1
|
Huang Z, Pan Y, Ma K, Luo H, Zong Q, Wu Z, Zhu Z, Guan Y. Nicotine Ameliorates α-Synuclein Preformed Fibril-Induced Behavioral Deficits and Pathological Features in Mice. Appl Biochem Biotechnol 2025:10.1007/s12010-024-05086-z. [PMID: 39815141 DOI: 10.1007/s12010-024-05086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 01/18/2025]
Abstract
Epidemiologic study suggests that nicotine reduces the risk of Parkinson's disease (PD) and thus could serve as a potential treatment. In this study, we aimed to investigate the effect of nicotine on the behavioral phenotypes and pathological characteristics of mice induced by human alpha-synuclein preformed fibers (α-syn-PFF). Mice were injected with 5 µg of human α-syn-PFF in the hippocampus while administering nicotine-containing drinking water (200 µg/mL). After 1 month, the motor ability, mood, spatial learning, and memory ability of the PD phenotype-like model mice were detected using open field, rotarod, Y maze, and O maze tests. The expression of pathological α-syn and apoptotic proteins, as well as the number of glial and neural stem cells in the hippocampus of mice, was detected using western blot and immunofluorescence. The results demonstrated that nicotine significantly reduced pathological α-syn accumulation, α-syn serine 129 phosphorylation, and apoptosis induced by α-syn-PFF injection in the hippocampus of mice. Nicotine also inhibited the increase in the number of glia, microglia, and neuronal apoptotic cells, and it decreased the expression of PI3K and Akt while also exhibiting significant memory impairment, motor deficits, and anxiety-like behavior. In conclusion, our findings suggest that nicotine ameliorates behavioral deficits and pathological changes in mice by inhibiting human α-syn-PFF-induced neuroinflammation and apoptosis.
Collapse
Affiliation(s)
- Zhangqiong Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 935, Jiaoling Road, Kunming, 650118, China
| | - Yue Pan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 935, Jiaoling Road, Kunming, 650118, China
| | - Kaili Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 935, Jiaoling Road, Kunming, 650118, China
| | - Haiyu Luo
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 935, Jiaoling Road, Kunming, 650118, China
| | - Qinglan Zong
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 935, Jiaoling Road, Kunming, 650118, China
| | - Zhengcun Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 935, Jiaoling Road, Kunming, 650118, China
| | - Zhouhai Zhu
- The Joint Institute of Tobacco and Health, No. 367, Honglin Road, Kunming, 650231, China.
| | - Ying Guan
- The Joint Institute of Tobacco and Health, No. 367, Honglin Road, Kunming, 650231, China.
| |
Collapse
|
2
|
Prajjwal P, Flores Sanga HS, Acharya K, Tango T, John J, Rodriguez RS, Dheyaa Marsool Marsool M, Sulaimanov M, Ahmed A, Hussin OA. Parkinson's disease updates: Addressing the pathophysiology, risk factors, genetics, diagnosis, along with the medical and surgical treatment. Ann Med Surg (Lond) 2023; 85:4887-4902. [PMID: 37811009 PMCID: PMC10553032 DOI: 10.1097/ms9.0000000000001142] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/31/2023] [Indexed: 10/10/2023] Open
Abstract
After only Alzheimer's disease (AD), Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. The incidence of this disease increases with age, especially for those above 70 years old. There are many risk factors that are well-established in the contribution to the development of PD, such as age, gender, ethnicity, rapid eye movement sleep disorder, high consumption of dairy products, traumatic brain injury, genetics, and pesticides/herbicides. Interestingly, smoking, consumption of caffeine, and physical activities are the protective factors of PD. A deficiency of dopamine in the substantia nigra of the brainstem is the main pathology. This, subsequently, alters the neurotransmitter, causing an imbalance between excitatory and inhibitory signals. In addition, genetics is also involved in the pathogenesis of the disease. As a result, patients exhibit characteristic motor symptoms such as tremors, stiffness, bradykinesia, and postural instability, along with non-motor symptoms, including dementia, urinary incontinence, sleeping disturbances, and orthostatic hypotension. PD may resemble other diseases; therefore, it is important to pay attention to the diagnosis criteria. Parkinson's disease dementia can share common features with AD; this can include behavioral as well as psychiatric symptoms, in addition to the pathology being protein aggregate accumulation in the brain. For PD management, the administration of pharmacological treatment depends on the motor symptoms experienced by the patients. Non-pharmacological treatment plays a role as adjuvant therapy, while surgical management is indicated in chronic cases. This paper aims to review the etiology, risk factors, protective factors, pathophysiology, signs and symptoms, associated conditions, and management of PD.
Collapse
Affiliation(s)
| | - Herson S Flores Sanga
- Department of Telemedicine, Hospital Nacional Carlos Alberto Seguin Escobedo, Arequipa, Peru
| | - Kirtish Acharya
- Maharaja Krishna Chandra Gajapati Medical College and Hospital, Brahmapur, Odisha
| | - Tamara Tango
- Faculty of Medicine Universitas, Jakarta, Indonesia
| | - Jobby John
- Dr. Somervell Memorial CSI Medical College and Hospital, Neyyāttinkara, Kerala, India
| | | | | | | | - Aneeqa Ahmed
- Shadan Hospital and Institute of Medical Sciences, Hyderabad, Telangana
| | - Omniat A. Hussin
- Department of Medicine, Sudan Academy of Sciences, Khartoum, Sudan
| |
Collapse
|
3
|
Berreta RS, Zhang H, Alsoof D, Khatri S, Casey J, McDonald CL, Diebo BG, Kuris EO, Basques BA, Daniels AH. Adult Spinal Deformity Correction in Patients with Parkinson Disease: Assessment of Surgical Complications, Reoperation, and Cost. World Neurosurg 2023; 178:e331-e338. [PMID: 37480985 DOI: 10.1016/j.wneu.2023.07.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Parkinson disease (PD) is a neurodegenerative disorder that manifests with postural instability and gait imbalance. Correction of spinal deformity in patients with PD presents unique challenges. METHODS The PearlDiver database was queried between 2010 and 2020 to identify adult patients with spinal deformity before undergoing deformity correction with posterior spinal fusion. Two cohorts were created representing patients with and without a preoperative diagnosis of PD. Outcome measures included reoperation rates, surgical technique, cost, surgical complications, and medical complications. Multivariable logistic regression adjusting for Charlson Comorbidity Index, age, gender, 3-column osteotomy, pelvic fixation, and number of levels fused was used to assess rates of reoperation and complications. RESULTS In total, 26,984 patients met the inclusion criteria and were retained for analysis. Of these patients, 725 had a diagnosis of PD before deformity correction. Patients with PD underwent higher rates of pelvic fixation (odds ratio [OR], 1.33; P < 0.001) and 3-column osteotomies (OR, 1.53; P < 0.001). On adjusted regression, patients with PD showed increased rates of reoperation at 1 year (OR, 1.37; P < 0.001), 5 years (OR, 1.32; P < 0.001), and overall (OR, 1.33; P < 0.001). Patients with PD also experienced an increased rate of medical complications within 30 days after deformity correction including deep venous thrombosis (OR, 1.60; P = 0.021), pneumonia (OR, 1.44; P = 0.039), and urinary tract infections (OR, 1.54; P < 0.001). Deformity correction in patients with PD was associated with higher 90-day cost (P = 0.007). CONCLUSIONS Patients with PD undergoing long fusion for deformity correction are at significantly increased risk of 30-day medical complications and revision procedures after 1 year, controlling for comorbidities, age, and invasiveness. Surgeons should consider the risk of complications, subsequent revision procedures, and increased cost.
