1
|
Nogueira LFB, Cruz MAE, de Melo MT, Maniglia BC, Caroleo F, Paolesse R, Lopes HB, Beloti MM, Ciancaglini P, Ramos AP, Bottini M. Collagen/κ-Carrageenan-Based Scaffolds as Biomimetic Constructs for In Vitro Bone Mineralization Studies. Biomacromolecules 2023; 24:1258-1266. [PMID: 36788678 DOI: 10.1021/acs.biomac.2c01313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Tissue engineering offers attractive strategies to develop three-dimensional scaffolds mimicking the complex hierarchical structure of the native bone. The bone is formed by cells incorporated in a molecularly organized extracellular matrix made of an inorganic phase, called biological apatite, and an organic phase mainly made of collagen and noncollagenous macromolecules. Although many strategies have been developed to replicate the complexity of bone at the nanoscale in vitro, a critical challenge has been to control the orchestrated process of mineralization promoted by bone cells in vivo and replicate the anatomical and biological properties of native bone. In this study, we used type I collagen to fabricate mineralized scaffolds mimicking the microenvironment of the native bone. The sulfated polysaccharide κ-carrageenan was added to the scaffolds to fulfill the role of noncollagenous macromolecules in the organization and mineralization of the bone matrix and cell adhesion. Scanning electron microscopy images of the surface of the collagen/κ-carrageenan scaffolds showed the presence of a dense and uniform network of intertwined fibrils, while images of the scaffolds' lateral sides showed the presence of collagen fibrils with a parallel alignment, which is characteristic of dense connective tissues. MC3T3-E1 osteoblasts were cultured in the collagen scaffolds and were viable after up to 7 days of culture, both in the absence and in the presence of κ-carrageenan. The presence of κ-carrageenan in the collagen scaffolds stimulated the maturation of the cells to a mineralizing phenotype, as suggested by the increased expression of key genes related to bone mineralization, including alkaline phosphatase (Alp), bone sialoprotein (Bsp), osteocalcin (Oc), and osteopontin (Opn), as well as the ability to mineralize the extracellular matrix after 14 and 21 days of culture. Taken together, the results described in this study shed light on the potential use of collagen/κ-carrageenan scaffolds to study the role of the structural organization of bone-mimetic synthetic matrices in cell function.
Collapse
Affiliation(s)
- Lucas Fabrício Bahia Nogueira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-900 Ribeirão Preto, Brazil
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marcos Antônio Eufrásio Cruz
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-900 Ribeirão Preto, Brazil
| | - Maryanne Trafani de Melo
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-900 Ribeirão Preto, Brazil
| | - Bianca Chieregato Maniglia
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-900 Ribeirão Preto, Brazil
| | - Fabrizio Caroleo
- Department of Chemical Science and Technology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Roberto Paolesse
- Department of Chemical Science and Technology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Helena Bacha Lopes
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, 14040-904 Ribeirão Preto, Brazil
| | - Márcio M Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, 14040-904 Ribeirão Preto, Brazil
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-900 Ribeirão Preto, Brazil
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ana Paula Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-900 Ribeirão Preto, Brazil
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Sanford Burnham Prebys, La Jolla, California 92037, United States
| |
Collapse
|
2
|
Parisi C, Thiébot B, Mosser G, Trichet L, Manivet P, Fernandes FM. Porous yet dense matrices: using ice to shape collagen 3D cell culture systems with increased physiological relevance. Biomater Sci 2022; 10:6939-6950. [PMID: 36000324 DOI: 10.1039/d2bm00313a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Standard in vitro cell cultures are one of the pillars of biomedical sciences. However, there is increasing evidence that 2D systems provide biological responses that are often in disagreement with in vivo observations, partially due to limitations in reproducing the native cellular microenvironment. 3D materials that are able to mimic the native cellular microenvironment to a greater extent tackle these limitations. Here, we report Porous yet Dense (PyD) type I collagen materials obtained by ice-templating followed by topotactic fibrillogenesis. These materials combine extensive macroporosity, favouring the cell migration and nutrient exchange, as well as dense collagen walls, which mimic locally the extracellular matrix. When seeded with Normal Human Dermal Fibroblasts (NHDFs), PyD matrices allow for faster and more extensive colonisation when compared with equivalent non-porous matrices. The textural properties of the PyD materials also impact cytoskeletal and nuclear 3D morphometric parameters. Due to the effectiveness in creating a biomimetic 3D environment for NHDFs and the ability to promote cell culture for more than 28 days without subculture, we anticipate that PyD materials could configure an important step towards in vitro systems applicable to other cell types and with higher physiological relevance.
Collapse
Affiliation(s)
- Cleo Parisi
- Sorbonne Université, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, 75005, Paris, France. .,Biobank Lariboisière/Saint Louis - Centre de Ressources Biologiques, Lariboisière Hospital, 75010, Paris, France.
| | - Bénédicte Thiébot
- CY Cergy Paris Université, Université d'Evry, Université Paris-Saclay, CNRS, LAMBE, F-95000, Cergy, France
| | - Gervaise Mosser
- Sorbonne Université, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, 75005, Paris, France.
| | - Léa Trichet
- Sorbonne Université, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, 75005, Paris, France.
| | - Philippe Manivet
- Biobank Lariboisière/Saint Louis - Centre de Ressources Biologiques, Lariboisière Hospital, 75010, Paris, France. .,INSERM UMR1141 NeuroDiderot, Université de Paris, 75019, Paris, France
| | - Francisco M Fernandes
- Sorbonne Université, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, 75005, Paris, France.
| |
Collapse
|
3
|
Ibrahim H, Thorpe SD, Paukshto M, Zaitseva TS, Moritz W, Rodriguez BJ. A Biomimetic High Throughput Model of Cancer Cell Spheroid Dissemination onto Aligned Fibrillar Collagen. SLAS Technol 2022; 27:267-275. [DOI: 10.1016/j.slast.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/26/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
|
4
|
Gao H, Wang B, Chen R, Jin Z, Ren L, Yang J, Wang W, Zheng N, Lin R. Effects of hydrogen peroxide on endothelial function in three-dimensional hydrogel vascular model and regulation mechanism of polar protein Par3. Biomed Mater 2022; 17. [PMID: 35901804 DOI: 10.1088/1748-605x/ac8538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/28/2022] [Indexed: 11/11/2022]
Abstract
Three-dimensional (3D) cell cultures better reflect the function of endothelial cells (ECs) than two-dimensional (2D) cultures. In recent years, studies have found that ECs cultured in a 3D luminal structure can mimic the biological characteristics and phenotypes of vascular ECs, thus making it more suitable for endothelial dysfunction research. In this study, we used a 3D model and 2D tissue culture polystyrene (TCP) to investigate the effects of cell polarity on hydrogen peroxide (H2O2)-induced endothelial dysfunction and its related mechanisms. We observed the cell morphology, oxidative stress, and barrier and endothelial function of human umbilical vein endothelial cells (HUVECs) in 3D and 2D cultures. We then used Illumina to detect the differentially expressed genes in the 3D-cultured HUVEC with and without H2O2 stimulation, using ClusterProfiler for Gene Ontology (GO) function enrichment analysis and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analysis of differentially expressed genes. Finally, we explored the role and mechanism of polar protein partitioning defective protein 3 (Par3) in the regulation of ECs. ECs were inoculated into the 3D hydrogel channel; after stimulation with H2O2, the morphology of HUVECs changed, the boundary was blurred, the expression of intercellular junction proteins decreased, and the barrier function of the EC layer was damaged. 3D culture increased the oxidative stress response of cells stimulated by H2O2 compared to 2D TCPs. The polarity-related protein Par3 and cell division control protein 42 (CDC42) were screened using bioinformatics analysis, and western blotting was used to verify the results. Par3 knockdown significantly suppressed claudin1 (CLDN1) and vascular endothelial cadherin (VE-cadherin). These results suggest that the polar protein Par3 can protect H2O2-induced vascular ECs from damage by regulating CLDN1 and VE-cadherin.
