1
|
Partial Purification and Characterization of Cellulolytic Enzymes Extracted from Trichoderma reesei Inoculated Digested Biogas Slurry. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.4.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
2
|
Zhou L, Li S, Zhang T, Mu W, Jiang B. Properties of a novel polydatin-β-d-glucosidase from Aspergillus niger SK34.002 and its application in enzymatic preparation of resveratrol. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2588-2595. [PMID: 26381723 DOI: 10.1002/jsfa.7465] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/12/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Resveratrol and its glucoside polydatin are the main stilbenes in Polygonum cuspidatum. Resveratrol has become the subject of intensive research over the past two decades owing to its outstanding pharmacological properties. However, its lower concentration in plants compared to polydatin limits its application. In this study, the polydatin-β-d-glucosidase (PBG) that hydrolyzes the β-d-glucosyl residue of polydatin with release of resveratrol was purified to homogeneity and characterized. RESULTS The molecular weight of PBG was estimated to be 125 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 128 kDa by size-exclusion chromatography- multi-angle laser light scattering/ultraviolet/refractive index. The optimal PBG activity was observed at 70 °C and pH 4.5. The enzyme showed around 50% stability at 60 °C for 12 h and residual activity was over 80% at pH 3.0-5.0. Ca(2+) , Mg(2+) , Mn(2+) , Zn(2+) , Ba(2+) , Ni(2+) , Co(2+) and Cu(2+) ions had no significant effect on the enzyme activity. The PBG presented higher affinity to polydatin (Km = 0.74 mmol L(-1) ) than p-nitrophenyl-β-d-glucopyranoside (Km = 2.9 mmol L(-1) ) and cellobiose (Km = 8.9 mmol L(-1) ). CONCLUSION With this enzyme, nearly all polydatin in P. cuspidatum was converted to resveratrol. Although several β-D-glucosidases (BGLs) have been obtained from other sources, PBG is distinguished from other BGLs by its outstanding thermal stability and high catalytic efficiency. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Linfang Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Department of Textile and Dyeing Engineering, Jiangsu College of Engineering and Technology, Nantong, 226007, Jiangsu, China
| | - Shuhua Li
- Department of Textile and Dyeing Engineering, Jiangsu College of Engineering and Technology, Nantong, 226007, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
3
|
Chahed H, Ezzine A, Mlouka MAB, Rihouey C, Hardouin J, Jouenne T, Marzouki MN. A Novel Three Domains Glycoside Hydrolase Family 3 from Sclerotinia sclerotiorum Exhibits β-Glucosidase and Exoglucanase Activities: Molecular, Biochemical, and Transglycosylation Potential Analysis. Mol Biotechnol 2015; 57:993-1002. [PMID: 26385478 DOI: 10.1007/s12033-015-9892-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The filamentous fungus Sclerotinia sclerotiorum produces a complete set of cellulolytic enzymes. We report here the purification and the biochemical characterization of a new β-glucosidase from S. sclerotiorum which belongs to the family 3 of glycoside hydrolases and that was named as SsBgl3. After two size-exclusion chromatography steps, purified protein bands of 80 and 90 kDa from SDS-PAGE were subjected to a mass spectrometry analysis. The results displayed four peptides from the upper band belonging to a polypeptide of 777 amino acids having a calculated molecular weight of 83.7 kDa. Biochemical analysis has been carried out to determine some properties. We showed that this SsBgl3 protein displayed both β-glucosidase and exoglucanase activities with optimal activity at 55 °C and at pH 5. The transglycosylation activity was investigated using gluco-oligosaccharides TLC analysis. The molecular modeling and comparison with different crystal structures of β-glucosidases showed that SsBgl3 putative protein present three domains. They correspond to an (α/β)8 domain TIM barrel, a five-stranded α/β sandwich domain (both of which are important for active-site organization), and a C-terminal fibronectin type III domain. Enzyme engineering will be soon investigated to identify the key residues for the catalytic reactions.
Collapse
Affiliation(s)
- Haifa Chahed
- Laboratoire d'Ingénierie des Protéines et des Molécules Bioactives (LIP-MB), LR11ES24, National Institute of Applied Sciences and Technology, University of Carthage, 1080, Tunis Cedex, Tunisia.
