1
|
Cho JH, Gresham IJ, Katselas A, McHale G, Neto C. Design of Mixed PDMS-mPEG Slippery Covalently Attached Liquid-Like Surfaces. ACS APPLIED MATERIALS & INTERFACES 2025; 17:30316-30326. [PMID: 40338651 DOI: 10.1021/acsami.5c03768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Low droplet friction is desirable in many circumstances in which liquids interact with solid surfaces. This study explores the fabrication of surface-grafted, liquid-like layers with ultralow static droplet friction, made from a mixture of hydrophobic polydimethylsiloxane (PDMS) and hydrophilic methoxy polyethylene glycol (mPEG). These mixed layers are prepared via a two-step spin coating process in which reactive ethanol solutions are applied to the surface in sequence. Both polymers are liquid at room temperature and, when mixed, lead to slippery layers with contact angles that can be tuned from that of pure PDMS to that of pure mPEG. A contact angle hysteresis of 0.9 ± 0.3° was obtained on mPEG9-12 layers. This is the lowest hysteresis reported for any hydrophilic covalently attached liquid surface and represents the lowest contact line friction ever observed on a solid planar surface. As the PDMS fraction in the mixed layer increased, so too did contact angle hysteresis, reaching a maximum value of 9° at 70% PDMS, before returning to 2° for the pure PDMS layer. Atomic force microscopy mapping of the liquid layers revealed that the two polymers are fully mixed on the surface, even at high surface fraction of both components. The model by Reyssat & Quéré, devised to explain contact angle hysteresis for surfaces with dilute defects, explains the observed results well. This study shows that liquid-like surfaces can be achieved that are more slippery than conventional self-assembled monolayers and share the same capacity to gradually tune surface wettability. These mixed layers are excellent model systems with which to study interfacial phenomena, such as wetting, adhesion, and friction, the interactions of proteins and cells with surfaces, and for applications, from increased heat transfer to efficient atmospheric water capture and antifouling.
Collapse
Affiliation(s)
- Jae Hyung Cho
- School of Chemistry and the University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- Synthesis Research, Central Research Institute, KCC Corporation, 17-3, Mabuk-ro 240beon-gil, Yongin-si, Giheung-gu, Gyeonggi-do 16891, Republic of Korea
| | - Isaac J Gresham
- School of Chemistry and the University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anthony Katselas
- School of Chemistry and the University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Glen McHale
- Institute for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FB, U.K
| | - Chiara Neto
- School of Chemistry and the University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
2
|
Ngo CHL, Hnit SST, Hassanzadeh-Barforoushi A, Chowdhury F, Zhang W, Inglis DW, Chang-Hao Tsao S, Wang Y. A New Strategy to Modify Glass for Capture and Detection of Small Extracellular Vesicles. J Phys Chem B 2025; 129:4373-4382. [PMID: 40277291 DOI: 10.1021/acs.jpcb.5c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Small extracellular vesicles (sEVs) are nanoscale lipid bilayer vesicles secreted from all types of cells to the extracellular environment. They inherit membrane proteins from their parent cells, making them one of the key biomaterials or biomarkers for disease diagnosis. Microfluidics is emerging as a promising platform for sEV capture, with many methods relying on the modification to a glass substrate for efficient capture. In this study, we propose a new, one-step surface modification method, using silane─poly(ethylene glycol) (PEG) - 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), named as silane-PEG-DSPE, to capture sEVs on glass. In this design, silane group attaches to hydroxylated glass surface via covalent bond between Si-(OEt)3 and hydroxyl (OH) group. DSPE then binds to sEVs with distearyl chains firmly anchoring to the vesicle lipid membrane. We determined the optimal conditions for silane-PEG-DSPE modification and tested the efficiency of silane-PEG-DSPE in capturing sEVs by fluorescent imaging. Additionally, surface-enhanced Raman scattering (SERS) demonstrated that the EpCAM-positive sEVs were presented on the glass surface. This suggests that the platform is applicable for sEV detection using various methods, including fluorescent imaging and SERS. Furthermore, we have demonstrated that SERS can detect sEVs from breast cancer (BC) patient plasma with high specificity and sensitivity (as low as 1.6 × 107 particles/mL). Additionally, our analysis reveals a significantly higher expression of EpCAM in BC-derived sEVs compared with those obtained from healthy individuals. Thus, we postulate that the proposed method will find broad applications in the future, particularly as an effective tool in cancer diagnosis.
Collapse
Affiliation(s)
- Cao Hoang Long Ngo
- School of Natural Sciences, Macquarie University, Macquarie Park, New South Wales 2109, Australia
| | - Su Su Thae Hnit
- School of Natural Sciences, Macquarie University, Macquarie Park, New South Wales 2109, Australia
| | | | - Faiza Chowdhury
- School of Natural Sciences, Macquarie University, Macquarie Park, New South Wales 2109, Australia
| | - Wei Zhang
- School of Natural Sciences, Macquarie University, Macquarie Park, New South Wales 2109, Australia
| | - David W Inglis
- School of Engineering, Macquarie University, Macquarie Park, New South Wales 2109, Australia
| | - Simon Chang-Hao Tsao
- School of Natural Sciences, Macquarie University, Macquarie Park, New South Wales 2109, Australia
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Yuling Wang
- School of Natural Sciences, Macquarie University, Macquarie Park, New South Wales 2109, Australia
| |
Collapse
|
3
|
Wang T, Su E. Guardians of Future Food Safety: Innovative Applications and Advancements in Anti-biofouling Materials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21973-21985. [PMID: 39332908 DOI: 10.1021/acs.jafc.4c05156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Biofilm formation is a widespread natural phenomenon that poses a substantial threat to food microbiological safety, with direct implications for consumer health. To combat this challenge effectively, one promising strategy involves the development of functional anti-biofouling layers on food-contact surfaces to deter microbial adhesion. Herein, we explore the methodologies for fabricating both hydrophilic and hydrophobic anti-biofouling materials, along with a detailed examination of their inherent antiadhesive mechanisms. Furthermore, we provide concise insights into exemplary applications of anti-biofouling materials within the context of the food industry. This comprehensive analysis not only advances our understanding of biofilm prevention but also sets the stage for innovative developments in anti-biofouling materials and their future applications in food science. These advancements hold the potential to significantly enhance food microbiological safety, ensuring that consumers can confidently enjoy food products of the highest standards in terms of hygiene and quality.
Collapse
Affiliation(s)
- Tao Wang
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Erzheng Su
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Ashcraft M, Garren M, Lautner-Csorba O, Pinon V, Wu Y, Crowley D, Hill J, Morales Y, Bartlett R, Brisbois EJ, Handa H. Surface Engineering for Endothelium-Mimicking Functions to Combat Infection and Thrombosis in Extracorporeal Life Support Technologies. Adv Healthc Mater 2024; 13:e2400492. [PMID: 38924661 PMCID: PMC11468007 DOI: 10.1002/adhm.202400492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Blood-contacting medical devices routinely fail from the cascading effects of biofouling toward infection and thrombosis. Nitric oxide (NO) is an integral part of endothelial homeostasis, maintaining platelet quiescence and facilitating oxidative/nitrosative stress against pathogens. Recently, it is shown that the surface evolution of NO can mediate cell-surface interactions. However, this technique alone cannot prevent the biofouling inherent in device failure with dynamic blood-contacting applications. This work proposes an endothelium-mimicking surface design pairing controlled NO release with an inherently antifouling polyethylene glycol interface (NO+PEG). This simple, robust, and scalable platform develops surface-localized NO availability with surface hydration, leading to a significant reduction in protein adsorption as well as bacteria/platelet adhesion. Further in vivo thrombogenicity studies show a decrease in thrombus formation on NO+PEG interfaces, with preservation of circulating platelet and white blood cell counts, maintenance of activated clotting time, and reduced coagulation cascade activation. It is anticipated that this bio-inspired surface design will enable a facile alternative to existing surface technologies to address clinical manifestations of infection and thrombosis in dynamic blood-contacting environments.
Collapse
Affiliation(s)
- Morgan Ashcraft
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Mark Garren
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Orsolya Lautner-Csorba
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Vicente Pinon
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Yi Wu
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Dagney Crowley
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Joseph Hill
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Yeniselis Morales
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Robert Bartlett
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Elizabeth J. Brisbois
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
5
|
Pasquardini L, Vanzetti L, Canteri R, Cennamo N, Arcadio F, Perri C, D'Agostino G, Pitruzzella R, Rovida R, Chiodi A, Zeni L. Optimization of the immunorecognition layer towards Brucella sp. on gold surface for SPR platform. Colloids Surf B Biointerfaces 2023; 231:113577. [PMID: 37797466 DOI: 10.1016/j.colsurfb.2023.113577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/08/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
A successful immunosensor is characterized by a proper antibody immobilization and orientation in order to enhance the antigen recognition. In this work, a thorough characterization of the antibody functionalized gold surface is performed to set up the best conditions to implement in an optical platform for the detection of Brucella sp. Two different strategies are evaluated, based on a random immobilization and on an oriented one: a direct antibody immobilization on carboxylic mixed polyethylene (PEG) self-assembled monolayer (SAM) or only carboxylic PEG SAM interface is compared to an oriented immobilization on a layer of protein G on the same PEG SAM interfaces. X-ray Photoelectron Spectroscopy (XPS), Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and contact angle (CA) are used to chemically characterize the gold functionalized surface and ToF-SIMS is also used to confirm the right antibody orientation. Optical characterization is applied to monitor the functionalization steps and fluorescence measurements are used to set up the proper experimental conditions and also to detect Brucella bacteria on the surface. Best results are obtained with a 10 ng/μl incubation solution of antibody immobilized, in an oriented way, on a mixed PEG SAM interface.
Collapse
Affiliation(s)
| | - Lia Vanzetti
- Fondazione Bruno Kessler (FBK), Micro Nano Facility (MNF), Via Sommarive 18, 38123 Trento, Italy
| | - Roberto Canteri
- Fondazione Bruno Kessler (FBK), Micro Nano Facility (MNF), Via Sommarive 18, 38123 Trento, Italy
| | - Nunzio Cennamo
- Department of Engineering, University of Campania "L. Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| | - Francesco Arcadio
- Department of Engineering, University of Campania "L. Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| | - Chiara Perri
- Moresense srl, Filarete Foundation, Viale Ortles 22/4, 20139 Milano, Italy
| | | | - Rosalba Pitruzzella
- Department of Engineering, University of Campania "L. Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| | - Riccardo Rovida
- Department of Engineering, University of Campania "L. Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| | - Alessandro Chiodi
- Moresense srl, Filarete Foundation, Viale Ortles 22/4, 20139 Milano, Italy
| | - Luigi Zeni
- Department of Engineering, University of Campania "L. Vanvitelli", Via Roma 29, 81031 Aversa, Italy.
| |
Collapse
|
6
|
Hamo Y, Neudert A, Bendikov T, Lahav M, van der Boom ME. Compositionally Controlled Electron Transfer in Metallo-Organics. J Am Chem Soc 2023; 145:18075-18083. [PMID: 37529898 PMCID: PMC10436274 DOI: 10.1021/jacs.3c05874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Indexed: 08/03/2023]
Abstract
We demonstrate here the assembly of a nanolayer of electrochromic iron complexes on the top of composite layers of cobalt and ruthenium complexes. Depending on the ratio of the latter two complexes, we can tailor materials that show different electron transport pathways, redox activities, and color transitions. No redox activity of the top layer, consisting of iron complexes, is observable when the relative amount of the ruthenium complexes is low in the underlying composite layer because of the insulating properties of the isostructural cobalt complexes. Increasing the amount of ruthenium complexes opens an electron transport channel, resulting in charge storage in both the cobalt and iron complexes. The trapped charges can be chemically released by redox-active ferrocyanide complexes at the film-water interface.