Collapse
Affiliation(s)
- Hongqian Gao
- Xi'an Jiaotong University, Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061,Shaanxi, P. R. China, Xi'an, Shaanxi, 710061, CHINA
| | - Bo Wang
- Xi'an Jiaotong University, Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061,Shaanxi, P. R. China, Xi'an, Shaanxi, 710061, CHINA
| | - Ruomeng Chen
- Mechanical and electrical engineering department, Tangshan university, Mechanical and electrical engineering department, Tangshan university, Tang Shan 063000, Hebei, P. R. China, Tangshan, 063000, CHINA
| | - Zhen Jin
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061,Shaanxi, P. R. China, Xi'an, 710061, CHINA
| | - Lingxuan Ren
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061,Shaanxi, P. R. China, Xi'an, 710061, CHINA
| | - Jianjun Yang
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061,Shaanxi, P. R. China, Xi'an, 710061, CHINA
| | - Weirong Wang
- Xi'an Jiaotong University, Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China, Xi'an, Shaanxi, 710061, CHINA
| | - Nanbo Zheng
- Department of Pharmacology, Xi'an Jiaotong University School of Basic Medical Sciences, Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061,Shaanxi, P. R. China, Xi'an, Shaanxi, 710061, CHINA
| | - Rong Lin
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061,Shaanxi, P. R. China, Xi'an, 710061, CHINA
| |
Collapse
|
5
|
Maji S, Lee H. Engineering Hydrogels for the Development of Three-Dimensional In Vitro Models. Int J Mol Sci 2022; 23:2662. [PMID: 35269803 PMCID: PMC8910155 DOI: 10.3390/ijms23052662] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 02/06/2023] Open
Abstract
The superiority of in vitro 3D cultures over conventional 2D cell cultures is well recognized by the scientific community for its relevance in mimicking the native tissue architecture and functionality. The recent paradigm shift in the field of tissue engineering toward the development of 3D in vitro models can be realized with its myriad of applications, including drug screening, developing alternative diagnostics, and regenerative medicine. Hydrogels are considered the most suitable biomaterial for developing an in vitro model owing to their similarity in features to the extracellular microenvironment of native tissue. In this review article, recent progress in the use of hydrogel-based biomaterial for the development of 3D in vitro biomimetic tissue models is highlighted. Discussions of hydrogel sources and the latest hybrid system with different combinations of biopolymers are also presented. The hydrogel crosslinking mechanism and design consideration are summarized, followed by different types of available hydrogel module systems along with recent microfabrication technologies. We also present the latest developments in engineering hydrogel-based 3D in vitro models targeting specific tissues. Finally, we discuss the challenges surrounding current in vitro platforms and 3D models in the light of future perspectives for an improved biomimetic in vitro organ system.
Collapse
Affiliation(s)
- Somnath Maji
- Department of Mechanical and Biomedical Engineering, Kangwon National University (KNU), Chuncheon 24341, Korea;
| | - Hyungseok Lee
- Department of Mechanical and Biomedical Engineering, Kangwon National University (KNU), Chuncheon 24341, Korea;
- Department of Smart Health Science and Technology, Kangwon National University (KNU), Chuncheon 24341, Korea
| |
Collapse
|
6
|
Qin D, Wang N, You XG, Zhang AD, Chen XG, Liu Y. Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: ongoing research and perspectives. Biomater Sci 2021; 10:318-353. [PMID: 34783809 DOI: 10.1039/d1bm01294k] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone is a hard-connective tissue composed of matrix, cells and bioactive factors with a hierarchical structure, where the matrix is mainly composed of type I collagen and hydroxyapatite. Collagen fibers assembled by collagen are the template for mineralization and make an important contribution to bone formation and the bone remodeling process. Therefore, collagen has been widely clinically used for bone/cartilage defect regeneration. However, pure collagen implants, such as collagen scaffolds or sponges, have limitations in the bone/cartilage regeneration process due to their poor mechanical properties and osteoinductivity. Different forms of collagen-based composites prepared by incorporating natural/artificial polymers or bioactive inorganic substances are characterized by their interconnected porous structure and promoting cell adhesion, while they improve the mechanical strength, structural stability and osteogenic activities of the collagen matrix. In this review, various forms of collagen-based biocomposites, such as scaffolds, sponges, microspheres/nanoparticles, films and microfibers/nanofibers prepared by natural/synthetic polymers, bioactive ceramics and carbon-based materials compounded with collagen are reviewed. In addition, the application of collagen-based biocomposites as cytokine, cell or drug (genes, proteins, peptides and chemosynthetic) delivery platforms for proangiogenesis and bone/cartilage tissue regeneration is also discussed. Finally, the potential application, research and development direction of collagen-based biocomposites in future bone/cartilage tissue regeneration are discussed.
Collapse
Affiliation(s)
- Di Qin
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Na Wang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xin-Guo You
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - An-Di Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| |
Collapse
|
7
|
Abstract
Living tissues, heterogeneous at the microscale, usually scatter light. Strong scattering is responsible for the whiteness of bones, teeth, and brain and is known to limit severely the performances of biomedical optical imaging. Transparency is also found within collagen-based extracellular tissues such as decalcified ivory, fish scales, or cornea. However, its physical origin is still poorly understood. Here, we unveil the presence of a gap of transparency in scattering fibrillar collagen matrices within a narrow range of concentration in the phase diagram. This precholesteric phase presents a three-dimensional (3D) orientational order biomimetic of that in natural tissues. By quantitatively studying the relation between the 3D fibrillar network and the optical and mechanical properties of the macroscopic matrices, we show that transparency results from structural partial order inhibiting light scattering, while preserving mechanical stability, stiffness, and nonlinearity. The striking similarities between synthetic and natural materials provide insights for better understanding the occurring transparency.
Collapse
|
8
|
Huynh RN, Yousof M, Ly KL, Gombedza FC, Luo X, Bandyopadhyay BC, Raub CB. Microstructural densification and alignment by aspiration-ejection influence cancer cell interactions with three-dimensional collagen networks. Biotechnol Bioeng 2020; 117:1826-1838. [PMID: 32073148 DOI: 10.1002/bit.27308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/17/2019] [Accepted: 02/16/2020] [Indexed: 01/18/2023]
Abstract
Extracellular matrix microstructure and mechanics are crucial to breast cancer progression and invasion into surrounding tissues. The peritumor collagen network is often dense and aligned, features which in vitro models lack. Aspiration of collagen hydrogels led to densification and alignment of microstructure surrounding embedded cancer cells. Two metastasis-derived breast cancer cell lines, MDA-MB-231 and MCF-7, were cultured in initially 4 mg/ml collagen gels for 3 days after aspiration, as well as in unaspirated control hydrogels. Videomicroscopy during aspiration, and at 0, 1, and 3 days after aspiration, epifluorescence microscopy of phalloidin-stained F-actin cytoskeleton, histological sections, and soluble metabolic byproducts from constructs were collected to characterize effects on the embedded cell morphology, the collagen network microstructure, and proliferation. Breast cancer cells remained viable after aspiration-ejection, proliferating slightly less than in unaspirated gels. Furthermore, MDA-MB-231 cells appear to partially relax the collagen network and lose alignment 3 days after aspiration. Aspiration-ejection generated aligned, compact collagen network microstructure with immediate cell co-orientation and higher cell number density apparently through purely physical means, though cell-collagen contact guidance and network remodeling influence cell organization and collagen network microstructure during subsequent culture. This study establishes a platform to determine the effects of collagen density and alignment on cancer cell behavior, with translational potential for anticancer drug screening in a biomimetic three-dimensional matrix microenvironment, or implantation in preclinical models.
Collapse
Affiliation(s)
- Ruby N Huynh
- Department of Biomedical Engineering, The Catholic University of America, Washington, District of Columbia
| | - Manal Yousof
- Department of Biomedical Engineering, The Catholic University of America, Washington, District of Columbia
| | - Khanh L Ly
- Department of Biomedical Engineering, The Catholic University of America, Washington, District of Columbia
| | - Farai C Gombedza
- Research Service, Veterans Affairs Medical Center, Washington, District of Columbia
| | - Xiaolong Luo
- Department of Mechanical Engineering, The Catholic University of America, Washington, District of Columbia
| | - Bidhan C Bandyopadhyay
- Department of Biomedical Engineering, The Catholic University of America, Washington, District of Columbia.,Research Service, Veterans Affairs Medical Center, Washington, District of Columbia
| | - Christopher B Raub
- Department of Biomedical Engineering, The Catholic University of America, Washington, District of Columbia
| |
Collapse
|
9
|
Physical and mechanical properties of RAFT-stabilised collagen gels for tissue engineering applications. J Mech Behav Biomed Mater 2019; 99:216-224. [DOI: 10.1016/j.jmbbm.2019.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/25/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022]
|
10
|
Yang Q, Guo C, Deng F, Ding C, Yang J, Wu H, Ni Y, Huang L, Chen L, Zhang M. Fabrication of highly concentrated collagens using cooled urea/HAc as novel binary solvent. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Blackmon RL, Sandhu R, Chapman BS, Casbas-Hernandez P, Tracy JB, Troester MA, Oldenburg AL. Imaging Extracellular Matrix Remodeling In Vitro by Diffusion-Sensitive Optical Coherence Tomography. Biophys J 2017; 110:1858-1868. [PMID: 27119645 DOI: 10.1016/j.bpj.2016.03.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/03/2016] [Accepted: 03/07/2016] [Indexed: 01/06/2023] Open
Abstract
The mammary gland extracellular matrix (ECM) is comprised of biopolymers, primarily collagen I, that are created and maintained by stromal fibroblasts. ECM remodeling by fibroblasts results in changes in ECM fiber spacing (pores) that have been shown to play a critical role in the aggressiveness of breast cancer. However, minimally invasive methods to measure the spatial distribution of ECM pore areas within tissues and in vitro 3D culture models are currently lacking. We introduce diffusion-sensitive optical coherence tomography (DS-OCT) to image the nanoscale porosity of ECM by sensing weakly constrained diffusion of gold nanorods (GNRs). DS-OCT combines the principles of low-coherence interferometry and heterodyne dynamic light scattering. By collecting co- and cross-polarized light backscattered from GNRs within tissue culture, the ensemble-averaged translational self-diffusion rate, DT, of GNRs is resolved within ∼3 coherence volumes (10 × 5 μm, x × z). As GNRs are slowed by intermittent collisions with ECM fibers, DT is sensitive to ECM porosity on the size scale of their hydrodynamic diameter (∼46 nm). Here, we validate the utility of DS-OCT using pure collagen I gels and 3D mammary fibroblast cultures seeded in collagen/Matrigel, and associate differences in artificial ECM pore areas with gel concentration and cell seed density. Across all samples, DT was highly correlated with pore area obtained by scanning electron microscopy (R(2) = 0.968). We also demonstrate that DS-OCT can accurately map the spatial heterogeneity of layered samples. Importantly, DS-OCT of 3D mammary fibroblast cultures revealed the impact of fibroblast remodeling, where the spatial heterogeneity of matrix porosity was found to increase with cell density. This provides an unprecedented view into nanoscale changes in artificial ECM porosity over effective pore diameters ranging from ∼43 to 360 nm using a micron-scale optical imaging technique. In combination with the topical deposition of GNRs, the minimally invasive nature of DS-OCT makes this a promising technology for studying tissue remodeling processes.