Collapse
Affiliation(s)
| | - Helen Zhang
- Brown University Warren Alpert Medical School, Providence, Rhode Island, USA
| | - Daniel Alsoof
- Department of Orthopedics, Brown University Warren Alpert Medical School, Providence, Rhode Island, USA
| | - Surya Khatri
- Brown University Warren Alpert Medical School, Providence, Rhode Island, USA
| | - Jack Casey
- Brown University Warren Alpert Medical School, Providence, Rhode Island, USA
| | - Christopher L McDonald
- Department of Orthopedics, Brown University Warren Alpert Medical School, Providence, Rhode Island, USA
| | - Bassel G Diebo
- Department of Orthopedics, Brown University Warren Alpert Medical School, Providence, Rhode Island, USA
| | - Eren O Kuris
- Department of Orthopedics, Brown University Warren Alpert Medical School, Providence, Rhode Island, USA
| | - Bryce A Basques
- Brown University Warren Alpert Medical School, Providence, Rhode Island, USA
| | - Alan H Daniels
- Department of Orthopedics, Brown University Warren Alpert Medical School, Providence, Rhode Island, USA.
| |
Collapse
|
4
|
Khan AF, Adewale Q, Lin SJ, Baumeister TR, Zeighami Y, Carbonell F, Palomero-Gallagher N, Iturria-Medina Y. Patient-specific models link neurotransmitter receptor mechanisms with motor and visuospatial axes of Parkinson's disease. Nat Commun 2023; 14:6009. [PMID: 37752107 PMCID: PMC10522603 DOI: 10.1038/s41467-023-41677-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Parkinson's disease involves multiple neurotransmitter systems beyond the classical dopaminergic circuit, but their influence on structural and functional alterations is not well understood. Here, we use patient-specific causal brain modeling to identify latent neurotransmitter receptor-mediated mechanisms contributing to Parkinson's disease progression. Combining the spatial distribution of 15 receptors from post-mortem autoradiography with 6 neuroimaging-derived pathological factors, we detect a diverse set of receptors influencing gray matter atrophy, functional activity dysregulation, microstructural degeneration, and dendrite and dopaminergic transporter loss. Inter-individual variability in receptor mechanisms correlates with symptom severity along two distinct axes, representing motor and psychomotor symptoms with large GABAergic and glutamatergic contributions, and cholinergically-dominant visuospatial, psychiatric and memory dysfunction. Our work demonstrates that receptor architecture helps explain multi-factorial brain re-organization, and suggests that distinct, co-existing receptor-mediated processes underlie Parkinson's disease.
Collapse
Affiliation(s)
- Ahmed Faraz Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Quadri Adewale
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Sue-Jin Lin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Tobias R Baumeister
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Yashar Zeighami
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Douglas Research Centre, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, and JARA - Translational Brain Medicine, Aachen, Germany
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada.
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada.
| |
Collapse
|
5
|
Pant S, Nain S. Recent Advances in the Development of Pyrimidine-based CNS Agents. Curr Drug Discov Technol 2023; 20:14-28. [PMID: 36200187 DOI: 10.2174/1570163819666221003094402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/02/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND In the past few decades, considerable progress has been made in CNS drug discovery, and various new CNS agents have been developed. Pyrimidine is an important scaffold in the area of medicinal chemistry. Recently, pyrimidine-containing compounds have been successfully designed as potent CNS agents. Substantial research has been carried out on pyrimidine-bearing compounds to treat different disorders of CNS in various animal models. METHODS Utilizing various databases, including Google Scholar, PubMed, Science Direct, and Web of Science, the literature review was conducted. The specifics of significant articles were discussed with an emphasis on the potency of pyrimidines derivatives possessing CNS activity. RESULTS Recent papers indicating pyrimidine derivatives with CNS activity were incorporated into the manuscript. (46) to (50) papers included different pyrimidine derivatives as 5-HT agonist/antagonists, (62) to (67) as adenosine agonist/antagonist, (70) to (75) as anticonvulsant agents, (80) to (83) as cannabinoid receptor agonists, (102) to (103) as nicotinic and (110) as muscarinic receptor agonists. The remaining papers (113) to (114) represented pyrimidine-based molecular imaging agents. CONCLUSION Pyrimidine and its derivatives have been studied in detail to evaluate their efficacy in overcoming multiple central nervous system disorders. The article covers the current updates on pyrimidine-based compounds as potent CNS and molecular imaging agents and will definitely provide a better platform for the development of potent pyrimidine-based CNS drugs in the near future.
Collapse
Affiliation(s)
- Swati Pant
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India
| | - Sumitra Nain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India
| |
Collapse
|
6
|
Nicotine Has a Therapeutic Window of Effectiveness in a Drosophila melanogaster Model of Parkinson’s Disease. PARKINSON'S DISEASE 2022; 2022:9291077. [PMID: 35844833 PMCID: PMC9286976 DOI: 10.1155/2022/9291077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022]
Abstract
Strong epidemiological evidence and studies in models of Parkinson's disease (PD) suggest that nicotine may be therapeutically beneficial in PD patients. However, a number of clinical trials utilizing nicotine in PD patients have had mixed results, indicating that either nicotine is not beneficial in PD patients, or an important aspect of nicotine therapy was absent. We hypothesized that nicotine must be administered early in the adult fly life in order to have beneficial effects. We show that continuous early nicotine administration improves both climbing and flight deficiencies present in homozygous park25 mutant PD model Drosophila melanogaster. Using a new climbing assay, we identify several climbing deficiencies in this PD model that are improved or rescued by continuous nicotine treatment. Amongst these benefits, it appears that nicotine improves the ability of the park25 flies to descend the climbing vial by being able to climb down more. In support of our hypothesis, we show that in order for nicotine benefits on climbing and flight to happen, nicotine administration must occur in a discrete time frame following adult fly eclosure: within one day for climbing or five days for flight. This therapeutic window of nicotine administration in this PD model fly may help to explain the lack of efficacy of nicotine in human clinical trials.
Collapse
|
7
|
Loser D, Grillberger K, Hinojosa MG, Blum J, Haufe Y, Danker T, Johansson Y, Möller C, Nicke A, Bennekou SH, Gardner I, Bauch C, Walker P, Forsby A, Ecker GF, Kraushaar U, Leist M. Acute effects of the imidacloprid metabolite desnitro-imidacloprid on human nACh receptors relevant for neuronal signaling. Arch Toxicol 2021; 95:3695-3716. [PMID: 34628512 PMCID: PMC8536575 DOI: 10.1007/s00204-021-03168-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
Several neonicotinoids have recently been shown to activate the nicotinic acetylcholine receptor (nAChR) on human neurons. Moreover, imidacloprid (IMI) and other members of this pesticide family form a set of diverse metabolites within crops. Among these, desnitro-imidacloprid (DN-IMI) is of special toxicological interest, as there is evidence (i) for human dietary exposure to this metabolite, (ii) and that DN-IMI is a strong trigger of mammalian nicotinic responses. We set out here to quantify responses of human nAChRs to DN-IMI and an alternative metabolite, IMI-olefin. To evaluate toxicological hazards, these data were then compared to those of IMI and nicotine. Ca2+-imaging experiments on human neurons showed that DN-IMI exhibits an agonistic effect on nAChRs at sub-micromolar concentrations (equipotent with nicotine) while IMI-olefin activated the receptors less potently (in a similar range as IMI). Direct experimental data on the interaction with defined receptor subtypes were obtained by heterologous expression of various human nAChR subtypes in Xenopus laevis oocytes and measurement of the transmembrane currents evoked by exposure to putative ligands. DN-IMI acted on the physiologically important human nAChR subtypes α7, α3β4, and α4β2 (high-sensitivity variant) with similar potency as nicotine. IMI and IMI-olefin were confirmed as nAChR agonists, although with 2-3 orders of magnitude lower potency. Molecular docking studies, using receptor models for the α7 and α4β2 nAChR subtypes supported an activity of DN-IMI similar to that of nicotine. In summary, these data suggest that DN-IMI functionally affects human neurons similar to the well-established neurotoxicant nicotine by triggering α7 and several non-α7 nAChRs.