Collapse
Affiliation(s)
- Yonatan Hamo
- Department
of Molecular Chemistry and Materials Science, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Alena Neudert
- Department
of Molecular Chemistry and Materials Science, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Tatyana Bendikov
- Department
of Chemical Research Support, The Weizmann
Institute of Science, 7610001 Rehovot, Israel
| | - Michal Lahav
- Department
of Molecular Chemistry and Materials Science, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Milko E. van der Boom
- Department
of Molecular Chemistry and Materials Science, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
7
|
Gresham IJ, Neto C. Advances and challenges in slippery covalently-attached liquid surfaces. Adv Colloid Interface Sci 2023; 315:102906. [PMID: 37099851 DOI: 10.1016/j.cis.2023.102906] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
Over the past decade, a new class of slippery, anti-adhesive surfaces known as slippery covalently-attached liquid surfaces (SCALS) has emerged, characterized by low values of contact angle hysteresis (CAH, less than 5°) with water and most solvents. Despite their nanoscale thickness (1 to 5 nm), SCALS exhibit behavior similar to lubricant-infused surfaces, including high droplet mobility and the ability to prevent icing, scaling, and fouling. To date, SCALS have primarily been obtained using grafted polydimethylsiloxane (PDMS), though there are also examples of polyethylene oxide (PEO), perfluorinated polyether (PFPE), and short-chain alkane SCALS. Importantly, the precise physico-chemical characteristics that enable ultra-low CAH are unknown, making rational design of these systems impossible. In this review, we conduct a quantitative and comparative analysis of reported values of CAH, molecular weight, grafting density, and layer thickness for a range of SCALS. We find that CAH does not scale monotonically with any reported parameter; instead, the CAH minimum is found at intermediate values. For PDMS, optimal behavior is observed at advancing contact angle of 106°, molecular weight between 2 and 10 kg mol-1, and grafting density of around 0.5 nm-2. CAH on SCALS is lowest for layers created from end-grafted chains and increases with the number of binding sites, and can generally be improved by increasing the chemical homogeneity of the surface through the capping of residual silanols. We review the existing literature on SCALS, including both synthetic and functional aspects of current preparative methods. The properties of reported SCALS are quantitatively analyzed, revealing trends in the existing data and highlighting areas for future experimental study.
Collapse
Affiliation(s)
- Isaac J Gresham
- School of Chemistry and the University of Sydney Nano Institute, The University of Sydney, NSW Australia, Sydney 2006, NSW, Australia.
| | - Chiara Neto
- School of Chemistry and the University of Sydney Nano Institute, The University of Sydney, NSW Australia, Sydney 2006, NSW, Australia.
| |
Collapse
|
8
|
Marmo AC, Grunlan MA. Biomedical Silicones: Leveraging Additive Strategies to Propel Modern Utility. ACS Macro Lett 2023; 12:172-182. [PMID: 36669481 PMCID: PMC10848296 DOI: 10.1021/acsmacrolett.2c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Silicones have a long history of use in biomedical devices, with unique properties stemming from the siloxane (Si-O-Si) backbone that feature a high degree of flexibility and chemical stability. However, surface, rheological, mechanical, and electrical properties of silicones can limit their utility. Successful modification of silicones to address these limitations could lead to superior and new biomedical devices. Toward improving such properties, recent additive strategies have been leveraged to modify biomedical silicones and are highlighted herein.
Collapse
Affiliation(s)
- Alec C. Marmo
- Department
of Materials Science and Engineering Texas
A&M University, College
Station, Texas 77843-3003, United States
| | - Melissa A. Grunlan
- Department
of Biomedical Engineering, Department of Materials Science and Engineering,
Department of Chemistry Texas A&M University, College Station, Texas 77843-3003, United
States
| |
Collapse
|
9
|
Seno Y, Nemoto H. BGLation to Prepare Anti-foggy Glass Surface. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Wang XT, Deng X, Zhang TD, Zhang J, Chen LL, Wang YF, Cao X, Zhang YZ, Zheng X, Yin DC. A Versatile Hydrophilic and Antifouling Coating Based on Dopamine Modified Four-Arm Polyethylene Glycol by One-Step Synthesis Method. ACS Macro Lett 2022; 11:805-812. [PMID: 35666550 DOI: 10.1021/acsmacrolett.2c00277] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A versatile hydrophilic and antifouling coating was designed and prepared based on catechol-modified four-arm polyethylene glycol. The dopamine (DA) molecules were grafted onto the end of the four-arm polyethylene glycol carboxyl (4A-PEG-COOH) through the amidation reaction, which was proven by 1H NMR and FTIR analysis, assisting the strong adhesion of PEG on the surface of various types of materials, including metallic, inorganic, and polymeric materials. The reduction of the water contact angle and the bacteria-repellent and protein-repellent effects indicated that the coating had good hydrophilicity and antifouling performance. Raman spectroscopy analysis demonstrated the affinity between the polymeric surface and water, which further confirmed the hydrophilicity of the coating. Finally, in vitro cytotoxicity assay demonstrated good biocompatibility of the coating layer.
Collapse
Affiliation(s)
- Xue-Ting Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xudong Deng
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tuo-Di Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jie Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Liang-Liang Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yi-Fan Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Xin Cao
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Yao-Zhong Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Xing Zheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
11
|
Chan D, Chien JC, Axpe E, Blankemeier L, Baker SW, Swaminathan S, Piunova VA, Zubarev DY, Maikawa CL, Grosskopf AK, Mann JL, Soh HT, Appel EA. Combinatorial Polyacrylamide Hydrogels for Preventing Biofouling on Implantable Biosensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022. [PMID: 35390209 DOI: 10.1101/2020.05.25.115675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Biofouling on the surface of implanted medical devices and biosensors severely hinders device functionality and drastically shortens device lifetime. Poly(ethylene glycol) and zwitterionic polymers are currently considered "gold-standard" device coatings to reduce biofouling. To discover novel anti-biofouling materials, a combinatorial library of polyacrylamide-based copolymer hydrogels is created, and their ability is screened to prevent fouling from serum and platelet-rich plasma in a high-throughput parallel assay. It is found that certain nonintuitive copolymer compositions exhibit superior anti-biofouling properties over current gold-standard materials, and machine learning is used to identify key molecular features underpinning their performance. For validation, the surfaces of electrochemical biosensors are coated with hydrogels and their anti-biofouling performance in vitro and in vivo in rodent models is evaluated. The copolymer hydrogels preserve device function and enable continuous measurements of a small-molecule drug in vivo better than gold-standard coatings. The novel methodology described enables the discovery of anti-biofouling materials that can extend the lifetime of real-time in vivo sensing devices.
Collapse
Affiliation(s)
- Doreen Chan
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Jun-Chau Chien
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Eneko Axpe
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Louis Blankemeier
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Samuel W Baker
- Department of Comparative Medicine, Stanford University, Stanford, CA, 94305, USA
| | | | | | | | - Caitlin L Maikawa
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Abigail K Grosskopf
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Joseph L Mann
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - H Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA, 94304, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Eric A Appel
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA, 94304, USA
- Department of Pediatrics - Endocrinology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
12
|
Chan D, Chien JC, Axpe E, Blankemeier L, Baker SW, Swaminathan S, Piunova VA, Zubarev DY, Maikawa CL, Grosskopf AK, Mann JL, Soh HT, Appel EA. Combinatorial Polyacrylamide Hydrogels for Preventing Biofouling on Implantable Biosensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109764. [PMID: 35390209 PMCID: PMC9793805 DOI: 10.1002/adma.202109764] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/04/2022] [Indexed: 05/29/2023]
Abstract
Biofouling on the surface of implanted medical devices and biosensors severely hinders device functionality and drastically shortens device lifetime. Poly(ethylene glycol) and zwitterionic polymers are currently considered "gold-standard" device coatings to reduce biofouling. To discover novel anti-biofouling materials, a combinatorial library of polyacrylamide-based copolymer hydrogels is created, and their ability is screened to prevent fouling from serum and platelet-rich plasma in a high-throughput parallel assay. It is found that certain nonintuitive copolymer compositions exhibit superior anti-biofouling properties over current gold-standard materials, and machine learning is used to identify key molecular features underpinning their performance. For validation, the surfaces of electrochemical biosensors are coated with hydrogels and their anti-biofouling performance in vitro and in vivo in rodent models is evaluated. The copolymer hydrogels preserve device function and enable continuous measurements of a small-molecule drug in vivo better than gold-standard coatings. The novel methodology described enables the discovery of anti-biofouling materials that can extend the lifetime of real-time in vivo sensing devices.
Collapse
Affiliation(s)
- Doreen Chan
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Jun-Chau Chien
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Eneko Axpe
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Louis Blankemeier
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Samuel W Baker
- Department of Comparative Medicine, Stanford University, Stanford, CA, 94305, USA
| | | | | | | | - Caitlin L Maikawa
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Abigail K Grosskopf
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Joseph L Mann
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - H Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA, 94304, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Eric A Appel
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA, 94304, USA
- Department of Pediatrics - Endocrinology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
13
|
Droplet Spreading Characteristics on Ultra-Slippery Solid Hydrophilic Surfaces with Ultra-Low Contact Angle Hysteresis. COATINGS 2022. [DOI: 10.3390/coatings12060755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Dynamic interactions of the droplet impact on a solid surface are essential to many emerging applications, such as electronics cooling, ink-jet printing, water harvesting/collection, anti-frosting/icing, and microfluidic and biomedical device applications. Despite extensive studies on the kinematic features of the droplet impact on a surface over the last two decades, the spreading characteristics of the droplet impact on a solid hydrophilic surface with ultra-low contact angle hysteresis are unclear. This paper clarifies the specific role of the contact angle and contact angle hysteresis at each stage of the droplet impact and spreading process. The spreading characteristics of the droplet impact on an ultra-slippery hydrophilic solid surface are systematically compared with those on plain hydrophilic, hydroxylated hydrophilic, and plain hydrophobic surfaces. The results reveal that the maximum spreading factor (βmax) of impacting droplets is mainly dependent on the contact angle and We. βmax increases with the increase in We and the decrease in the contact angle. Low contact angle hysteresis can decrease the time required to reach the maximum spreading diameter and the time interval during which the maximum spreading diameter is maintained when the contact angles are similar. Moreover, the effect of the surface inclination angle on the spreading and slipping dynamics of impacting droplets is investigated. With the increase in the inclination angle and We, the gliding distance of the impacting droplet becomes longer. Ultra-low contact angle hysteresis enables an impacting droplet to slip continuously on the ultra-slippery hydrophilic surface without being pinned to the surface. The findings of this work not only show the important role of the surface wettability in droplet spreading characteristics but also present a pathway to controlling the dynamic interactions of impacting droplets with ultra-slippery hydrophilic surfaces.