Collapse
Affiliation(s)
- Richard L Blackmon
- Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rupninder Sandhu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Brian S Chapman
- Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina
| | | | - Joseph B Tracy
- Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina
| | - Melissa A Troester
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Amy L Oldenburg
- Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
12
|
Ghazanfari S, Khademhosseini A, Smit TH. Mechanisms of lamellar collagen formation in connective tissues. Biomaterials 2016; 97:74-84. [DOI: 10.1016/j.biomaterials.2016.04.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/29/2016] [Accepted: 04/20/2016] [Indexed: 12/16/2022]
|
13
|
Robin M, Almeida C, Azaïs T, Haye B, Illoul C, Lesieur J, Giraud-Guille MM, Nassif N, Hélary C. Involvement of 3D osteoblast migration and bone apatite during in vitro early osteocytogenesis. Bone 2016; 88:146-156. [PMID: 27150828 DOI: 10.1016/j.bone.2016.04.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 04/11/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
Abstract
The transition from osteoblast to osteocyte is described to occur through passive entrapment mechanism (self-buried, or embedded by neighboring cells). Here, we provide evidence of a new pathway where osteoblasts are "more" active than generally assumed. We demonstrate that osteoblasts possess the ability to migrate and differentiate into early osteocytes inside dense collagen matrices. This step involves MMP-13 simultaneously with IBSP and DMP1 expression. We also show that osteoblast migration is enhanced by the presence of apatite bone mineral. To reach this conclusion, we used an in vitro hybrid model based on both the structural characteristics of the osteoid tissue (including its density, texture and three-dimensional order), and the use of bone-like apatite. This finding highlights the mutual dynamic influence of osteoblast cell and bone extra cellular matrix. Such interactivity extends the role of physicochemical effects in bone morphogenesis complementing the widely studied molecular signals. This result represents a conceptual advancement in the fundamental understanding of bone formation.
Collapse
Affiliation(s)
- Marc Robin
- Sorbonne Universités UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris UMR 7574, 11 place Marcelin Berthelot, 75005 Paris, France
| | - Claudia Almeida
- Sorbonne Universités UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris UMR 7574, 11 place Marcelin Berthelot, 75005 Paris, France
| | - Thierry Azaïs
- Sorbonne Universités UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris UMR 7574, 11 place Marcelin Berthelot, 75005 Paris, France
| | - Bernard Haye
- Sorbonne Universités UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris UMR 7574, 11 place Marcelin Berthelot, 75005 Paris, France
| | - Corinne Illoul
- Sorbonne Universités UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris UMR 7574, 11 place Marcelin Berthelot, 75005 Paris, France
| | - Julie Lesieur
- EA 2496, Pathologies, Imaging and Biotherapies of the Tooth, UFR Odontologie, University Paris Descartes PRES Sorbonne Paris Cite, Montrouge, France
| | - Marie-Madeleine Giraud-Guille
- Sorbonne Universités UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris UMR 7574, 11 place Marcelin Berthelot, 75005 Paris, France
| | - Nadine Nassif
- Sorbonne Universités UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris UMR 7574, 11 place Marcelin Berthelot, 75005 Paris, France.
| | - Christophe Hélary
- Sorbonne Universités UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris UMR 7574, 11 place Marcelin Berthelot, 75005 Paris, France.
| |
Collapse
|
14
|
Amadeu TP, Coulomb B, Desmouliere A, Costa AMA. Cutaneous Wound Healing: Myofibroblastic Differentiation and in Vitro Models. INT J LOW EXTR WOUND 2016; 2:60-8. [PMID: 15866829 DOI: 10.1177/1534734603256155] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Wound healing is an interactive, dynamic 3-phased process. During the formation of granulation tissue, many fibroblastic cells acquire some morphological and biochemical smooth muscle features and are called myofibroblasts. Myofibroblasts participate in both granulation tissue formation and remodeling phases. Excessive scarring, which is a feature of impaired healing, is a serious health problem that may affect the patient's quality of life. The treatment costs of such lesions are high, and often, the results are unsatisfactory. To understand the wound healing process better and to promote improvement in human healing, models are needed that can predict the in vivo situation in humans. In vitro models allow the study of cell behavior in a controlled environment. Such modeling partitions and reduces to small scales behavior perceived in vivo. This article is focused on `fibroblasts.' In vitro models to study wound healing, the role of (myo)fibroblasts, and skin reconstruction in tissue replacement and promotion of wound healing are discussed.
Collapse
Affiliation(s)
- Thaís Porto Amadeu
- Histology and Embryology Department, State University of Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
15
|
Kamranpour NO, Miri AK, James-Bhasin M, Nazhat SN. A gel aspiration-ejection system for the controlled production and delivery of injectable dense collagen scaffolds. Biofabrication 2016; 8:015018. [DOI: 10.1088/1758-5090/8/1/015018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Blum KM, Novak T, Watkins L, Neu CP, Wallace JM, Bart ZR, Voytik-Harbin SL. Acellular and cellular high-density, collagen-fibril constructs with suprafibrillar organization. Biomater Sci 2016; 4:711-23. [PMID: 26902645 DOI: 10.1039/c5bm00443h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Collagen is used extensively for tissue engineering due to its prevalence in connective tissues and its role in defining tissue biophysical and biological signalling properties. However, traditional collagen-based materials fashioned from atelocollagen and telocollagen have lacked collagen densities, multi-scale organization, mechanical integrity, and proteolytic resistance found within tissues in vivo. Here, highly interconnected low-density matrices of D-banded fibrils were created from collagen oligomers, which exhibit fibrillar as well as suprafibrillar assembly. Confined compression then was applied to controllably reduce the interstitial fluid while maintaining fibril integrity. More specifically, low-density (3.5 mg mL(-1)) oligomer matrices were densified to create collagen-fibril constructs with average concentrations of 12.25 mg mL(-1) and 24.5 mg mL(-1). Control and densified constructs exhibited nearly linear increases in ultimate stress, Young's modulus, and compressive modulus over the ranges of 65 to 213 kPa, 400 to 1.26 MPa, and 20 to 150 kPa, respectively. Densification also increased construct resistance to collagenase degradability. Finally, this process was amenable to creating high-density cellularized tissues; all constructs maintained high cell viability (at least 97%) immediately following compression as well as after 1 day and 7 days of culture. This method, which integrates the suprafibrillar assembly capacity of oligomers and controlled fluid reduction by confined compression, supports the rational and scalable design of a broad range of collagen-fibril materials and cell-encapsulated tissue constructs for tissue engineering applications.
Collapse
Affiliation(s)
- Kevin M Blum
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Hapach LA, VanderBurgh JA, Miller JP, Reinhart-King CA. Manipulation of in vitro collagen matrix architecture for scaffolds of improved physiological relevance. Phys Biol 2015; 12:061002. [PMID: 26689380 DOI: 10.1088/1478-3975/12/6/061002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Type I collagen is a versatile biomaterial that is widely used in medical applications due to its weak antigenicity, robust biocompatibility, and its ability to be modified for a wide array of applications. As such, collagen has become a major component of many tissue engineering scaffolds, drug delivery platforms, and substrates for in vitro cell culture. In these applications, collagen constructs are fabricated to recapitulate a diverse set of conditions. Collagen fibrils can be aligned during or post-fabrication, cross-linked via numerous techniques, polymerized to create various fibril sizes and densities, and copolymerized into a wide array of composite scaffolds. Here, we review approaches that have been used to tune collagen to better recapitulate physiological environments for use in tissue engineering applications and studies of basic cell behavior. We discuss techniques to control fibril alignment, methods for cross-linking collagen constructs to modulate stiffness, and composite collagen constructs to better mimic physiological extracellular matrix.