Collapse
Affiliation(s)
- Dominik Loser
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Karin Grillberger
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Maria G Hinojosa
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Jonathan Blum
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Yves Haufe
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336, Munich, Germany
| | - Timm Danker
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Ylva Johansson
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Clemens Möller
- Life Sciences Faculty, Albstadt-Sigmaringen University, 72488, Sigmaringen, Germany
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336, Munich, Germany
| | | | - Iain Gardner
- CERTARA UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Caroline Bauch
- Cyprotex Discovery Ltd, No. 24 Mereside, Alderley Park, Cheshire, SK10 4TG, UK
| | - Paul Walker
- Cyprotex Discovery Ltd, No. 24 Mereside, Alderley Park, Cheshire, SK10 4TG, UK
| | - Anna Forsby
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Udo Kraushaar
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
8
|
Iarkov A, Mendoza C, Echeverria V. Cholinergic Receptor Modulation as a Target for Preventing Dementia in Parkinson's Disease. Front Neurosci 2021; 15:665820. [PMID: 34616271 PMCID: PMC8488354 DOI: 10.3389/fnins.2021.665820] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative condition characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) in the midbrain resulting in progressive impairment in cognitive and motor abilities. The physiological and molecular mechanisms triggering dopaminergic neuronal loss are not entirely defined. PD occurrence is associated with various genetic and environmental factors causing inflammation and mitochondrial dysfunction in the brain, leading to oxidative stress, proteinopathy, and reduced viability of dopaminergic neurons. Oxidative stress affects the conformation and function of ions, proteins, and lipids, provoking mitochondrial DNA (mtDNA) mutation and dysfunction. The disruption of protein homeostasis induces the aggregation of alpha-synuclein (α-SYN) and parkin and a deficit in proteasome degradation. Also, oxidative stress affects dopamine release by activating ATP-sensitive potassium channels. The cholinergic system is essential in modulating the striatal cells regulating cognitive and motor functions. Several muscarinic acetylcholine receptors (mAChR) and nicotinic acetylcholine receptors (nAChRs) are expressed in the striatum. The nAChRs signaling reduces neuroinflammation and facilitates neuronal survival, neurotransmitter release, and synaptic plasticity. Since there is a deficit in the nAChRs in PD, inhibiting nAChRs loss in the striatum may help prevent dopaminergic neurons loss in the striatum and its pathological consequences. The nAChRs can also stimulate other brain cells supporting cognitive and motor functions. This review discusses the cholinergic system as a therapeutic target of cotinine to prevent cognitive symptoms and transition to dementia in PD.
Collapse
Affiliation(s)
- Alexandre Iarkov
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Cristhian Mendoza
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Valentina Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
9
|
Brolin K, Bandres-Ciga S, Leonard H, Makarious MB, Blauwendraat C, Mata IF, Foo JN, Pihlstrøm L, Swanberg M, Gan-Or Z, Tan MM. RIC3 variants are not associated with Parkinson's disease in large European, Latin American, or East Asian cohorts. Neurobiol Aging 2021; 109:264-268. [PMID: 34538707 PMCID: PMC9011339 DOI: 10.1016/j.neurobiolaging.2021.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/16/2021] [Accepted: 08/14/2021] [Indexed: 11/25/2022]
Abstract
Parkinson’s disease (PD) is a complex neurodegenerative disorder in which both rare and common genetic variants contribute to disease risk. Multiple genes have been reported to be linked to monogenic PD but these only explain a fraction of the observed familial aggregation. Rare variants in RIC3 have been suggested to be associated with PD in the Indian population. However, replication studies yielded inconsistent results. We further investigate the role of RIC3 variants in PD in European cohorts using individual-level genotyping data from 14,671 PD patients and 17,667 controls, as well as whole-genome sequencing data from 1,615 patients and 961 controls. We also investigated RIC3 using summary statistics from a Latin American cohort of 1,481 individuals, and from a cohort of 31,575 individuals of East Asian ancestry. We did not identify any association between RIC3 and PD in any of the cohorts. However, more studies of rare variants in non-European ancestry populations, in particular South Asian populations, are necessary to further evaluate the world-wide role of RIC3 in PD etiology.
Collapse
Affiliation(s)
- Kajsa Brolin
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Sara Bandres-Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Hampton Leonard
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA; Center for Alzheimer's and Related Dementias, National Institute on Aging, Bethesda, MD, USA; Data Tecnica International, Glen Echo, MD, USA
| | - Mary B Makarious
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA; Data Tecnica International, Glen Echo, MD, USA; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; UCL Movement Disorders Centre, University College London, London, UK
| | - Cornelis Blauwendraat
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Ignacio F Mata
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore; Human Genetics, Genome Institute of Singapore, A*STAR, Singapore
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Maria Swanberg
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Manuela Mx Tan
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | -
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Loser D, Hinojosa MG, Blum J, Schaefer J, Brüll M, Johansson Y, Suciu I, Grillberger K, Danker T, Möller C, Gardner I, Ecker GF, Bennekou SH, Forsby A, Kraushaar U, Leist M. Functional alterations by a subgroup of neonicotinoid pesticides in human dopaminergic neurons. Arch Toxicol 2021; 95:2081-2107. [PMID: 33778899 PMCID: PMC8166715 DOI: 10.1007/s00204-021-03031-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/17/2021] [Indexed: 12/16/2022]
Abstract
Neonicotinoid pesticides, originally developed to target the insect nervous system, have been reported to interact with human receptors and to activate rodent neurons. Therefore, we evaluated in how far these compounds may trigger signaling in human neurons, and thus, affect the human adult or developing nervous system. We used SH-SY5Y neuroblastoma cells as established model of nicotinic acetylcholine receptor (nAChR) signaling. In parallel, we profiled dopaminergic neurons, generated from LUHMES neuronal precursor cells, as novel system to study nAChR activation in human post-mitotic neurons. Changes of the free intracellular Ca2+ concentration ([Ca2+]i) were used as readout, and key findings were confirmed by patch clamp recordings. Nicotine triggered typical neuronal signaling responses that were blocked by antagonists, such as tubocurarine and mecamylamine. Pharmacological approaches suggested a functional expression of α7 and non-α7 nAChRs on LUHMES cells. In this novel test system, the neonicotinoids acetamiprid, imidacloprid, clothianidin and thiacloprid, but not thiamethoxam and dinotefuran, triggered [Ca2+]i signaling at 10-100 µM. Strong synergy of the active neonicotinoids (at low micromolar concentrations) with the α7 nAChR-positive allosteric modulator PNU-120596 was observed in LUHMES and SH-SY5Y cells, and specific antagonists fully inhibited such signaling. To provide a third line of evidence for neonicotinoid signaling via nAChR, we studied cross-desensitization: pretreatment of LUHMES and SH-SY5Y cells with active neonicotinoids (at 1-10 µM) blunted the signaling response of nicotine. The pesticides (at 3-30 µM) also blunted the response to the non-α7 agonist ABT 594 in LUHMES cells. These data show that human neuronal cells are functionally affected by low micromolar concentrations of several neonicotinoids. An effect of such signals on nervous system development is a toxicological concern.
Collapse
Affiliation(s)
- Dominik Loser
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
- NMI TT GmbH, 72770, Reutlingen, Germany
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Konstanz, Germany
| | - Maria G Hinojosa
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Jonathan Blum
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Konstanz, Germany
| | - Jasmin Schaefer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
- NMI TT GmbH, 72770, Reutlingen, Germany
| | - Markus Brüll
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Konstanz, Germany
| | - Ylva Johansson
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Ilinca Suciu
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Konstanz, Germany
| | - Karin Grillberger
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Timm Danker
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
- NMI TT GmbH, 72770, Reutlingen, Germany
| | - Clemens Möller
- Life Sciences Faculty, Albstadt-Sigmaringen University, 72488, Sigmaringen, Germany
| | - Iain Gardner
- CERTARA UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Gerhard F Ecker
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | | | - Anna Forsby
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Udo Kraushaar
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Konstanz, Germany.