Collapse
|
14
|
Sanders SN, Schloemer TH, Gangishetty MK, Anderson D, Seitz M, Gallegos AO, Stokes RC, Congreve DN. Triplet fusion upconversion nanocapsules for volumetric 3D printing. Nature 2022; 604:474-478. [PMID: 35444324 DOI: 10.1038/s41586-022-04485-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 01/28/2022] [Indexed: 12/19/2022]
Abstract
Three-dimensional (3D) printing has exploded in interest as new technologies have opened up a multitude of applications1-6, with stereolithography a particularly successful approach4,7-9. However, owing to the linear absorption of light, this technique requires photopolymerization to occur at the surface of the printing volume, imparting fundamental limitations on resin choice and shape gamut. One promising way to circumvent this interfacial paradigm is to move beyond linear processes, with many groups using two-photon absorption to print in a truly volumetric fashion3,7-9. Using two-photon absorption, many groups and companies have been able to create remarkable nanoscale structures4,5, but the laser power required to drive this process has limited print size and speed, preventing widespread application beyond the nanoscale. Here we use triplet fusion upconversion10-13 to print volumetrically with less than 4 milliwatt continuous-wave excitation. Upconversion is introduced to the resin by means of encapsulation with a silica shell and solubilizing ligands. We further introduce an excitonic strategy to systematically control the upconversion threshold to support either monovoxel or parallelized printing schemes, printing at power densities several orders of magnitude lower than the power densities required for two-photon-based 3D printing.
Collapse
Affiliation(s)
| | - Tracy H Schloemer
- Rowland Institute at Harvard University, Cambridge, MA, USA.,Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | | | | | - Michael Seitz
- Rowland Institute at Harvard University, Cambridge, MA, USA.,Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Arynn O Gallegos
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | | | - Daniel N Congreve
- Rowland Institute at Harvard University, Cambridge, MA, USA. .,Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
15
|
Self-Assembling Polypeptide Hydrogels as a Platform to Recapitulate the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13133286. [PMID: 34209094 PMCID: PMC8267709 DOI: 10.3390/cancers13133286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The tumor microenvironment is characterized by increased tissue stiffness, low (acidic) pH, and elevated temperature, all of which contribute to the development of cancer. Improving our in vitro models of cancer, therefore, requires the development of cell culture platforms that can mimic these microenvironmental properties. Here, we study a new biomaterial composed of short amino acid chains that self-assemble into a fibrous hydrogel network. This material enables simultaneous and independent tuning of substrate rigidity, extracellular pH, and temperature, allowing us to mimic both healthy tissues and the tumor microenvironment. We used this platform to study the effect of these conditions on pancreatic cancer cells and found that high substrate rigidity and low pH promote proliferation and survival of cancer cells and activate important signaling pathways associated with cancer progression. Abstract The tumor microenvironment plays a critical role in modulating cancer cell migration, metabolism, and malignancy, thus, highlighting the need to develop in vitro culture systems that can recapitulate its abnormal properties. While a variety of stiffness-tunable biomaterials, reviewed here, have been developed to mimic the rigidity of the tumor extracellular matrix, culture systems that can recapitulate the broader extracellular context of the tumor microenvironment (including pH and temperature) remain comparably unexplored, partially due to the difficulty in independently tuning these parameters. Here, we investigate a self-assembled polypeptide network hydrogel as a cell culture platform and demonstrate that the culture parameters, including the substrate stiffness, extracellular pH and temperature, can be independently controlled. We then use this biomaterial as a cell culture substrate to assess the effect of stiffness, pH and temperature on Suit2 cells, a pancreatic cancer cell line, and demonstrate that these microenvironmental factors can regulate two critical transcription factors in cancer: yes-associated protein 1 (YAP) and hypoxia inducible factor (HIF-1A).
Collapse
|
16
|
He T, He J, Wang Z, Cui Z. Modification strategies to improve the membrane hemocompatibility in extracorporeal membrane oxygenator (ECMO). ADVANCED COMPOSITES AND HYBRID MATERIALS 2021; 4:847-864. [PMID: 33969267 PMCID: PMC8091652 DOI: 10.1007/s42114-021-00244-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 05/26/2023]
Abstract
ABSTRACT Since extracorporeal membrane oxygenator (ECMO) has been utilized to save countless lives by providing continuous extracorporeal breathing and circulation to patients with severe cardiopulmonary failure. In particular, it has played an important role during the COVID-19 epidemic. One of the important composites of ECMO is membrane oxygenator, and the core composite of the membrane oxygenator is hollow fiber membrane, which is not only a place for blood oxygenation, but also is a barrier between the blood and gas side. However, the formation of blood clots in the oxygenator is a key problem in the using process. According to the study of the mechanism of thrombosis generation, it was found that improving the hemocompatibility is an efficient approach to reduce thrombus formation by modifying the surface of materials. In this review, the corresponding modification methods (surface property regulation, anticoagulant grafting, and bio-interface design) of hollow fiber membranes in ECMO are classified and discussed, and then, the research status and development prospects are summarized.
Collapse
Affiliation(s)
- Ting He
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, 210009 Nanjing, China
| | - Jinhui He
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, 210009 Nanjing, China
| | - Zhaohui Wang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 210009 Nanjing, China
| | - Zhaoliang Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, 210009 Nanjing, China
| |
Collapse
|
17
|
Hu Y, Yang L, Yan Q, Ji Q, Chang L, Zhang C, Yan J, Wang R, Zhang L, Wu G, Sun J, Zi B, Chen W, Wu Y. Self-Locomotive Soft Actuator Based on Asymmetric Microstructural Ti 3C 2T x MXene Film Driven by Natural Sunlight Fluctuation. ACS NANO 2021; 15:5294-5306. [PMID: 33650851 DOI: 10.1021/acsnano.0c10797] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Soft actuators and microrobots that can move spontaneously and continuously without artificial energy supply and intervention have great potential in industrial, environmental, and military applications, but still remain a challenge. Here, a bioinspired MXene-based bimorph actuator with an asymmetric layered microstructure is reported, which can harness natural sunlight to achieve directional self-locomotion. We fabricate a freestanding MXene film with an increased and asymmetric layered microstructure through the graft of coupling agents into the MXene nanosheets. Owing to the excellent photothermal effect of MXene nanosheets, increased interlayer spacing favoring intercalation/deintercalation of water molecules and its caused reversible volume change, and the asymmetric microstructure, this film exhibits light-driven deformation with a macroscopic and fast response. Based on it, a soft bimorph actuator with ultrahigh response to solar energy is fabricated, showing natural sunlight-driven actuation with ultralarge amplitude and fast response (346° in 1 s). By utilizing continuous bending deformation of the bimorph actuator in response to the change of natural sunlight intensity and biomimetic design of an inchworm to rectify the repeated bending deformation, an inchwormlike soft robot is constructed, achieving directional self-locomotion without any artificial energy and control. Moreover, soft arms for lifting objects driven by natural sunlight and wearable smart ornaments that are combined with clothing and produce three-dimensional deformation under natural sunlight are also developed. These results provide a strategy for developing natural sunlight-driven soft actuators and reveal great application prospects of this photoactuator in sunlight-driven soft biomimetic robots, intelligent solar-energy-driven devices in space, and wearable clothing.
Collapse
Affiliation(s)
- Ying Hu
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, P. R. China
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Lulu Yang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, P. R. China
| | - Qiuyang Yan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qixiao Ji
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, P. R. China
| | - Longfei Chang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, P. R. China
| | - Chenchu Zhang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, P. R. China
| | - Jian Yan
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Ranran Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, P. R. China
| | - Lei Zhang
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Guan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jing Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, P. R. China
| | - Bin Zi
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, P. R. China
| | - Wei Chen
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong 999077, P. R. China
| | - Yucheng Wu
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
18
|
Surface modification by poly(ethylene glycol) with different end-grafted groups: Experimental and theoretical study. Biointerphases 2021; 16:021002. [PMID: 33726496 DOI: 10.1116/6.0000647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dihydroxyphenylalanine (DOPA) is extensively reported to be a surface-independent anchor molecule in bioadhesive surface modification and antifouling biomaterial fabrication. However, the mechanisms of DOPA adsorption on versatile substrates and the comparison between experimental results and theoretical results are less addressed. We report the adsorption of DOPA anchored monomethoxy poly(ethylene glycol) (DOPA-mPEG) on substrates and surface wettability as well as antifouling property in comparison with thiol and hydroxyl anchored mPEG (mPEG-SH and mPEG-OH). Gold and hydroxylated silicon were used as model substrates to study the adsorptions of mPEGs. The experimental results showed that the DOPA-mPEG showed higher affinity to both gold and silicon wafers, and the DOPA-mPEG modified surfaces had higher resistance to protein adsorption than those of mPEG-SH and mPEG-OH. It is revealed that the surface wettability is primary for surface fouling, while polymer flexibility is the secondary parameter. We present ab initio calculations of the adsorption of mEGs with different end-functionalities on Au and hydroxylated silicon wafer (Si-OH), where the binding energies are obtained. It is established that monomethoxy ethylene glycol (mEG) with DOPA terminal DOPA-mEG is clearly favored for the adsorption with both gold and Si-OH surfaces due to the bidentate Au-O interactions and the bidentate O-H bond interactions, in agreement with experimental evidence.