| | - Aymen Ezzine
- Laboratoire d'Ingénierie des Protéines et des Molécules Bioactives (LIP-MB), LR11ES24, National Institute of Applied Sciences and Technology, University of Carthage, 1080, Tunis Cedex, Tunisia
| | - Mohamed Amine Ben Mlouka
- Laboratoire Polymères Biopolymères Surfaces (PBS), UMR 6270 CNRS, Université de Rouen, 76821, Mont-Saint-Aignan Cedex, France
| | - Christophe Rihouey
- Laboratoire Polymères Biopolymères Surfaces (PBS), UMR 6270 CNRS, Université de Rouen, 76821, Mont-Saint-Aignan Cedex, France
| | - Julie Hardouin
- Laboratoire Polymères Biopolymères Surfaces (PBS), UMR 6270 CNRS, Université de Rouen, 76821, Mont-Saint-Aignan Cedex, France
| | - Thierry Jouenne
- Laboratoire Polymères Biopolymères Surfaces (PBS), UMR 6270 CNRS, Université de Rouen, 76821, Mont-Saint-Aignan Cedex, France
| | - M Nejib Marzouki
- Laboratoire d'Ingénierie des Protéines et des Molécules Bioactives (LIP-MB), LR11ES24, National Institute of Applied Sciences and Technology, University of Carthage, 1080, Tunis Cedex, Tunisia
| |
Collapse
|
4
|
Blackman LM, Cullerne DP, Torreña P, Taylor J, Hardham AR. RNA-Seq Analysis of the Expression of Genes Encoding Cell Wall Degrading Enzymes during Infection of Lupin (Lupinus angustifolius) by Phytophthora parasitica. PLoS One 2015; 10:e0136899. [PMID: 26332397 PMCID: PMC4558045 DOI: 10.1371/journal.pone.0136899] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/10/2015] [Indexed: 11/18/2022] Open
Abstract
RNA-Seq analysis has shown that over 60% (12,962) of the predicted transcripts in the Phytophthora parasitica genome are expressed during the first 60 h of lupin root infection. The infection transcriptomes included 278 of the 431 genes encoding P. parasitica cell wall degrading enzymes. The transcriptome data provide strong evidence of global transcriptional cascades of genes whose encoded proteins target the main categories of plant cell wall components. A major cohort of pectinases is predominantly expressed early but as infection progresses, the transcriptome becomes increasingly dominated by transcripts encoding cellulases, hemicellulases, β-1,3-glucanases and glycoproteins. The most highly expressed P. parasitica carbohydrate active enzyme gene contains two CBM1 cellulose binding modules and no catalytic domains. The top 200 differentially expressed genes include β-1,4-glucosidases, β-1,4-glucanases, β-1,4-galactanases, a β-1,3-glucanase, an α-1,4-polygalacturonase, a pectin deacetylase and a pectin methylesterase. Detailed analysis of gene expression profiles provides clues as to the order in which linkages within the complex carbohydrates may come under attack. The gene expression profiles suggest that (i) demethylation of pectic homogalacturonan occurs before its deacetylation; (ii) cleavage of the backbone of pectic rhamnogalacturonan I precedes digestion of its side chains; (iii) early attack on cellulose microfibrils by non-catalytic cellulose-binding proteins and enzymes with auxiliary activities may facilitate subsequent attack by glycosyl hydrolases and enzymes containing CBM1 cellulose-binding modules; (iv) terminal hemicellulose backbone residues are targeted after extensive internal backbone cleavage has occurred; and (v) the carbohydrate chains on glycoproteins are degraded late in infection. A notable feature of the P. parasitica infection transcriptome is the high level of transcription of genes encoding enzymes that degrade β-1,3-glucanases during middle and late stages of infection. The results suggest that high levels of β-1,3-glucanases may effectively degrade callose as it is produced by the plant during the defence response.
Collapse
Affiliation(s)
- Leila M. Blackman
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra ACT, Australia
- * E-mail:
| | - Darren P. Cullerne
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra ACT, Australia
- Agriculture Flagship, CSIRO, Canberra ACT, Australia
| | - Pernelyn Torreña
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra ACT, Australia
| | - Jen Taylor
- Agriculture Flagship, CSIRO, Canberra ACT, Australia
| | - Adrienne R. Hardham
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra ACT, Australia
| |
Collapse
|
5
|
Narasimha G, Sridevi A, Ramanjaneyulu G, Rajasekhar Reddy B. Purification and Characterization of β-Glucosidase fromAspergillus niger. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2015. [DOI: 10.1080/10942912.2015.1023398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Avellaneda-Torres LM, Pulido CPG, Rojas ET. Assessment of cellulolytic microorganisms in soils of Nevados Park, Colombia. Braz J Microbiol 2015; 45:1211-20. [PMID: 25763024 PMCID: PMC4323293 DOI: 10.1590/s1517-83822014000400011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/17/2014] [Indexed: 11/22/2022] Open
Abstract
A systematized survey was conducted to find soil-borne microbes that degrade cellulose in soils from unique ecosystems, such as the Superpáramo, Páramo, and the High Andean Forest in the Nevados National Natural Park (NNNP), Colombia. These high mountain ecosystems represent extreme environments, such as high levels of solar radiation, low atmospheric pressure, and extreme daily changes in temperature. Cellulolytic activity of the microorganisms was evaluated using qualitative tests, such as growth in selective media followed by staining with congo red and iodine, and quantitative tests to determine the activity of endoglucanase, β-glucosidase, exoglucanase, and total cellulase. Microorganisms were identified using molecular markers, such as the 16S rRNA gene for bacteria and the internal transcribed spacer region (ITS) of ribosomal DNA for fungi. Multivariate statistical analysis (MVA) was used to select microorganisms with high cellulolytic capacity. A total of 108 microorganisms were isolated from the soils and, in general, the enzymatic activities of fungi were higher than those of bacteria. Our results also found that none of the organisms studied were able to degrade all the components of the cellulose and it is therefore suggested that a combination of bacteria and/or fungi with various enzymatic activities be used to obtain high total cellulolytic activity. This study gives an overview of the potential microorganism that could be used for cellulose degradation in various biotechnological applications and for sustainable agricultural waste treatment.
Collapse
MESH Headings
- Bacteria/classification
- Bacteria/genetics
- Bacteria/isolation & purification
- Bacteria/metabolism
- Cellulase/analysis
- Cellulose/metabolism
- Colombia
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Helminth/chemistry
- DNA, Helminth/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer/chemistry
- DNA, Ribosomal Spacer/genetics
- Fungi/classification
- Fungi/genetics
- Fungi/isolation & purification
- Fungi/metabolism
- Hydrolysis
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Soil Microbiology
Collapse
Affiliation(s)
- Lizeth Manuela Avellaneda-Torres
- Laboratorio de AgrobiotecnologíaFacultad de AgronomíaUniversidad Nacional de ColombiaBogotáColombiaLaboratorio de Agrobiotecnología, Facultad de Agronomía, Universidad Nacional de Colombia, Bogotá, Colombia.
- Centro Colombiano en Genómica y Bioinformática en Ambientes ExtremosBogotáColombiaCentro Colombiano en Genómica y Bioinformática en Ambientes Extremos, Bogotá, Colombia.
| | - Claudia Patricia Guevara Pulido
- Centro Colombiano en Genómica y Bioinformática en Ambientes ExtremosBogotáColombiaCentro Colombiano en Genómica y Bioinformática en Ambientes Extremos, Bogotá, Colombia.
| | - Esperanza Torres Rojas
- Laboratorio de AgrobiotecnologíaFacultad de AgronomíaUniversidad Nacional de ColombiaBogotáColombiaLaboratorio de Agrobiotecnología, Facultad de Agronomía, Universidad Nacional de Colombia, Bogotá, Colombia.