| |
Collapse
|
11
|
Becerra GP, Rojas-Rodríguez F, Ramírez D, Loaiza AE, Tobar-Tosse F, Mejía SM, González J. Structural and functional computational analysis of nicotine analogs as potential neuroprotective compounds in Parkinson disease. Comput Biol Chem 2020; 86:107266. [PMID: 32388154 DOI: 10.1016/j.compbiolchem.2020.107266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/01/2020] [Accepted: 04/13/2020] [Indexed: 11/27/2022]
Abstract
As the mechanism of interaction between nicotinic receptors with nicotine analogs is not yet fully understood, information at molecular level obtained from computational calculations is needed. In this sense, this work is a computational study of eight nicotine analogs, all with pyrrolidine ring modifications over a nicotine-based backbone optimized with B3LYP-D3/aug-cc-pVDZ. A molecular characterization was performed focusing on geometrical parameters such as pseudo-rotation angles, atomic charges, HOMO and LUMO orbitals, reactivity indexes and intermolecular interactions. Three analogs, A2 (3-(1,3-dimethyl-4,5-dihydro-1h-pirazole-5-yl) pyridine), A3 (3-(3-methyl-4,5-dihydro-1H-pyrazol-5-yl)-pyridine) and A8 (5-methyl-3-(pyridine-3-yl)-4,5-dihydroisoxazole), were filtered suggesting putative neuroprotective activity taking into account different reactivity values, such as their lowest hardness: 2.37 eV (A8), 2.43 eV (A2) and 2.56 eV (A3), compared to the highest hardness value found: 2.71 eV for A5 (3-((2S,4R)-4-(fluoromethyl)-1-methylpyrrolidine-2-il) pyridine), similar to the value of nicotine (2.70 eV). Additionally, molecular docking of all 8 nicotine analogs with the α 7 nicotinic acetylcholine receptor (α 7 nAChR) was performed. High values of interaction between the receptor and the three nicotine analogs were obtained: A3 (-7.1 kcal/mol), A2 (-6.9 kcal/mol) and A8 (-6.8 kcal/mol); whereas the affinity energy of nicotine was -6.4 kcal/mol. Leu116 and Trp145 are key residues in the binding site of α 7 nAChR interacting with nicotine analogs. Therefore, based upon these results, possible application of these nicotine analogs as neuroprotective compounds and potential implication at the design of novel Parkinson's treatments is evidenced.
Collapse
Affiliation(s)
- Gina Paola Becerra
- Laboratorio de Bioquímica Computacional Estructural y Bioinformática, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia; Laboratorio de Química Computacional, Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Felipe Rojas-Rodríguez
- Laboratorio de Bioquímica Computacional Estructural y Bioinformática, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - David Ramírez
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, El Llano Subercaseaux 2801-Piso 5, 8900000, Santiago, Chile
| | - Alix E Loaiza
- Laboratorio de Síntesis Orgánica, Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Fabian Tobar-Tosse
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Pontificia Universidad Javeriana Cali, Cali, Colombia
| | - Sol M Mejía
- Laboratorio de Química Computacional, Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| | - Janneth González
- Laboratorio de Bioquímica Computacional Estructural y Bioinformática, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
12
|
Iarkov A, Barreto GE, Grizzell JA, Echeverria V. Strategies for the Treatment of Parkinson's Disease: Beyond Dopamine. Front Aging Neurosci 2020; 12:4. [PMID: 32076403 PMCID: PMC7006457 DOI: 10.3389/fnagi.2020.00004] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is the second-leading cause of dementia and is characterized by a progressive loss of dopaminergic neurons in the substantia nigra alongside the presence of intraneuronal α-synuclein-positive inclusions. Therapies to date have been directed to the restoration of the dopaminergic system, and the prevention of dopaminergic neuronal cell death in the midbrain. This review discusses the physiological mechanisms involved in PD as well as new and prospective therapies for the disease. The current data suggest that prevention or early treatment of PD may be the most effective therapeutic strategy. New advances in the understanding of the underlying mechanisms of PD predict the development of more personalized and integral therapies in the years to come. Thus, the development of more reliable biomarkers at asymptomatic stages of the disease, and the use of genetic profiling of patients will surely permit a more effective treatment of PD.
Collapse
Affiliation(s)
- Alexandre Iarkov
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - J Alex Grizzell
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Valentina Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
13
|
Camacho-Hernandez GA, Stokes C, Duggan BM, Kaczanowska K, Brandao-Araiza S, Doan L, Papke RL, Taylor P. Synthesis, Pharmacological Characterization, and Structure-Activity Relationships of Noncanonical Selective Agonists for α7 nAChRs. J Med Chem 2019; 62:10376-10390. [PMID: 31675224 DOI: 10.1021/acs.jmedchem.9b01467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A lack of selectivity of classical agonists for the nicotinic acetylcholine receptors (nAChR) has prompted us to identify and develop a distinct scaffold of α7 nAChR-selective ligands. Noncanonical 2,4,6-substituted pyrimidine analogues were framed around compound 40 for a structure-activity relationship study. The new lead compounds activate selectively the α7 nAChRs with EC50's between 30 and 140 nM in a PNU-120596-dependent, cell-based calcium influx assay. After characterizing the expanded lead landscape, we ranked the compounds for rapid activation using Xenopus oocytes expressing human α7 nAChR with a two-electrode voltage clamp. This approach enabled us to define the molecular determinants governing rapid activation, agonist potency, and desensitization of α7 nAChRs after exposure to pyrimidine analogues, thereby distinguishing this subclass of noncanonical agonists from previously defined types of agonists (agonists, partial agonists, silent agonists, and ago-PAMs). By NMR, we analyzed pKa values for ionization of lead candidates, demonstrating distinctive modes of interaction for this landscape of ligands.
Collapse
Affiliation(s)
- Gisela Andrea Camacho-Hernandez
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Clare Stokes
- Department of Pharmacology & Therapeutics , University of Florida , P.O. Box 100267, Gainesville , Florida 32610-0267 , United States
| | - Brendan M Duggan
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Katarzyna Kaczanowska
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Stefania Brandao-Araiza
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Lisa Doan
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Roger L Papke
- Department of Pharmacology & Therapeutics , University of Florida , P.O. Box 100267, Gainesville , Florida 32610-0267 , United States
| | - Palmer Taylor
- Department of Pharmacology & Therapeutics , University of Florida , P.O. Box 100267, Gainesville , Florida 32610-0267 , United States
| |
Collapse
|
14
|
Otvos RA, Still KBM, Somsen GW, Smit AB, Kool J. Drug Discovery on Natural Products: From Ion Channels to nAChRs, from Nature to Libraries, from Analytics to Assays. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2019; 24:362-385. [PMID: 30682257 PMCID: PMC6484542 DOI: 10.1177/2472555218822098] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/16/2018] [Accepted: 12/07/2018] [Indexed: 12/21/2022]
Abstract
Natural extracts are complex mixtures that may be rich in useful bioactive compounds and therefore are attractive sources for new leads in drug discovery. This review describes drug discovery from natural products and in explaining this process puts the focus on ion-channel drug discovery. In particular, the identification of bioactives from natural products targeting nicotinic acetylcholine receptors (nAChRs) and serotonin type 3 receptors (5-HT3Rs) is discussed. The review is divided into three parts: "Targets," "Sources," and "Approaches." The "Targets" part will discuss the importance of ion-channel drug targets in general, and the α7-nAChR and 5-HT3Rs in particular. The "Sources" part will discuss the relevance for drug discovery of finding bioactive compounds from various natural sources such as venoms and plant extracts. The "Approaches" part will give an overview of classical and new analytical approaches that are used for the identification of new bioactive compounds with the focus on targeting ion channels. In addition, a selected overview is given of traditional venom-based drug discovery approaches and of diverse hyphenated analytical systems used for screening complex bioactive mixtures including venoms.
Collapse
Affiliation(s)
- Reka A. Otvos
- The Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Kristina B. M. Still
- The Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Govert W. Somsen
- The Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jeroen Kool
- The Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Gu S, Matta JA, Davini WB, Dawe GB, Lord B, Bredt DS. α6-Containing Nicotinic Acetylcholine Receptor Reconstitution Involves Mechanistically Distinct Accessory Components. Cell Rep 2019; 26:866-874.e3. [PMID: 30673609 DOI: 10.1016/j.celrep.2018.12.103] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/26/2018] [Accepted: 12/21/2018] [Indexed: 01/29/2023] Open
Abstract
Acetylcholine gates a large family of nicotinic receptor cation channels that control neuronal excitation and neurotransmitter release. These receptors are key targets for neuropsychiatric disorders; however, difficulties in expressing nicotinic acetylcholine (nACh) receptors hamper elaboration of their pharmacology and obscure elucidation of their biological functions. Particularly intriguing are α6-containing nACh receptors, which mediate nicotine-induced dopamine release in striatum-nucleus accumbens. Using genome-wide cDNA screening, we identify three accessory proteins, β-anchoring and -regulatory protein (BARP), lysosomal-associated membrane protein 5 (LAMP5), and SULT2B1, that complement the nACh receptor chaperone NACHO to reconstitute α6β2β3 channel function. Whereas NACHO mediates α6β2β3 assembly, BARP primarily enhances channel gating and LAMP5 and SULT2B1 promote receptor surface trafficking. BARP knockout mice show perturbations in presynaptic striatal nACh receptors that are consistent with BARP modulation of receptor desensitization. These studies unravel the molecular complexity of α6β2β3 biogenesis and enable physiological studies of this crucial neuropharmacological target.