Collapse
|
18
|
Tidu A, Ghoubay-Benallaoua D, Lynch B, Haye B, Illoul C, Allain JM, Borderie VM, Mosser G. Development of human corneal epithelium on organized fibrillated transparent collagen matrices synthesized at high concentration. Acta Biomater 2015; 22:50-8. [PMID: 25931016 DOI: 10.1016/j.actbio.2015.04.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/06/2015] [Accepted: 04/14/2015] [Indexed: 12/13/2022]
Abstract
Several diseases can lead to opacification of cornea requiring transplantation of donor tissue to restore vision. In this context, transparent collagen I fibrillated matrices have been synthesized at 15, 30, 60 and 90 mg/mL. The matrices were evaluated for fibril organizations, transparency, mechanical properties and ability to support corneal epithelial cell culture. The best results were obtained with 90 mg/mL scaffolds. At this concentration, the fibril organization presented some similarities to that found in corneal stroma. Matrices had a mean Young's modulus of 570 kPa and acellular scaffolds had a transparency of 87% in the 380-780 nm wavelength range. Human corneal epithelial cells successfully colonized the surface of the scaffolds and generated an epithelium with characteristics of corneal epithelial cells (i.e. expression of cytokeratin 3 and presence of desmosomes) and maintenance of stemness during culture (i.e. expression of ΔNp63α and formation of holoclones in colony formation assay). Presence of cultured epithelium on the matrices was associated with increased transparency (89%).
Collapse
Affiliation(s)
- Aurélien Tidu
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris, F-75005 Paris, France
| | - Djida Ghoubay-Benallaoua
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris F75012, France; INSERM, U968, Paris F75012, France; CNRS, UMR_7210, Paris F75012, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU View Maintain, INSERM-DHOS CIC 1423, Paris F-75012, France
| | - Barbara Lynch
- Solids Mechanics Laboratory, Ecole Polytechnique, Centre National de la Recherche Scientifique, Palaiseau, France
| | - Bernard Haye
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris, F-75005 Paris, France
| | - Corinne Illoul
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris, F-75005 Paris, France
| | - Jean-Marc Allain
- Solids Mechanics Laboratory, Ecole Polytechnique, Centre National de la Recherche Scientifique, Palaiseau, France
| | - Vincent M Borderie
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris F75012, France; INSERM, U968, Paris F75012, France; CNRS, UMR_7210, Paris F75012, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU View Maintain, INSERM-DHOS CIC 1423, Paris F-75012, France
| | - Gervaise Mosser
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris, F-75005 Paris, France.
| |
Collapse
|
19
|
Dextran-based hydrogel formed by thiol-Michael addition reaction for 3D cell encapsulation. Colloids Surf B Biointerfaces 2015; 128:140-148. [DOI: 10.1016/j.colsurfb.2015.02.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 01/31/2015] [Accepted: 02/02/2015] [Indexed: 12/17/2022]
|
20
|
Abstract
Type I collagen is a fibrillar protein, a member of a large family of collagen proteins. It is present in most body tissues, usually in combination with other collagens and other components of extracellular matrix. Its synthesis is increased in various pathological situations, in healing wounds, in fibrotic tissues and in many tumors. After extraction from collagen-rich tissues it is widely used in studies of cell behavior, especially those of fibroblasts and myofibroblasts. Cells cultured in a classical way, on planar plastic dishes, lack the third dimension that is characteristic of body tissues. Collagen I forms gel at neutral pH and may become a basis of a 3D matrix that better mimics conditions in tissue than plastic dishes.
Collapse
Affiliation(s)
- Jiří Kanta
- a Department of Medical Biochemistry; Medical Faculty in Hradec Králové; Charles University ; Prague , Czech Republic
| |
Collapse
|
21
|
Dey-Guha I, Alves CP, Yeh AC, Sole X, Darp R, Ramaswamy S. A mechanism for asymmetric cell division resulting in proliferative asynchronicity. Mol Cancer Res 2015; 13:223-30. [PMID: 25582703 DOI: 10.1158/1541-7786.mcr-14-0474] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED All cancers contain an admixture of rapidly and slowly proliferating cancer cells. This proliferative heterogeneity complicates the diagnosis and treatment of patients with cancer because slow proliferators are hard to eradicate, can be difficult to detect, and may cause disease relapse sometimes years after apparently curative treatment. While clonal selection theory explains the presence and evolution of rapid proliferators within cancer cell populations, the circumstances and molecular details of how slow proliferators are produced is not well understood. Here, a β1-integrin/FAK/mTORC2/AKT1-associated signaling pathway is discovered that can be triggered for rapidly proliferating cancer cells to undergo asymmetric cell division and produce slowly proliferating AKT1(low) daughter cells. In addition, evidence indicates that the proliferative output of this signaling cascade involves a proteasome-dependent degradation process mediated by the E3 ubiquitin ligase TTC3. These findings reveal that proliferative heterogeneity within cancer cell populations, in part, is produced through a targetable signaling mechanism, with potential implications for understanding cancer progression, dormancy, and therapeutic resistance. IMPLICATIONS These findings provide a deeper understanding of the proliferative heterogeneity that exists in the tumor environment and highlight the importance of designing future therapies against multiple proliferative contexts. VISUAL OVERVIEW: A proposed mechanism for producing slowly proliferating cancer cells. http://mcr.aacrjournals.org/content/early/2015/01/09/1541-7786.MCR-14-0474/F1.large.jpg.
Collapse
Affiliation(s)
- Ipsita Dey-Guha
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Cleidson P Alves
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | | | - Xavier Sole
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Revati Darp
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Sridhar Ramaswamy
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts. Broad Institute of Harvard and MIT, Cambridge, Massachusetts. Harvard Stem Cell Institute, Cambridge, Massachusetts. Harvard-Ludwig Center for Cancer Research, Boston, Massachusetts.
| |
Collapse
|
22
|
Chau M, Sriskandha SE, Thérien-Aubin H, Kumacheva E. Supramolecular Nanofibrillar Polymer Hydrogels. SUPRAMOLECULAR POLYMER NETWORKS AND GELS 2015. [DOI: 10.1007/978-3-319-15404-6_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
Marelli B, Ghezzi CE, James-Bhasin M, Nazhat SN. Fabrication of injectable, cellular, anisotropic collagen tissue equivalents with modular fibrillar densities. Biomaterials 2015; 37:183-93. [DOI: 10.1016/j.biomaterials.2014.10.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/02/2014] [Indexed: 12/13/2022]
|
24
|
Helary C, Abed A, Mosser G, Louedec L, Letourneur D, Coradin T, Giraud-Guille MM, Meddahi-Pellé A. Evaluation of dense collagen matrices as medicated wound dressing for the treatment of cutaneous chronic wounds. Biomater Sci 2014. [PMID: 26218128 DOI: 10.1039/c4bm00370e] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cutaneous chronic wounds are characterized by an impaired wound healing which may lead to infection and amputation. When current treatments are not effective enough, the application of wound dressings is required. To date, no ideal biomaterial is available. In this study, highly dense collagen matrices have been evaluated as novel medicated wound dressings for the treatment of chronic wounds. For this purpose, the structure, mechanical properties, swelling ability and in vivo stability of matrices concentrated from 5 to 40 mg mL(-1) were tested. The matrix stiffness increased with the collagen concentration and was associated with the fibril density and thickness. Increased collagen concentration also enhanced the material resistance against accelerated digestion by collagenase. After subcutaneous implantation in rats, dense collagen matrices exhibited high stability without any degradation after 15 days. The absence of macrophages and neutrophils evidenced their biocompatibility. Subsequently, dense matrices at 40 mg mL(-1) were evaluated as drug delivery system for ampicillin release. More concentrated matrices exhibited the best swelling abilities and could absorb 20 times their dry weight in water, allowing for an efficient antibiotic loading from their dried form. They released efficient doses of antibiotics that inhibited the bacterial growth of Staphylococcus Aureus over 3 days. In parallel, they show no cytotoxicity towards human fibroblasts. These results show that dense collagen matrices are promising materials to develop medicated wound dressings for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Christophe Helary
- University Pierre and Marie Curie, Ecole Pratique des Hautes Etudes, CNRS - UMR 7574, Condensed Matter Chemistry Laboratory, Batiment F, 4 place Jussieu, 75005 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Li Z, Cui Z. Three-dimensional perfused cell culture. Biotechnol Adv 2013; 32:243-54. [PMID: 24184152 DOI: 10.1016/j.biotechadv.2013.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 02/14/2013] [Accepted: 10/07/2013] [Indexed: 12/17/2022]
Abstract
Compelling evidence suggests the limitation and shortcomings of the current and well established cell culture method using multi-well plates, flasks and Petri dishes. These are particularly important when cell functions are sensitive to the local microenvironment, cell-cell and cell-extracellular matrix interactions. There is a clear need for advanced cell culture systems which mimic in vivo and more physiological conditions. This review summarises and analyses recent progress in three dimensional (3D) cell culture with perfusion as the next generation cell culture tools, while excluding engineered tissue culture where three dimensional scaffold has to be used for structural support and perfusion for overcoming mass transfer control. Apart from research activities in academic community, product development in industry is also included in this review.