- Centro Colombiano en Genómica y Bioinformática en Ambientes ExtremosBogotáColombiaCentro Colombiano en Genómica y Bioinformática en Ambientes Extremos, Bogotá, Colombia.
| |
Collapse
|
7
|
Tarayre C, Bauwens J, Brasseur C, Mattéotti C, Millet C, Guiot PA, Destain J, Vandenbol M, Portetelle D, De Pauw E, Haubruge E, Francis F, Thonart P. Isolation and cultivation of xylanolytic and cellulolytic Sarocladium kiliense and Trichoderma virens from the gut of the termite Reticulitermes santonensis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4369-4382. [PMID: 25300185 DOI: 10.1007/s11356-014-3681-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
The purpose of this work was the isolation and cultivation of cellulolytic and xylanolytic microorganisms extracted from the gut of the lower termite Reticulitermes santonensis. Microcrystalline cellulose (with and without lignin) and beech wood xylan were used as diets instead of poplar wood in order to select cellulose and hemicellulose-degrading fungi. The strain Sarocladium kiliense (Acremonium kiliense) CTGxxyl was isolated from the termites fed on xylan, while the strain Trichoderma virens CTGxAviL was isolated from the termites fed on cellulose (with and without lignin). Both molds were cultivated in liquid media containing different substrates: agro-residues or purified polymers. S. kiliense produced maximal β-glucosidase, endo-1,4-β-D-glucanase, exo-1,4-β-D-glucanase and endo-1,4-β-D-xylanase activities of 0.103, 3.99, 0.53, and 40.8 IU/ml, respectively. T. virens produced maximal β-xylosidase, endo-1,4-β-D-glucanase, exo-1,4-β-D-glucanase, and endo-1,4-β-D-xylanase activities of 0.38, 1.48, 0.69, and 426 IU/ml. The cellulase and the xylanase of S. kiliense, less common than T. virens, were further investigated. The optimal activity of the xylanase was observed at pH 9-10 at 60 °C. The cellulase showed its maximal activity at pH 10, 70 °C. Zymography identified different xylanases produced by both molds, and some fragment sizes were highlighted: 35, 100, and 170 kDa for S. kiliense and 20, 40, 80, and 170 kDa for T. virens. In both cases, endo-1,4-β-D-xylanase activities were confirmed through mass spectrometry.
Collapse
Affiliation(s)
- Cédric Tarayre
- Unit of Bio-Industries, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
de Cassia Pereira J, Leite RSR, do Prado HFA, Bocchini Martins DA, Gomes E, da Silva R. Production and characterization of β-glucosidase obtained by the solid-state cultivation of the thermophilic fungus Thermomucor indicae-seudaticae N31. Appl Biochem Biotechnol 2015; 175:723-32. [PMID: 25342269 DOI: 10.1007/s12010-014-1332-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
Abstract
In this paper, several agro-industrial wastes (soybean meal and wheat straw, rice and peanut husks, corn cob and corn stover, and sugarcane bagasse) were tested for the production of β-glucosidase by the cultivation of thermophilic fungus Thermomucor indicae-seudaticae N31 in solid-state fermentation (SSF). Among the tested substrates, the highest yields were obtained in soybean meal. Other fermentation parameters were also evaluated, such as initial pH, merge substrates, and fermentation time, as well as the physicochemical characterization of the enzyme. The best results were obtained after 192 h of fermentation with the initial pH adjusted to 6.0. The substrate mixture did not improve the enzyme production by microorganism. The β-glucosidase showed best catalytic activity at pH 4.5 and at 75 °C and remained stable in the pH range from 4.5 to 9.5 and the temperature range 40-75 °C. The enzyme showed 80 % of its activity at a concentration of 15 mM glucose and remained stable up to 20 % ethanol.
Collapse
Affiliation(s)
- Josiani de Cassia Pereira
- Laboratory of Biochemistry and Applied Microbiology, Universidade Estadual Paulista (UNESP), Av. Cristóvão Colombo, 2265, 15054-000, São José do Rio Preto, São Paulo, Brazil,
| | | | | | | | | | | |
Collapse
|
9
|
Expression and characterization of a novel β-glucosidase, with transglycosylation and exo-β-1,3-glucanase activities, from Rhizomucor miehei. Food Chem 2014; 175:431-8. [PMID: 25577102 DOI: 10.1016/j.foodchem.2014.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/16/2014] [Accepted: 12/02/2014] [Indexed: 12/27/2022]
Abstract
A novel β-glucosidase gene, designated RmBglu3B, was cloned from the thermophilic fungus, Rhizomucor miehei CAU432. Its 2196-bp open reading frame encoded 731 amino acids. Its deduced amino-acid sequence showed highest identity (66%) with a glycoside hydrolase family 3 β-glucosidase from R. miehei NRRL5382. RmBglu3B was successfully expressed in Escherichia coli. The recombinant enzyme was purified to homogeneity with 18.2-fold purification and 59% recovery yield. Molecular masses of 76.5 kDa, by SDS-PAGE, and 66.4 kDa, by gel filtration, suggested that it is a monomer. Optimal pH and temperature of the purified enzyme were 5.0 and 50°C, respectively. RmBglu3B exhibited a broad range of substrate specificity, catalyzing the cleavage of β-1,2, β-1,3, β-1,4 and β-1,6 linkages, in various oligosaccharides, to liberate glucose. RmBglu3B also showed relatively high activity (19.1 U/mg) toward laminaran and transglycosylation activity, enabling gentiobiose production. This enzyme is a potential candidate for several industrial applications.