Collapse
Affiliation(s)
- Shenyan Gu
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Jose A Matta
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Weston B Davini
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - G Brent Dawe
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Brian Lord
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - David S Bredt
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA.
| |
Collapse
|
16
|
Conti MM, Chambers N, Bishop C. A new outlook on cholinergic interneurons in Parkinson's disease and L-DOPA-induced dyskinesia. Neurosci Biobehav Rev 2018; 92:67-82. [PMID: 29782883 DOI: 10.1016/j.neubiorev.2018.05.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 01/05/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023]
Abstract
Traditionally, dopamine (DA) and acetylcholine (ACh) striatal systems were considered antagonistic and imbalances or aberrant signaling between these neurotransmitter systems could be detrimental to basal ganglia activity and pursuant motor function, such as in Parkinson's disease (PD) and L-DOPA-induced dyskinesia (LID). Herein, we discuss the involvement of cholinergic interneurons (ChIs) in striatally-mediated movement in a healthy, parkinsonian, and dyskinetic state. ChIs integrate numerous neurotransmitter signals using intrinsic glutamate, serotonin, and DA receptors and convey the appropriate transmission onto nearby muscarinic and nicotinic ACh receptors to produce movement. In PD, severe DA depletion causes abnormal rises in ChI activity which promote striatal signaling to attenuate normal movement. When treating PD with L-DOPA, hyperkinetic side effects, or LID, develop due to increased striatal DA; however, the role of ChIs and ACh transmission, until recently has been unclear. Fortunately, new technology and pharmacological agents have facilitated understanding of ChI function and ACh signaling in the context of LID, thus offering new opportunities to modify existing and discover future therapeutic strategies in movement disorders.
Collapse
Affiliation(s)
- Melissa M Conti
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| | - Nicole Chambers
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| |
Collapse
|
17
|
Effect of varenicline on behavioral deficits in a rat model of Parkinson's disease induced by unilateral 6-hydroxydopamine lesion of substantia nigra. Behav Pharmacol 2017; 29:327-335. [PMID: 29064842 DOI: 10.1097/fbp.0000000000000355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are implicated in the pathogenesis of Parkinson's disease (PD). Varenicline tartrate is a partial agonist at α4β2 and full agonist at α7 neuronal nAChR subunits. A unilateral lesion of the substantia nigra (SN) has been used as a reliable model of PD. This study aimed to investigate the effect of varenicline on locomotor and nonlocomotor behavioral deficits induced by a unilateral lesion of the SN induced by 6-hydroxydopamine (6-OHDA) (8 µg/4 µl). Varenicline (1 mg/kg) was administered to the lesioned rats daily for 2 weeks, which commenced 3 weeks after 6-OHDA administration. The results showed that varenicline improved motor deficits induced by 6-OHDA. It improved locomotor and nonlocomotor activities such as forelimb use, rotarod performance, and forelimb asymmetry. Varenicline did not change rearing or vibrissae-elicited forelimb placing but did increase apomorphine-induced rotation. In conclusion, the present results suggest that drugs with specific partial/full agonistic activity on nAChR subunits could be of value in the treatment of neurodegenerative disorders such as PD.
Collapse
|
18
|
Moccia M, Mollenhauer B, Erro R, Picillo M, Palladino R, Barone P. Non-Motor Correlates of Smoking Habits in de Novo Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2016; 5:913-24. [PMID: 26485426 DOI: 10.3233/jpd-150639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Parkinson's disease (PD) subjects are less likely to ever smoke and are more prone to quit smoking, as compared to controls. Therefore, smoking habits can be considered part of the non-motor phenotype, preceding the onset of motor PD by several years. OBJECTIVE To explore non-motor symptom (NMS) correlates of smoking habits in de novo PD. METHODS This cross-sectional study included 281 newly diagnosed, drug-naïve PD subjects, recruited in Naples (Italy) and in Kassel (Germany). All subjects completed the NMS Questionnaire (NMSQ), and were investigated for smoking status (never, current and former smokers) and intensity (pack-years). RESULTS 140 PD subjects never smoked, 20 currently smoked, and 121 had quit smoking before PD diagnosis. NMSQ total score did not associate with smoking status, but with smoking intensity (p = 0.028; coefficient = 0.088). A multinomial logistic regression stepwise model presenting never smoking as reference, selected as NMSQ correlates of current smoking: sex difficulties (p = 0.002; OR = 5.254), daytime sleepiness (p = 0.046; OR = 0.085), insomnia (p = 0.025; OR = 0.135), and vivid dreams (p = 0.040; OR = 3.110); and of former smoking: swallowing (p = 0.013; OR = 0.311), nausea (p = 0.027; OR = 7.157), unexplained pains (p = 0.002; OR = 3.409), forgetfulness (p = 0.005; OR = 2.592), sex interest (p = 0.007; OR = 0.221), sex difficulties (p = 0.038; OR = 4.215), and daytime sleepiness (p = 0.05; OR = 0.372). An ordinal logistic regression stepwise model selected as NMSQ correlates of smoking intensity: nocturnal restlessness (p = 0.027; coefficient = 0.974), and leg swelling (p = 0.004; coefficient = 1.305). CONCLUSIONS Certain NMSs are associated with different smoking status and intensity, suggesting a variety of adaptive mechanisms to cigarette smoking.
Collapse
Affiliation(s)
- Marcello Moccia
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, Federico II University, Naples, Italy
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Klinikstraße 16, Kassel, Germany.,Department of Neurosurgery, University Medical Center Goettingen, Goettingen, Germany.,Department of Neuropathology, University Medical Center Goettingen, Goettingen, Germany
| | - Roberto Erro
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, Queen Square, London, UK.,Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Marina Picillo
- Center for Neurodegenerative Diseases (CEMAND), Neuroscience Section, Department of Medicine, University of Salerno, Salerno, Italy
| | - Raffaele Palladino
- Department of Primary Care and Public Health, Imperial College, South Kensington Campus, London, UK.,Department of Public Health, Federico II University, Naples, Italy
| | - Paolo Barone
- Center for Neurodegenerative Diseases (CEMAND), Neuroscience Section, Department of Medicine, University of Salerno, Salerno, Italy
| |
Collapse
|
19
|
Yalcin E, de la Monte S. Tobacco nitrosamines as culprits in disease: mechanisms reviewed. J Physiol Biochem 2016; 72:107-20. [PMID: 26767836 PMCID: PMC4868960 DOI: 10.1007/s13105-016-0465-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/05/2016] [Indexed: 12/29/2022]
Abstract
The link between tobacco abuse and cancer is well-established. However, emerging data indicate that toxins in tobacco smoke cause cellular injury due to enhanced toxic/metabolic effects of metabolites, disruption of intracellular signaling mechanisms, and formation of DNA, protein, and lipid adducts that impair function and promote oxidative stress and inflammation. These effects of smoking, which are largely non-carcinogenic, can be produced by tobacco-specific nitrosamines and their metabolites. These factors could account for the increased rates of neurodegeneration and insulin resistance diseases among smokers. Herein, we review nicotine and tobacco-specific nitrosamine metabolism, mechanisms of adduct formation, DNA damage, mutagenesis, and potential mechanisms of disease.