Collapse
Affiliation(s)
- Zhaohui Li
- Institute of Biomedical Engineering, Department of Engineering Science, Oxford University, Oxford, UK
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, Oxford University, Oxford, UK.
| |
Collapse
|
26
|
Ku KC, Lee MW, Kuo SM, Yao CH, Chang SJ. Preparation and evaluation of collagen I/ gellan gum/β-TCP microspheres as bone graft substitute materials. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2013:6667-70. [PMID: 24111272 DOI: 10.1109/embc.2013.6611085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Collagen I is the main component of protein in bone and exhibits many excellent applications in biomedical fields. Gellan gum possesses good biocompatible, biodegradable and good mechanical property, and shows great potentials as tissue engineering scaffold or cell culture substrate. Therefore, the aim of this study was to use collagen I, gellan gum and β-TCP to prepare collagen I/gellan gum/β-TCP microspheres by emulsion method as bone graft substitute materials. The preliminary results showed that collagen I/gellan gum/β-TCP microspheres had particle size distribution between 500-1000 µP in diameter and exhibited better mechanical strength. These microspheres also showed good biocompatibility in cell activity test.
Collapse
|
27
|
A novel tissue engineered three-dimensional in vitro colorectal cancer model. Acta Biomater 2013; 9:7917-26. [PMID: 23624217 PMCID: PMC3711238 DOI: 10.1016/j.actbio.2013.04.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/11/2013] [Accepted: 04/16/2013] [Indexed: 12/17/2022]
Abstract
The interactions of cancer cells within a solid mass with the surrounding reactive stroma are critical for growth and progression. The surrounding vasculature is recruited into the periphery of the growing tumour to supply cancer cells with nutrients and O2. This study focuses on developing a novel three-dimensional (3-D) in vitro biomimetic colorectal cancer model using colorectal cancer cells and connective tissue cells. The 3-D model comprises a dense artificial cancer mass, created by partial plastic compression of collagen type I containing HT29 colorectal cancer cells, nested in a non-dense collagen type I gel populated by fibroblasts and/or endothelial cells. HT29 cells within the dense mass proliferate slower than when cultured in a two-dimensional system. These cells form tumour spheroids which invade the surrounding matrix, away from the hypoxic conditions in the core of the construct, measured using real time O2 probes. This model is also characterized by the release of vascular endothelial growth factor (VEGF) by HT29 cells, mainly at the invading edge of the artificial cancer mass. This characterization is fundamental in establishing a reproducible, complex model that could be used to advance our understanding of cancer pathology and will facilitate therapeutic drug testing.
Collapse
|
28
|
Mori H, Shimizu K, Hara M. Dynamic viscoelastic properties of collagen gels with high mechanical strength. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3230-6. [PMID: 23706205 DOI: 10.1016/j.msec.2013.03.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 03/08/2013] [Accepted: 03/29/2013] [Indexed: 11/17/2022]
Abstract
We developed a new method for the preparation of mechanically strong collagen gels by combining successively basic gel formation, followed by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) cross-linking and lyophilization. Gels cross-linked three times with this method showed stronger mechanical properties (G': 3730±2060 Pa, G″: 288±35 Pa) than a conventional gel that was sequentially cross-linked with EDC once (G': 226±70 Pa, G″: 21±4.4 Pa), but not as strong as the same gel with heating for 30 min at 80°C (G': 7010±830 Pa, G″: 288±35 Pa) reported in our previous paper. The conventional collagen gel was cross-linked with EDC once, heated once, and then subjected twice to a lyophilization-gel formation-cross-linking cycle to give three-cycled gel 2. This gel had the strongest mechanical properties (G': 40,200±18,000 Pa, G″: 3090±1400 Pa, Young's modulus: 0.197±0.069 MPa) of the gels tested. These promising results suggest possible applications of the gels as scaffolds in tissue engineering research.
Collapse
Affiliation(s)
- Hideki Mori
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Naka-ku, Sakai, Osaka, Japan
| | | | | |
Collapse
|
29
|
Abou Neel EA, Bozec L, Knowles JC, Syed O, Mudera V, Day R, Hyun JK. Collagen--emerging collagen based therapies hit the patient. Adv Drug Deliv Rev 2013; 65:429-56. [PMID: 22960357 DOI: 10.1016/j.addr.2012.08.010] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 08/10/2012] [Accepted: 08/28/2012] [Indexed: 12/11/2022]
Abstract
The choice of biomaterials available for regenerative medicine continues to grow rapidly, with new materials often claiming advantages over the short-comings of those already in existence. Going back to nature, collagen is one of the most abundant proteins in mammals and its role is essential to our way of life. It can therefore be obtained from many sources including porcine, bovine, equine or human and offer a great promise as a biomimetic scaffold for regenerative medicine. Using naturally derived collagen, extracellular matrices (ECMs), as surgical materials have become established practice for a number of years. For clinical use the goal has been to preserve as much of the composition and structure of the ECM as possible without adverse effects to the recipient. This review will therefore cover in-depth both naturally and synthetically produced collagen matrices. Furthermore the production of more sophisticated three dimensional collagen scaffolds that provide cues at nano-, micro- and meso-scale for molecules, cells, proteins and bulk fluids by inducing fibrils alignments, embossing and layered configuration through the application of plastic compression technology will be discussed in details. This review will also shed light on both naturally and synthetically derived collagen products that have been available in the market for several purposes including neural repair, as cosmetic for the treatment of dermatologic defects, haemostatic agents, mucosal wound dressing and guided bone regeneration membrane. There are other several potential applications of collagen still under investigations and they are also covered in this review.
Collapse
|
30
|
Zhang T, Chen J, Zhang Q, Dou J, Gu N. Poly(ethylene glycol)-cross linked poly(methyl vinyl ether-co-maleic acid)hydrogels for three-dimensional human ovarian cancer cell culture. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.01.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Silvent J, Nassif N, Helary C, Azaïs T, Sire JY, Guille MMG. Collagen osteoid-like model allows kinetic gene expression studies of non-collagenous proteins in relation with mineral development to understand bone biomineralization. PLoS One 2013; 8:e57344. [PMID: 23460841 PMCID: PMC3583827 DOI: 10.1371/journal.pone.0057344] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/21/2013] [Indexed: 01/14/2023] Open
Abstract
Among persisting questions on bone calcification, a major one is the link between protein expression and mineral deposition. A cell culture system is here proposed opening new integrative studies on biomineralization, improving our knowledge on the role played by non-collagenous proteins in bone. This experimental in vitro model consisted in human primary osteoblasts cultured for 60 days at the surface of a 3D collagen scaffold mimicking an osteoid matrix. Various techniques were used to analyze the results at the cellular and molecular level (adhesion and viability tests, histology and electron microscopy, RT- and qPCR) and to characterize the mineral phase (histological staining, EDX, ATG, SAED and RMN). On long term cultures human bone cells seeded on the osteoid-like matrix displayed a clear osteoblast phenotype as revealed by the osteoblast-like morphology, expression of specific protein such as alkaline phosphatase and expression of eight genes classically considered as osteoblast markers, including BGLAP, COL1A1, and BMP2. Von Kossa and alizarine red allowed us to identify divalent calcium ions at the surface of the matrix, EDX revealed the correct Ca/P ratio, and SAED showed the apatite crystal diffraction pattern. In addition RMN led to the conclusion that contaminant phases were absent and that the hydration state of the mineral was similar to fresh bone. A temporal correlation was established between quantified gene expression of DMP1 and IBSP, and the presence of hydroxyapatite, confirming the contribution of these proteins to the mineralization process. In parallel a difference was observed in the expression pattern of SPP1 and BGLAP, which questioned their attributed role in the literature. The present model opens new experimental possibilities to study spatio-temporal relations between bone cells, dense collagen scaffolds, NCPs and hydroxyapatite mineral deposition. It also emphasizes the importance of high collagen density environment in bone cell physiology.
Collapse
Affiliation(s)
- Jérémie Silvent
- UMR 7574, Chimie de la Matière Condensée de Paris, Ecole Pratique des Hautes Etudes, Université Pierre et Marie Curie, Paris, France
- UMR 7138, Equipe Evolution et développement du squelette, Université Pierre et Marie Curie, Paris, France
| | - Nadine Nassif
- UMR 7574, Chimie de la Matière Condensée de Paris, Ecole Pratique des Hautes Etudes, Université Pierre et Marie Curie, Paris, France
| | - Christophe Helary
- UMR 7574, Chimie de la Matière Condensée de Paris, Ecole Pratique des Hautes Etudes, Université Pierre et Marie Curie, Paris, France
| | - Thierry Azaïs
- UMR 7574, Chimie de la Matière Condensée de Paris, Ecole Pratique des Hautes Etudes, Université Pierre et Marie Curie, Paris, France
| | - Jean-Yves Sire
- UMR 7138, Equipe Evolution et développement du squelette, Université Pierre et Marie Curie, Paris, France
| | - Marie Madeleine Giraud Guille
- UMR 7574, Chimie de la Matière Condensée de Paris, Ecole Pratique des Hautes Etudes, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
32
|
Aimé C, Mosser G, Pembouong G, Bouteiller L, Coradin T. Controlling the nano-bio interface to build collagen-silica self-assembled networks. NANOSCALE 2012; 4:7127-7134. [PMID: 23070474 DOI: 10.1039/c2nr31901b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Bio-hybrid networks are designed based on the self-assembly of surface-engineered collagen-silica nanoparticles. Collagen triple helices can be confined on the surface of sulfonate-modified silica particles in a controlled manner. This gives rise to hybrid building blocks with well-defined diameters and surface potentials. Taking advantage of the self-assembling properties of collagen, collagen-silica networks are further built-up in solution. The structural and specific recognition properties of the collagen fibrils are well-preserved within the hybrid assembly. A combination of calorimetry, dynamic light scattering, zetametry and microscopy studies indicates that network formation occurs via a surface-mediated mechanism where pre-organization of the protein chains on the particle surface favors the fibrillogenesis process. These results enlighten the importance of the nano-bio interface on the formation and properties of self-assembled bionanocomposites.
