman JL, Walfish PG. Nuclear and cytoplasmic accumulation of Ep-ICD is frequently detected in human epithelial cancers. PLoS One 2010; 5:e14130. [PMID: 21152431 PMCID: PMC2994724 DOI: 10.1371/journal.pone.0014130] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 10/24/2010] [Indexed: 12/30/2022] Open
Abstract
Background We previously demonstrated that nuclear and cytoplasmic accumulation of the intracellular domain (Ep-ICD) of epithelial cell adhesion molecule (EpCAM) accompanied by a reciprocal reduction of its extracellular domain (EpEx), occurs in aggressive thyroid cancers. This study was designed to determine whether similar accumulation of Ep-ICD is a common event in other epithelial cancers. Methodology and Results Ten epithelial cancers were immunohistochemically analyzed using Ep-ICD and EpEx domain-specific antibodies. The subcellular localization of EpEx and Ep-ICD in the human colon adenocarcinoma cell line CX-1 was observed using immunofluorescence. Nuclear and cytoplasmic Ep-ICD expression was increased in cancers of the breast (31 of 38 tissues, 82%), prostate (40 of 49 tissues, 82%), head and neck (37 of 57 tissues, 65%) and esophagus (17 of 46 tissues, 37%) compared to their corresponding normal tissues that showed membrane localization of the protein. Importantly, Ep-ICD was not detected in the nuclei of epithelial cells in most normal tissues. High nuclear and cytoplasmic Ep-ICD accumulation also occurred in the other six epithelial cancer types analyzed - lung, colon, liver, bladder, pancreatic, and ovarian. A concomitant reduction in membrane EpEx expression was observed in a subset of all cancer types. Receiver operating characteristic curve analysis revealed nuclear Ep-ICD distinguished breast cancers with 82% sensitivity and 100% specificity and prostate cancers with 82% sensitivity and 78% specificity. Similar findings were observed for cytoplasmic accumulation of Ep-ICD in these cancers. We provide clinical evidence of increased nuclear and cytoplasmic Ep-ICD accumulation and a reduction in membranous EpEx in these cancers. Conclusions Increased nuclear and cytoplasmic Ep-ICD was observed in all epithelial cancers analyzed and distinguished them from normal tissues with high-sensitivity, specificity, and AUC. Development of a robust high throughput assay for Ep-ICD will facilitate the determination of its diagnostic, prognostic and therapeutic relevance in epithelial cancers.
Collapse
Affiliation(s)
- Ranju Ralhan
- Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Department of Otolaryngology-Head and Neck Surgery Program, Mount Sinai Hospital, Toronto, Ontario, Canada
- Alex and Simona Shnaider Laboratory in Molecular Oncology, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, Ontario, Canada
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (PGW); (RR)
| | - Helen C.-H. He
- Alex and Simona Shnaider Laboratory in Molecular Oncology, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, Ontario, Canada
| | - Anthony K.-C. So
- Alex and Simona Shnaider Laboratory in Molecular Oncology, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, Ontario, Canada
| | - Satyendra C. Tripathi
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Manish Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Md. Raghibul Hasan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Jatinder Kaur
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Lawrence Kashat
- Alex and Simona Shnaider Laboratory in Molecular Oncology, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Christina MacMillan
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, Ontario, Canada
| | - Shyam Singh Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Jeremy L. Freeman
- Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Department of Otolaryngology-Head and Neck Surgery Program, Mount Sinai Hospital, Toronto, Ontario, Canada
- Endocrine Division, Department of Medicine, Mount Sinai Hospital and University of Toronto Medical School, Toronto, Ontario, Canada
| | - Paul G. Walfish
- Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Department of Otolaryngology-Head and Neck Surgery Program, Mount Sinai Hospital, Toronto, Ontario, Canada
- Alex and Simona Shnaider Laboratory in Molecular Oncology, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, Ontario, Canada
- Endocrine Division, Department of Medicine, Mount Sinai Hospital and University of Toronto Medical School, Toronto, Ontario, Canada
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (PGW); (RR)
| |
Collapse
|