Collapse
Affiliation(s)
- Emine Yalcin
- Departments of Pathology (Neuropathology), Neurology, and Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, 55 Claverick Street, Room 419, Providence, RI, 02903, USA
| | - Suzanne de la Monte
- Departments of Pathology (Neuropathology), Neurology, and Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, 55 Claverick Street, Room 419, Providence, RI, 02903, USA.
| |
Collapse
|
20
|
Nicotine inhibits hippocampal and striatal acetylcholinesterase activities, and demonstrates dual action on adult neuronal proliferation and maturation. PATHOPHYSIOLOGY 2015; 22:231-9. [DOI: 10.1016/j.pathophys.2015.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 08/06/2015] [Accepted: 09/18/2015] [Indexed: 12/25/2022] Open
|
21
|
Ríos A, Barrientos R, Alatorre A, Delgado A, Perez-Capistran T, Chuc-Meza E, García-Ramirez M, Querejeta E. Dopamine-dependent modulation of rat globus pallidus excitation by nicotine acetylcholine receptors. Exp Brain Res 2015; 234:605-16. [DOI: 10.1007/s00221-015-4491-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/30/2015] [Indexed: 11/24/2022]
|
22
|
Lippiello P, Bencherif M, Hauser T, Jordan K, Letchworth S, Mazurov A. Nicotinic receptors as targets for therapeutic discovery. Expert Opin Drug Discov 2015; 2:1185-203. [PMID: 23496128 DOI: 10.1517/17460441.2.9.1185] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) represent a class of therapeutic targets with the potential to impact numerous diseases and disorders where significant unmet medical needs remain. The latter include cognitive and neurodegenerative diseases; psychotic disorders, such as schizophrenia; acute nociceptive, neuropathic and inflammatory pain; affective disorders, such as depression and inflammation, where nAChR subtypes modulate key cellular pathways involved in anti-inflammatory processes as well as cell survival. Our increased understanding of the heterogeneity of nAChR targets is defining the relationship of biologic effects to specific receptor subtypes, which in turn, will allow further refinement of desired therapeutic activities. Both preclinical and clinical evidence support the notion that novel compounds targeting specific nAChR subtypes will offer increased potency and efficacy, longer lasting effects, fewer side effects and a more rapid onset of action and less dependence, compared with existing therapies. Clinical proof-of-concept is rapidly emerging and will solidify the position of this new therapeutic approach.
Collapse
Affiliation(s)
- Pm Lippiello
- Targacept, Inc., 200 East 1st Street, Suite 300, Winston-Salem, NC 27101, USA +1 336 480 2100 ; +1 336 480 2107 ;
| | | | | | | | | | | |
Collapse
|
23
|
Yang T, Guo X, Wang H, Fu S, wen Y, Yang H. Magnetically optimized SERS assay for rapid detection of trace drug-related biomarkers in saliva and fingerprints. Biosens Bioelectron 2015; 68:350-357. [DOI: 10.1016/j.bios.2015.01.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/24/2014] [Accepted: 01/09/2015] [Indexed: 01/08/2023]
|
24
|
Kobayashi A, Parker RL, Wright AP, Brahem H, Ku P, Oliver KM, Walz A, Lester HA, Miwa JM. Lynx1 supports neuronal health in the mouse dorsal striatum during aging: an ultrastructural investigation. J Mol Neurosci 2014; 53:525-36. [PMID: 25027556 DOI: 10.1007/s12031-014-0352-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
Abstract
Nicotinic acetylcholine receptors have been shown to participate in neuroprotection in the aging brain. Lynx protein modulators dampen the activity of the cholinergic system through direct interaction with nicotinic receptors. Although lynx1 null mutant mice exhibit augmented learning and plasticity, they also exhibit macroscopic vacuolation in the dorsal striatum as they age, detectable at the optical microscope level. Despite the relevance of the lynx1 gene to brain function, little is known about the cellular ultrastructure of these age-related changes. In this study, we assessed degeneration in the dorsal striatum in 1-, 3-, 7-, and 13-month-old mice, using optical and transmission electron microscopy. We observed a loss of nerve fibers, a breakdown in nerve fiber bundles, and a loss of neuronal nuclei in the 13-month-old lynx1 null striatum. At higher magnification, these nerve fibers displayed intracellular vacuoles and disordered myelin sheaths. Few or none of these morphological alterations were present in younger lynx1 null mutant mice or in heterozygous lynx1 null mutant mice at any age. These data indicate that neuronal health can be maintained by titrating lynx1 dosage and that the lynx1 gene may participate in a trade-off between neuroprotection and augmented learning.
Collapse
Affiliation(s)
- Atsuko Kobayashi
- Biology Division, California Institute of Technology, MC156-29, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Durazzo TC, Mon A, Pennington D, Abé C, Gazdzinski S, Meyerhoff DJ. Interactive effects of chronic cigarette smoking and age on brain volumes in controls and alcohol-dependent individuals in early abstinence. Addict Biol 2014; 19:132-43. [PMID: 22943795 DOI: 10.1111/j.1369-1600.2012.00492.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Chronic alcohol-use disorders (AUDs) have been shown to interact with normal age-related volume loss to exacerbate brain atrophy with increasing age. However, chronic cigarette smoking, a highly co-morbid condition in AUD and its influence on age-related brain atrophy have not been evaluated. We performed 1.5 T quantitative magnetic resonance imaging in non-smoking controls [non-smoking light drinking controls (nsCONs); n = 54], smoking light drinking controls (sCONs, n = 34), and one-week abstinent, treatment-seeking alcohol-dependent (ALC) non-smokers (nsALCs, n = 35) and smokers (sALCs, n = 43), to evaluate the independent and interactive effects of alcohol dependence and chronic smoking on regional cortical and subcortical brain volumes, emphasizing the brain reward/executive oversight system (BREOS). The nsCONs and sALCs showed greater age-related volume losses than the nsALCs in the dorsal prefrontal cortex (DPFC), total cortical BREOS, superior parietal lobule and putamen. The nsALCs and sALCs demonstrated smaller volumes than the nsCONs in most cortical region of interests (ROIs). The sCONs had smaller volumes than the nsCONs in the DPFC, insula, inferior parietal lobule, temporal pole/parahippocampal region and all global cortical measures. The nsALCs and sALCs had smaller volumes than the sCONs in the DPFC, superior temporal gyrus, inferior and superior parietal lobules, precuneus and all global cortical measures. Volume differences between the nsALCs and sALCs were observed only in the putamen. Alcohol consumption measures were not related to volumes in any ROI for ALC; smoking severity measures were related to corpus callosum volume in the sCONs and sALCs. The findings indicate that consideration of smoking status is necessary for a better understanding of the factors contributing to regional brain atrophy in AUD.
Collapse
Affiliation(s)
- Timothy C. Durazzo
- Center for Imaging of Neurodegenerative Diseases (CIND); San Francisco VA Medical Center; San Francisco CA USA
- Department of Radiology and Biomedical Imaging; University of California, San Francisco; CA USA
| | - Anderson Mon
- Center for Imaging of Neurodegenerative Diseases (CIND); San Francisco VA Medical Center; San Francisco CA USA
| | - David Pennington
- Center for Imaging of Neurodegenerative Diseases (CIND); San Francisco VA Medical Center; San Francisco CA USA
- Department of Radiology and Biomedical Imaging; University of California, San Francisco; CA USA
| | - Christoph Abé
- Center for Imaging of Neurodegenerative Diseases (CIND); San Francisco VA Medical Center; San Francisco CA USA
- Department of Radiology and Biomedical Imaging; University of California, San Francisco; CA USA
| | | | - Dieter J. Meyerhoff
- Center for Imaging of Neurodegenerative Diseases (CIND); San Francisco VA Medical Center; San Francisco CA USA
- Department of Radiology and Biomedical Imaging; University of California, San Francisco; CA USA
| |
Collapse
|
26
|
Meiser J, Weindl D, Hiller K. Complexity of dopamine metabolism. Cell Commun Signal 2013; 11:34. [PMID: 23683503 PMCID: PMC3693914 DOI: 10.1186/1478-811x-11-34] [Citation(s) in RCA: 446] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/10/2013] [Indexed: 01/15/2023] Open
Abstract
: Parkinson's disease (PD) coincides with a dramatic loss of dopaminergic neurons within the substantia nigra. A key player in the loss of dopaminergic neurons is oxidative stress. Dopamine (DA) metabolism itself is strongly linked to oxidative stress as its degradation generates reactive oxygen species (ROS) and DA oxidation can lead to endogenous neurotoxins whereas some DA derivatives show antioxidative effects. Therefore, DA metabolism is of special importance for neuronal redox-homeostasis and viability.In this review we highlight different aspects of dopamine metabolism in the context of PD and neurodegeneration. Since most reviews focus only on single aspects of the DA system, we will give a broader overview by looking at DA biosynthesis, sequestration, degradation and oxidation chemistry at the metabolic level, as well as at the transcriptional, translational and posttranslational regulation of all enzymes involved. This is followed by a short overview of cellular models currently used in PD research. Finally, we will address the topic from a medical point of view which directly aims to encounter PD.