Collapse
Affiliation(s)
- Carole Aimé
- UPMC Univ Paris 06, CNRS, Chimie de la Matière Condensée de Paris Collège de France, 11 place Marcelin Berthelot, F-75005 Paris, France.
| | | | | | | | | |
Collapse
|
33
|
Labour MN, Banc A, Tourrette A, Cunin F, Verdier JM, Devoisselle JM, Marcilhac A, Belamie E. Thick collagen-based 3D matrices including growth factors to induce neurite outgrowth. Acta Biomater 2012; 8:3302-12. [PMID: 22617741 DOI: 10.1016/j.actbio.2012.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/19/2012] [Accepted: 05/14/2012] [Indexed: 11/19/2022]
Abstract
Designing synthetic microenvironments for cellular investigations is a very active area of research at the crossroads of cell biology and materials science. The present work describes the design and functionalization of a three-dimensional (3D) culture support dedicated to the study of neurite outgrowth from neural cells. It is based on a dense self-assembled collagen matrix stabilized by 100-nm-wide interconnected native fibrils without chemical crosslinking. The matrices were made suitable for cell manipulation and direct observation in confocal microscopy by anchoring them to traditional glass supports with a calibrated thickness of ∼50μm. The matrix composition can be readily adapted to specific neural cell types, notably by incorporating appropriate neurotrophic growth factors. Both PC-12 and SH-SY5Y lines respond to growth factors (nerve growth factor and brain-derived neurotrophic factor, respectively) impregnated and slowly released from the support. Significant neurite outgrowth is reported for a large proportion of cells, up to 66% for PC12 and 49% for SH-SY5Y. It is also shown that both growth factors can be chemically conjugated (EDC/NHS) throughout the matrix and yield similar proportions of cells with longer neurites (61% and 52%, respectively). Finally, neurite outgrowth was observed over several tens of microns within the 3D matrix, with both diffusing and immobilized growth factors.
Collapse
Affiliation(s)
- M-N Labour
- Ecole Pratique des Hautes Etudes, 46 rue de Lille, 75007 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Raviraj V, Fok S, Zhao J, Chien HY, Lyons JG, Thompson EW, Soon L. Regulation of ROCK1 via Notch1 during breast cancer cell migration into dense matrices. BMC Cell Biol 2012; 13:12. [PMID: 22583596 PMCID: PMC3520698 DOI: 10.1186/1471-2121-13-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 02/15/2012] [Indexed: 02/05/2023] Open
Abstract
Background The behaviour of tumour cells depends on factors such as genetics and the tumour microenvironment. The latter plays a crucial role in normal mammary gland development and also in breast cancer initiation and progression. Breast cancer tissues tend to be highly desmoplastic and dense matrix as a pre-existing condition poses one of the highest risk factors for cancer development. However, matrix influence on tumour cell gene expression and behaviour such as cell migration is not fully elucidated. Results We generated high-density (HD) matrices that mimicked tumour collagen content of 20 mg/cm3 that were ~14-fold stiffer than low-density (LD) matrix of 1 mg/cm3. Live-cell imaging showed breast cancer cells utilizing cytoplasmic streaming and cell body contractility for migration within HD matrix. Cell migration was blocked in the presence of both the ROCK inhibitor, Y-27632, and the MMP inhibitor, GM6001, but not by the drugs individually. This suggests roles for ROCK1 and MMP in cell migration are complicated by compensatory mechanisms. ROCK1 expression and protein activity, were significantly upregulated in HD matrix but these were blocked by treatment with a histone deacetylase (HDAC) inhibitor, MS-275. In HD matrix, the inhibition of ROCK1 by MS-275 was indirect and relied upon protein synthesis and Notch1. Inhibition of Notch1 using pooled siRNA or DAPT abrogated the inhibition of ROCK1 by MS-275. Conclusion Increased matrix density elevates ROCK1 activity, which aids in cell migration via cell contractility. The upregulation of ROCK1 is epigenetically regulated in an indirect manner involving the repression of Notch1. This is demonstrated from inhibition of HDACs by MS-275, which caused an upregulation of Notch1 levels leading to blockade of ROCK1 expression.
Collapse
Affiliation(s)
- Vanisri Raviraj
- Australian Centre for Microscopy and Microanalysis (ACMM), AMMRF, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | | | |
Collapse
|
35
|
Chłopek J, Morawska-Chochół A, Bajor G, Adwent M, Cieślik-Bielecka A, Cieślik M, Sabat D. The influence of carbon fibres on the resorption time and mechanical properties of the lactide–glycolide co-polymer. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 18:1355-68. [DOI: 10.1163/156856207782246858] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Jan Chłopek
- a Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Avenue, 30-059 Cracow, Poland
| | - Anna Morawska-Chochół
- b Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Avenue, 30-059 Cracow, Poland
| | - Grzegorz Bajor
- c Department and Clinic of Pediatric Surgery, Medical University of Silesia, Katowice, Poland
| | - Marek Adwent
- d First Department and Clinic of Maxillofacial Surgery, Medical University of Silesia, Zabrze, Poland
| | - Agata Cieślik-Bielecka
- e First Department and Clinic of Maxillofacial Surgery, Medical University of Silesia, Zabrze, Poland
| | - Magdalena Cieślik
- f Department and Section of Stomatological Materials Science, Medical University of Silesia, Bytom, Poland
| | - Daniel Sabat
- g Department of Histopathology, Medical University of Silesia, Zabrze, Poland
| |
Collapse
|
36
|
Frank L, Lebreton-Decoster C, Godeau G, Coulomb B, Jozefonvicz J. Effect of a dextran derivative associated with TGF-β1 or FGF-2 on dermal fibroblast behaviour in dermal equivalents. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 15:1463-80. [PMID: 15648575 DOI: 10.1163/1568562042368040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dextran derivatives that mimic the action of heparin have been shown to protect heparin-binding growth factors, such as Transforming Growth Factor-beta1 (TGF-beta1) and Fibroblast Growth Factor-2 (FGF-2). The aim of this study was to investigate the effect of LS21 DMCBSu, a dextran derivative which contains methylcarboxylate, benzylamide and sulfate groups, both by itself and when combined with TGF-beta1 and FGF-2, on the behaviour of fibroblasts. Two systems were assessed: a monolayer culture and three-dimensional collagenous matrices (dermal equivalent). Polymeric biomaterial LS21 DMCBSu and LS21 DMCBSu associated with either TGF-beta1 or FGF-2, were added to the monolayer culture on day 3. After 7 days of culture the number of cells was determined. Two treatments were carried out on the dermal equivalents: 9 days of treatment from day 0 to day 9 of culture and 9 days of treatment from day 21 to day 30 of culture for the premature and the mature dermal equivalents respectively. In the monolayer culture, the bioactive polymer produced a slight increase in fibroblast growth (10% with 10 microg/ml of LS21 DMCBSu) and promoted the stimulating effect of the growth factors on cell growth. In the premature dermal equivalents growth was stimulated by 20% when 10 microg/ml LS21 DMCBSu was added. The dextran derivative mixed with TGF-beta1 slightly inhibited the growth effect of the growth factor in the dermal equivalents. The functionalized dextran with FGF-2 enhanced the stimulating effect of the growth factor in the premature dermal equivalent. A significant increase in cell growth was observed with the fibroblasts treated with the FGF-2 LS21 DMCBSu mixture and FGF-2 (51% and 40%, respectively). However, none of the described treatments affected the cell growth in the mature dermal equivalent. Furthermore, the dextran derivative had no effect on dermal contraction under these experimental conditions (3D culture).
