1
|
Lahaise M, Boujenoui F, Beaudry F. Cannflavins isolated from Cannabis sativa impede Caenorhabditis elegans response to noxious heat. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:535-548. [PMID: 37480489 DOI: 10.1007/s00210-023-02621-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
Cannflavins, flavonoids abundantly present in Cannabis sativa, possess a distinct chemical structure comprising a vanillyl group. Notably, the capsaicin structure also contains a vanillyl group, which is considered essential for interacting with the vanilloid receptor. The vanilloid receptor plays a crucial role in the perception of pain, heat, and inflammation and mediates the analgesic effects of capsaicin. Therefore, we postulated that prolonged exposure to cannflavin A (Can A) and cannflavin B (Can B) would provoke vanilloid receptor desensitization and hinder nocifensive responses to noxious thermal stimuli. C. elegans wild-type (N2) and mutants were exposed to Can A and Can B solutions for 60 min and then aliquoted on Petri dishes divided into quadrants for thermal stimulation. We then determined the thermal avoidance index for each C. elegans experimental group. Proteomics was performed to identify proteins and pathways associated with Can A or B treatment. Prolonged exposure to Can A and Can B hindered heat avoidance (32-35 °C) in C. elegans. No antinociceptive effect was observed 6 h post Can A or B exposure. Proteomics and Reactome pathway enrichment analyses identified hierarchical differences between Can A- and B-treated nematodes. However, both treatments were related to eukaryotic translation initiation (R-CEL-72613) and metabolic processes strongly associated with pain development. Our study aids in characterizing the pharmacological activity of cannflavins isolated from Cannabis sativa and outlines a possible application as pain therapy.
Collapse
Affiliation(s)
- Mathilde Lahaise
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
- Département de Sciences Biologiques, Faculté Des Arts Et Des Sciences, Université de Montréal, Montréal, Québec, Canada
| | - Fatma Boujenoui
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Francis Beaudry
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
2
|
Antinociceptive Activity of Vanilloids in Caenorhabditis elegans is Mediated by the Desensitization of the TRPV Channel OCR-2 and Specific Signal Transduction Pathways. Neurochem Res 2023; 48:1900-1911. [PMID: 36737562 DOI: 10.1007/s11064-023-03876-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Vanilloids, including capsaicin and eugenol, are ligands of transient receptor potential channel vanilloid subfamily member 1 (TRPV1). Prolonged treatment with vanilloids triggered the desensitization of TRPV1, leading to analgesic or antinociceptive effects. Caenorhabditis elegans (C. elegans) is a model organism expressing vanilloid receptor orthologs (e.g., OSM-9 and OCR-2) that are associated with behavioral and physiological processes, including sensory transduction. We have shown that capsaicin and eugenol hamper the nocifensive response to noxious heat in C. elegans. The objective of this study was to perform proteomics to identify proteins and pathways responsible for the induced phenotype and to identify capsaicin and eugenol targets using a thermal proteome profiling (TPP) strategy. The results indicated hierarchical differences following Reactome Pathway enrichment analyses between capsaicin- and eugenol-treated nematodes. However, both treated groups were associated mainly with signal transduction pathways, energy generation, biosynthesis and structural processes. Wnt signaling, a specific signal transduction pathway, is involved following treatment with both molecules. Wnt signaling pathway is noticeably associated with pain. The TPP results show that capsaicin and eugenol target OCR-2 but not OSM-9. Further protein-protein interaction (PPI) analyses showed other targets associated with enzymatic catalysis and calcium ion binding activity. The resulting data help to better understand the broad-spectrum pharmacological activity of vanilloids.
Collapse
|
3
|
Choi JH, Jeong SY, Oh MR, Allen PD, Lee EH. TRPCs: Influential Mediators in Skeletal Muscle. Cells 2020; 9:cells9040850. [PMID: 32244622 PMCID: PMC7226745 DOI: 10.3390/cells9040850] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
Ca2+ itself or Ca2+-dependent signaling pathways play fundamental roles in various cellular processes from cell growth to death. The most representative example can be found in skeletal muscle cells where a well-timed and adequate supply of Ca2+ is required for coordinated Ca2+-dependent skeletal muscle functions, such as the interactions of contractile proteins during contraction. Intracellular Ca2+ movements between the cytosol and sarcoplasmic reticulum (SR) are strictly regulated to maintain the appropriate Ca2+ supply in skeletal muscle cells. Added to intracellular Ca2+ movements, the contribution of extracellular Ca2+ entry to skeletal muscle functions and its significance have been continuously studied since the early 1990s. Here, studies on the roles of channel proteins that mediate extracellular Ca2+ entry into skeletal muscle cells using skeletal myoblasts, myotubes, fibers, tissue, or skeletal muscle-originated cell lines are reviewed with special attention to the proposed functions of transient receptor potential canonical proteins (TRPCs) as store-operated Ca2+ entry (SOCE) channels under normal conditions and the potential abnormal properties of TRPCs in muscle diseases such as Duchenne muscular dystrophy (DMD).
Collapse
Affiliation(s)
- Jun Hee Choi
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Seung Yeon Jeong
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Mi Ri Oh
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Paul D. Allen
- Leeds Institute of Biomedical & Clinical Sciences, St. James’s University Hospital, University of Leeds, Leeds LS97TF, UK
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: ; Tel.: +82-2-2258-7279
| |
Collapse
|
4
|
Lopez JJ, Jardin I, Albarrán L, Sanchez-Collado J, Cantonero C, Salido GM, Smani T, Rosado JA. Molecular Basis and Regulation of Store-Operated Calcium Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:445-469. [PMID: 31646520 DOI: 10.1007/978-3-030-12457-1_17] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous mechanism for Ca2+ influx in mammalian cells with important physiological implications. Since the discovery of SOCE more than three decades ago, the mechanism that communicates the information about the amount of Ca2+ accumulated in the intracellular Ca2+ stores to the plasma membrane channels and the nature of these channels have been matters of intense investigation and debate. The stromal interaction molecule-1 (STIM1) has been identified as the Ca2+ sensor of the intracellular Ca2+ compartments that activates the store-operated channels. STIM1 regulates two types of store-dependent channels: the Ca2+ release-activated Ca2+ (CRAC) channels, formed by Orai1 subunits, that conduct the highly Ca2+ selective current I CRAC and the cation permeable store-operated Ca2+ (SOC) channels, which consist of Orai1 and TRPC1 proteins and conduct the non-selective current I SOC. While the crystal structure of Drosophila CRAC channel has already been solved, the architecture of the SOC channels still remains unclear. The dynamic interaction of STIM1 with the store-operated channels is modulated by a number of proteins that either support the formation of the functional STIM1-channel complex or protect the cell against Ca2+ overload.
Collapse
Affiliation(s)
- Jose J Lopez
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Isaac Jardin
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain.
| | - Letizia Albarrán
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Jose Sanchez-Collado
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Carlos Cantonero
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Gines M Salido
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysics and Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Sevilla, Sevilla, Spain
| | - Juan A Rosado
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| |
Collapse
|
5
|
Kondo K, Mori M, Tomita M, Arakawa K. AMPK activity is required for the induction of anhydrobiosis in a tardigrade Hypsibius exemplaris, and its potential up-regulator is PP2A. Genes Cells 2019; 24:768-780. [PMID: 31608545 DOI: 10.1111/gtc.12726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/08/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022]
Abstract
The anhydrobiotic tardigrade, Hypsibius exemplaris, was previously considered to require de novo gene expression and protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) activity for successful anhydrobiosis. These indicate that H. exemplaris has signal transduction systems responding to desiccation stress, with the involvement of phosphorylation events. To this end, we carried out time-series phosphoproteomics of H. exemplaris exposed to mild desiccation stress and detected 48 phosphoproteins with significant differential regulations. Among them, immediate and successive reduction of phosphorylation levels of AMP-activated protein kinase (AMPK) was observed. The subsequent chemical genetic approach showed that AMPK was activated during the preconditioning stage for anhydrobiosis, and inhibition of its activity impaired successful anhydrobiosis. As PP2A is known to dephosphorylate AMPK in other organisms, we suggested that decreased phosphorylation levels of AMPK upon mild desiccation stress were caused by dephosphorylation by PP2A. Accordingly, phosphoproteomics of animals pre-treated with the PP1/PP2A inhibitor cantharidic acid (CA) lacked the decrease in phosphorylation levels of AMPK. These observations suggest that AMPK activity is required for successful anhydrobiosis in H. exemplaris, and its phosphorylation state is possibly regulated by PP2A.
Collapse
Affiliation(s)
- Koyuki Kondo
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| |
Collapse
|
6
|
Structural biology and structure–function relationships of membrane proteins. Biochem Soc Trans 2018; 47:47-61. [DOI: 10.1042/bst20180269] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 01/02/2023]
Abstract
Abstract
The study of structure–function relationships of membrane proteins (MPs) has been one of the major goals in the field of structural biology. Many Noble Prizes regarding remarkable accomplishments in MP structure determination and biochemistry have been awarded over the last few decades. Mutations or improper folding of these proteins are associated with numerous serious illnesses. Therefore, as important drug targets, the study of their primary sequence and three-dimensional fold, combined with cell-based assays, provides vital information about their structure–function relationships. Today, this information is vital to drug discovery and medicine. In the last two decades, many have been the technical advances and breakthroughs in the field of MP structural biology that have contributed to an exponential growth in the number of unique MP structures in the Protein Data Bank. Nevertheless, given the medical importance and many unanswered questions, it will never be an excess of MP structures, regardless of the method used. Owing to the extension of the field, in this brief review, we will only focus on structure–function relationships of the three most significant pharmaceutical classes: G protein-coupled receptors, ion channels and transporters.