Collapse
|
10
|
Immobilization and high stability of an extracellular β-glucosidase from Aspergillus japonicus by ionic interactions. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.02.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Immobilization of β-glucosidase on mercaptopropyl-functionalized mesoporous titanium dioxide. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Tsuji A, Tominaga K, Nishiyama N, Yuasa K. Comprehensive enzymatic analysis of the cellulolytic system in digestive fluid of the Sea Hare Aplysia kurodai. Efficient glucose release from sea lettuce by synergistic action of 45 kDa endoglucanase and 210 kDa ß-glucosidase. PLoS One 2013; 8:e65418. [PMID: 23762366 PMCID: PMC3675134 DOI: 10.1371/journal.pone.0065418] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 04/24/2013] [Indexed: 01/30/2023] Open
Abstract
Although many endo-ß-1,4-glucanases have been isolated in invertebrates, their cellulolytic systems are not fully understood. In particular, gastropod feeding on seaweed is considered an excellent model system for production of bioethanol and renewable bioenergy from third-generation feedstocks (microalgae and seaweeds). In this study, enzymes involved in the conversion of cellulose and other polysaccharides to glucose in digestive fluids of the sea hare (Aplysia kurodai) were screened and characterized to determine how the sea hare obtains glucose from sea lettuce (Ulva pertusa). Four endo-ß-1,4-glucanases (21K, 45K, 65K, and 95K cellulase) and 2 ß-glucosidases (110K and 210K) were purified to a homogeneous state, and the synergistic action of these enzymes during cellulose digestion was analyzed. All cellulases exhibited cellulase and lichenase activities and showed distinct cleavage specificities against cellooligosaccharides and filter paper. Filter paper was digested to cellobiose, cellotriose, and cellotetraose by 21K cellulase, whereas 45K and 65K enzymes hydrolyzed the filter paper to cellobiose and glucose. 210K ß-glucosidase showed unique substrate specificity against synthetic and natural substrates, and 4-methylumbelliferyl (4MU)-ß-glucoside, 4MU–ß-galactoside, cello-oligosaccharides, laminarin, and lichenan were suitable substrates. Furthermore, 210K ß-glucosidase possesses lactase activity. Although ß-glucosidase and cellulase are necessary for efficient hydrolysis of carboxymethylcellulose to glucose, laminarin is hydrolyzed to glucose only by 210K ß-glucosidase. Kinetic analysis of the inhibition of 210K ß-glucosidase by D-glucono-1,5-lactone suggested the presence of 2 active sites similar to those of mammalian lactase-phlorizin hydrolase. Saccharification of sea lettuce was considerably stimulated by the synergistic action of 45K cellulase and 210K ß-glucosidase. Our results indicate that 45K cellulase and 210K ß-glucosidase are the core components of the sea hare digestive system for efficient production of glucose from sea lettuce. These findings contribute important new insights into the development of biofuel processing biotechnologies from seaweed.
Collapse
Affiliation(s)
- Akihiko Tsuji
- Department of Biological Science and Technology, The University of Tokushima Graduate School, Tokushima, Japan.
| | | | | | | |
Collapse
|
13
|
Karnaouri A, Topakas E, Paschos T, Taouki I, Christakopoulos P. Cloning, expression and characterization of an ethanol tolerant GH3 β-glucosidase from Myceliophthora thermophila. PeerJ 2013; 1:e46. [PMID: 23638383 PMCID: PMC3628895 DOI: 10.7717/peerj.46] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/11/2013] [Indexed: 11/20/2022] Open
Abstract
The β-glucosidase gene bgl3a from Myceliophthora thermophila, member of the fungal glycosyl hydrolase (GH) family 3, was cloned and expressed in Pichia pastoris. The mature β-glucosidase gene, which results after the excision of one intron and the secreting signal peptide, was placed under the control of the strong alcohol oxidase promoter (AOX1) in the plasmid pPICZαC. The recombinant enzyme (90 kDa) was purified and characterized in order to evaluate its biotechnological potential. Recombinant P. pastoris efficiently secreted β-glucosidase into the medium and produced high level of enzymatic activity (41 U/ml) after 192 h of growth, under methanol induction. MtBgl3a was able to hydrolyze low molecular weight substrates and polysaccharides containing β-glucosidic residues. The Km was found to be 0.39 mM on p-β-NPG and 2.64 mM on cellobiose. Optimal pH and temperature for the p-β-NPG hydrolysis were 5.0 and 70 °C. The β-glucosidase exhibits a half life of 143 min at 60 °C. Kinetic parameters of inhibition were determined for D-glucose, D-xylose and D-gluconic acid, indicating tolerance of the enzyme for these sugars and oxidized products. The recombinant enzyme was stimulated by short chain alcohols and has been shown to efficiently synthesize methyl-D-glucoside in the presence of methanol due to its transglycosylation activity. The stability of MtBgl3a in ethanol was prominent, and it retained most of its original activity after we exposed it to 50% ethanol for 6 h. The high catalytic performance, good thermal stability and tolerance to elevated concentrations of ethanol, D-xylose and D-glucose qualify this enzyme for use in the hydrolysis of lignocellulosic biomass for biofuel production, as part of an efficient complete multi-enzyme cocktail.