Collapse
|
19
|
Forman MB, Brewer EC, Brown ZR, Menshikova EV, Lowman AM, Jackson EK, Brewer. Novel Guidewire Design and Coating for Continuous Delivery of Adenosine During Interventional Procedures. J Am Heart Assoc 2021; 10:e019275. [PMID: 33496190 PMCID: PMC7955438 DOI: 10.1161/jaha.120.019275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background The “no‐reflow phenomenon” compromises percutaneous coronary intervention outcomes. There is an unmet need for a device that prevents no‐reflow phenomenon. Our goal was to develop a guidewire platform comprising a nondisruptive hydrophilic coating that allows continuous delivery of adenosine throughout a percutaneous coronary intervention. Methods and Results We developed a guidewire with spaced coils to increase surface area for drug loading. Guidewires were plasma treated to attach hydroxyl groups to metal surfaces, and a methoxy–polyethylene glycol–silanol primer layer was covalently linked to hydroxyl groups. Using polyvinyl alcohol, polyvinyl pyrrolidone, and polyvinyl acetate, a drug layer containing jet‐milled adenosine was hydrogen‐bonded to the polyethylene glycol–silanol layer and coated with an outer diffusive barrier layer. Coatings were processed with a freeze/thaw curing method. In vitro release studies were conducted followed by in vivo evaluation in pigs. Coating quality, performance, and stability with sterilization were also evaluated. Antiplatelet properties of the guidewire were also determined. Elution studies with adenosine‐containing guidewires showed curvilinear and complete release of adenosine over 60 minutes. Porcine studies demonstrated that upon insertion into a coronary artery, adenosine‐releasing guidewires induced immediate and robust increases (2.6‐fold) in coronary blood flow velocity, which were sustained for ≈30 minutes without systemic hemodynamic effects or arrhythmias. Adenosine‐loaded wires prevented and reversed coronary vasoconstriction induced by acetylcholine. The wires significantly inhibited platelet aggregation by >80% in vitro. Guidewires passed bench testing for lubricity, adherence, integrity, and tracking. Conclusions Our novel drug‐releasing guidewire platform represents a unique approach to prevent/treat no‐reflow phenomenon during percutaneous coronary intervention.
Collapse
Affiliation(s)
| | - Erik C Brewer
- Department of Biomedical Engineering Rowan University Glassboro NJ
| | - Zachary R Brown
- Department of Biomedical Engineering Rowan University Glassboro NJ
| | | | - Anthony M Lowman
- Department of Biomedical Engineering Rowan University Glassboro NJ
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology University of Pittsburgh Pittsburgh PA
| | | |
Collapse
|
20
|
Ngo BKD, Lim KK, Johnson JC, Jain A, Grunlan MA. Thromboresistance of Polyurethanes Modified with PEO-Silane Amphiphiles. Macromol Biosci 2020; 20:e2000193. [PMID: 32812374 DOI: 10.1002/mabi.202000193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/02/2020] [Indexed: 11/07/2022]
Abstract
Surface-induced thrombosis is problematic in blood-contacting devices composed of silicones or polyurethanes (PUs). Poly(ethylene oxide)-silane amphiphiles (PEO-SA) are previously shown effective as surface modifying additives (SMAs) in silicones for enhanced thromboresistance. This study investigates PEO-SAs as SMAs in a PU at various concentrations: 5, 10, 25, 50, and 100 µmol g-1 PU. PEO-SA modified PUs are evaluated for their mechanical properties, water-driven surface restructuring, and adhesion resistance against a human fibrinogen (HF) solution as well as whole human blood. Stability is assessed by monitoring hydrophilicity, water uptake, and mass loss following air- or aqueous-conditioning. PEO-SA modified PUs do not demonstrate plasticization, as evidenced by minimal changes in glass transition temperature, modulus, tensile strength, and percent strain at break. These also show a concentration-dependent increase in hydrophilicity that is sustained following air- and aqueous-conditioning for concentrations ≥25 µmol g-1 . Additionally, water uptake and mass loss are minimal at all concentrations. Although protein resistance is not enhanced versus an HF solution, PEO-SA modified PUs have significantly reduced protein adsorption and platelet adhesion from human blood at concentrations ≥10 µmol g-1 . Overall, this study demonstrates the versatility of PEO-SAs as SMAs in PU, which leads to enhanced and sustained hydrophilicity as well as thromboresistance.
Collapse
Affiliation(s)
- Bryan Khai D Ngo
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Kendrick K Lim
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Jessica C Johnson
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Abhishek Jain
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.,Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.,Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA.,Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
21
|
Badv M, Bayat F, Weitz JI, Didar TF. Single and multi-functional coating strategies for enhancing the biocompatibility and tissue integration of blood-contacting medical implants. Biomaterials 2020; 258:120291. [PMID: 32798745 DOI: 10.1016/j.biomaterials.2020.120291] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/27/2020] [Accepted: 08/01/2020] [Indexed: 12/27/2022]
Abstract
Device-associated clot formation and poor tissue integration are ongoing problems with permanent and temporary implantable medical devices. These complications lead to increased rates of mortality and morbidity and impose a burden on healthcare systems. In this review, we outline the current approaches for developing single and multi-functional surface coating techniques that aim to circumvent the limitations associated with existing blood-contacting medical devices. We focus on surface coatings that possess dual hemocompatibility and biofunctionality features and discuss their advantages and shortcomings to providing a biocompatible and biodynamic interface between the medical implant and blood. Lastly, we outline the newly developed surface modification techniques that use lubricant-infused coatings and discuss their unique potential and limitations in mitigating medical device-associated complications.
Collapse
Affiliation(s)
- Maryam Badv
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Fereshteh Bayat
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Jeffrey I Weitz
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Thrombosis & Atherosclerosis Research Institute (TaARI), Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada; Institute for Infectious Disease Research (IIDR), McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
22
|
Medkov MA, Grishchenko DN, Klimov MA, Kudryavyi VG, Apanasevich VI. Calcium-Phosphate X-ray Contrast Cements for Bone Repair. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2020. [DOI: 10.1134/s0040579520040107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Lehnfeld J, Gruening M, Kronseder M, Mueller R. Comparison of Protein-Repellent Behavior of Linear versus Dendrimer-Structured Surface-Immobilized Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5880-5890. [PMID: 32366096 DOI: 10.1021/acs.langmuir.0c00625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
For many biomedical applications, material surfaces should not only prevent unspecific protein adsorption and bacterial attachment as in many other applications in the food, health, or marine industry, but they should also promote the adhesion of tissue cells. In order to take a first step toward the challenging development of protein and bacteria-repelling and cell-adhesion-promoting materials, polyamine and poly(amido amine) surface coatings with terminal amine groups and varying structure (dendrimer, oligomer, polymer) were immobilized on model surfaces via silane chemistry. Physicochemical analysis showed that all modifications are hydrophilic (contact angles <60°) and possess similar surface free energies (SFEs, ∼46-54 mN/m), whereas their amine group densities and zeta potentials at physiological conditions (pH 7.4) varied greatly (-50 to +75 mV). In protein adsorption experiments with single proteins (human serum albumin (HSA) and lysozyme) as well as complex physiological fluids (fetal bovine serum (FBS) and human saliva), the amounts of adsorbed protein were found to correlate strongly with the zeta potential of the surface coatings. Both modifications based on linear polymers exhibited good protein repellency toward all proteins examined and are thus promising for testing in cell adhesion studies.
Collapse
Affiliation(s)
| | - Martina Gruening
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany
| | | | | |
Collapse
|
24
|
Ngo BKD, Barry ME, Lim KK, Johnson JC, Luna DJ, Pandian NK, Jain A, Grunlan MA. Thromboresistance of Silicones Modified with PEO-Silane Amphiphiles. ACS Biomater Sci Eng 2020; 6:2029-2037. [DOI: 10.1021/acsbiomaterials.0c00011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Bryan Khai D. Ngo
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Mikayla E. Barry
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kendrick K. Lim
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Jessica C. Johnson
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - David J. Luna
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Navaneeth K.R. Pandian
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Abhishek Jain
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Melissa A. Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
25
|
Guevara-Pantoja PE, Sánchez-Domínguez M, Caballero-Robledo GA. Micro-nanoparticles magnetic trap: Toward high sensitivity and rapid microfluidic continuous flow enzyme immunoassay. BIOMICROFLUIDICS 2020; 14:014111. [PMID: 32038740 PMCID: PMC6992449 DOI: 10.1063/1.5126027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/20/2020] [Indexed: 05/13/2023]
Abstract
In this work, we developed a microfluidic system for immunoassays where we combined the use of magnetic nanoparticles as immunosupport, a microfluidic magnetic trap, and a fluorogenic substrate in continuous flow for detection which, together with the optimization of the functionalization of surfaces to minimize nonspecific interactions, resulted in a detection limit in the order of femtomolar and a total assay time of 40 min for antibiotin antibody detection. A magnetic trap made of carbonyl-iron microparticles packaged inside a 200 μ m square microchannel was used to immobilize and concentrate nanoparticles. We functionalized the surface of the iron microparticles with a silica-polyethylene glycol (PEG) shell to avoid corrosion and unspecific protein binding. A new one-step method was developed to coat acrylic microchannels with an organofunctional silane functionalized with PEG to minimize unspecific binding. A model immunoassay was performed using nanoparticles decorated with biotin to capture antibiotin rabbit Immunoglobulin G (IgG) as target primary antibody. The detection was made using antirabbit IgG labeled with the enzyme alkaline phosphatase as a secondary antibody, and we measured fluorescence with a fluorescence microscope. All steps of the immunoassay were performed inside the chip. A calibration curve was obtained in which a detection limit of 8 pg/ml of antibiotin antibody was quantified. The simplicity of the device and the fact that it is made of acrylic, which is compatible with mass production, make it ideal for Point-Of-Care applications.
Collapse
Affiliation(s)
| | - Margarita Sánchez-Domínguez
- Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Unidad Monterrey, Alianza Norte 202, Parque de Investigación e Innovación Tecnológica, Apodaca 66628, Nuevo León, Mexico
| | | |
Collapse
|
26
|
Lorusso E, Ali W, Leniart M, Gebert B, Oberthür M, Gutmann JS. Tuning the Density of Zwitterionic Polymer Brushes on PET Fabrics by Aminolysis: Effect on Antifouling Performances. Polymers (Basel) 2019; 12:E6. [PMID: 31861436 PMCID: PMC7023513 DOI: 10.3390/polym12010006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 01/05/2023] Open
Abstract
Here, we synthesize zwitterionic polymer brushes on polyester fabrics by atom transfer radical polymerization (ATRP) after a prefunctionalization step involving an aminolysis reaction with ethylenediamine. Aminolysis is an easy method to achieve homogeneous distributions of functional groups on polyester fibers (PET) fabrics. Varying the polymerization time and the prefunctionalization conditions of the reaction, it is possible to tune the amount of water retained over the surface and study its effect on protein adhesion. This study revealed that the polymerization time plays a major role in preventing protein adhesion on the PET surface.