Collapse
|
7
|
Xiao G, Zhou B. What can flies tell us about zinc homeostasis? Arch Biochem Biophys 2016; 611:134-141. [PMID: 27136711 DOI: 10.1016/j.abb.2016.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 12/14/2022]
Abstract
Zinc is an essential micronutrient for all organisms. For multicellular organisms, zinc uptake, storage, distribution and export are tightly regulated at both cellular and organismal levels, to cope with the multiple requirements versus the toxicity of the metal ion. During the past decade, the fruit fly Drosophila melanogaster has become an important model organism for the elucidation of metazoan zinc homeostasis. This review describes our current knowledge of various zinc transporters in Drosophila, with an emphasis on the process of dietary zinc uptake in the fly. We also discuss how Drosophila was used as a model to facilitate our understanding of the role of zinc in neurodegenerative diseases.
Collapse
Affiliation(s)
- Guiran Xiao
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
In vivo detection of human TRPV6-rich tumors with anti-cancer peptides derived from soricidin. PLoS One 2013; 8:e58866. [PMID: 23554944 PMCID: PMC3598914 DOI: 10.1371/journal.pone.0058866] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/07/2013] [Indexed: 01/04/2023] Open
Abstract
Soricidin is a 54-amino acid peptide found in the paralytic venom of the northern short-tailed shrew (Blarina brevicauda) and has been found to inhibit the transient receptor potential of vallinoid type 6 (TRPV6) calcium channels. We report that two shorter peptides, SOR-C13 and SOR-C27, derived from the C-terminus of soricidin, are high-affinity antagonists of human TRPV6 channels that are up-regulated in a number of cancers. Herein, we report molecular imaging methods that demonstrate the in vivo diagnostic potential of SOR-C13 and SOR-C27 to target tumor sites in mice bearing ovarian or prostate tumors. Our results suggest that these novel peptides may provide an avenue to deliver diagnostic and therapeutic reagents directly to TRPV6-rich tumors and, as such, have potential applications for a range of carcinomas including ovarian, breast, thyroid, prostate and colon, as well as certain leukemia's and lymphomas.
Collapse
|
9
|
Effects of protease-activated receptors (PARs) on intracellular calcium dynamics of acinar cells in rat lacrimal glands. Histochem Cell Biol 2013; 140:463-76. [PMID: 23463389 DOI: 10.1007/s00418-013-1082-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
Abstract
Protease-activated receptors (PARs) represent a novel class of seven transmembrane domain G-protein coupled receptors, which are activated by proteolytic cleavage. PARs are present in a variety of cells and have been prominently implicated in the regulation of a number of vital functions. Here, lacrimal gland acinar cell responses to PAR activation were examined, with special reference to intracellular Ca(2+) concentration ([Ca(2+)]i) dynamics. In the present study, detection of acinar cell mRNA specific to known PAR subtypes was determined by reverse transcriptase polymerase chain reaction. Only PAR2 mRNA was detected in acinar cells of lacrimal glands. Both trypsin and a PAR2-activating peptide (PAR2-AP), SLIGRL-NH2, induced an increase in [Ca(2+)]i in acinar cells. The removal of extracellular Ca(2+) and the use of Ca(2+) channel blockers did not inhibit PAR2-AP-induced [Ca(2+)]i increases. Furthermore, U73122 and xestospongin C failed to inhibit PAR2-induced increases in [Ca(2+)]i. The origin of the calcium influx observed after activated PAR2-induced Ca(2+) release from intracellular Ca(2+) stores was also evaluated. The NO donor, GEA 3162, mimicked the effects of PAR2 in activating non-capacitative calcium entry (NCCE). However, both calyculin A (100 nM) and a low concentration of Gd(3+) (5 μM) did not completely block the PAR2-AP-induced increase in [Ca(2+)]i. These findings indicated that PAR2 activation resulted primarily in Ca(2+) mobilization from intracellular Ca(2+) stores and that PAR2-mediated [Ca(2+)]i changes were mainly independent of IP3. RT-PCR indicated that TRPC 1, 3 and 6, which play a role in CCE and NCCE, are expressed in acinar cells. We suggest that PAR2-AP differentially regulates both NCCE and CCE, predominantly NCCE. Finally, our results suggested that PAR2 may function as a key receptor in calcium-related cell homeostasis under pathophysiological conditions such as tissue injury or inflammation.
Collapse
|
10
|
Yuan S, Burrell BD. Long-term depression of nociceptive synapses by non-nociceptive afferent activity: role of endocannabinoids, Ca²+, and calcineurin. Brain Res 2012; 1460:1-11. [PMID: 22578358 DOI: 10.1016/j.brainres.2012.04.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 02/08/2023]
Abstract
Activity in non-nociceptive afferents is known to produce long-lasting decreases in nociceptive signaling, often referred to as gate control, but the cellular mechanisms mediating this form of neuroplasticity are poorly understood. In the leech, activation of non-nociceptive touch (T) mechanosensory neurons induces a heterosynaptic depression of nociceptive (N) synapses that is endocannabinoid-dependent. This heterosynaptic, endocannabinoid-dependent long-term depression (ecLTD) is observed where the T- and N-cells converge on a common postsynaptic target, in this case the motor neuron that innervates the longitudinal muscles (L-cells) that contributes to a defensive withdrawal reflex. Depression in the nociceptive synapse required both presynaptic and postsynaptic increases in intracellular Ca²⁺. Activation of the Ca²⁺-sensitive protein phosphatase calcineurin was also required, but only in the presynaptic neuron. Heterosynaptic ecLTD was unaffected by antagonists for NMDA or metabotropic glutamate receptors, but was blocked by the 5-HT₂ receptor antagonist ritanserin. Depression was also blocked by the CB1 receptor antagonist rimonabant, but this is thought to represent an effect on a TRPV-like receptor. This heterosynaptic, endocannabinoid-dependent modulation of nociceptive synapses represents a novel mechanism for regulating how injury-inducing or painful stimuli are transmitted to the rest of the central nervous system.
Collapse
Affiliation(s)
- Sharleen Yuan
- Sanford School of Medicine at The University of South Dakota, Division of Basic Biomedical Sciences, Neuroscience Group, 414 E. Clark Street, Lee Med Bldg, Vermillion, SD, USA
| | | |
Collapse
|
11
|
Gailly P. TRP channels in normal and dystrophic skeletal muscle. Curr Opin Pharmacol 2012; 12:326-34. [PMID: 22349418 DOI: 10.1016/j.coph.2012.01.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/31/2012] [Accepted: 01/31/2012] [Indexed: 01/29/2023]
Abstract
TRP proteins constitute non-selective cation-permeable ion channels, most of which are permeable to Ca²⁺. In skeletal muscle, several isoforms of the TRPC (Canonical), TRPV (Vanilloid) and TRPM (Melastatin) subfamilies are expressed. In particular, TRPC1, C3 and C6, TRPV2 and V4, TRPM4 and TRPM7 have been consistently found in cultured myoblasts or in adult muscles. These channels seem to directly or indirectly respond to membrane stretch or to Ca²⁺ stores depletion; some isoforms might also constitute unregulated Ca²⁺ leak channels. Their function is largely unknown. TRPC1 and C3 have been involved in muscle development, in particular in myoblasts migration and differentiation. TRPC1 and V4 might allow a basal influx of Ca²⁺ at rest. Their lack has consequences on muscle fatigue. TRPV2 seems to be stretch-sensitive. It localizes mainly in intracellular pools at rest, and translocates to the plasma membrane upon IGF-1 stimulation. TRP channels seem to be involved in the pathophysiology of muscle disorders. In particular in Duchenne muscular dystrophy, the lack of the cytoskeletal protein dystrophin induces a disregulation of several ion channels leading to an abnormal influx of Ca²⁺. We discuss here, the possible involvement of TRP channels in this abnormal influx of Ca²⁺.
Collapse
Affiliation(s)
- Philippe Gailly
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, 55 av. Hippocrate, B1.55.12, 1200 Brussels, Belgium.
| |
Collapse
|
12
|
|
13
|
Andrade EL, Meotti FC, Calixto JB. TRPA1 antagonists as potential analgesic drugs. Pharmacol Ther 2011; 133:189-204. [PMID: 22119554 DOI: 10.1016/j.pharmthera.2011.10.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 10/29/2011] [Indexed: 12/16/2022]
Abstract
The necessity of safe and effective treatments for chronic pain has intensified the search for new analgesic drugs. In the last few years, members of a closely-related family of ion channels, called transient receptor potential (TRP) have been identified in different cell types and their functions in physiological and pathological conditions have been characterized. The transient receptor potential ankyrin 1 (TRPA1), originally called ANKTM1 (ankyrin-like with transmembrane domains protein 1), is a molecule that has been conserved in different species during evolution; TRPA1 is a cation channel that functions as a cellular sensor, detecting mechanical, chemical and thermal stimuli, being a component of neuronal, epithelial, blood and smooth muscle tissues. In mammals, TRPA1 is largely expressed in primary sensory neurons that mediate somatosensory processes and nociceptive transmission. Recent studies have described the role of TRPA1 in inflammatory and neuropathic pain. However, its participation in cold sensation has not been agreed in different studies. In this review, we focus on data that support the relevance of the activation and blockade of TRPA1 in pain transmission, as well as the mechanisms underlying its activation and modulation by exogenous and endogenous stimuli. We also discuss recent advances in the search for new analgesic medicines targeting the TRPA1 channel.