Collapse
Affiliation(s)
- Anthi Karnaouri
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens , Athens , Greece
| | | | | | | | | |
Collapse
|
14
|
Different influences of β-glucosidases on volatile compounds and anthocyanins of Cabernet Gernischt and possible reason. Food Chem 2013; 140:245-54. [PMID: 23578640 DOI: 10.1016/j.foodchem.2013.02.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 02/04/2013] [Accepted: 02/11/2013] [Indexed: 11/23/2022]
Abstract
The effects of three β-glucosidases (BG1, BG2 from Trichosporon asahii, AS from Aspergillus Niger) on the aroma profiles of Cabernet Gernischt (CG) were investigated, coupled with an exploration of the possible reasons for the different performances of β-glucosidases under the two different conditions (hydrolysis of grape glycoside extract and wine-making). The analysis of headspace solid-phase micro-extraction and gas chromatography-mass spectrometry revealed that volatile flavour compounds in the β-glucosidase-treated samples were significantly increased. Specially, the wines treated with β-glucosidase BG1 occupied the highest concentrations of 19 out of 23 volatile compounds that exhibited significant differences. The investigation of the effects of pH or glucose on β-glucosidases showed that low pH is the main factor that exerts a more critical and irreversible influence on the activities and structures of β-glucosidase proteins. The stronger resistances to pH and glucose provided β-glucosidase BG1 a better ability in hydrolysing aromatic precursors than other enzymes under winemaking conditions. With the HPLC analysis, eight anthocyanins were identified from CG wine. Among the three β-glucosidases, BG1 showed the lowest influence on the main anthocyanin glycosides. These results suggested that the β-glucosidase BG1 may have some potential values to complement wine quality during the winemaking process.
Collapse
|
15
|
Chang KH, Jo MN, Kim KT, Paik HD. Purification and characterization of a ginsenoside Rb(1)-hydrolyzing β-glucosidase from Aspergillus niger KCCM 11239. Int J Mol Sci 2012; 13:12140-12152. [PMID: 23109906 PMCID: PMC3472798 DOI: 10.3390/ijms130912140] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/24/2012] [Accepted: 09/07/2012] [Indexed: 11/17/2022] Open
Abstract
Rb(1)-hydrolyzing β-glucosidase from Aspergillus niger KCCM 11239 was studied to develop a bioconversion process for minor ginsenosides. The specific activity of the purified enzyme was 46.5 times greater than that of the crude enzyme. The molecular weight of the native enzyme was estimated to be approximately 123 kDa. The optimal pH of the purified enzyme was pH 4.0, and the enzyme proved highly stable over a pH range of 5.0-10.0. The optimal temperature was 70 °C, and the enzyme became unstable at temperatures above 60 °C. The enzyme was inhibited by Cu(2+), Mg(2+), Co(2+), and acetic acid (10 mM). In the specificity tests, the enzyme was found to be active against ginsenoside Rb(1), but showed very low levels of activity against Rb(2), Rc, Rd, Re, and Rg(1). The enzyme hydrolyzed the 20-C,β-(1→6)-glucoside of ginsenoside Rb(1) to generate ginsenoside Rd and Rg(3), and hydrolyzed 3-C,β-(1→2)-glucoside to generate F(2). The properties of the enzyme indicate that it could be a useful tool in biotransformation applications in the ginseng industry, as well as in the development of novel drug compounds.
Collapse
Affiliation(s)
- Kyung Hoon Chang
- Division of Animal Life Science, Konkuk University, Seoul 143-701, Korea; E-Mails: (K.H.C); (M.N.J.)
| | - Mi Na Jo
- Division of Animal Life Science, Konkuk University, Seoul 143-701, Korea; E-Mails: (K.H.C); (M.N.J.)
| | - Kee-Tae Kim
- Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea; E-Mail:
| | - Hyun-Dong Paik
- Division of Animal Life Science, Konkuk University, Seoul 143-701, Korea; E-Mails: (K.H.C); (M.N.J.)
- Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea; E-Mail:
| |
Collapse
|
16
|
Radva D, Knutsen SH, Kosáry J, Ballance S. Application of high-performance anion-exchange chromatography with pulsed amperometric detection to compare the kinetic properties of β-glucosidase on oligosaccharides from lichenase digested barley β-glucan. Carbohydr Res 2012; 358:56-60. [DOI: 10.1016/j.carres.2012.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 06/04/2012] [Accepted: 06/13/2012] [Indexed: 11/26/2022]
|
17
|
Krisch J, Bencsik O, Papp T, Vágvölgyi C, Takó M. Characterization of a β-glucosidase with transgalactosylation capacity from the zygomycete Rhizomucor miehei. BIORESOURCE TECHNOLOGY 2012; 114:555-60. [PMID: 22444635 DOI: 10.1016/j.biortech.2012.02.117] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 02/10/2012] [Accepted: 02/24/2012] [Indexed: 05/23/2023]
Abstract
An extracellular β-glucosidase from the zygomycete Rhizomucor miehei NRRL 5282 cultivated in a wheat bran-based solid state fermentation system was characterized. The purified enzyme exhibited an optimum temperature of 68-70 °C and pH of 5.0. It efficiently hydrolyzed oligosaccharides having β-(1→4) glycosidic linkages and exhibited some β- and α-galactosidase activity. The V(max) for p-nitrophenyl-β-d-glucopyranoside and cellobiose was 468.2 and 115.5 U/mg, respectively, while the K(m) was 0.12 mM for both substrates. The enzyme had transglucosylation and transgalactosylation activities resulting in the formation of glycosides from cellobiose, lactose and ethanol. The enzyme increased the amounts of free phenolic antioxidants in sour cherry pomace indicating that its hydrolyzing activity could potentially be applicable to improve the bioavailability of these compounds.