Collapse
Affiliation(s)
- Johannes Meiser
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-Belval, Luxembourg
| | - Daniel Weindl
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-Belval, Luxembourg
| | - Karsten Hiller
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-Belval, Luxembourg
| |
Collapse
|
27
|
Miwa JM, Lester HA, Walz A. Optimizing cholinergic tone through lynx modulators of nicotinic receptors: implications for plasticity and nicotine addiction. Physiology (Bethesda) 2012; 27:187-99. [PMID: 22875450 DOI: 10.1152/physiol.00002.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The cholinergic system underlies both adaptive (learning and memory) and nonadaptive (addiction and dependency) behavioral changes through its ability to shape and regulate plasticity. Protein modulators such as lynx family members can fine tune the activity of the cholinergic system and contribute to the graded response of the cholinergic system, stabilizing neural circuitry through direct interaction with nicotinic receptors. Release of this molecular brake can unmask cholinergic-dependent mechanisms in the brain. Lynx proteins have the potential to provide top-down control over plasticity mechanisms, including addictive propensity. If this is indeed the case, then, what regulates the regulator? Transcriptional changes of lynx genes in response to pharmacological, physiological, and pathological alterations are explored in this review.
Collapse
Affiliation(s)
- Julie M Miwa
- California Institute of Technology, Pasadena, California, USA.
| | | | | |
Collapse
|
28
|
Quik M, Perez XA, Bordia T. Nicotine as a potential neuroprotective agent for Parkinson's disease. Mov Disord 2012; 27:947-57. [PMID: 22693036 DOI: 10.1002/mds.25028] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/13/2012] [Accepted: 04/08/2012] [Indexed: 02/06/2023] Open
Abstract
Converging research efforts suggest that nicotine and other drugs that act at nicotinic acetylcholine receptors (nAChRs) may be beneficial in the management of Parkinson's disease. This idea initially stemmed from the results of epidemiological studies that demonstrated that smoking is associated with a decreased incidence of Parkinson's disease. The subsequent finding that nicotine administration protected against nigrostriatal damage in parkinsonian animal models led to the idea that nicotine in tobacco products may contribute to this apparent protective action. Nicotine most likely exerts its effects by interacting at nAChRs. Accumulating research indicates that multiple subtypes containing nAChRs, including α4β2, α6β2, and/or α7, may be involved. Stimulation of nAChRs initially activates various intracellular transduction pathways primarily via alterations in calcium signaling. Consequent adaptations in immune responsiveness and trophic factors may ultimately mediate nicotine's ability to reduce/halt the neuronal damage that arises in Parkinson's disease. In addition to a potential neuroprotective action, nicotine also has antidepressant properties and improves attention/cognition. Altogether, these findings suggest that nicotine and nAChR drugs represent promising therapeutic agents for the management of Parkinson's disease.
Collapse
Affiliation(s)
- Maryka Quik
- Center for Health Sciences, SRI International, Menlo Park, California, USA.
| | | | | |
Collapse
|
29
|
|
30
|
Rapid and sensitive determination of nicotine in formulations and biological fluid using micellar liquid chromatography with electrochemical detection. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:2397-402. [PMID: 20732834 DOI: 10.1016/j.jchromb.2010.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 07/15/2010] [Accepted: 07/19/2010] [Indexed: 11/24/2022]
Abstract
Nicotine can be determined in pharmaceuticals and biological fluids by micellar liquid chromatography (MLC) using a C18 column, a mobile phase containing sodium dodecyl sulphate 0.15M-6% (v/v) pentanol-NaH(2)PO(4) 0.01 M (pH 6)-KCl 0.001 M, with electrochemical detection at 0.8 V. In the optimization step, the influence of the modifiers propanol, butanol and pentanol, and the voltage has been studied. With the proposed method the analysis time is below than 8 min, linearity better than 0.999, limits of detection and quantification (ng/ml) was 4 and 12 respectively, repeatability and intermediate precision below 1.8%, and all these parameters are adequate for the quantification of nicotine in chewing gum, dermal patches, tobacco and serum samples either by a pharmacologist, pathologist or toxicologist.
Collapse
|
31
|
Fitzpatrick T, Mattis P, Eidelberg D. Functional imaging of cognitive impairment in Parkinson's disease. Clin EEG Neurosci 2010; 41:119-26. [PMID: 20722344 DOI: 10.1177/155005941004100303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Parkinson's disease (PD) is known by most persons to be a neurodegenerative disorder that affects one's motor skills. However, the disease is also characterized by the less recognized cognitive symptoms, including deficits in executive functioning, as well as mood and behavioral problems, which are just as disabling and distressing as the motor symptoms. Imaging methods such as positron emission tomography (PET) have recently enhanced our understanding of cognitive disturbances in PD, and are reviewed in the current article. Furthermore, insights gained from the use of specific radiotracers in the dopaminergic and cholinergic neurotransmitter systems are discussed, as well as findings from in vivo detection of amyloid-beta. We will also discuss the potential use of a metabolic covariance network as a biomarker in clinical trials for the objective assessment of cognitive dysfunction in PD.
Collapse
Affiliation(s)
- T Fitzpatrick
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, New York 11030, USA
| | | | | |
Collapse
|
32
|
Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat Rev Drug Discov 2009; 8:733-50. [PMID: 19721446 DOI: 10.1038/nrd2927] [Citation(s) in RCA: 527] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nicotinic receptors - a family of ligand-gated ion channels that mediate the effects of the neurotransmitter acetylcholine - are among the most well understood allosteric membrane proteins from a structural and functional perspective. There is also considerable interest in modulating nicotinic receptors to treat nervous-system disorders such as Alzheimer's disease, schizophrenia, depression, attention deficit hyperactivity disorder and tobacco addiction. This article describes both recent advances in our understanding of the assembly, activity and conformational transitions of nicotinic receptors, as well as developments in the therapeutic application of nicotinic receptor ligands, with the aim of aiding novel drug discovery by bridging the gap between these two rapidly developing fields.
Collapse
|
33
|
Piao WH, Campagnolo D, Dayao C, Lukas RJ, Wu J, Shi FD. Nicotine and inflammatory neurological disorders. Acta Pharmacol Sin 2009; 30:715-22. [PMID: 19448649 DOI: 10.1038/aps.2009.67] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cigarette smoke is a major health risk factor which significantly increases the incidence of diseases including lung cancer and respiratory infections. However, there is increasing evidence that smokers have a lower incidence of some inflammatory and neurodegenerative diseases. Nicotine is the main immunosuppressive constituent of cigarette smoke, which inhibits both the innate and adaptive immune responses. Unlike cigarette smoke, nicotine is not yet considered to be a carcinogen and may, in fact, have therapeutic potential as a neuroprotective and anti-inflammatory agent. This review provides a synopsis summarizing the effects of nicotine on the immune system and its (nicotine) influences on various neurological diseases.
Collapse
|
34
|
Bencherif M. Neuronal nicotinic receptors as novel targets for inflammation and neuroprotection: mechanistic considerations and clinical relevance. Acta Pharmacol Sin 2009; 30:702-14. [PMID: 19498416 PMCID: PMC4002381 DOI: 10.1038/aps.2009.37] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 03/09/2009] [Indexed: 01/18/2023] Open
Abstract
A number of studies have confirmed the potential for neuronal nicotinic acetylcholine receptor (NNR)-mediated neuroprotection and, more recently, its anti-inflammatory effects. The mechanistic overlap between these pathways and the ubiquitous effects observed following diverse insults suggest that NNRs modulate fundamental pathways involved in cell survival. These results have wide-reaching implications for the design of experimental therapeutics that regulate inflammatory and anti-apoptotic responses through NNRs and represent an initial step toward understanding the benefits of novel therapeutic strategies for the management of central nervous system disorders that target neuronal survival and associated inflammatory processes.