Collapse
Affiliation(s)
- E L Andrade
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | | |
Collapse
|
14
|
Chorna T, Hasan G. The genetics of calcium signaling in Drosophila melanogaster. Biochim Biophys Acta Gen Subj 2011; 1820:1269-82. [PMID: 22100727 DOI: 10.1016/j.bbagen.2011.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 10/31/2011] [Accepted: 11/02/2011] [Indexed: 01/13/2023]
Abstract
BACKGROUND Genetic screens for behavioral and physiological defects in Drosophila melanogaster, helped identify several components of calcium signaling of which some, like the Trps, were novel. For genes initially identified in vertebrates, reverse genetic methods have allowed functional studies at the cellular and systemic levels. SCOPE OF REVIEW The aim of this review is to explain how various genetic methods available in Drosophila have been used to place different arms of Ca2+ signaling in the context of organismal development, physiology and behavior. MAJOR CONCLUSION Mutants generated in genes encoding a range of Ca2+ transport systems, binding proteins and enzymes affect multiple aspects of neuronal and muscle physiology. Some also affect the maintenance of ionic balance and excretion from malpighian tubules and innate immune responses in macrophages. Aspects of neuronal physiology affected include synaptic growth and plasticity, sensory transduction, flight circuit development and function. Genetic interaction screens have shown that mechanisms of maintaining Ca2+ homeostasis in Drosophila are cell specific and require a synergistic interplay between different intracellular and plasma membrane Ca2+ signaling molecules. GENERAL SIGNIFICANCE Insights gained through genetic studies of conserved Ca2+ signaling pathways have helped understand multiple aspects of fly physiology. The similarities between mutant phenotypes of Ca2+ signaling genes in Drosophila with certain human disease conditions, especially where homologous genes are causative factors, are likely to aid in the discovery of underlying disease mechanisms and help develop novel therapeutic strategies. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signalling.
Collapse
Affiliation(s)
- Tetyana Chorna
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | | |
Collapse
|
15
|
Liu W, Wen W, Wei Z, Yu J, Ye F, Liu CH, Hardie R, Zhang M. The INAD Scaffold Is a Dynamic, Redox-Regulated Modulator of Signaling in the Drosophila Eye. Cell 2011; 145:1088-101. [DOI: 10.1016/j.cell.2011.05.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 03/08/2011] [Accepted: 05/04/2011] [Indexed: 01/08/2023]
|
16
|
Molecular mechanisms of calmodulin action on TRPV5 and modulation by parathyroid hormone. Mol Cell Biol 2011; 31:2845-53. [PMID: 21576356 DOI: 10.1128/mcb.01319-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The epithelial Ca(2+) channel transient receptor potential vanilloid 5 (TRPV5) constitutes the apical entry gate for active Ca(2+) reabsorption in the kidney. Ca(2+) influx through TRPV5 induces rapid channel inactivation, preventing excessive Ca(2+) influx. This inactivation is mediated by the last ∼30 residues of the carboxy (C) terminus of the channel. Since the Ca(2+)-sensing protein calmodulin has been implicated in Ca(2+)-dependent regulation of several TRP channels, the potential role of calmodulin in TRPV5 function was investigated. High-resolution nuclear magnetic resonance (NMR) spectroscopy revealed a Ca(2+)-dependent interaction between calmodulin and a C-terminal fragment of TRPV5 (residues 696 to 729) in which one calmodulin binds two TRPV5 C termini. The TRPV5 residues involved in calmodulin binding were mutated to study the functional consequence of releasing calmodulin from the C terminus. The point mutants TRPV5-W702A and TRPV5-R706E, lacking calmodulin binding, displayed a strongly diminished Ca(2+)-dependent inactivation compared to wild-type TRPV5, as demonstrated by patch clamp analysis. Finally, parathyroid hormone (PTH) induced protein kinase A (PKA)-dependent phosphorylation of residue T709, which diminished calmodulin binding to TRPV5 and thereby enhanced channel open probability. The TRPV5-W702A mutant exhibited a significantly increased channel open probability and was not further stimulated by PTH. Thus, calmodulin negatively modulates TRPV5 activity, which is reversed by PTH-mediated channel phosphorylation.
Collapse
|
17
|
Investigations of the in vivo requirements of transient receptor potential ion channels using frog and zebrafish model systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:341-57. [PMID: 21290305 DOI: 10.1007/978-94-007-0265-3_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Transient Receptor Potential (TRP) channels are cation channels that serve as cellular sensors on the plasma membrane, and have other less-well defined roles in intracellular compartments. The first TRP channel was identified upon molecular characterization of a fly mutant with abnormal photoreceptor function. More than 20 TRP channels have since been identified in vertebrates and invertebrate model systems, and these are divided into subfamilies based on structural similarities. The biophysical properties of TRP channels have primarily been explored in tissue culture models. The in vivo requirements for TRPs have been studied in invertebrate models like worm and flies, and also in vertebrate models, primarily mice and rats. Frog and zebrafish model systems offer certain experimental advantages relative to mammalian systems, and here a selection of papers which capitalize on these advantages to explore vertebrate TRP channel biology are reviewed. For instance, frog oocytes are useful for biochemistry and for electrophysiology, and these features were exploited in the identifcation TRPC1 as a candidate vertebrate mechanoreceptor. Also, the spinal neurons from frog embryos can be readily grown in culture. This feature was used to establish a role for TRPC1 in axon pathfinding in these neurons, and to explore how TRPC1 activity is regulated in this context. Zebrafish embryos are transparent making them well suited for in vivo imaging studies. This quality was exploited in a study in which the trpc2 gene promoter was used to label and trace the axon pathway of a subset of olfactory sensory neurons. Another experimental advantage of zebrafish is the speed and low cost of manipulating gene expression in embryos. Using these methods, it has been shown that TRPN1 is necessary for mechanosensation in zebrafish hair cells. Frogs and fish genomes have been mined to make inferences regarding evolutionary diversification of the thermosensitive TRP channels. Finally, TRPM7 is required for early morphogenesis in mice but not in fish; the reason for this difference is unclear, but it has caused zebrafish to be favored for exploration of TRPM7's role in later events in embryogenesis. The special experimental attributes of frogs and zebrafish suggest that these animals will continue to play an important role as models in future explorations of TRP channel biology.
Collapse
|
18
|
TRPM channels mediate zinc homeostasis and cellular growth during Drosophila larval development. Cell Metab 2010; 12:386-397. [PMID: 20889130 DOI: 10.1016/j.cmet.2010.08.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 04/26/2010] [Accepted: 06/24/2010] [Indexed: 12/22/2022]
Abstract
TRPM channels have emerged as key mediators of diverse physiological functions. However, the ionic permeability relevant to physiological function in vivo remains unclear for most members. We report that the single Drosophila TRPM gene (dTRPM) generates a conductance permeable to divalent cations, especially Zn(2+) and in vivo a loss-of-function mutation in dTRPM disrupts intracellular Zn(2+) homeostasis. TRPM deficiency leads to profound reduction in larval growth resulting from a decrease in cell size and associated defects in mitochondrial structure and function. These phenotypes are cell-autonomous and can be recapitulated in wild-type animals by Zn(2+) depletion. Both the cell size and mitochondrial defect can be rescued by extracellular Zn(2+) supplementation. Thus our results implicate TRPM channels in the regulation of cellular Zn(2+) in vivo. We propose that regulation of Zn(2+) homeostasis through dTRPM channels is required to support molecular processes that mediate class I PI3K-regulated cell growth.
Collapse
|
19
|
Gees M, Colsoul B, Nilius B. The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb Perspect Biol 2010; 2:a003962. [PMID: 20861159 DOI: 10.1101/cshperspect.a003962] [Citation(s) in RCA: 310] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The 28 mammalian members of the super-family of transient receptor potential (TRP) channels are cation channels, mostly permeable to both monovalent and divalent cations, and can be subdivided into six main subfamilies: the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), and the TRPA (ankyrin) groups. TRP channels are widely expressed in a large number of different tissues and cell types, and their biological roles appear to be equally diverse. In general, considered as polymodal cell sensors, they play a much more diverse role than anticipated. Functionally, TRP channels, when activated, cause cell depolarization, which may trigger a plethora of voltage-dependent ion channels. Upon stimulation, Ca2+ permeable TRP channels generate changes in the intracellular Ca2+ concentration, [Ca2+]i, by Ca2+ entry via the plasma membrane. However, more and more evidence is arising that TRP channels are also located in intracellular organelles and serve as intracellular Ca2+ release channels. This review focuses on three major tasks of TRP channels: (1) the function of TRP channels as Ca2+ entry channels; (2) the electrogenic actions of TRPs; and (3) TRPs as Ca2+ release channels in intracellular organelles.
Collapse
Affiliation(s)
- Maarten Gees
- KU Leuven, Department of Molecular Cell Biology, Laboratory Ion Channel Research, Campus Gasthuisberg, Herestraat 49, bus 802, Leuven, Belgium
| | | | | |
Collapse
|
20
|
Koike C, Numata T, Ueda H, Mori Y, Furukawa T. TRPM1: a vertebrate TRP channel responsible for retinal ON bipolar function. Cell Calcium 2010; 48:95-101. [PMID: 20846719 DOI: 10.1016/j.ceca.2010.08.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 08/12/2010] [Accepted: 08/12/2010] [Indexed: 12/22/2022]
Abstract
The transient receptor potential (TRP) channels affect essential functions widely in sensory systems of various species, both invertebrates and vertebrates. The channel protein encoded by the trp gene, the first identified TRP superfamily molecule, is known to mediate the Drosophila light response. A vertebrate TRP channel playing a crucial role in the visual system has not yet been discovered, although numerous studies have revealed primal functions of TRP superfamily molecules in various sensory systems other than vision. In the retina, which is the entry tissue in the vertebrate visual pathway, the transduction cation channel in ON bipolar cells has been elusive, despite intensive investigation by many researchers over a long period of time. Recent studies finally revealed that TRPM1, the first member of the melanoma-related transient receptor potential (TRPM) subfamily to be discovered, is a visual transduction channel in retinal ON bipolar cells. This review covers the significant discoveries on the physiological function and regulatory mechanism of the TRPM1 channel in retinal ON bipolar cells and the association of human TRPM1 mutations with congenital stationary night blindness.