Collapse
Affiliation(s)
- Emanuela Lorusso
- Deutsches Textilforschungszentrum Nord-West ÖP GmbH, 47798 Krefeld, Germany;
- Department of Physical Chemistry and Center of Nanointegration (CENIDE), University Duisburg-Essen, 45141 Essen, Germany;
| | - Wael Ali
- Department of Physical Chemistry and Center of Nanointegration (CENIDE), University Duisburg-Essen, 45141 Essen, Germany;
- Deutsches Textilforschungszentrum Nord-West gGmbH, 47798 Krefeld, Germany; (M.L.); (B.G.)
| | - Michael Leniart
- Deutsches Textilforschungszentrum Nord-West gGmbH, 47798 Krefeld, Germany; (M.L.); (B.G.)
| | - Beate Gebert
- Deutsches Textilforschungszentrum Nord-West gGmbH, 47798 Krefeld, Germany; (M.L.); (B.G.)
| | - Markus Oberthür
- Department of Design, Hochschule für Angewandte Wissenschaften (HAW) Hamburg, 22087 Hamburg, Germany;
| | - Jochen S. Gutmann
- Deutsches Textilforschungszentrum Nord-West ÖP GmbH, 47798 Krefeld, Germany;
- Department of Physical Chemistry and Center of Nanointegration (CENIDE), University Duisburg-Essen, 45141 Essen, Germany;
- Deutsches Textilforschungszentrum Nord-West gGmbH, 47798 Krefeld, Germany; (M.L.); (B.G.)
| |
Collapse
|
27
|
Hoppe Alvarez L, Eisold S, Gumerov RA, Strauch M, Rudov AA, Lenssen P, Merhof D, Potemkin II, Simon U, Wöll D. Deformation of Microgels at Solid-Liquid Interfaces Visualized in Three-Dimension. NANO LETTERS 2019; 19:8862-8867. [PMID: 31642321 DOI: 10.1021/acs.nanolett.9b03688] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Solid-liquid interfaces play an important role for functional devices. Hence, a detailed understanding of the interaction of soft matter objects with solid supports and of the often concomitant structural deformations is of great importance. We address this topic in a combined experimental and simulation approach. We investigated thermoresponsive poly(N-isopropylmethacrylamide) microgels (μGs) at different surfaces in an aqueous environment. As super-resolution fluorescence imaging method, three-dimensional direct stochastical optical reconstruction microscopy (dSTORM) allowed for visualizing μGs in their three-dimensional (3D) shape, for example, in a "fried-egg" conformation depending on the hydrophilicity of the surface (strength of adsorption). The 3D shape, as defined by point clouds obtained from single-molecule localizations, was analyzed. A new fitting algorithm yielded an isosurface of constant density which defines the deformation of μGs at the different surfaces. The presented methodology quantifies deformation of objects with fuzzy surfaces and allows for comparison of their structures, whereby it is completely independent from the data acquisition method. Finally, the experimental data are complemented with mesoscopic computer simulations in order to (i) rationalize the experimental results and (ii) to track the evolution of the shape with changing surface hydrophilicity; a good correlation of the shapes obtained experimentally and with computer simulations was found.
Collapse
Affiliation(s)
- Laura Hoppe Alvarez
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , D-52056 Aachen , Germany
| | - Sabine Eisold
- Institute of Inorganic Chemistry , RWTH Aachen University , Landoltweg 1 a , D-52056 Aachen , Germany
| | - Rustam A Gumerov
- Physics Department , Lomonosov Moscow State University , Leninskie Gory 1-2 , Moscow 119991 , Russian Federation
- DWI - Leibniz-Institute for Interactive Materials , Forckenbeckstraße 50 , D-52056 Aachen , Germany
| | - Martin Strauch
- Institute of Imaging and Computer Vision , RWTH Aachen University , Kopernikusstraße 16 , 52074 Aachen , Germany
| | - Andrey A Rudov
- Physics Department , Lomonosov Moscow State University , Leninskie Gory 1-2 , Moscow 119991 , Russian Federation
- DWI - Leibniz-Institute for Interactive Materials , Forckenbeckstraße 50 , D-52056 Aachen , Germany
| | - Pia Lenssen
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , D-52056 Aachen , Germany
| | - Dorit Merhof
- Institute of Imaging and Computer Vision , RWTH Aachen University , Kopernikusstraße 16 , 52074 Aachen , Germany
| | - Igor I Potemkin
- Physics Department , Lomonosov Moscow State University , Leninskie Gory 1-2 , Moscow 119991 , Russian Federation
- DWI - Leibniz-Institute for Interactive Materials , Forckenbeckstraße 50 , D-52056 Aachen , Germany
- National Research South Ural State University , Chelyabinsk 454080 , Russian Federation
| | - Ulrich Simon
- Institute of Inorganic Chemistry , RWTH Aachen University , Landoltweg 1 a , D-52056 Aachen , Germany
| | - Dominik Wöll
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , D-52056 Aachen , Germany
| |
Collapse
|
28
|
Zhang K, Xiao X, Wang X, Fan Y, Li X. Topographical patterning: characteristics of current processing techniques, controllable effects on material properties and co-cultured cell fate, updated applications in tissue engineering, and improvement strategies. J Mater Chem B 2019; 7:7090-7109. [PMID: 31702754 DOI: 10.1039/c9tb01682a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Topographical patterning has recently attracted lots of attention in regulating cell fate, understanding the mechanism of cell-microenvironment interactions, and solving the great issues of regenerative medicine. The introduced patterns offer topographical cues that can affect the reconstruction of the cytoskeleton or stimulate cell membrane receptors. Numerous studies have focused on these effects on cell behavior including attachment, migration, proliferation, and differentiation. In this review, five aspects of topographical patterning are discussed: (1) the process of typical micro-/nanotechniques and their advantages and limitations; (2) the effects of patterning on the mechanical properties and surface properties of substrates; (3) the influences of micro-/nanopatterns on the behavior of mesenchymal stem cells, as well as the underlying mechanisms; (4) the application of patterns to solve the issues of targeted organs (e.g., skin, nerves, blood vessels, bones, and heart). In the end, future perspectives that would help promote the efficiency of topographical patterning are proposed.
Collapse
Affiliation(s)
- Ke Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Xiongfu Xiao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China and Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
29
|
Zeuthen CM, Shahrokhtash A, Sutherland DS. Nanoparticle Adsorption on Antifouling Polymer Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14879-14889. [PMID: 31635462 DOI: 10.1021/acs.langmuir.9b02537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polymer brushes have been widely used to functionalize surfaces and provide antifouling capabilities against proteins and cells. Many efforts have focused on methods for functionalization of antifouling polymer brush surfaces for interactions with specific cells, proteins, and bacteria, but none have focused on immobilizing nanoparticles (NPs) on these surfaces. This article demonstrates that both pristine NPs and protein-coated NPs can adsorb onto well-functioning antifouling polymer brush coatings formed from poly-l-lysine-graft-poly(ethylene glycol) (PLL-g-PEG) and methoxy PEG-thiol. The role of ionic strength in solution, substrate surface material, and NP surface charge in the interaction was investigated to explore the forces behind the interaction. The adsorption of different types of NPs onto the surface was studied, determining that polystyrene, gold, carbon black, and silica particles can adsorb onto PLL-g-PEG. We show that the approach can be applied in, and studied by, both surface plasmon resonance and fluorescence imaging and suggest its application as a means to study NP-protein interactions, such as the protein corona. NPs self-assembled at antifouling polymer brush surfaces provide a novel platform for both scientific studies and applications in biotechnology.
Collapse
Affiliation(s)
- Christina M Zeuthen
- Interdisciplinary Nanoscience Center , Aarhus University , Gustav Wieds vej 14 , 8200 Aarhus N , Denmark
- Sino-Danish Center for Education and Research , Niels Jensens Vej 2 , 8000 Aarhus C , Denmark
| | - Ali Shahrokhtash
- Interdisciplinary Nanoscience Center , Aarhus University , Gustav Wieds vej 14 , 8200 Aarhus N , Denmark
| | - Duncan S Sutherland
- Interdisciplinary Nanoscience Center , Aarhus University , Gustav Wieds vej 14 , 8200 Aarhus N , Denmark
| |
Collapse
|
30
|
Griffo A, Liu Y, Mahlberg R, Alakomi HL, Johansson LS, Milani R. Design and Testing of a Bending-Resistant Transparent Nanocoating for Optoacoustic Cochlear Implants. ChemistryOpen 2019; 8:1100-1108. [PMID: 31406657 PMCID: PMC6682933 DOI: 10.1002/open.201900172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Indexed: 12/25/2022] Open
Abstract
A nanosized coating was designed to reduce fouling on the surface of a new type of cochlear implant relying on optoacoustic stimulation. This kind of device imposes novel design principles for antifouling coatings, such as optical transparency and resistance to significant constant bending. To reach this goal we deposited on poly(dimethylsiloxane) a PEO-based layer with negligible thickness compared to the curvature radius of the cochlea. Its antifouling performance was monitored upon storage by quartz crystal microbalance, and its resistance upon bending was tested by fluorescence microscopy under geometrical constraints similar to those of implantation. The coating displayed excellent antifouling features and good stability, and proved suitable for further testing in real-environment conditions.
Collapse
Affiliation(s)
- Alessandra Griffo
- VTT Technical Research Centre of Finland Ltd. P.O. Box 1000 FI-02044VTT Espoo Finland.,Department of Bioproducts and Biosystems Aalto University P.O. Box 16100 FI-00076Aalto Espoo Finland
| | - Yingying Liu
- VTT Technical Research Centre of Finland Ltd. P.O. Box 1000 FI-02044VTT Espoo Finland
| | - Riitta Mahlberg
- VTT Technical Research Centre of Finland Ltd. P.O. Box 1000 FI-02044VTT Espoo Finland
| | - Hanna-L Alakomi
- VTT Technical Research Centre of Finland Ltd. P.O. Box 1000 FI-02044VTT Espoo Finland
| | - Leena-S Johansson
- Department of Bioproducts and Biosystems Aalto University P.O. Box 16100 FI-00076Aalto Espoo Finland
| | - Roberto Milani
- VTT Technical Research Centre of Finland Ltd. P.O. Box 1000 FI-02044VTT Espoo Finland
| |
Collapse
|
31
|
Ngo BKD, Lim KK, Stafslien SJ, Grunlan MA. Stability of silicones modified with PEO-silane amphiphiles: Impact of structure and concentration. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
PEGylation: a promising strategy to overcome challenges to cancer-targeted nanomedicines: a review of challenges to clinical transition and promising resolution. Drug Deliv Transl Res 2019; 9:721-734. [DOI: 10.1007/s13346-019-00631-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Shitole AA, Giram PS, Raut PW, Rade PP, Khandwekar AP, Sharma N, Garnaik B. Clopidogrel eluting electrospun polyurethane/polyethylene glycol thromboresistant, hemocompatible nanofibrous scaffolds. J Biomater Appl 2019; 33:1327-1347. [DOI: 10.1177/0885328219832984] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biomaterials used as blood-contacting material must be hemocompatible and exhibit lower thrombotic potential while maintaining hemostasis and angiogenesis. With the aim of developing thromboresistant, hemocompatible nanofibrous scaffolds, polyurethane/polyethylene glycol scaffolds incorporated with 1, 5, and 10 wt% Clopidogrel were fabricated and evaluated for their physiochemical properties, biocompatibility, hemocompatibility, and antithrombotic potential. The results of physicochemical characterization revealed the fabrication of nanometer-sized scaffolds with smooth surfaces. The incorporation of both polyethylene glycol and Clopidogrel to polyurethane enhanced the hydrophilicity and water uptake potential of polyurethane/polyethylene glycol/Clopidogrel scaffolds. The dynamic mechanical analysis revealed the enhancement in mechanical strength of the polyurethane/polyethylene glycol scaffolds on incorporation of Clopidogrel. The polyurethane/polyethylene glycol/Clopidogrel scaffolds showed a tri-phasic drug release pattern. The results of hemocompatibility assessment demonstrated the excellent blood compatibility of the polyurethane/polyethylene glycol/Clopidogrel scaffolds, with the developed scaffolds exhibiting lower hemolysis, increased albumin and plasma protein adsorption while reduction in fibrinogen adsorption. Further, the platelet adhesion was highly suppressed and significant increase in coagulation period was observed for Clopidogrel incorporated scaffolds. The results of cell adhesion and cell viability substantiate the biocompatibility of the developed nanofibrous scaffolds with the HUVEC cell viability on polyurethane/polyethylene glycol, polyurethane/polyethylene glycol/Clopidogrel-1, 5, and 10% at day 7 found to be 12.35, 13.36, 14.85, and 4.18% higher as compared to polyurethane scaffolds, and the NIH/3T3 cell viability found to be 35.27, 70.82, 36.60, and 7.95% higher as compared to polyurethane scaffolds, respectively. Altogether the results of the study advocate the incorporation of Clopidogrel to the polyurethane/polyethylene glycol blend in order to fabricate scaffolds with appropriate antithrombotic property, hemocompatibility, and cell proliferation capacity and thus, might be successfully used as antithrombotic material for biomedical application.