Collapse
Affiliation(s)
- Judit Krisch
- Institute of Food Engineering, Faculty of Engineering, University of Szeged, H-6725 Szeged, Mars tér 7, Hungary
| | | | | | | | | |
Collapse
|
18
|
de Almeida MN, Guimarães VM, Bischoff KM, Falkoski DL, Pereira OL, Gonçalves DSPO, de Rezende ST. Cellulases and Hemicellulases from Endophytic Acremonium Species and Its Application on Sugarcane Bagasse Hydrolysis. Appl Biochem Biotechnol 2011; 165:594-610. [DOI: 10.1007/s12010-011-9278-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 05/02/2011] [Indexed: 10/18/2022]
|
19
|
Tejirian A, Xu F. Inhibition of cellulase-catalyzed lignocellulosic hydrolysis by iron and oxidative metal ions and complexes. Appl Environ Microbiol 2010; 76:7673-82. [PMID: 20889796 PMCID: PMC2988600 DOI: 10.1128/aem.01376-10] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 09/20/2010] [Indexed: 11/20/2022] Open
Abstract
Enzymatic lignocellulose hydrolysis plays a key role in microbially driven carbon cycling and energy conversion and holds promise for bio-based energy and chemical industries. Cellulases (key lignocellulose-active enzymes) are prone to interference from various noncellulosic substances (e.g., metal ions). During natural cellulolysis, these substances may arise from other microbial activities or abiotic events, and during industrial cellulolysis, they may be derived from biomass feedstocks or upstream treatments. Knowledge about cellulolysis-inhibiting reactions is of importance for the microbiology of natural biomass degradation and the development of biomass conversion technology. Different metal ions, including those native to microbial activity or employed for biomass pretreatments, are often tested for enzymatic cellulolysis. Only a few metal ions act as inhibitors of cellulases, which include ferrous and ferric ions as well as cupric ion. In this study, we showed inhibition by ferrous/ferric ions as part of a more general effect from oxidative (or redox-active) metal ions and their complexes. The correlation between inhibition and oxidation potential indicated the oxidative nature of the inhibition, and the dependence on air established the catalytic role that iron ions played in mediating the dioxygen inhibition of cellulolysis. Individual cellulases showed different susceptibilities to inhibition. It is likely that the inhibition exerted its effect more on cellulose than on cellulase. Strong iron ion chelators and polyethylene glycols could mitigate the inhibition. Potential microbiological and industrial implications of the observed effect of redox-active metal ions on enzymatic cellulolysis, as well as the prevention and mitigation of this effect in industrial biomass conversion, are discussed.
Collapse
Affiliation(s)
| | - Feng Xu
- Novozymes, Inc., Davis, California 95618
| |
Collapse
|
20
|
Madhu KM, Beena PS, Chandrasekaran M. Extracellular β-glucosidase production by a marine Aspergillus sydowii BTMFS 55 under solid state fermentation using statistical experimental design. BIOTECHNOL BIOPROC E 2009. [DOI: 10.1007/s12257-008-0116-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Yang S, Jiang Z, Yan Q, Zhu H. Characterization of a thermostable extracellular beta-glucosidase with activities of exoglucanase and transglycosylation from Paecilomyces thermophila. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:602-608. [PMID: 18092750 DOI: 10.1021/jf072279+] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The purification and characterization of a novel extracellular beta-glucosidase from Paecilomyces thermophila J18 was studied. The beta-glucosidase was purified to 105-fold apparent homogeneity with a recovery yield of 21.7% by DEAE 52 and Sephacryl S-200 chromatographies. Its molecular masses were 116 and 197 kDa when detected by SDS-PAGE and gel filtration, respectively. It was a homodimeric glycoprotein with a carbohydrate content of 82.3%. The purified enzyme exhibited an optimal activity at 75 degrees C and pH 6.2. It was stable up to 65 degrees C and in the pH range of 5.0-8.5. The enzyme exhibited a broad substrate specificity and significantly hydrolyzed p-nitrophenyl-beta- d-glucopyranoside ( pNPG), cellobiose, gentiobiose, sophorose, amygdalin, salicin, daidzin, and genistin. Moreover, it displayed substantial activity on beta-glucans such as laminarin and lichenan, indicating that the enzyme has some exoglucanase activity. The rate of glucose released by the purified enzyme from cellooligosaccharides with a degree of polymerization (DP) ranging between 2 and 5 decreased with increasing chain length. Glucose and glucono-delta-lactone inhibited the beta-glucosidase competitively with Ki values of 73 and 0.49 mM, respectively. The beta-glucosidase hydrolyzed pNPG, cellobiose, gentiobiose, sophorose, salicin, and amygdalin, exhibiting apparent Km values of 0.26, 0.65, 0.77, 1.06, 1.39, and 1.45 mM, respectively. Besides, the enzyme showed transglycosylation activity, producing oligosaccharides with higher DP than the substrates when cellooligosaccharides were hydrolyzed. These properties make this beta-glucosidase useful for various biotechnological applications.
Collapse
Affiliation(s)
- Shaoqing Yang
- Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | | | | | | |
Collapse
|
22
|
Kalifa SBH, Limam F, Smaali MI, Maugard T, Marzouki MN. β-glucosidase from Sclerotinia sclerotiorum: a new and efficient purification procedure and use as a suitable marker in immuno-enzymatic assay. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Martin K, McDougall BM, McIlroy S, Chen J, Seviour RJ. Biochemistry and molecular biology of exocellular fungal beta-(1,3)- and beta-(1,6)-glucanases. FEMS Microbiol Rev 2007; 31:168-92. [PMID: 17313520 DOI: 10.1111/j.1574-6976.2006.00055.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Many fungi produce exocellular beta-glucan-degrading enzymes, the beta-glucanases including the noncellulolytic beta-(1,3)- and beta-(1,6)-glucanases, degrading beta-(1,3)- and beta-(1,6)-glucans. An ability to purify several exocellular beta-glucanases attacking the same linkage type from a single fungus is common, although unlike the beta-1,3-glucanases, production of multiple beta-1,6-glucanases is quite rare in fungi. Reasons for this multiplicity remain unclear and the multiple forms may not be genetically different but arise by posttranslational glycosylation or proteolytic degradation of the single enzyme. How their synthesis is regulated, and whether each form is regulated differentially also needs clarifying. Their industrial potential will only be realized when the genes encoding them are cloned and expressed in large quantities. This review considers what is known in molecular terms about their multiplicity of occurrence, regulation of synthesis and phylogenetic diversity. It discusses how this information assists in understanding their functions in the fungi producing them. It deals largely with exocellular beta-glucanases which here refers to those recoverable after the cells are removed, since those associated with fungal cell walls have been reviewed recently by Adams (2004). It also updates the earlier review by Pitson et al. (1993).