Collapse
Affiliation(s)
- Chieko Koike
- Department of Developmental Biology, Osaka Bioscience Institute, Furuedai, Suita, Japan
| | | | | | | | | |
Collapse
|
21
|
Yuan S, Burrell BD. Endocannabinoid-dependent LTD in a nociceptive synapse requires activation of a presynaptic TRPV-like receptor. J Neurophysiol 2010; 104:2766-77. [PMID: 20884761 DOI: 10.1152/jn.00491.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies have found that some forms of endocannabinoid-dependent synaptic plasticity in the hippocampus are mediated through activation of transient potential receptor vanilloid (TRPV) receptors instead of cannabinoid receptors CB1 or CB2. The potential role for synaptic localization of TRPV receptors during endocannabinoid modulation of nociceptive synapses was examined in the leech CNS where it is possible to record from the same pair of neurons from one preparation to the next. Long-term depression (LTD) in the monosynaptic connection between the nociceptive (N) sensory neuron and the longitudinal (L) motor neuron was found to be endocannabinoid-dependent given that this depression was blocked by RHC-80267, an inhibitor of DAG lipase that is required for 2-arachidonoyl glycerol (2AG) synthesis. Intracellular injection of a second DAG lipase inhibitor, tetrahyrdolipstatin (THL) was also able to block this endocannabinoid-dependent LTD (ecLTD) when injected postsynaptically but not presynaptically. N-to-L ecLTD was also inhibited by the TRPV1 antagonists capsazepine and SB 366791. Bath application of 2AG or the TRPV1 agonists capsaicin and resiniferatoxin mimicked LTD and both capsaicin- and 2AG-induced depression were blocked by capsazepine. In addition, pretreatment with 2AG or capsaicin occluded subsequent expression of LTD induced by repetitive activity. Presynaptic, but not postsynaptic, intracellular injection of capsazepine blocked both activity- and 2AG-induced ecLTD, suggesting that a presynaptic TRPV-like receptor in the leech mediated this form of synaptic plasticity. These findings potentially extend the role ecLTD to nociceptive synapses and suggest that invertebrate synapses, which are thought to lack CB1/CB2 receptor orthologues, utilize a TRPV-like protein as an endocannabinoid receptor.
Collapse
Affiliation(s)
- Sharleen Yuan
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | | |
Collapse
|
22
|
Everaerts W, Nilius B, Owsianik G. The vanilloid transient receptor potential channel TRPV4: from structure to disease. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 103:2-17. [PMID: 19835908 DOI: 10.1016/j.pbiomolbio.2009.10.002] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 10/07/2009] [Indexed: 12/19/2022]
Abstract
The Transient Receptor Potential Vanilloid 4 channel, TRPV4, is a Ca(2+) and Mg(2+) permeable non-selective cation channel involved in many different cellular functions. It is activated by a variety of physical and chemical stimuli, including heat, mechano-stimuli, endogenous substances such as arachidonic acid and its cytochrome P450-derived metabolites (epoxyeicosatrienoic acids), endocannabinoids (anandamide and 2-arachidonoylglycerol), as well as synthetic alpha-phorbol derivatives. Recently, TRPV4 has been characterized as an important player modulating osteoclast differentiation in bone remodelling and as a urothelial mechanosensor that controls normal voiding. Several TRPV4 gain-of-function mutations are shown to cause autosomal-dominant bone dysplasias such as brachyolmia and Koszlowski disease. In this review we comprehensively describe the structural, biophysical and (patho)physiological properties of the TRPV4 channel and we summarize the current knowledge about the role of TRPV4 in the pathogenesis of several diseases.
Collapse
Affiliation(s)
- Wouter Everaerts
- Department of Molecular Cell Biology, Laboratory Ion Channel Research, Campus Gasthuisberg, KULeuven, Herestraat 49, bus 802, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
23
|
Dynamic interaction of hTRPC6 with the Orai1-STIM1 complex or hTRPC3 mediates its role in capacitative or non-capacitative Ca(2+) entry pathways. Biochem J 2009; 420:267-76. [PMID: 19260825 DOI: 10.1042/bj20082179] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TRPC (canonical transient receptor potential) channel subunits have been shown to assemble into homo- or hetero-meric channel complexes, including different Ca2+-handling proteins, required for the activation of CCE (capacitative Ca2+ entry) or NCCE (non-CCE) pathways. In the present study we found evidence for the dynamic interaction between endogenously expressed hTRPC6 (human TRPC6) with either both Orai1 and STIM1 (stromal interaction molecule 1) or hTRPC3 to participate in CCE or NCCE. Electrotransjection of cells with an anti-hTRPC6 antibody, directed towards the C-terminal region, reduces CCE induced by TPEN [N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine], which reduces the intraluminal free Ca2+ concentration. Cell stimulation with thrombin or extensive Ca2+-store depletion by TG (thapsigargin)+ionomycin enhanced the interaction between hTRPC6 and the CCE proteins Orai1 and STIM1. In contrast, stimulation with the diacylglycerol analogue OAG (1-oleoyl-2-acetyl-sn-glycerol) displaces hTRPC6 from Orai1 and STIM1 and enhances the association between hTRPC6 and hTRPC3. The interaction between hTRPC6 and hTRPC3 was abolished by dimethyl-BAPTA [1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid] loading, which indicates that this phenomenon is Ca2+-dependent. These findings support the hypothesis that hTRPC6 participates both in CCE and NCCE through its interaction with the Orai1-STIM1 complex or hTRPC3 respectively.
Collapse
|
24
|
|
25
|
Phelps CB, Huang RJ, Lishko PV, Wang RR, Gaudet R. Structural analyses of the ankyrin repeat domain of TRPV6 and related TRPV ion channels. Biochemistry 2008; 47:2476-84. [PMID: 18232717 PMCID: PMC3006163 DOI: 10.1021/bi702109w] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transient receptor potential (TRP) proteins are cation channels composed of a transmembrane domain flanked by large N- and C-terminal cytoplasmic domains. All members of the vanilloid family of TRP channels (TRPV) possess an N-terminal ankyrin repeat domain (ARD). The ARD of mammalian TRPV6, an important regulator of calcium uptake and homeostasis, is essential for channel assembly and regulation. The 1.7 A crystal structure of the TRPV6-ARD reveals conserved structural elements unique to the ARDs of TRPV proteins. First, a large twist between the fourth and fifth repeats is induced by residues conserved in all TRPV ARDs. Second, the third finger loop is the most variable region in sequence, length and conformation. In TRPV6, a number of putative regulatory phosphorylation sites map to the base of this third finger. Size exclusion chromatography and crystal packing indicate that the TRPV6-ARD does not assemble as a tetramer and is monomeric in solution. Adenosine triphosphate-agarose and calmodulin-agarose pull-down assays show that the TRPV6-ARD does not interact with either ligand, indicating a different functional role for the TRPV6-ARD than in the paralogous thermosensitive TRPV1 channel. Similar biochemical findings are also presented for the highly homologous mammalian TRPV5-ARD. The implications of the structural and biochemical data on the role of the ankyrin repeats in different TRPV channels are discussed.
Collapse
Affiliation(s)
- Christopher B. Phelps
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 01238 USA
| | - Robert J. Huang
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 01238 USA
| | - Polina V. Lishko
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 01238 USA
| | - Ruiqi R. Wang
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 01238 USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 01238 USA
| |
Collapse
|
26
|
Zhang L, Guo F, Kim JY, Saffen D. Muscarinic acetylcholine receptors activate TRPC6 channels in PC12D cells via Ca2+ store-independent mechanisms. J Biochem 2007; 139:459-70. [PMID: 16567411 DOI: 10.1093/jb/mvj065] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this paper we report that stimulation of mAChRs in PC12D cells activates Ca2+ channels that are regulated independently of intracellular Ca2+ stores. In nominally Ca2+-free medium, exposure of PC12D cells to carbachol stimulates a robust influx of Ba2+, a Ca2+ substitute. This influx is blocked by atropine, but not by inhibitors of the nicotinic acetylcholine receptor or L-, N-, or T-type voltage-regulated Ca2+ channels. By contrast, depletion of intracellular Ca2+ stores with thapsigargin only weakly stimulates Ba2+ influx. Unlike store-operated Ca2+ channels (SOCCs), which close only after intracellular Ca2+ stores refill, channels mediating carbachol-stimulated Ba2+ influx rapidly close following the inactivation of mAChRs with atropine. Ba2+ influx is inhibited by extracellular Ca2+, by the Ca2+ channel blocker SKF-96365, and by activation of protein kinase C (PKC). Exogenous expression of antisense RNA encoding the rat canonical-transient receptor potential Ca2+ channel subtype 6 (TRPC6) or the N-terminal domain of TRPC6 blocks carbachol-stimulated Ba2+ influx in PC12D cells. Expression of TRPC6 antisense RNA or the TRPC6 N-terminal domain also blocks Ba2+ influx stimulated by 1-oleoyl-2-acetyl-sn-glycerol (OAG), a diacylglycerol analog previously shown to activate exogenously expressed TRPC6 channels. These data show that mAChRs in PC12D cells activate endogenous Ca2+ channels that are regulated independently of Ca2+ stores and require the expression of TRPC6.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Neurochemistry, Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033
| | | | | | | |
Collapse
|
27
|
Go L, Mitchell J. Degradation of the non-palmitoylated invertebrate visual guanine-nucleotide binding protein, iGq alpha(C3,4A), by the ubiquitin-proteasomal pathway is regulated by its activation and translocation to the cytoplasm. Vis Neurosci 2007; 24:169-75. [PMID: 17640407 DOI: 10.1017/s0952523807070216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 02/21/2007] [Indexed: 11/06/2022]
Abstract
Light-dependent translocation of invertebrate visual guanine-nucleotide binding protein, iGq alpha, from rhabdomeric membranes to the cytoplasm is one of many mechanisms that contribute to light adaptation in the invertebrate eye. We have previously cloned iGq alpha from a Loligo pealei photoreceptor cDNA library and shown that when expressed in HEK 293T cells it is palmitoylated. In this study we compared the activation, cytoplasmic translocation, and turnover of iGq alpha with that of a non-palmitoylated mutant, iGq alpha(C3,4A). In the HEK 293T cells, muscarinic M1 receptors coupled equally well to iGq alpha and iGq alpha(C3,4A) to activate phospholipase C. Activation of iGq alpha(C3,4A), but not iGq alpha, induced translocation of the alpha subunit from the membrane to cytosol with rapid degradation of the soluble protein resulting in a decreased half-life for iGq alpha(C3,4A) of 10 hours compared to 20 hours for iGq alpha. Degradation of iGq alpha(C3,4A) was inhibited by proteasomal inhibitors but not by inhibitors of lysosomal proteases or calpain. The presence of the proteasomal inhibitor led to the accumulation of polyubiquitinated species of either iGq alpha or iGq alpha(C3,4A). Our results suggest that palmitoylation of iGq alpha is required to maintain membrane association of the protein in its active conformation, and whereas membrane-bound and soluble iGq alpha can be polyubiquitinated, membrane association protects the protein from rapid degradation by the proteasomal pathway.