Collapse
Affiliation(s)
- Ajinkya A Shitole
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Prabhanjan S Giram
- Polymer Science and Engineering Division, CSIR- National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Piyush W Raut
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Priyanka P Rade
- Polymer Science and Engineering Division, CSIR- National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Anand P Khandwekar
- School of Engineering, Ajeenkya DY Patil University (ADYPU), Pune, India
| | - Neeti Sharma
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Baijayantimala Garnaik
- Polymer Science and Engineering Division, CSIR- National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
34
|
Faÿ F, Gouessan M, Linossier I, Réhel K. Additives for Efficient Biodegradable Antifouling Paints. Int J Mol Sci 2019; 20:E361. [PMID: 30654517 PMCID: PMC6358926 DOI: 10.3390/ijms20020361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 11/16/2022] Open
Abstract
The evolution of regulations concerning biocidal products aims to increase protection of the environment (e.g., EU Regulation No 528/2012) and requires the development of new non-toxic anti-fouling (AF) systems. The development of these formulations implies the use of ingredients (polymers, active substances, additives) that are devoid of toxicity towards marine environments. In this context, the use of erodable antifouling paints based on biodegradable polymer and authorized biocides responds to this problem. However, the efficiency of paints could be improved by the use of specific additives. For this purpose, three additives acting as surface modifiers were studied (Tween 80, Span 85 and PEG-silane). Their effects on parameters involved in antifouling efficiency as hydrophobicity, hydration and copper release were studied. Results showed that the addition of 3% of additives modulated hydrophobicity and hydration without an increase of copper release and significantly reduced microfouling development. Efficient paints based on biodegradable polymer and with no organic biocide could be obtained by mixing copper thiocyanate and additives.
Collapse
Affiliation(s)
- Fabienne Faÿ
- Université Bretagne Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France.
| | - Maëlle Gouessan
- Université Bretagne Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France.
| | | | - Karine Réhel
- Université Bretagne Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France.
| |
Collapse
|
35
|
Portela A, Peláez EC, Calvo-Lozano O, Estévez MC, Lechuga LM. Label-Free Nanoplasmonic Biosensing of Cancer Biomarkers for Clinical Diagnosis. Methods Mol Biol 2019; 2027:115-140. [PMID: 31309477 DOI: 10.1007/978-1-4939-9616-2_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biosensing of cancer biomarkers enabling early diagnosis of cancer constitutes an essential tool for clinical intervention and application of novel therapies against cancer disease. Optical biosensor instruments as point-of-care (POC) devices and operating under label-free scheme have demonstrated to provide fast, simple, and high-sensitivity assays even at home care environment. Nanoplasmonic biosensors are thought to be a powerful tool for detection of complex analytes of relevant clinical applications. Using high-throughput fabrication techniques, large surface patterned with gold nanodisk structures is obtained showing surface sensitivities with limit of detection (LOD) in the order of picomolar concentration range. Here, we describe two major assay methodologies used for detection of lung and colorectal cancer, respectively. Particularly, we have selected a complementary hybridization DNA/RNA assay for the assessment of two miRNAs (miRNA-210 and miRNA-205) for detection of lung cancer. However, for colorectal cancer we present the detection of four tumor-associated antigen (TAA) biomarkers (MAPKAPK3, PIM-1, STK4, and GTF2B) as possible TAA targets for autoantibody production. Strategies for detecting these biomarkers in real samples such as serum are also presented, demonstrating the capabilities of these assays to be transferred to real clinical settings.
Collapse
Affiliation(s)
- Alejandro Portela
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Barcelona, Spain.
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.
| | - Enelia C Peláez
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Olalla Calvo-Lozano
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Mari C Estévez
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Laura M Lechuga
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| |
Collapse
|
36
|
Varlas S, Georgiou PG, Bilalis P, Jones JR, Hadjichristidis N, O’Reilly RK. Poly(sarcosine)-Based Nano-Objects with Multi-Protease Resistance by Aqueous Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA). Biomacromolecules 2018; 19:4453-4462. [DOI: 10.1021/acs.biomac.8b01326] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Spyridon Varlas
- School of Chemistry, University of Birmingham, B15 2TT Birmingham, United Kingdom
| | - Panagiotis G. Georgiou
- School of Chemistry, University of Birmingham, B15 2TT Birmingham, United Kingdom
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, United Kingdom
| | - Panayiotis Bilalis
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Saudi Arabia
| | - Joseph R. Jones
- School of Chemistry, University of Birmingham, B15 2TT Birmingham, United Kingdom
| | - Nikos Hadjichristidis
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Saudi Arabia
| | - Rachel K. O’Reilly
- School of Chemistry, University of Birmingham, B15 2TT Birmingham, United Kingdom
| |
Collapse
|
37
|
Sruthi S, Maurizi L, Nury T, Sallem F, Boudon J, Riedinger J, Millot N, Bouyer F, Lizard G. Cellular interactions of functionalized superparamagnetic iron oxide nanoparticles on oligodendrocytes without detrimental side effects: Cell death induction, oxidative stress and inflammation. Colloids Surf B Biointerfaces 2018; 170:454-462. [DOI: 10.1016/j.colsurfb.2018.06.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 02/02/2023]
|
38
|
Bekmurzayeva A, Duncanson WJ, Azevedo HS, Kanayeva D. Surface modification of stainless steel for biomedical applications: Revisiting a century-old material. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:1073-1089. [PMID: 30274039 DOI: 10.1016/j.msec.2018.08.049] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 07/06/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022]
Abstract
Stainless steel (SS) has been widely used as a material for fabricating cardiovascular stents/valves, orthopedic prosthesis, and other devices and implants used in biomedicine due to its malleability and resistance to corrosion and fatigue. Despite its good mechanical properties, SS (as other metals) lacks biofunctionality. To be successfully used as a biomaterial, SS must be made resistant to the biological environment by increasing its anti-fouling properties, preventing biofilm formation (passive surface modification), and imparting functionality for eluting a specific drug or capturing selected cells (active surface modification); these features depend on the final application. Various physico-chemical techniques, including plasma vapor deposition, electrochemical treatment, and attachment of different linkers that add functional groups, are used to obtain SS with increased corrosion resistance, improved osseointegration capabilities, added hemocompatibility, and enhanced antibacterial properties. Existing literature on this topic is extensive and has not been covered in an integrated way in previous reviews. This review aims to fill this gap, by surveying the literature on SS surface modification methods, as well as modification routes tailored for specific biomedical applications. STATEMENT OF SIGNIFICANCE Stainless steel (SS) is widely used in many biomedical applications including bone implants and cardiovascular stents due to its good mechanical properties, biocompatibility and low price. Surface modification allows improving its characteristics without compromising its important bulk properties. SS with improved blood compatibility (blood contacting implants), enhanced ability to resist bacterial infection (long-term devices), better integration with a tissue (bone implants) are examples of successful SS surface modifications. Existing literature on this topic is extensive and has not been covered in an integrated way in previous reviews. This review paper aims to fill this gap, by surveying the literature on SS surface modification methods, as well as to provide guidance for selecting appropriate modification routes tailored for specific biomedical applications.
Collapse
Affiliation(s)
- Aliya Bekmurzayeva
- Engineering and Technology Program, Nazarbayev University, Astana 010000, Kazakhstan; National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Wynter J Duncanson
- School of Engineering, Nazarbayev University, Astana 010000, Kazakhstan; College of Engineering, Boston University, Boston, MA 02215, USA
| | - Helena S Azevedo
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Damira Kanayeva
- School of Science and Technology, Nazarbayev University, Astana 010000, Kazakhstan.
| |
Collapse
|
39
|
Zouaghi S, Barry ME, Bellayer S, Lyskawa J, André C, Delaplace G, Grunlan MA, Jimenez M. Antifouling amphiphilic silicone coatings for dairy fouling mitigation on stainless steel. BIOFOULING 2018; 34:769-783. [PMID: 30332896 DOI: 10.1080/08927014.2018.1502275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Pasteurization of dairy products is plagued by fouling, which induces significant economic, environmental and microbiological safety concerns. Herein, an amphiphilic silicone coating was evaluated for its efficacy against fouling by a model dairy fluid in a pilot pasteurizer and against foodborne bacterial adhesion. The coating was formed by modifying an RTV silicone with a PEO-silane amphiphile comprised of a PEO segment and flexible siloxane tether ([(EtO)3Si-(CH2)2-oligodimethylsiloxanem-block-(OCH2CH2)n-OCH3]). Contact angle analysis of the coating revealed that the PEO segments were able to migrate to the aqueous interface. The PEO-modified silicone coating applied to pretreated stainless steel was exceptionally resistant to fouling. After five cycles of pasteurization, these coated substrata were subjected to a standard clean-in-place process and exhibited a minor reduction in fouling resistance in subsequent tests. However, the lack of fouling prior to cleaning indicates that harsh cleaning is not necessary. PEO-modified silicone coatings also showed exceptional resistance to adhesion by foodborne pathogenic bacteria.