Collapse
Affiliation(s)
- Kirstee Martin
- Biotechnology Research Centre, La Trobe University, Bendigo, Victoria, Australia
| | | | | | | | | |
Collapse
|
24
|
Crognale S, Bruno M, Fidaleo M, Moresi M, Petruccioli M. Production of ?-glucan and related glucan-hydrolases by Botryosphaeria rhodina. J Appl Microbiol 2007; 102:860-71. [PMID: 17309637 DOI: 10.1111/j.1365-2672.2006.03116.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS Characterization of beta-glucan production from Botryosphaeria rhodina DABAC-P82 by detecting simultaneously glucan-hydrolytic enzymes and their localization, culture medium rheology and oxygen transfer. METHODS AND RESULTS Mycelium growth, beta-glucan production, substrate consumption and glucan-hydrolytic enzymes were monitored both in shaken flasks and in a 3-l stirred-tank bioreactor. Glucan production (19.7 and 15.2 g l(-1), in flask and bioreactor, respectively) was accompanied by extra-cellular and cell-bound beta-glucanase and beta-glucosidase activities. In the bioreactor scale, in the time interval of 0-78 h the apparent viscosity of the culture broth exhibited a general increase; thereafter, it began to reduce, probably because of the above glucan-hydrolytic activities. Moreover, the culture media collected after 45 h behaved as solid-like materials at shear rates smaller than 0.001 s(-1), as pseudo-plastic liquids in the middle shear rate range and as Newtonian ones at shear rates greater than 1000 s(-1). CONCLUSION The greatest beta-glucan accumulation in the bioreactor was found to be associated with nitrogen and dissolved oxygen concentrations smaller than 0.15 g l(-1) and 25%, respectively, and with the peak points of the glucan-degrading enzymes. SIGNIFICANCE AND IMPACT OF THE STUDY A careful analysis of the critical factors (such as, culture broth rheology, oxygen mass transfer and glucan-hydrolytic enzymes) limiting the beta-glucan production by B. rhodina is a prerequisite to maximize beta-glucan yield and production, as well as to define the process flow sheet capable of maximizing biopolymer recovery, solvent re-utilization and glucose consumption.
Collapse
Affiliation(s)
- S Crognale
- Dipartimento di Agrobiologia ed Agrochimica, University of Tuscia, Viterbo, Italy
| | | | | | | | | |
Collapse
|
25
|
Mamma D, Kalogeris E, Hatzinikolaou DG, Lekanidou A, Kekos D, Macris BJ, Christakopoulos P. Biochemical Characterization of the Multi-enzyme System Produced byPenicillium decumbensGrown on Rutin. FOOD BIOTECHNOL 2007. [DOI: 10.1081/fbt-120030382] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Giese EC, Covizzi LG, Dekker RF, Monteiro NK, Corradi da Silva MDL, Barbosa AM. Enzymatic hydrolysis of botryosphaeran and laminarin by β-1,3-glucanases produced by Botryosphaeria rhodina and Trichoderma harzianum Rifai. Process Biochem 2006. [DOI: 10.1016/j.procbio.2005.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Production, purification and partial characterization of a novel endo-β-1,3-glucanase from Agaricus brasiliensis. Process Biochem 2006. [DOI: 10.1016/j.procbio.2005.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Igarashi K, Tani T, Rie K, Masahiro S. Family 3 beta-glucosidase from cellulose-degrading culture of the white-rot fungus Phanerochaete chrysosporium is a glucan 1,3-beta-glucosidase. J Biosci Bioeng 2005; 95:572-6. [PMID: 16233459 DOI: 10.1016/s1389-1723(03)80164-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2002] [Accepted: 01/28/2003] [Indexed: 11/18/2022]
Abstract
The substrate specificity of an extracellular beta-glucosidase (BGL) from cellulose-degrading culture of the white-rot fungus Phanerochaete chrysosporium was investigated, using a variety of compounds with beta-glucosidic linkages. Amino acid sequencing data for the purified BGL showed that the enzyme is identical to the glycoside hydrolase (GH) family 3 BGL of the same fungus previously reported [Li, B. and Renganathan, V, Appl. Environ. Microbiol., 64, 2748-2754 (1998)]. The BGL can hydrolyze both cellobiose and cellobionolactone, but cellobionolactone was hydrolyzed very much more slowly than cellobiose. Moreover, cellobionolactone inhibited cellobiose hydrolysis by the BGL, suggesting that this enzyme cannot cooperate with cellobiose dehydrogenase (CDH) in cellulose degradation by P. chrysosporium. In addition to cellobiose, BGL utilized various glucosyl-beta-glucosides, such as sophorose, laminaribiose and gentiobiose, as substrates. Among the four substrates, laminaribiose (beta-1,3-glucosidic linkage) was hydrolyzed most effectively. Moreover, the hydrolytic rate of laminarioligosaccharides increased proportionally to the degree of polymerization (DP), and the activity of BGL even towards laminarin with an average DP of 25 was similar to that towards laminaripentaose (DP 5). Therefore, we conclude that the extracellular BGL from P. chrysosporium is primarily a glucan 1,3-beta-glucosidase (EC 3.2.1.58), which might play a role on fungal cell wall metabolism, rather than a beta-glucosidase (EC 3.2.1.21), which might be involved in the hydrolysis of beta-1,4-glucosidic compounds during cellulose degradation.