Collapse
Affiliation(s)
- Lynle Go
- Department of Pharmacology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
28
|
Go L, Mitchell J. Receptor-coupling properties of the invertebrate visual guanine nucleotide binding protein iGqalpha. Cell Signal 2007; 19:1919-27. [PMID: 17560078 DOI: 10.1016/j.cellsig.2007.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 04/29/2007] [Accepted: 05/04/2007] [Indexed: 10/23/2022]
Abstract
Invertebrate visual iG(q)alpha is homologous to mammalian mG(q)alpha in two of the three domains important for G protein interaction with receptors; the C-terminus and the linker regions that connect the helical and ras-like domains of the alpha subunit. The third receptor-interacting domain, the N-terminus, contains a six amino acid extension MTLESI in mG(q)alpha that is not present in iG(q)alpha. In co-expression studies we assessed the promiscuity and efficacy of receptor coupling to phospholipase C (PLC) by iG(q)alpha, a non-palmitoylated mutant iG(q)alpha(C3,4A), mG(q)alpha and G(15)alpha. The invertebrate G proteins and mG(q)alpha only coupled to G(q)-coupled receptors (m1 muscarinic acetylcholine receptor (mChR1), alpha(1A)-adrenergic receptor (alpha1-AR)) and not to the G(i/s)-coupled receptors (CCR1 receptor, beta2-adrenergic receptor or dopamine D1 receptor) while G(15)alpha coupled to all receptors. iG(q)alpha and iG(q)alpha(C3,4A) both had double the efficacy for PLC activation compared to the mammalian G proteins when co-expressed with mChR1 and alpha1-AR. The increased efficacy of iG(q)alpha compared to mG(q)alpha was also seen downstream of PLC with carbachol stimulation of the mitogen-activated protein kinase, ERK1/2. Addition of the MTLESI extension onto the N-terminus of iG(q)alpha decreased its efficacy by 35% whereas deletion of this sequence from mG(q)alpha increased its efficacy by 60% in the PLC and ERK1/2 assays. iG(q)alpha, iG(q)alpha(C3,4A) and mG(q)alpha all displayed similar receptor-independent AlF(4)(-)activation of PLC and guanosine triphosphate hydrolysis (GTPase) activity. iG(q)alpha, and iG(q)alpha(C3,4A) both had increased receptor-activated guanosine 5'-[gamma-[(35)S]thio]triphosphate ([(35)S]GTPgammaS) binding when compared to mG(q)alpha when co-expressed with the mChR1. These results demonstrate that G(q) protein efficacy is at least partially determined by the presence of the amino-terminal MTLESI extension. Comparison of [(35)S]GTPgammaS binding rates helps explain the increased efficacy of the invertebrate G proteins.
Collapse
Affiliation(s)
- Lynle Go
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
29
|
Nielsen MM, Sørensen JG, Kruhøffer M, Justesen J, Loeschcke V. Phototransduction genes are up-regulated in a global gene expression study of Drosophila melanogaster selected for heat resistance. Cell Stress Chaperones 2007; 11:325-33. [PMID: 17278881 PMCID: PMC1712680 DOI: 10.1379/csc-207.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The genetic architecture underlying heat resistance remains partly unclear despite the well-documented involvement of heat shock proteins (Hsps). It was previously shown that factors besides Hsps are likely to play an important role for heat resistance. In this study, gene expression arrays were used to make replicate measurements of gene expression before and up to 64 hours after a mild heat stress treatment, in flies selected for heat resistance and unselected control flies, to identify genes differentially expressed in heat resistance-selected flies. We found 108 genes up-regulated and 10 down-regulated using the Affymetrix gene expression platform. Among the up-regulated genes, a substantial number are involved in the phototransduction process. Another group of genes up-regulated in selected flies is characterized by also responding to heat shock treatment several hours after peak induction of known Hsps revert to nonstress levels. These findings suggest phototransduction genes to be critically involved in heat resistance, and support a role for components of the phototransduction process in stress-sensing mechanisms. In addition, the results suggest yet-uncharacterized genes responding to heat stress several hours after treatment to be involved in heat stress resistance. These findings mark an important increase in the understanding of heat resistance.
Collapse
Affiliation(s)
- Morten Muhlig Nielsen
- Department of Ecology and Genetics, University of Aarhus, DK-8000 Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
30
|
Nagasawa M, Nakagawa Y, Tanaka S, Kojima I. Chemotactic peptide fMetLeuPhe induces translocation of the TRPV2 channel in macrophages. J Cell Physiol 2007; 210:692-702. [PMID: 17154364 DOI: 10.1002/jcp.20883] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The present study was conducted to characterize the regulation and function of TRPV2 in macrophages. Among six members of the TRPV family channels, only the expression of TRPV2 was detected in macrophages. We then determined localization of TRPV2 using TtT/M87 macrophages transfected with TRPV2-EGFP. In serum-free condition, most of the TRPV2 signal was located in the cytoplasm and colocalized with the endoplasmic reticulum marker. Treatment with serum induced translocation of some of the TRPV2-EGFP to the plasma membrane. Serum-induced translocation was blocked by transfection of short-form TRPV2 (s-TRPV2) lacking a pore-forming region and the sixth transmembrane domain. Addition of a chemotactic peptide formyl Met-Leu-Phe (fMLP) also induced translocation of TRPV2-EGFP to the plasma membrane. The fMLP-induced translocation was blocked by an inhibitor of PI 3-kinase, LY294002, and pertussis toxin. Whole-cell patch clamp analysis showed a Cs+ current in the TtT/M87 cell, which was blocked by an addition of ruthenium red and transfection of either s-TRPV2 or siRNA for TRPV2. fMLP increased the Cs+ current. fMLP induced a rapid and sustained elevation of cytoplasmic Ca2+ ([Ca2+]C), the sustained phase of which was abolished by removal of extracellular calcium. The sustained elevation of [Ca2+]C was also blocked by ruthenium red, and transfection of either s-TRPV2 or siRNA. Finally, fMLP-induced migration of macrophage was blocked by ruthenium red or transfection of s-TRPV2. These results suggest that fMLP induces translocation of TRPV2 from intracellular compartment to the plasma membrane, and this translocation is critical for fMLP-induced calcium entry.
Collapse
Affiliation(s)
- Masahiro Nagasawa
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | | | | | | |
Collapse
|
31
|
Yoshida J, Ishibashi T, Nishio M. G1 cell cycle arrest by amlodipine, a dihydropyridine Ca2+ channel blocker, in human epidermoid carcinoma A431 cells. Biochem Pharmacol 2006; 73:943-53. [PMID: 17217918 DOI: 10.1016/j.bcp.2006.12.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 11/20/2006] [Accepted: 12/11/2006] [Indexed: 01/27/2023]
Abstract
We demonstrated previously that amlodipine, a dihydropyridine Ca(2+) channel blocker, exhibits antitumor effects on human epidermoid carcinoma A431 cells both in vitro and in vivo, in part through inhibition of capacitative Ca(2+) entry. In this study, we examined the effects of amlodipine on cell cycle distribution and cell cycle regulatory molecules in A431 cells, since a rise in intracellular Ca(2+) is required at several points during cell cycle progression. Flow cytometric analysis revealed that treatment with amlodipine (20-30muM, for 24h) induced G1 phase cell accumulation. The amlodipine-induced G1 arrest was associated with a decrease in phosphorylation of retinoblastoma protein (pRB), a regulator of G1 to S phase transition, reduction of protein levels of cyclin D1 and cyclin dependent kinase 4 (CDK4), G1 specific cell cycle proteins, and increased expression of p21(Waf1/Cip1), an inhibitory protein of CDK/cyclin complexes. In vitro kinase assay revealed that amlodipine significantly decreased CDK2-, CDK4-, and their partners cyclin E- and cyclin D1-associated kinase activities. The amlodipine-induced reductions in cyclin D1 protein expression and in CDK2 kinase activity were reproduced by a dihydropyridine derivative, nicardipine, having an inhibitory effect on A431 cell growth, but not by nifedipine, lacking the antiproliferative activity. Our results demonstrate that amlodipine caused G1 cell cycle arrest and growth inhibition in A431 cells through induction of p21(Waf1/Cip1) expression, inhibition of CDK/cyclin-associated kinase activities, and reduced phosphorylation of pRB.