Collapse
Affiliation(s)
- Laetitia Frank
- Laboratoire de Recherches sur les Macromolécules, CNRS FRE 2314, Université Paris 13, 93430 Villetaneuse, France.
| | | | | | | | | |
Collapse
|
37
|
Helary C, Rodriguez-Sanchez B, Rodrigues-Sanchez B, Vigier S, Giraud Guill MM. Dense fibrillar collagen matrices to analyse extracellular matrix receptor function. ACTA ACUST UNITED AC 2011; 60:7-14. [PMID: 22153897 DOI: 10.1016/j.patbio.2011.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/30/2011] [Indexed: 01/13/2023]
Abstract
AIM The goal of this study was to understand whether dense fibrillar collagen matrices, with a hierarchical structure resembling native collagen matrices, could be useful to study collagen receptor function, in a more physiological context. The receptor analysed here was integrin α11β1, already shown to be involved in cell attachment and migration on collagen-coated plastic, and also in contraction of loose fibrillar collagen hydrogels. MATERIALS AND METHODS Collagen matrices prepared here corresponded to dense fibrillar hydrogels concentrated at 5mg/ml. The behaviour of α11β1 deficient fibroblasts seeded on these concentrated matrices was assessed in terms of adhesion, morphology and migration, then compared to that observed on classical hydrogels at 1mg/ml, corresponding to loose collagen matrices. RESULTS Short-term attachment assays showed disturbed interactions between α11β1 deficient cells and collagen matrices in a concentration-dependent manner. Long-term assays revealed reduced cell spreading of alpha 11(-/-) cells on the dense collagen matrices, associated with a disturbed cytoskeleton network. Moreover, anoikis was observed when alpha 11(-/-) cells were seeded on 5mg/ml matrices, and not on looser 1mg/ml matrices. In scratch wound in vitro assays, carried out with cells on 5mg/ml fibrillar collagen matrices, alpha 11(-/-) cells migrated much better than their wild-type counterparts. In contrast, no significant difference was observed between wild and knock-out cells seeded on plastic. CONCLUSIONS The present study demonstrates the validity of in vivo-like dense fibrillar collagen matrices to evaluate cell receptor functions more significantly than with 2D cell cultures or loose hydrogels.
Collapse
Affiliation(s)
- C Helary
- CNRS-UMR 7574, laboratoire chimie de la matière condensée, University Pierre and Marie Curie-Paris 6, école pratique des Hautes-Études, 4, place Jussieu, 75005 Paris, France.
| | | | | | | | | |
Collapse
|
38
|
Coradin T, Giraud-Guille MM, Helary C, Livage J, Sanchez C. A Novel Route to Collagen-Silica Biohybrids. ACTA ACUST UNITED AC 2011. [DOI: 10.1557/proc-726-q5.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractA novel synthetic pathway to obtain collagen-silica biohybrids using a co-gelation process is described. Concentration control of the inorganic and organic precursors leads to various morphologies. Of special interest is the possibility to obtain, through collagen templating, silica fibres that are maintained after protein removal.
Collapse
|
39
|
Abstract
Introduction. Human dermal tissue is composed of loose and dense connective
tissue. Main cell populations are fibroblasts and the dominant fibers are
built from collagen type I. The aim of our study was to determine the precise
method and time frame for the in vitro production of human dermal equivalent
and to investigate the effects of ratio of structural elements and vitamin C
on characteristics of the engineered tissue. Material and methods. Primary
isolation of the foreskin fibroblasts was performed by explant method and
enzymatic dissociation. Various collagen gels were obtained by mixing cells
(from 25x103 to 200x103/ml) and neutralized collagen type I (from 2 to 4
mg/ml), with or without vitamin C. The routine histological and
morphometrical examination was performed. Results. Enzymatic dissociation of
the foreskin proved to be a faster method for production of desired number of
fibroblasts (7.5x105 for 4 days). The contraction of collagen-gels started
from day one through day seven and was dependent on cell and collagen
concentration with higher density gels being contracted to a greater extent,
except for the lowest/highest values. The best result was achieved with
100x103 cells and 2 mg/ml collagen. Vitamin C at 50 ?g/ml had no effect on
speed of tissue formation. Conclusion. A precise approach that mimic the in
vivo conditions is needed for the in vitro production of the dermal
equivalent suitable for the possible treatment of tissue defects. Nearly ten
days are necessary from the donor tissue dissociation to the final product.
Collapse
|
40
|
Pampaloni F, Stelzer EHK. Three-Dimensional Cell Cultures in Toxicology. Biotechnol Genet Eng Rev 2009; 26:117-38. [DOI: 10.5661/bger-26-117] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
MacDonald RA, Voge CM, Kariolis M, Stegemann JP. Carbon nanotubes increase the electrical conductivity of fibroblast-seeded collagen hydrogels. Acta Biomater 2008; 4:1583-92. [PMID: 18706876 DOI: 10.1016/j.actbio.2008.07.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 05/15/2008] [Accepted: 07/02/2008] [Indexed: 11/15/2022]
Abstract
Carbon nanotubes are attractive as additives in fiber-reinforced composites due to their high aspect ratio, strength and electrical conductivity. In the present study, solubilized collagen Type I was polymerized in the presence of dispersed single-walled carbon nanotubes (SWNT) and human dermal fibroblast cells (HDF) to produce collagen-SWNT composite biomaterials with HDF embedded directly in the matrix. The resulting constructs, with SWNT loadings of 0 (control), 0.8, 2.0 and 4.0 wt.% SWNT, were cultured and electrical properties were evaluated in the frequency range 5-500 kHz at days 3 and 7. All collagen-SWNT hydrogel matrices underwent HDF-mediated gel compaction over time in culture, but the presence of SWNT significantly decreased the rate and extent of gel compaction. Viability of HDF in all constructs was consistently high and cell morphology was not affected by the presence of SWNT. However, cell number at day 7 in culture decreased with increasing SWNT loading. Electrical conductivity of the constructs varied from 3 to 7 mS cm(-1), depending on SWNT loading level. Conductivity increased uniformly with increasing wt.% of SWNT (R=0.78) and showed a modest frequency dependence, suggesting that the electrical percolation threshold had not been reached in these materials. These data demonstrate that the electrical conductivity of cell-seeded collagen gels can be increased through the incorporation of carbon nanotubes. Protein-SWNT composite materials may have application as scaffolds for tissue engineering, as substrates to study electrical stimulation of cells, and as transducers or leads for biosensors.
Collapse
Affiliation(s)
- Rebecca A MacDonald
- Department of Biomedical Engineering, Biotech-BMED 2, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180-3590, USA
| | | | | | | |
Collapse
|
42
|
Crabb RAB, Hubel A. Influence of matrix processing on the optical and biomechanical properties of a corneal stroma equivalent. Tissue Eng Part A 2008; 14:173-82. [PMID: 18333815 DOI: 10.1089/ten.a.2007.0139] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interest in developing tissue-engineered cornea has increased with the decrease in the supply of donor tissue; however, the high strength and transparency of the cornea present a challenge. Both the collagen processing and crosslinking methods were hypothesized to influence the optical and biomechanical properties of collagen matrices, while regular surface topography was hypothesized to align stromal fibroblasts. Improved transparency and strength were observed when soluble tropocollagen was added to the insoluble collagen and when glucose-mediated ultraviolet (UV) crosslinking as opposed to dehydrothermal crosslinking was used. The fraction of transmittance of the collagen films fabricated from insoluble collagen and soluble tropocollagen and glucose-mediated UV crosslinking was initially 0.91 +/- 0.02 and 0.98 +/- 0.01 for the smooth films and 0.90 +/- 0.02 and 0.97 +/- 0.02 for the microgrooved films at 400 and 700 nm and was comparable to that of the native cornea, while the relaxed modulus and ultimate tensile strength ranged from 0.9 to 9.4 MPa and from 0.7 to 4.1 MPa, respectively, over the 3 weeks of culture and were initially at or below the range of values for the native cornea. These collagen scaffolds were significantly stronger and more transparent than previous scaffolds, and aligned stromal fibroblasts were observed on microgrooved surfaces.
Collapse
Affiliation(s)
- Rachael A B Crabb
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
43
|
Kuo SM, Wang YJ, Niu GCC, Lu HE, Chang SJ. Influences of hyaluronan on type II collagen fibrillogenesis in vitro. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:1235-41. [PMID: 17701300 DOI: 10.1007/s10856-007-3205-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Accepted: 07/17/2006] [Indexed: 05/16/2023]
Abstract
The effect to the kinetics of type II collagen fibrillogenesis with the addition of hyaluronan (HA), (Mw of 1.8x10(6) Da), at various concentrations of HA (0.01, 0.05 and 0.1 wt.%) for a series of fibril formation systems was examined in this study. Evidences deduced from the turbidity-time curves revealed that the inclusion of HA had minor or no impact to the fibrillogenesis of type II collagen (collagen conc. at 0.2 mg/mL). The apparent rate constants, klag (lag phase) increased slightly but kg (growth phase) decreased not very significantly with addition of HA, as compared to the case of pure collagen. This leads us to believe tentatively that, with the addition of HA to collagen solutions, the nucleation process of the fibril formation might have been sped up slightly whereas the growth process slowed up slightly. However, data from TEM observations on the resulting fibrils indicated that the presence of HA did not significantly affect the diameters and the characteristic D-banding periods of the collagen fiber formed. And, from the statistical analyses, we found only insignificant difference (P>0.05) between the specimens from the various experimental groups. It seems to indicate that the ultimate packing of collagen monomers was probably not interfered or affected significantly by the presence of HA in vitro.