Collapse
Affiliation(s)
- Sawsen Zouaghi
- a UMET (Unité Matériaux et Transformations) , Université de Lille , Lille , France
| | - Mikayla E Barry
- b Biomedical Engineering, Materials Science & Engineering , Texas A&M University , College Station , Texas , USA
| | - Séverine Bellayer
- a UMET (Unité Matériaux et Transformations) , Université de Lille , Lille , France
| | - Joël Lyskawa
- a UMET (Unité Matériaux et Transformations) , Université de Lille , Lille , France
| | - Christophe André
- a UMET (Unité Matériaux et Transformations) , Université de Lille , Lille , France
- c Hautes Etudes d'Ingénieur , Lille , France
| | - Guillaume Delaplace
- a UMET (Unité Matériaux et Transformations) , Université de Lille , Lille , France
- d INRA (Institut National de la Recherche Agronomique) , Villeneuve d'Ascq , France
| | - Melissa A Grunlan
- b Biomedical Engineering, Materials Science & Engineering , Texas A&M University , College Station , Texas , USA
| | - Maude Jimenez
- a UMET (Unité Matériaux et Transformations) , Université de Lille , Lille , France
| |
Collapse
|
40
|
Goh SC, Luan Y, Wang X, Du H, Chau C, Schellhorn HE, Brash JL, Chen H, Fang Q. Polydopamine–polyethylene glycol–albumin antifouling coatings on multiple substrates. J Mater Chem B 2018; 6:940-949. [DOI: 10.1039/c7tb02636f] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polydopamine–PEG coatings on different substrates: effects of PDA layer properties on PEG grafting and anti-biofouling properties.
Collapse
Affiliation(s)
- S. C. Goh
- School of Biomedical Engineering
- McMaster University
- Hamilton
- Canada
| | - Y. Luan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - X. Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - H. Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - C. Chau
- School of Biomedical Engineering
- McMaster University
- Hamilton
- Canada
| | | | - J. L. Brash
- School of Biomedical Engineering
- McMaster University
- Hamilton
- Canada
| | - H. Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Q. Fang
- School of Biomedical Engineering
- McMaster University
- Hamilton
- Canada
- Department of Engineering Physics, McMaster University
| |
Collapse
|
41
|
Abstract
Toward improving implantable medical devices as well as diagnostic performance, the development of polymeric biomaterials having resistance to proteins remains a priority. Herein, we highlight key strategies reported in the recent literature that have relied upon improvement of surface hydrophilicity via direct surface modification methods or with bulk modification using surface modifying additives (SMAs). These approaches have utilized a variety of techniques to incorporate the surface hydrophilization agent, including physisorption, hydrogel network formation, surface grafting, layer-by-layer (LbL) assembly and blending base polymers with SMAs. While poly(ethylene glycol) (PEG) remains the gold standard, new alternatives have emerged such as polyglycidols, poly(2-oxazoline)s (POx), polyzwitterions, and amphiphilic block copolymers. While these new strategies provide encouraging results, the need for improved correlation between in vitro and in vivo protein resistance is critical. This may be achieved by employing complex protein solutions as well as strides to enhance the sensitivity of protein adsorption measurements.
Collapse
Affiliation(s)
- Bryan Khai D. Ngo
- Department of Biomedical Engineering and ‡Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Melissa A. Grunlan
- Department of Biomedical Engineering and ‡Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
42
|
Hawkins ML, Schott SS, Grigoryan B, Rufin MA, Ngo BKD, Vanderwal L, Stafslien SJ, Grunlan MA. Anti-protein and anti-bacterial behavior of amphiphilic silicones. Polym Chem 2017; 8:5239-5251. [PMID: 29104619 PMCID: PMC5667680 DOI: 10.1039/c7py00944e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silicones with improved water-driven surface hydrophilicity and anti-biofouling behavior were achieved when bulk-modified with poly(ethylene oxide) (PEO) -silane amphiphiles of varying siloxane tether length: α-(EtO)3Si-(CH2)2-oligodimethylsiloxane m -block-poly(ethylene oxide)8-OCH3 (m = 0, 4, 13, 17, 24, and 30). A PEO8-silane [α-(EtO)3Si-(CH2)3-PEO8-OCH3] served as a conventional PEO-silane control. To examine anti-biofouling behavior in the absence versus presence of water-driven surface restructuring, the amphiphiles and control were surface-grafted onto silicon wafers and used to bulk-modify a medical-grade silicone, respectively. While the surface-grafted PEO-control exhibited superior protein resistance, it failed to appreciably restructure to the surface-water interface of bulk-modified silicone and thus led to poor protein resistance. In contrast, the PEO-silane amphiphiles, while less protein-resistant when surface-grafted onto silicon wafers, rapidly and substantially restructured in bulk-modified silicone, exhibiting superior hydrophilicity and protein resistance. A reduction of biofilm for several strains of bacteria and a fungus was observed for silicones modified with PEO-silane amphiphiles. Longer siloxane tethers maintained surface restructuring and protein resistance while displaying the added benefit of increased transparency.
Collapse
Affiliation(s)
- Melissa L Hawkins
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120
| | - Samantha S Schott
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120
| | - Bagrat Grigoryan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120
| | - Marc A Rufin
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120
| | - Bryan Khai D Ngo
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120
| | - Lyndsi Vanderwal
- Office of Research & Creative Activity, North Dakota State University, Fargo, ND 58102
| | - Shane J Stafslien
- Office of Research & Creative Activity, North Dakota State University, Fargo, ND 58102
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-300
- Center for Remote Health Technologies System, Texas A&M University, College Station, TX 77843-3120
| |
Collapse
|
43
|
An omniphobic lubricant-infused coating produced by chemical vapor deposition of hydrophobic organosilanes attenuates clotting on catheter surfaces. Sci Rep 2017; 7:11639. [PMID: 28912558 PMCID: PMC5599680 DOI: 10.1038/s41598-017-12149-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/31/2017] [Indexed: 01/19/2023] Open
Abstract
Catheter associated thrombosis is an ongoing problem. Omniphobic coatings based on tethering biocompatible liquid lubricants on self-assembled monolayers of hydrophobic organosilanes attenuate clotting on surfaces. Herein we report an efficient, non-invasive and robust process for coating catheters with an antithrombotic, omniphobic lubricant-infused coating produced using chemical vapor deposition (CVD) of hydrophobic fluorine-based organosilanes. Compared with uncoated catheters, CVD coated catheters significantly attenuated thrombosis via the contact pathway of coagulation. When compared with the commonly used technique of liquid phase deposition (LPD) of fluorine-based organosilanes, the CVD method was more efficient and reproducible, resulted in less disruption of the outer polymeric layer of the catheters and produced greater antithrombotic activity. Therefore, omniphobic coating of catheters using the CVD method is a simple, straightforward and non-invasive procedure. This method has the potential to not only prevent catheter thrombosis, but also to prevent thrombosis on other blood-contacting medical devices.
Collapse
|
44
|
Al-Ani A, Pingle H, P Reynolds N, Wang PY, Kingshott P. Tuning the Density of Poly(ethylene glycol) Chains to Control Mammalian Cell and Bacterial Attachment. Polymers (Basel) 2017; 9:polym9080343. [PMID: 30971020 PMCID: PMC6418490 DOI: 10.3390/polym9080343] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 01/21/2023] Open
Abstract
Surface modification of biomaterials with polymer chains has attracted great attention because of their ability to control biointerfacial interactions such as protein adsorption, cell attachment and bacterial biofilm formation. The aim of this study was to control the immobilisation of biomolecules on silicon wafers using poly(ethylene glycol)(PEG) chains by a "grafting to" technique. In particular, to control the polymer chain graft density in order to capture proteins and preserve their activity in cell culture as well as find the optimal density that would totally prevent bacterial attachment. The PEG graft density was varied by changing the polymer solubility using an increasing salt concentration. The silicon substrates were initially modified with aminopropyl-triethoxysilane (APTES), where the surface density of amine groups was optimised using different concentrations. The results showed under specific conditions, the PEG density was highest with grafting under "cloud point" conditions. The modified surfaces were characterised with X-ray photoelectron spectroscopy (XPS), ellipsometry, atomic force microscopy (AFM) and water contact angle measurements. In addition, all modified surfaces were tested with protein solutions and in cell (mesenchymal stem cells and MG63 osteoblast-like cells) and bacterial (Pseudomonas aeruginosa) attachment assays. Overall, the lowest protein adsorption was observed on the highest polymer graft density, bacterial adhesion was very low on all modified surfaces, and it can be seen that the attachment of mammalian cells gradually increased as the PEG grafting density decreased, reaching the maximum attachment at medium PEG densities. The results demonstrate that, at certain PEG surface coverages, mammalian cell attachment can be tuned with the potential to optimise their behaviour with controlled serum protein adsorption.
Collapse
Affiliation(s)
- Ahmed Al-Ani
- Department of Chemistry and Biotechnology, School of Science, Faculty of Science, Engineering and Technology, Swinburne University of technology, Hawthorn, VIC 3122, Australia.
| | - Hitesh Pingle
- Department of Chemistry and Biotechnology, School of Science, Faculty of Science, Engineering and Technology, Swinburne University of technology, Hawthorn, VIC 3122, Australia.
| | - Nicholas P Reynolds
- ARC Training Centre for Biodevices, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | - Peng-Yuan Wang
- Department of Chemistry and Biotechnology, School of Science, Faculty of Science, Engineering and Technology, Swinburne University of technology, Hawthorn, VIC 3122, Australia.
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Faculty of Science, Engineering and Technology, Swinburne University of technology, Hawthorn, VIC 3122, Australia.
| |
Collapse
|
45
|
Spatially selective binding of green fluorescent protein on designed organosilane nanopatterns prepared with particle lithography. Biointerphases 2017; 12:02C402. [PMID: 28427269 DOI: 10.1116/1.4979912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A practical approach for preparing protein nanopatterns has been to design surface templates of nanopatterns of alkanethiols or organosilanes that will selectively bind and localize the placement of biomolecules. Particle lithography provides a way to prepare millions of protein nanopatterns with a few basic steps. For our nanopatterning strategy, organosilanes with methoxy and sulfhydryl groups were chosen as a surface template. Green fluorescent protein (GFP) was selected as a model for patterning. Areas of 2-[methoxy (polyethyleneoxy)6-9propyl]trichlorosilane (MPT-silane) are effective as a matrix for resisting the attachment of proteins, whereas nanopatterns with sulfur groups provide reactive sites for binding linker groups to connect proteins. A protocol with particle lithography was designed to make a surface template of nanopatterns of (3-mercaptopropyl)trimethoxysilane (MPTMS) surrounded by a methoxy terminated matrix. The sulfhydryl groups of the MPTMS nanopatterns were activated with a sulfosuccinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate linker. The activated regions of MPTMS furnished sites for binding GFP. Samples were characterized with atomic force microscopy after successive steps of the patterning protocol to evaluate the selectivity of protein binding. Direct views of the protein bound selectively to designated sites of MPTMS are presented, as evidence of robust and reproducible patterning. Nanoscale patterns of proteins can be used for surfaces of biochips and biosensors, and also for immunochemistry test platforms.