Collapse
Affiliation(s)
- Kiyohiko Igarashi
- Department ofBiomaterials Sciences, Graduate School ofAgricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
29
|
Biochemical and catalytic properties of two intracellular β-glucosidases from the fungus Penicillium decumbens active on flavonoid glucosides. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.molcatb.2003.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Mase T, Mori S, Yokoe M. Purification, Characterization, and a Potential Application of .BETA.-Glucosidase from Aspergillus pulverulentus YM-80. J Appl Glycosci (1999) 2004. [DOI: 10.5458/jag.51.211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
31
|
McDougall BM, Seviour RJ. Purification and characterization of the (1â3)-β-glucanases fromAcremoniumsp. IMI 383068. FEMS Microbiol Lett 2004; 230:259-64. [PMID: 14757248 DOI: 10.1016/s0378-1097(03)00913-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Three extracellular (1-->3)-beta-glucanases were purified from the fungus Acremonium sp. IMI 383068. Higher activities were unexpectedly obtained with pustulan, a (1-->6)-beta-glucan as carbon source, than when grown with laminarin, a (1-->3)-beta-glucan. Preliminary evidence suggests that these enzymes are not constitutive, but are inducible, and that their synthesis is repressed by glucose. All three had the same molecular masses, similar pH and temperature optima and none were glycosylated. They all appeared to have an exo-hydrolytic mode of substrate attack. N-terminal amino acid sequence data indicate that substantial post-translational modification of these had occurred, and that while two may be encoded by the same gene, the third may be genetically different.
Collapse
|
32
|
Campbell BS, McDougall BM, Seviour RJ. Why do exopolysaccharide yields from the fungus Aureobasidium pullulans fall during batch culture fermentation? Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(03)00089-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
IGARASHI KIYOHIKO, TANI TOMOMI, KAWAI RIE, SAMEJIMA MASAHIRO. Family 3 .BETA.-Glucosidase from Cellulose-Degrading Culture of the White-Rot Fungus Phanerochaete chysosporium is a Glucan 1,3-.BETA.-Glucosidase. J Biosci Bioeng 2003. [DOI: 10.1263/jbb.95.572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
de Palma-Fernandez ER, Gomes E, da Silva R. Purification and characterization of two beta-glucosidases from the thermophilic fungus Thermoascus aurantiacus. Folia Microbiol (Praha) 2002; 47:685-90. [PMID: 12630320 DOI: 10.1007/bf02818672] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
beta-Glucosidase from the fungus Thermoascus aurantiacus grown on semi-solid fermentation medium (using ground corncob as substrate) was partially purified in 5 steps--ultrafiltration, ethanol precipitation, gel filtration and 2 anion exchange chromatography runs, and characterized. After the first anion exchange chromatography, beta-glucosidase activity was eluted in 3 peaks (Gl-1, Gl-2, Gl-3). Only the Gl-2 and Gl-3 fractions were adsorbed on the gel matrix. Gl-2 and Gl-3 exhibited optimum pH at 4.5 and 4.0, respectively. The temperature optimum of both glucosidases was at 75-80 degrees C. The pH stability of Gl-2 (4.0-9.0) was higher than Gl-3 (5.5-8.5); both enzyme activities showed similar patterns of thermostability. Under conditions of denaturing gel chromatography the molar mass of Gl-2 and Gl-3 was 175 and 157 kDa, respectively. Using 4-nitrophenyl beta-D-glucopyranoside as substrate, Km values of 1.17 +/- 0.35 and 1.38 +/- 0.86 mmol/L were determined for Gl-2 and Gl-3, respectively. Both enzymes were inhibited by Ag+ and stimulated by Ca2+.
Collapse
|
35
|
Intracellular and cell wall associated β-glucanases and β-glucosidases of Acremonium persicinum. ACTA ACUST UNITED AC 1999. [DOI: 10.1017/s0953756299008370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Riou C, Salmon JM, Vallier MJ, Günata Z, Barre P. Purification, characterization, and substrate specificity of a novel highly glucose-tolerant beta-glucosidase from Aspergillus oryzae. Appl Environ Microbiol 1998; 64:3607-14. [PMID: 9758774 PMCID: PMC106471 DOI: 10.1128/aem.64.10.3607-3614.1998] [Citation(s) in RCA: 240] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus oryzae was found to secrete two distinct beta-glucosidases when it was grown in liquid culture on various substrates. The major form had a molecular mass of 130 kDa and was highly inhibited by glucose. The minor form, which was induced most effectively on quercetin (3,3',4',5,7-pentahydroxyflavone)-rich medium, represented no more than 18% of total beta-glucosidase activity but exhibited a high tolerance to glucose inhibition. This highly glucose-tolerant beta-glucosidase (designated HGT-BG) was purified to homogeneity by ammonium sulfate precipitation, gel filtration, and anion-exchange chromatography. HGT-BG is a monomeric protein with an apparent molecular mass of 43 kDa and a pI of 4.2 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing polyacrylamide gel electrophoresis, respectively. Using p-nitrophenyl-beta-D-glucoside as the substrate, we found that the enzyme was optimally active at 50 degreesC and pH 5.0 and had a specific activity of 1,066 micromol min-1 mg of protein-1 and a Km of 0.55 mM under these conditions. The enzyme is particularly resistant to inhibition by glucose (Ki, 1. 36 M) or glucono-delta-lactone (Ki, 12.5 mM), another powerful beta-glucosidase inhibitor present in wine. A comparison of the enzyme activities on various glycosidic substrates indicated that HGT-BG is a broad-specificity type of fungal beta-glucosidase. It exhibits exoglucanase activity and hydrolyzes (1-->3)- and (1-->6)-beta-glucosidic linkages most effectively. This enzyme was able to release flavor compounds, such as geraniol, nerol, and linalol, from the corresponding monoterpenyl-beta-D-glucosides in a grape must (pH 2.9, 90 g of glucose liter-1). Other flavor precursors (benzyl- and 2-phenylethyl-beta-D-glucosides) and prunin (4',5,7-trihydroxyflavanone-7-glucoside), which contribute to the bitterness of citrus juices, are also substrates of the enzyme. Thus, this novel beta-glucosidase is of great potential interest in wine and fruit juice processing because it releases aromatic compounds from flavorless glucosidic precursors.
Collapse
Affiliation(s)
- C Riou
- Laboratoire de Microbiologie et Technologie des Fermentations, Institut National de la Recherche Agronomique, Institut des Produits de la Vigne, F-34060 Montpellier Cedex 2, France.
| | | | | | | | | |
Collapse
|