Collapse
Affiliation(s)
- Shyh Ming Kuo
- Department of Biomedical Engineering, I-SHOU University, Kaohsiung County, Taiwan
| | | | | | | | | |
Collapse
|
44
|
Crabb RA, Hubel A. Influence of Matrix Processing on the Optical and Biomechanical Properties of a Corneal Stroma Equivalent. ACTA ACUST UNITED AC 2008. [DOI: 10.1089/ten.2007.0139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Torbet J, Malbouyres M, Builles N, Justin V, Roulet M, Damour O, Oldberg A, Ruggiero F, Hulmes DJS. Orthogonal scaffold of magnetically aligned collagen lamellae for corneal stroma reconstruction. Biomaterials 2007; 28:4268-76. [PMID: 17618680 DOI: 10.1016/j.biomaterials.2007.05.024] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 05/25/2007] [Indexed: 11/26/2022]
Abstract
The creation of 3D scaffolds that mimic the structure of physiological tissue required for normal cell function is a major bioengineering challenge. For corneal stroma reconstruction this necessitates the creation of a stroma-like scaffold consisting of a stack of orthogonally disposed sheets of aligned collagen fibrils. This study demonstrates that such a scaffold can be built up using magnetic alignment. By allowing neutralized acid-soluble type I collagen to gel in a horizontal magnetic field (7 T) and by combining a series of gelation-rotation-gelation cycles, a scaffold of orthogonal lamellae composed of aligned collagen fibrils has been formed. Although initially dilute, the gels can be concentrated without noticeable loss in orientation. The gels are translucent but their transparency can be greatly improved by the addition of proteoglycans to the gel-forming solution. Keratocytes align by contact guidance along the direction of collagen fibrils and respect the orthogonal design of the collagen template as they penetrate into the bulk of the 3D matrix. The scaffold is a significant step towards the creation of a corneal substitute with properties resembling those of native corneal stroma.
Collapse
Affiliation(s)
- Jim Torbet
- Institut de Biologie et Chimie des Protéines, CNRS UMR 5086, IFR 128 Biosciences Lyon-Gerland, 69367 Lyon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ming Kuo S, Jen Chang S, Che Ho C, Fen Chen S, Lin LC. Preparation of Nano-Sized Particles of Collagen II by an Electrostatic Field System. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2005:1248-51. [PMID: 17282420 DOI: 10.1109/iembs.2005.1616651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This study described a novel method for preparing nano-sized particles of collagen II by using a high voltage electrostatic field system. The preliminary results showed that the collagen II particles exhibited good sphericity and the particles diameters increased after longer electric field treatment. They were in the range of 208 plusmn 27, 277 plusmn 26 and 467 plusmn 35 nm in diameter at the treatment of 3 kV/cm for 1, 3, and 5 hours respectively at 25degC (collagen concentration was 0.2 mg/ml). Moreover, the particles size increased to 1621 plusmn 49 nm in diameter when the concentration of collagen II was increased from 0.2 mg/ml to 0.5 mg/ml. However, the collagen II was hard to form a nano-particle shape under 30degC at 0.2 mg/ml and 0.5 mg/ml concentration of collagen II. When the temperature increased to 37degC, the collagen II was unable to produce particle, instead, fibrous structures were formed under this temperature setting. This result probably contributed by a entropy driven process which termed fibrillogenesis, a larger force to yield the collagen molecules to self-assemble and then formed collagen fibrils. Incidentally, smoother outer surface of nano-particle was observed after 5-hour treatment (collagen concentration was 0.2mg/ml at 25degC). The most important finding was that, no collagen II nano-particles were produced without the treatment of electrostatic field, no matter at either collagen concentration or temperature settings.
Collapse
|
47
|
Nieponice A, Maul TM, Cumer JM, Soletti L, Vorp DA. Mechanical stimulation induces morphological and phenotypic changes in bone marrow-derived progenitor cells within a three-dimensional fibrin matrix. J Biomed Mater Res A 2007; 81:523-30. [PMID: 17133453 DOI: 10.1002/jbm.a.31041] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
One of the major limitations in tissue engineering is cell sourcing. Multipotent progenitor cells appear to have many promising features for that purpose. Mechanical stimulation is known to play an important role in determining cell phenotype. The aim of this work was to investigate the effects of cyclic stretch on rat bone marrow derived progenitor cell (BMPC) morphology and smooth muscle-directed differentiation within a three-dimensional fibrin matrix. BMPCs were suspended in a fibrin gel, pipetted into the trough of Flexcell Tissue-Train plates, and stimulated with 10% longitudinal cyclic stretch at 1 Hz for 6 days. Unconstrained (stress- and strain-free) and static anchored (constrained but not stretched) samples were used as controls. Stress filament area per cell was increased in the stretched samples compared to static anchored and free-float controls. Cells in the free float controls were randomly aligned, while they aligned parallel to the direction of the stress or strain in the other groups. Immunofluorescence suggested an increased expression of smooth muscle markers (smooth muscle alpha actin and h1-calponin) in both stretched and constrained control samples, but not in unconstrained controls. Qualitative assessment suggested that collagen production was increased in both mechanically stimulated samples. Proliferation was inhibited in stretched samples compared to the constrained controls. This work suggests an ability of rat BMPCs to differentiate toward a smooth-muscle-cell-like lineage when exposed to biomechanical stimulation in a three-dimensional model. The observation that the constrained samples induced changes in BMPCs suggests that stress alone may be stimulatory, but addition of cyclic stretch appears to augment the responses.
Collapse
Affiliation(s)
- Alejandro Nieponice
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | | | |
Collapse
|
48
|
Alsberg E, Feinstein E, Joy MP, Prentiss M, Ingber DE. Magnetically-Guided Self-Assembly of Fibrin Matrices with Ordered Nano-Scale Structure for Tissue Engineering. ACTA ACUST UNITED AC 2006; 12:3247-56. [PMID: 17518638 DOI: 10.1089/ten.2006.12.3247] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The development of effective biological scaffold materials for tissue engineering and regenerative medicine applications hinges on the ability to present precise environmental cues to specific cell populations to guide their position and function. Natural extracellular matrices have an ordered nano-scale structure that can modulate cell behaviors critical for developmental control, including directional cell motility. Here we describe a method for fabricating fibrin gels with defined architecture on the nanometer scale in which magnetic forces are used to position thrombin-coated magnetic micro-beads in a defined 2-dimensional array and thereby guide the self-assembly of fibrin fibrils through catalytic cleavage of soluble fibrinogen substrate. Time-lapse and confocal microscopy confirmed that fibrin fibrils nucleate near the surface of the thrombin-coated beads and extend out in a radial direction to form these gels. When controlled magnetic fields were used to position the beads in hexagonal arrays, the fibrin nano-fibrils that polymerized from the beads oriented preferentially along the bead--bead axes in a geodesic (minimal path) pattern. These biocompatible scaffolds supported adhesion and spreading of human microvascular endothelial cells, which exhibited co-alignment of internal actin stress fibers with underlying fibrin nano-fibrils within some membrane extensions at the cell periphery. This magnetically-guided, biologically-inspired microfabrication system is unique in that large scaffolds may be formed with little starting material, and thus it may be useful for in vivo tissue engineering applications in the future.
Collapse
Affiliation(s)
- Eben Alsberg
- Vascular Biology Program, Children's Hospital/Harvard Medical School, Boston, Massachusetts 02115-5737, USA
| | | | | | | | | |
Collapse
|
49
|
Magnetically-Guided Self-Assembly of Fibrin Matrices with Ordered Nano-Scale Structure for Tissue Engineering. ACTA ACUST UNITED AC 2006. [DOI: 10.1089/ten.2006.12.ft-261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
50
|
Heckmann L, Fiedler J, Mattes T, Brenner RE. Mesenchymal progenitor cells communicate via alpha and beta integrins with a three-dimensional collagen type I matrix. Cells Tissues Organs 2006; 182:143-54. [PMID: 16914917 DOI: 10.1159/000093964] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2006] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIMS The aim of our study was to investigate interactions of mesenchymal progenitor cells (MPCs) with collagen matrices. METHODS Human bone-marrow-derived MPCs were cultivated in collagen type I gels with and without inhibition of beta(1)-integrin by a specific antibody. Collagen gel contraction, cell morphology, expression of integrin subunits and several genes related to matrix synthesis and turnover as well as MPC differentiation were analyzed over 14 days. RESULTS Human MPCs markedly contracted free-floating collagen gels. Contraction was nearly completely inhibited by blocking beta(1)-integrin. Cellular morphology was elongated in the absence and mostly round in the presence of the antibody. Expression of integrin alpha(1), alpha(2) and beta(1) subunits showed several changes partly dependent on beta(1)-integrin blocking. Expression of matrix metalloproteinase-1 was elevated irrespective of beta(1)-integrin blocking and tenascin-C was subsequently induced during gel contraction. Spontaneous induction of chondrogenic, osteogenic or adipogenic differentiation was observed neither in the presence nor in the absence of the beta(1)-integrin antibody. CONCLUSION Our results indicate that the interaction of human MPCs with fibrillar collagen type I involves beta(1)- and alpha-integrin subunits and induces changes in gene expression related to extracellular matrix synthesis and turnover but not differentiation to the chondrogenic, osteogenic or adipogenic phenotype.
Collapse
Affiliation(s)
- Leslie Heckmann
- Department of Orthopedics, Division for Biochemistry of Joint and Connective Tissue Diseases, University of Ulm, Ulm, Germany
| | | | | | | |
Collapse
|