Collapse
Affiliation(s)
- Junko Yoshida
- Department of Pharmacology, Kanazawa Medical University, Daigaku 1-1, Uchinada, Ishikawa 920-0293, Japan.
| | | | | |
Collapse
|
32
|
Warren EJ, Allen CN, Brown RL, Robinson DW. The light-activated signaling pathway in SCN-projecting rat retinal ganglion cells. Eur J Neurosci 2006; 23:2477-87. [PMID: 16706854 PMCID: PMC2435203 DOI: 10.1111/j.1460-9568.2006.04777.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In mammals, the master circadian clock resides in the suprachiasmatic nuclei (SCN) of the hypothalamus. The period and phase of the circadian pacemaker are calibrated by direct photic input from retinal ganglion cells (RGCs). SCN-projecting RGCs respond to light in the absence of rod- and cone-driven synaptic input, a property for which they are termed intrinsically photosensitive. In SCN-projecting RGCs, light activates a nonselective cationic current that displays inward and outward rectification. The goal of the present study was to investigate the identity of the light-activated ion channel and the intracellular signaling pathway leading to its activation. We considered two candidate channels, cyclic nucleotide-gated (CNG) channels and transient receptor potential (TRP) channels, which mediate vertebrate and invertebrate phototransduction, respectively. We report that the intrinsic light response relies upon a G-protein-dependent process. Although our data indicate that cyclic nucleotides modulate the signaling pathway, CNG channels do not appear to conduct the light-activated current because (i) cyclic nucleotides in the pipette solution do not activate a conductance or completely block the light response, (ii) CNG channel blockers fail to inhibit the light response, (iii) the effects of internal and external divalent cations are inconsistent with their effects on CNG channels, and (iv) immunohistochemistry reveals no CNG channels in SCN-projecting RGCs. Finally, we show that the pharmacology of the light-activated channel resembles that of some TRPC channel family members; the response is blocked by lanthanides and ruthenium red and SK&F 96365, and is enhanced by flufenamic acid and 1-oleoyl-2-acetyl-sn-glycerol. Furthermore, immunohistochemical experiments reveal that TRPC6 is expressed in many RGCs, including those that express melanopsin.
Collapse
Affiliation(s)
- Erin J Warren
- Center for Research on Occupational and Environmental Toxicology, L606, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
33
|
Schoeber JP, Topala CN, Wang X, Diepens RJ, Lambers TT, Hoenderop JG, Bindels RJ. RGS2 Inhibits the Epithelial Ca2+ Channel TRPV6. J Biol Chem 2006; 281:29669-74. [PMID: 16895908 DOI: 10.1074/jbc.m606233200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The epithelial Ca(2+) channels TRPV5 and TRPV6 constitute the apical Ca(2+) entry pathway in the process of active Ca(2+) (re)absorption. By yeast two-hybrid and glutathione S-transferase pulldown analysis we identified RGS2 as a novel TRPV6-associated protein. RGS proteins determine the inactivation kinetics of heterotrimeric G-protein-coupled receptor (GPCR) signaling by regulating the GTPase activity of G(alpha) subunits. Here we demonstrate that TRPV6 interacts with the NH(2)-terminal domain of RGS2 in a Ca(2+)-independent fashion and that overexpression of RGS2 reduces the Na(+) and Ca(2+) current of TRPV6 but not that of TRPV5-transfected human embryonic kidney 293 (HEK293) cells. In contrast, overexpression of the deletion mutant DeltaN-RGS2, lacking the NH(2)-terminal domain of RGS2, in TRPV6-expressing HEK293 cells did not show this inhibition. Furthermore, cell surface biotinylation indicated that the inhibitory effect of RGS2 on TRPV6 activity is not mediated by differences in trafficking or retrieval of TRPV6 from the plasma membrane. This effect probably results from the direct interaction between RGS2 and TRPV6, affecting the gating properties of the channel. Finally, the scaffolding protein spinophilin, shown to recruit RGS2 and regulate GPCR-signaling via G(alpha), did not affect RGS2 binding and electrophysiological properties of TRPV6, indicating a GPCR-independent mechanism of TRPV6 regulation by RGS2.
Collapse
Affiliation(s)
- Joost P Schoeber
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen 6500 HB, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
34
|
Cheek TR, Thorn P. A constitutively active nonselective cation conductance underlies resting Ca2+ influx and secretion in bovine adrenal chromaffin cells. Cell Calcium 2006; 40:309-18. [PMID: 16806464 DOI: 10.1016/j.ceca.2006.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 02/27/2006] [Accepted: 04/12/2006] [Indexed: 10/24/2022]
Abstract
We have combined fluorimetric measurements of the intracellular free Ca(2+) concentration ([Ca(2+)](i)) with the patch clamp technique, to investigate resting Ca(2+) entry in bovine adrenal chromaffin cells. Perfusion with nominally Ca(2+)-free medium resulted in a rapid, reversible decrease in [Ca(2+)](i), indicating a resting Ca(2+) permeability across the plasma membrane. Simultaneous whole-cell voltage-clamp showed a resting inward current that increased when extracellular Ca(2+) (Ca(2+)(o)) was lowered. This current had a reversal potential of around 0 mV and was carried by monovalent or divalent cations. In Na(+)-free extracellular medium there was a reduction in current amplitude upon removal of Ca(2+)(o), indicating the current can carry Ca(2+). The current was constitutively active and not enhanced by agents that promote Ca(2+)-store depletion such as thapsigargin. Extracellular La(3+) abolished the resting current, reduced resting [Ca(2+)](i) and inhibited basal secretion. Abolishment of resting Ca(2+) influx depleted the inositol 1,4,5-trisphosphate-sensitive Ca(2+) store without affecting the caffeine-sensitive Ca(2+) store. The results indicate the presence of a constitutively active nonselective cation conductance, permeable to both monovalent and divalent cations, that can regulate [Ca(2+)](i), the repletion state of the intracellular Ca(2+) store and the secretory response in resting cells.
Collapse
Affiliation(s)
- Timothy R Cheek
- Institute for Cell and Molecular Biosciences, University of Newcastle-upon-Tyne, The Medical School, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK.
| | | |
Collapse
|
35
|
Bollimuntha S, Ebadi M, Singh BB. TRPC1 protects human SH-SY5Y cells against salsolinol-induced cytotoxicity by inhibiting apoptosis. Brain Res 2006; 1099:141-9. [PMID: 16765919 PMCID: PMC2845452 DOI: 10.1016/j.brainres.2006.04.104] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 04/19/2006] [Accepted: 04/27/2006] [Indexed: 11/20/2022]
Abstract
Salsolinol, an endogenous neurotoxin, may be involved in the pathogenesis of Parkinson's disease. In this study, we sought to determine whether salsolinol-induced cytotoxicity in SH-SY5Y human neuroblastoma cells, a cloned cell line which expresses dopaminergic activity, could be prevented by overexpressing a Ca(2+) channel, transient receptor potential (TRPC1) protein. Exposure of SH-SY5Y cells to 500 microM salsolinol for 12 h resulted in a significant decrease in thapsigargin or carbachol-mediated Ca(2+) influx. Consistent with these results, SH-SY5Y cells treated with salsolinol showed approximately 60% reduction in TRPC1 protein levels. Confocal microscopy also showed that SH-SY5Y cells treated with salsolinol had a significant decrease in the plasma membrane staining of the TRPC1 protein. Interestingly, overexpression of TRPC1 increases TRPC1 protein levels and also protected SH-SY5Y neuroblastoma cells against salsolinol-mediated cytotoxicity as determined by 3,[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The protective effect of TRPC1 was blocked by the addition of TRPC1 blockers lanthanum, or 2APB. Activation of TRPC1 protein by either thapsigargin or carbachol further protected SH-SY5Y cells from salsolinol treatments. Staining of SH-SY5Y cells with an apoptotic marker (YO-PRO-1) showed that TRPC1 protein protects against apoptosis. Furthermore, TRPC1 overexpression also inhibited cytochrome c release and decreased BAX protein levels required for apoptosis. Taken together, these findings suggest that the reduction in cell surface TRPC1 protein expression in response to salsolinol may be a contributory factor in cellular toxicity of the dopaminergic neurons. Furthermore, overexpression of TRPC1 could inhibit apoptotic complex thereby increasing neuronal cell survivability in Parkinson's disease.
Collapse
Affiliation(s)
- Sunitha Bollimuntha
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58201, USA
| | - Manuchair Ebadi
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58201, USA
| | - Brij B. Singh
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58201, USA
- Corresponding author. Fax: +1 701 777 2382. (B.B. Singh)
| |
Collapse
|
36
|
Abstract
The aim of this review is to provide a basic framework for understanding the function of mammalian transient receptor potential (TRP) channels, particularly as they have been elucidated in heterologous expression systems. Mammalian TRP channel proteins form six-transmembrane (6-TM) cation-permeable channels that may be grouped into six subfamilies on the basis of amino acid sequence homology (TRPC, TRPV, TRPM, TRPA, TRPP, and TRPML). Selected functional properties of TRP channels from each subfamily are summarized in this review. Although a single defining characteristic of TRP channel function has not yet emerged, TRP channels may be generally described as calcium-permeable cation channels with polymodal activation properties. By integrating multiple concomitant stimuli and coupling their activity to downstream cellular signal amplification via calcium permeation and membrane depolarization, TRP channels appear well adapted to function in cellular sensation. Our review of recent literature implicating TRP channels in neuronal growth cone steering suggests that TRPs may function more widely in cellular guidance and chemotaxis. The TRP channel gene family and its nomenclature, the encoded proteins and alternatively spliced variants, and the rapidly expanding pharmacology of TRP channels are summarized in online supplemental material.