Collapse
|
46
|
Acuña SM, Bastías JM, Toledo PG. Direct measurement of interaction forces between bovine serum albumin and poly(ethylene oxide) in water and electrolyte solutions. PLoS One 2017; 12:e0173910. [PMID: 28296940 PMCID: PMC5352004 DOI: 10.1371/journal.pone.0173910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/28/2017] [Indexed: 11/18/2022] Open
Abstract
The net interaction between a probe tip coated with bovine serum albumin (BSA) protein and a flat substrate coated with poly(ethylene oxide) (PEO) polymer was measured directly on approach in water and electrolyte solutions using AFM. The approach force curve between the two surfaces was monotonically repulsive in water and in electrolyte solutions. At pH ~5, slightly above the isoelectric point (pI) of BSA, and at large distances, the force was dominated by electrostatic repulsion between the oxygen atoms of the incoming protein with those belonging to the ether groups of PEO. Such repulsive force and range decreased in NaCl. Under physiological conditions, pH 6, BSA is definitely charged and the electrostatic repulsion with ether groups in PEO appears at larger separation distances. Interestingly, at pH 4, below the pI of BSA, the repulsion decreased because of an attractive, although weak, electrostatic force that appeared between the ether groups in PEO and the positively charged amino groups of BSA. However, for all solution conditions, once compression of PEO begun, the net repulsion was always dominated by short-range polymeric steric repulsion and repulsive enthalpy penalties for breaking PEO-water bonds. Results suggest that PEO in mushroom conformation may also be effective in reducing biofouling.
Collapse
Affiliation(s)
- Sergio M. Acuña
- Department of Food Engineering, University of Bío-Bío, Chillán, Chile
- * E-mail:
| | - José M. Bastías
- Department of Food Engineering, University of Bío-Bío, Chillán, Chile
| | - Pedro G. Toledo
- Department of Chemical Engineering and Laboratory of Surface Analysis, University of Concepción, Correo 3, Concepción, Chile
| |
Collapse
|
47
|
Müller BM, Loth R, Hoffmeister PG, Zühl F, Kalbitzer L, Hacker MC, Schulz-Siegmund M. Surface modification of copolymerized films from three-armed biodegradable macromers - An analytical platform for modified tissue engineering scaffolds. Acta Biomater 2017; 51:148-160. [PMID: 28069495 DOI: 10.1016/j.actbio.2017.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/08/2016] [Accepted: 01/05/2017] [Indexed: 01/08/2023]
Abstract
The concept of macromers allows for a broad adjustment of biomaterial properties by macromer chemistry or copolymerization. Copolymerization strategies can also be used to introduce reactive sites for subsequent surface modification. Control over surface features enables adjustment of cellular reactions with regard to site and object of implantation. We designed macromer-derived polymer films which function as non-implantable analytical substrates for the investigation of surface properties of equally composed scaffolds for bone tissue engineering. To this end, a toolbox of nine different biodegradable, three-armed macromers was thermally cross-copolymerized with poly(ethylene glycol)-methacrylate (PEG-MA) to films. Subsequent activation of PEG-hydroxyl groups with succinic anhydride and N-hydroxysuccinimid allowed for covalent surface modification. We quantified the capacity to immobilize analytes of low (amino-functionalized fluorescent dye, Fcad, and RGD-peptides) and high (alkaline phosphatase, ALP) molecular weight. Fcad grafting level was controlled by macromer chemistry, content and molecular weight of PEG-MA, but also the solvent used for film synthesis. Fcad molar amount per surface area was twentyfive times higher on high-swelling compared to low-swelling films, but differences became smaller when large ALP (appr. 2:1) were employed. Similarly, small differences were observed on RGD peptide functionalized films that were investigated by cell adhesion studies. Presentation of PEG-derivatives on surfaces was visualized by atomic force microscopy (AFM) which unraveled composition-dependent domain formation influencing fluorescent dye immobilization. Surface wetting characteristics were investigated via static water contact angle. We conclude that macromer ethoxylation and lactic acid content determined film swelling, PEG domain formation and eventually efficiency of surface decoration. STATEMENT OF SIGNIFICANCE Surfaces of implantable biomaterials are the site of interaction with a host tissue. Accordingly, modifications in the composition of the surface will determine cellular response towards the material which is crucial for the success of innovations and control of tissue regeneration. We employed a macromer approach which is most flexible for the design of biomaterials with a broad spectrum of physicochemical characteristics. For ideal analytical accessibility of the material platform, we cross-copolymerized films on solid supports. Films allowed for the covalent immobilization of fluorescent labels, peptides and enzymes and thorough analytical characterization revealed that macromer hydrophilicity is the most relevant design parameter for surface analyte presentation in these materials. All analytical results were combined in a model describing PEG linker domain formation and ligand presentation.
Collapse
Affiliation(s)
- Benno M Müller
- Pharmaceutical Technology, Institute of Pharmacy, Leipzig University, Eilenburger Straße 15a, Leipzig 04317, Germany.
| | - Rudi Loth
- Pharmaceutical Technology, Institute of Pharmacy, Leipzig University, Eilenburger Straße 15a, Leipzig 04317, Germany.
| | - Peter-Georg Hoffmeister
- Pharmaceutical Technology, Institute of Pharmacy, Leipzig University, Eilenburger Straße 15a, Leipzig 04317, Germany.
| | - Friederike Zühl
- Pharmaceutical Technology, Institute of Pharmacy, Leipzig University, Eilenburger Straße 15a, Leipzig 04317, Germany.
| | - Liv Kalbitzer
- Biophysical Chemistry, Institute of Biochemistry, Leipzig University, Johannisallee 21, Leipzig 04103, Germany.
| | - Michael C Hacker
- Pharmaceutical Technology, Institute of Pharmacy, Leipzig University, Eilenburger Straße 15a, Leipzig 04317, Germany.
| | - Michaela Schulz-Siegmund
- Pharmaceutical Technology, Institute of Pharmacy, Leipzig University, Eilenburger Straße 15a, Leipzig 04317, Germany.
| |
Collapse
|
48
|
Rufin MA, Ngo BKD, Barry ME, Page VM, Hawkins ML, Stafslien SJ, Grunlan MA. Antifouling silicones based on surface-modifying additive amphiphiles. GREEN MATERIALS 2017; 5:4-13. [PMID: 31673356 PMCID: PMC6822677 DOI: 10.1680/jgrma.16.00013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Surface modifying additives (SMAs), which may be readily blended into silicones to improve anti-fouling behavior, must have excellent surface migration potential and must not leach into the aqueous environment. In this work, we evaluated the efficacy of a series of poly(ethylene oxide) (PEO)-based SMA amphiphiles which varied in terms of crosslinkability, siloxane tether length (m) and diblock versus triblock architectures. Specifically, crosslinkable, diblock PEO-silane amphiphiles with two oligodimethylsiloxane (ODMS) tether lengths [(EtO)3Si-(CH2)3-ODMS m -PEO8, m = 13 and 30] were compared to analogous non-crosslinkable, diblock (H-Si-ODMS m -PEO8) and triblock (PEO8-ODMS m -PEO8) SMAs. Prior to water conditioning, while all modified silicone coatings exhibited a high degree of water-driven surface restructuring, that prepared with the non-crosslinkable diblock SMA (m = 13) was the most hydrophilic. After conditioning, all modified silicone coatings were similarly hydrophilic and remained highly protein resistant, with the exception of PEO8-ODMS 30 -PEO8. Notably, despite twice the PEO content, triblock SMAs were not superior to diblock SMAs. For diblock SMAs, it was shown that water uptake and leaching were also similar whether or not the SMA was crosslinkable.
Collapse
Affiliation(s)
- Marc A Rufin
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Bryan Khai D Ngo
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Mikayla E Barry
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Vanessa M Page
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Melissa L Hawkins
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Shane J Stafslien
- Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, ND, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA, 5030 Emerging Technologies Building, College Station, TX 77843-3120
| |
Collapse
|
49
|
Sauer U. Analytical Protein Microarrays: Advancements Towards Clinical Applications. SENSORS (BASEL, SWITZERLAND) 2017; 17:E256. [PMID: 28146048 PMCID: PMC5335935 DOI: 10.3390/s17020256] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/13/2017] [Accepted: 01/23/2017] [Indexed: 01/28/2023]
Abstract
Protein microarrays represent a powerful technology with the potential to serve as tools for the detection of a broad range of analytes in numerous applications such as diagnostics, drug development, food safety, and environmental monitoring. Key features of analytical protein microarrays include high throughput and relatively low costs due to minimal reagent consumption, multiplexing, fast kinetics and hence measurements, and the possibility of functional integration. So far, especially fundamental studies in molecular and cell biology have been conducted using protein microarrays, while the potential for clinical, notably point-of-care applications is not yet fully utilized. The question arises what features have to be implemented and what improvements have to be made in order to fully exploit the technology. In the past we have identified various obstacles that have to be overcome in order to promote protein microarray technology in the diagnostic field. Issues that need significant improvement to make the technology more attractive for the diagnostic market are for instance: too low sensitivity and deficiency in reproducibility, inadequate analysis time, lack of high-quality antibodies and validated reagents, lack of automation and portable instruments, and cost of instruments necessary for chip production and read-out. The scope of the paper at hand is to review approaches to solve these problems.
Collapse
Affiliation(s)
- Ursula Sauer
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, 3430 Tulln, Austria.
| |
Collapse
|
50
|
Hui N, Sun X, Niu S, Luo X. PEGylated Polyaniline Nanofibers: Antifouling and Conducting Biomaterial for Electrochemical DNA Sensing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:2914-2923. [PMID: 28026927 DOI: 10.1021/acsami.6b11682] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Biofouling arising from nonspecific adsorption is a substantial outstanding challenge in diagnostics and disease monitoring, and antifouling sensing interfaces capable of reducing the nonspecific adsorption of proteins from biological complex samples are highly desirable. We present herein the preparation of novel composite nanofibers through the grafting of polyethylene glycol (PEG) polymer onto polyaniline (PANI) nanofibers and their application in the development of antifouling electrochemical biosensors. The PEGylated PANI (PANI/PEG) nanofibers possessed large surface area and remained conductive and at the same time demonstrated excellent antifouling performances in single protein solutions as well as complex human serum samples. Sensitive and low fouling electrochemical biosensors for the breast cancer susceptibility gene (BRCA1) can be easily fabricated through the attachment of DNA probes to the PANI/PEG nanofibers. The biosensor showed a very high sensitivity to target BRCA1 with a linear range from 0.01 pM to 1 nM and was also efficient enough to detect DNA mismatches with satisfactory selectivity. Moreover, the DNA biosensor based on the PEGylated PANI nanofibers supported the quantification of BRCA1 in complex human serum, indicating great potential of this novel biomaterial for application in biosensors and bioelectronics.
Collapse
Affiliation(s)
- Ni Hui
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology , Qingdao 266042, China
| | - Xiaotian Sun
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology , Qingdao 266042, China
| | - Shuyan Niu
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology , Qingdao 266042, China
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology , Qingdao 266042, China
| |
Collapse
|