Collapse
Affiliation(s)
- I Scott Ramsey
- Howard Hughes Medical Institute, Cardiovascular Department, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
37
|
Meyer NE, Joel-Almagor T, Frechter S, Minke B, Huber A. Subcellular translocation of the eGFP-tagged TRPL channel in Drosophila photoreceptors requires activation of the phototransduction cascade. J Cell Sci 2006; 119:2592-603. [PMID: 16735439 PMCID: PMC1945099 DOI: 10.1242/jcs.02986] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signal-mediated translocation of transient receptor potential (TRP) channels is a novel mechanism to fine tune a variety of signaling pathways including neuronal path finding and Drosophila photoreception. In Drosophila phototransduction the cation channels TRP and TRP-like (TRPL) are the targets of a prototypical G protein-coupled signaling pathway. We have recently found that the TRPL channel translocates between the rhabdomere and the cell body in a light-dependent manner. This translocation modifies the ion channel composition of the signaling membrane and induces long-term adaptation. However, the molecular mechanism underlying TRPL translocation remains unclear. Here we report that eGFP-tagged TRPL expressed in the photoreceptor cells formed functional ion channels with properties of the native channels, whereas TRPL-eGFP translocation could be directly visualized in intact eyes. TRPL-eGFP failed to translocate to the cell body in flies carrying severe mutations in essential phototransduction proteins, including rhodopsin, Galphaq, phospholipase Cbeta and the TRP ion channel, or in proteins required for TRP function. Our data, furthermore, show that the activation of a small fraction of rhodopsin and of residual amounts of the Gq protein is sufficient to trigger TRPL-eGFP internalization. In addition, we found that endocytosis of TRPL-eGFP occurs independently of dynamin, whereas a mutation of the unconventional myosin III, NINAC, hinders complete translocation of TRPL-eGFP to the cell body. Altogether, this study revealed that activation of the phototransduction cascade is mandatory for TRPL internalization, suggesting a critical role for the light induced conductance increase and the ensuing Ca2+ -influx in the translocation process. The critical role of Ca2+ influx was directly demonstrated when the light-induced TRPL-eGFP translocation was blocked by removing extracellular Ca2+.
Collapse
Affiliation(s)
- Nina E. Meyer
- Department of Biosensorics, Institute of Physiology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Tamar Joel-Almagor
- Department of Physiology and The Kühne Minerva Center for Studies of Visual Transduction, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Shahar Frechter
- Department of Physiology and The Kühne Minerva Center for Studies of Visual Transduction, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Baruch Minke
- Department of Physiology and The Kühne Minerva Center for Studies of Visual Transduction, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Armin Huber
- Department of Biosensorics, Institute of Physiology, University of Hohenheim, 70599 Stuttgart, Germany
- *Author for correspondence (e-mail: )
| |
Collapse
|
38
|
Gackière F, Bidaux G, Lory P, Prevarskaya N, Mariot P. A role for voltage gated T-type calcium channels in mediating “capacitative” calcium entry? Cell Calcium 2006; 39:357-66. [PMID: 16442617 DOI: 10.1016/j.ceca.2005.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 12/05/2005] [Accepted: 12/08/2005] [Indexed: 11/27/2022]
Abstract
Calcium entry through plasma membrane calcium channels is one of the most important cell signaling mechanism involved in such diverse functions as secretion, contraction and cell growth by regulating gene expression, proliferation and apoptosis. The identity of plasma membrane calcium channels, the main regulators of calcium entry, involved in cell proliferation has been thus extensively sought. Among these, a calcium entry pathway called capacitative calcium entry (CCE), activated by calcium store depletion, is particularly important in non-excitable cells. Though this capacitative calcium entry is generally supposed to occur through TRP channels there is some evidence that voltage-dependent T-type calcium channels may contribute to calcium entry after store depletion. Here we show that though mibefradil, a T-type calcium channel blocker, is able to reduce capacitative calcium entry induced by either thapsigargin or ATP, this was not mimicked by any other T-type calcium channel inhibitors even in cells overexpressing alpha(1H) T-type calcium channels, leading us to conclude that T-type calcium channels are not responsible for the capacitative calcium entry observed in different cancer cell lines. On the contrary, we show that the action of mibefradil on capacitative calcium entry is due to an action on store-operated calcium channels.
Collapse
Affiliation(s)
- Florian Gackière
- Laboratoire de Physiologie Cellulaire, INSERM EMI0228, Bâtiment SN3, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | | | | | | | | |
Collapse
|
39
|
Hu J, Bae YK, Knobel KM, Barr MM. Casein kinase II and calcineurin modulate TRPP function and ciliary localization. Mol Biol Cell 2006; 17:2200-11. [PMID: 16481400 PMCID: PMC1446073 DOI: 10.1091/mbc.e05-10-0935] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cilia serve as sensory devices in a diversity of organisms and their defects contribute to many human diseases. In primary cilia of kidney cells, the transient receptor potential polycystin (TRPP) channels polycystin-1 (PC-1) and polycystin-2 (PC-2) act as a mechanosensitive channel, with defects resulting in autosomal dominant polycystic kidney disease. In sensory cilia of Caenorhabditis elegans male-specific neurons, the TRPPs LOV-1 and PKD-2 are required for mating behavior. The mechanisms regulating TRPP ciliary localization and function are largely unknown. We identified the regulatory subunit of the serine-threonine casein kinase II (CK2) as a binding partner of LOV-1 and human PC-1. CK2 and the calcineurin phosphatase TAX-6 modulate male mating behavior and PKD-2 ciliary localization. The phospho-defective mutant PKD-2(S534A) localizes to cilia, whereas a phospho-mimetic PKD-2(S534D) mutant is largely absent from cilia. Calcineurin is required for PKD-2 ciliary localization, but is not essential for ciliary gene expression, ciliogenesis, or localization of cilium structural components. This unanticipated function of calcineurin may be important for regulating ciliary protein localization. A dynamic phosphorylation-dephosphorylation cycle may represent a mechanism for modulating TRPP activity, cellular sensation, and ciliary protein localization.
Collapse
Affiliation(s)
- Jinghua Hu
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, WI 53705, USA
| | | | | | | |
Collapse
|
40
|
Clapham DE, Julius D, Montell C, Schultz G. International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacol Rev 2006; 57:427-50. [PMID: 16382100 DOI: 10.1124/pr.57.4.6] [Citation(s) in RCA: 299] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- David E Clapham
- Howard Hughes Medical Institute, Children's Hospital, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
41
|
Schreiber R. Ca2+ signaling, intracellular pH and cell volume in cell proliferation. J Membr Biol 2006; 205:129-37. [PMID: 16362501 DOI: 10.1007/s00232-005-0778-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Indexed: 01/06/2023]
Abstract
Mitogens control progression through the cell cycle in non-transformed cells by complex cascades of intracellular messengers, such as Ca2+ and protons, and by cell volume changes. Intracellular Ca2+ and proton concentrations are critical for linking external stimuli to proliferation, motility, apoptosis and differentiation. This review summarizes the role in cell proliferation of calcium release from intracellular stores and the Ca2+ entry through plasma membrane Ca2+ channels. In addition, the impact of intracellular pH and cell volume on cell proliferation is discussed.
Collapse
Affiliation(s)
- R Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstr. 31, Regensburg, D-93053, Germany.
| |
Collapse
|
42
|
Schwarz EC, Wissenbach U, Niemeyer BA, Strauss B, Philipp SE, Flockerzi V, Hoth M. TRPV6 potentiates calcium-dependent cell proliferation. Cell Calcium 2005; 39:163-73. [PMID: 16356545 DOI: 10.1016/j.ceca.2005.10.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 10/13/2005] [Accepted: 10/17/2005] [Indexed: 12/20/2022]
Abstract
The Ca(2+) homeostasis within cells controls a diversity of cellular processes including gene transcription, proliferation and apoptosis. Perturbance of Ca(2+) signaling may induce deregulation of cell proliferation and suppression of cell death providing the basis for cancer development. In human prostate cancer, a correlation between the mRNA expression of the Ca(2+) channel TRPV6 and the staging of the cancer has been described. We have analyzed the influence of TRPV6 on cell proliferation within HEK-293 cells. We show that TRPV6 increases cell proliferation of HEK-293 cells in a Ca(2+) dependent manner. The increased proliferation correlates with slightly increased intracellular Ca(2+) levels without interfering with the intrinsic Ca(2+) dependence of HEK-293 cell proliferation. Low doses of econazole inhibit both, TRPV6 dependent Ca(2+) signals and cell proliferation while BTP2, a potent inhibitor of Ca(2+) signals and cell proliferation in T-cells, neither influences TRPV6 dependent Ca(2+) signals nor cell proliferation of HEK-293 cells. Our data demonstrate that TRPV6 increases the rate of Ca(2+) dependent cell proliferation which is a prerequisite for its potential role in tumor progression.
Collapse
Affiliation(s)
- Eva C Schwarz
- Department of Physiology, University of the Saarland, Homburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Plant TD, Schaefer M. Receptor-operated cation channels formed by TRPC4 and TRPC5. Naunyn Schmiedebergs Arch Pharmacol 2005; 371:266-76. [PMID: 15902430 DOI: 10.1007/s00210-005-1055-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
TRPC4 and TRPC5 form cation channels that contribute to phospholipase C-dependent Ca(2+) entry following stimulation of G-protein-coupled receptors or receptor tyrosine kinases. Surprisingly, in different studies, TRPC4 and TRPC5 have been shown to form either store-operated channels with a relatively high Ca(2+) permeability, or nonselective cation channels activated independently of store depletion. In this review, we summarize and discuss data on the regulation and permeability properties of TRPC4 and TRPC5, and data on native channels that might be composed of these isoforms.
Collapse
Affiliation(s)
- Tim D Plant
- Institut für Pharmakologie und Toxikologie, FB-Medizin, Philipps-Universität-Marburg, Karl-von-Frisch-Strasse 1, 35033, Marburg, Germany.
| | | |
Collapse
|
44
|
Bregestovski P, Spitzer N. Calcium in the function of the nervous system: new implications. Cell Calcium 2005; 37:371-4. [PMID: 15820383 DOI: 10.1016/j.ceca.2005.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2004] [Accepted: 01/06/2005] [Indexed: 01/25/2023]
Affiliation(s)
- Piotr Bregestovski
- Institut de Neurobiologie de la Méditerranée (INMED), Parc Scientifique de Luminy, BP13, 13009 Marseille, France.
| | | |
Collapse
|
45
|
Chenik M, Douagi F, Ben Achour Y, Khalef NB, Ouakad M, Louzir H, Dellagi K. Characterization of two different mucolipin-like genes from Leishmania major. Parasitol Res 2005; 98:5-13. [PMID: 16240129 DOI: 10.1007/s00436-005-0012-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
Here, we report the existence of two different mucolipin-like genes in Leishmania parasites. The Leishmania major mucolipin-like A and B genes (lmmlA and lmmlB) encode two proteins of 776 and 590 amino acids, respectively, and may be classified among the mucolipins family [transient receptors potential mucolipin (TRPML)] because (1) they include a large region that exhibits significant similarities with specific domains of ion transport proteins and transient receptors potential (TRP) channels, (2) they contain at least 173 residues that display significant homologies with conserved regions of different mucolipins from several species, and (3) as TRPMLs, they include six predicted transmembrane domains. Gene expression analysis reveals that lmmlB is upregulated in metacyclics and amastigotes relative to procyclics, while lmmlA is constitutively expressed in the three Leishmania developmental stages. These genes could constitute potential drug targets.
Collapse
Affiliation(s)
- Mehdi Chenik
- Laboratoire d'Immunopathologie, Vaccinologie et Génétique Moléculaire, Institut Pasteur de Tunis, 13, Place Pasteur, 1002, Tunis-Belvédère, Tunisia.
| | | | | | | | | | | | | |
Collapse
|
46
|
Petersen OH, Michalak M, Verkhratsky A. Calcium signalling: Past, present and future. Cell Calcium 2005; 38:161-9. [PMID: 16076488 DOI: 10.1016/j.ceca.2005.06.023] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 01/25/2023]
Abstract
Ca2+ is a universal second messenger controlling a wide variety of cellular reactions and adaptive responses. The initial appreciation of Ca2+ as a universal signalling molecule was based on the work of Sydney Ringer and Lewis Heilbrunn. More recent developments in this field were critically influenced by the invention of the patch clamp technique and the generation of fluorescent Ca2+ indicators. Currently the molecular Ca2+ signalling mechanisms are being worked out and we are beginning to assemble a reasonably complete picture of overall Ca2+ homeostasis. Furthermore, investigations of organellar Ca2+ homeostasis have added complexity to our understanding of Ca2+ signalling. The future of the Ca2+ signalling field lies with detailed investigations of the integrative function in vivo and clarification of the pathology associated with malfunctions of Ca2+ signalling cascades.
Collapse
Affiliation(s)
- Ole H Petersen
- Physiological Laboratory, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | | | | |
Collapse
|
47
|
O'Neil RG, Heller S. The mechanosensitive nature of TRPV channels. Pflugers Arch 2005; 451:193-203. [PMID: 15909178 DOI: 10.1007/s00424-005-1424-4] [Citation(s) in RCA: 237] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2005] [Accepted: 03/28/2005] [Indexed: 01/26/2023]
Abstract
Transient receptor potential vanilloid (TRPV) channels are widely expressed in both sensory and nonsensory cells. Whereas the channels display a broad diversity to activation by chemical and physical stimuli, activation by mechanical stimuli is common to many members of this group in both lower and higher organisms. Genetic screening in Caenorhabditis elegans has demonstrated an essential role for two TRPV channels in sensory neurons. OSM-9 and OCR-2, for example, are essential for both osmosensory and mechanosensory (nose-touch) behaviors. Likewise, two Drosophila TRPV channels, NAN and IAV, have been shown to be critical for hearing by the mechanosensitive chordotonal organs located in the fly's antennae. The mechanosensitive nature of the channels appears to be conserved in higher organisms for some TRPV channels. Two vertebrate channels, TRPV2 and TRPV4, are sensitive to hypotonic cell swelling, shear stress/fluid flow (TRPV4), and membrane stretch (TRPV2). In the osmosensing neurons of the hypothalamus (circumventricular organs), TRPV4 appears to function as an osmoreceptor, or part of an osmoreceptor complex, in control of vasopressin release, whereas in inner ear hair cells and vascular baroreceptors a mechanosensory role is suggestive, but not demonstrated. Finally, in many nonsensory cells expressing TRPV4, such as vascular endothelial cells and renal tubular epithelial cells, the channel exhibits well-developed local mechanosensory transduction processes where both cell swelling and shear stress/fluid flow lead to channel activation. Hence, many TRPV channels, or combinations of TRPV channels, display a mechanosensitive nature that underlies multiple mechanosensitive processes from worms to mammals.
Collapse
Affiliation(s)
- Roger G O'Neil
- Department of Integrative Biology and Pharmacology, Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| | | |
Collapse
|
48
|
Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Veliçelebi G, Stauderman KA. STIM1, an essential and conserved component of store-operated Ca2+ channel function. ACTA ACUST UNITED AC 2005; 169:435-45. [PMID: 15866891 PMCID: PMC2171946 DOI: 10.1083/jcb.200502019] [Citation(s) in RCA: 1489] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Store-operated Ca2+ (SOC) channels regulate many cellular processes, but the underlying molecular components are not well defined. Using an RNA interference (RNAi)-based screen to identify genes that alter thapsigargin (TG)-dependent Ca2+ entry, we discovered a required and conserved role of Stim in SOC influx. RNAi-mediated knockdown of Stim in Drosophila S2 cells significantly reduced TG-dependent Ca2+ entry. Patch-clamp recording revealed nearly complete suppression of the Drosophila Ca2+ release-activated Ca2+ (CRAC) current that has biophysical characteristics similar to CRAC current in human T cells. Similarly, knockdown of the human homologue STIM1 significantly reduced CRAC channel activity in Jurkat T cells. RNAi-mediated knockdown of STIM1 inhibited TG- or agonist-dependent Ca2+ entry in HEK293 or SH-SY5Y cells. Conversely, overexpression of STIM1 in HEK293 cells modestly enhanced TG-induced Ca2+ entry. We propose that STIM1, a ubiquitously expressed protein that is conserved from Drosophila to mammalian cells, plays an essential role in SOC influx and may be a common component of SOC and CRAC channels.
Collapse
Affiliation(s)
- Jack Roos
- Torrey Pines Therapeutics, Inc., La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Teramoto T, Lambie EJ, Iwasaki K. Differential regulation of TRPM channels governs electrolyte homeostasis in the C. elegans intestine. Cell Metab 2005; 1:343-54. [PMID: 16054081 PMCID: PMC2241660 DOI: 10.1016/j.cmet.2005.04.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 03/15/2005] [Accepted: 04/25/2005] [Indexed: 10/25/2022]
Abstract
The transient receptor potential (TRP) channels are implicated in various cellular processes, including sensory signal transduction and electrolyte homeostasis. We show here that the GTL-1 and GON-2 TRPM channels regulate electrolyte homeostasis in the C. elegans intestine. GON-2 is responsible for a large outwardly rectifying current of intestinal cells, and its activity is tightly regulated by intracellular Mg(2+) levels, while GTL-1 mainly contributes to appropriate Mg(2+) responsiveness of the outwardly rectifying current. We also used nickel cytotoxicity to study the function of these channels. Both GON-2 and GTL-1 are necessary for intestinal uptake of nickel, but GTL-1 is continuously active while GON-2 is inactivated at higher Mg(2+) levels. This type of differential regulation of intestinal electrolyte absorption ensures a constant supply of electrolytes through GTL-1, while occasional bursts of GON-2 activity allow rapid return to normal electrolyte concentrations following physiological perturbations.
Collapse
Affiliation(s)
- Takayuki Teramoto
- Northwestern University Medical School, Institute for Neuroscience, Department of Molecular Pharmacology and Biological Chemistry, 303 E. Chicago Avenue, Searle 5-551, Chicago, Illinois 60611
| | - Eric J. Lambie
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Kouichi Iwasaki
- Northwestern University Medical School, Institute for Neuroscience, Department of Molecular Pharmacology and Biological Chemistry, 303 E. Chicago Avenue, Searle 5-551, Chicago, Illinois 60611
- *Correspondence:
| |
Collapse
|
50
|
Abstract
In electrically nonexcitable cells, Ca2+influx is essential for regulating a host of kinetically distinct processes involving exocytosis, enzyme control, gene regulation, cell growth and proliferation, and apoptosis. The major Ca2+entry pathway in these cells is the store-operated one, in which the emptying of intracellular Ca2+stores activates Ca2+influx (store-operated Ca2+entry, or capacitative Ca2+entry). Several biophysically distinct store-operated currents have been reported, but the best characterized is the Ca2+release-activated Ca2+current, ICRAC. Although it was initially considered to function only in nonexcitable cells, growing evidence now points towards a central role for ICRAC-like currents in excitable cells too. In spite of intense research, the signal that relays the store Ca2+content to CRAC channels in the plasma membrane, as well as the molecular identity of the Ca2+sensor within the stores, remains elusive. Resolution of these issues would be greatly helped by the identification of the CRAC channel gene. In some systems, evidence suggests that store-operated channels might be related to TRP homologs, although no consensus has yet been reached. Better understood are mechanisms that inactivate store-operated entry and hence control the overall duration of Ca2+entry. Recent work has revealed a central role for mitochondria in the regulation of ICRAC, and this is particularly prominent under physiological conditions. ICRACtherefore represents a dynamic interplay between endoplasmic reticulum, mitochondria, and plasma membrane. In this review, we describe the key electrophysiological features of ICRACand other store-operated Ca2+currents and how they are regulated, and we consider recent advances that have shed insight into the molecular mechanisms involved in this ubiquitous and vital Ca2+entry pathway.
Collapse
Affiliation(s)
- Anant B Parekh
- Department of Physiology, University of Oxford, United Kingdom.
| | | |
Collapse
|