Collapse
|
35
|
Nicotine induces sensitization of turning behavior in 6-hydroxydopamine lesioned rats. Neurotox Res 2009; 15:359-66. [PMID: 19384569 DOI: 10.1007/s12640-009-9041-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 01/16/2009] [Accepted: 03/03/2009] [Indexed: 10/20/2022]
Abstract
Nicotinic drugs have been proposed as putative drugs to treat Parkinson's disease (PD). In this study, we investigated whether nicotine can sensitize parkinsonian animals to the effect of dopaminergic drugs. Testing this hypothesis is important because nicotine has been shown to present neuroprotective and acute symptomatic effects on PD, but few studies have addressed the question of whether it may induce long-lasting effects on dopamine neurotransmission. We tested this hypothesis in the 6-hydroxydopamine (6-OHDA) rat model of PD. A pretreatment of these rats with 0.1-1.0 mg/kg nicotine induced a dose-dependent sensitization of the turning behavior when the animals were challenged with the dopamine receptor agonist apomorphine 24 h later. In agreement with previous studies, while apomorphine induced contraversive turns, nicotine, as well as amphetamine, induced ipsiversive turns in the 6-OHDA rats. This result suggests that, like amphetamine, nicotine induces turning behavior by promoting release of dopamine in the non-lesioned striatum of the rats. However, it is unlikely that the release of dopamine may also explain the nicotine-induced sensitization of turning behavior. First, the dopamine amount that could be released in the lesioned hemi-striatum by the nicotine pretreatment was minimum-less than 3%, as detected by HPLC-EC. Second, a pretreatment with amphetamine did not induce this behavioral sensitization. A pretreatment with apomorphine-induced sensitization, but it was minimal when compared to that induced by nicotine. Therefore, it is unlikely that the sensitization of the turning behavior induced by nicotine was consequent of the release of dopamine. However, the expression of such sensitization seems to depend on the activation of dopaminergic receptors, since it was seen when the nicotine-sensitized animals were challenged with apomorphine, but not with a second nicotine challenge. These findings are relevant for PD drug therapy since they suggest that the doses of dopaminergic drugs used to treat PD could be reduced if a nicotinic drug were co-administered.
Collapse
|
36
|
Eells JB, Brown T. Repeated developmental exposure to chlorpyrifos and methyl parathion causes persistent alterations in nicotinic acetylcholine subunit mRNA expression with chlorpyrifos altering dopamine metabolite levels. Neurotoxicol Teratol 2008; 31:98-103. [PMID: 18977431 DOI: 10.1016/j.ntt.2008.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 10/10/2008] [Accepted: 10/14/2008] [Indexed: 10/21/2022]
Abstract
Organophosphates (OPs), commonly used as insecticides, inhibit acetylcholinesterase, the enzyme responsible for the inactivation of synaptic acetylcholine, which results in elevated acetylcholine neurotransmission. Nigrostriatal dopamine neurons receive substantial cholinergic innervation and express a number of nicotinic acetylcholine receptor subunits. Since epidemiological data have implicated pesticides in the incidence of Parkinson's disease, the current experiment investigated how repeated, developmental exposure to the OPs chlorpyrifos (CPS) or methyl parathion (MPT) affects striatal dopamine levels and dopamine neuron gene expression. Newborn rats were treated daily via oral gavage with corn oil vehicle, CPS, or MPT from postnatal days (PND) 1-21. Rats were sacrificed at PND 22 and 50. Levels of dopamine and its metabolites 3,4 dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were measured in the striatum and mRNA expression was measured in the substantia nigra. At 22 days of age, CPS and MPT treatment had no effect on dopamine, DOPAC or HVA levels. At 50 days of age, CPS significantly elevated DOPAC levels and elevated dopamine turnover (DOPAC/dopamine) but did not affect dopamine or HVA levels. MPT had no significant effects on any of these parameters. Interestingly, both CPS and MPT treatments caused a significant alteration in the ratio of alpha7 to alpha6 nicotinic acetylcholine receptor (nAChR) subunit expression in the substantia nigra with a non-significant elevation in alpha6 and a reduction in alpha7 at 22 days. At 50 days of age, a significant elevation in alpha6 nAChR subunit was observed in the MPT treated rats. No differences in dopamine neuron transcription factors (Nurr1 or Lmx1b) or neurotransmission genes were observed. These data demonstrate that repeated exposure to OPs during postnatal maturation can have a significant effect on dopamine neurochemistry, primarily by modifying dopamine metabolism, which can persist for up to 1 month (CPS) and alter acetylcholine subunit expression (CPS and MPT).
Collapse
Affiliation(s)
- Jeffrey B Eells
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS 39762, USA.
| | | |
Collapse
|
37
|
Dose-finding study with nicotine as a proconvulsant agent in PTZ-induced seizure model in mice. J Biomed Sci 2008; 15:755-65. [DOI: 10.1007/s11373-008-9272-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 07/14/2008] [Indexed: 11/25/2022] Open
|
38
|
Morozova N, O'Reilly EJ, Ascherio A. Variations in gender ratios support the connection between smoking and Parkinson's disease. Mov Disord 2008; 23:1414-9. [DOI: 10.1002/mds.22045] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
39
|
Meyer EL, Yoshikami D, McIntosh JM. The neuronal nicotinic acetylcholine receptors alpha 4* and alpha 6* differentially modulate dopamine release in mouse striatal slices. J Neurochem 2008; 105:1761-9. [PMID: 18248619 DOI: 10.1111/j.1471-4159.2008.05266.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Striatal dopamine (DA) plays a major role in the regulation of motor coordination and in the processing of salient information. We used voltammetry to monitor DA-release evoked by electrical stimulation in striatal slices, where interneurons continuously release acetylcholine. Use of the alpha6-selective antagonist alpha-conotoxin MII[E11A] and alpha4 knockout mice enabled identification of two populations of DA-ergic fibers. The first population had a low action potential threshold, and action potential-evoked DA-release from these fibers was modulated by alpha6. The second population had a higher action potential threshold, and only alpha4(non-alpha6) modulated action potential-evoked DA-release. Striatal DA-ergic neurons fire in both tonic and phasic patterns. When stimuli were applied in a train to mimic phasic firing, more DA-release was observed in alpha4 knockout versus wild-type mice. Furthermore, block of alpha4(non-alpha6), but not of alpha6, increased DA release evoked by a train. These results indicate that there are different classes of striatal DA-ergic fibers that express different subtypes of nicotinic receptors.
Collapse
Affiliation(s)
- Erin L Meyer
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
40
|
Faghih R, Gopalakrishnan M, Briggs CA. Allosteric modulators of the alpha7 nicotinic acetylcholine receptor. J Med Chem 2008; 51:701-12. [PMID: 18198823 DOI: 10.1021/jm070256g] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ramin Faghih
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois 60064, USA.
| | | | | |
Collapse
|
41
|
Abstract
Parkinson's disease (PD) is the most common cause of the parkinsonian syndromes and the most frequent neurodegenerative disease after Alzheimer's disease. Because of the ageing of Western populations, an increasing number of persons will be affected with PD in the future and neither curative treatments nor preventive measures have been identified. PD is considered as a multifactorial disease, resulting from the effect of environmental factors and genetic susceptibility. Increasing age and male sex appear to be associated with an increased risk of PD. In addition, recent epidemiological studies have identified environmental exposures that influence the risk of PD. This review provides an overview of the epidemiologic evidence for environmental etiologies in PD; we will focus on two environmental exposures that have been quite consistently associated with PD -- cigarette smoking and pesticide exposure -- and will summarize briefly the findings for other exposures. Understanding the mechanisms underlying these epidemiological associations is an essential step for the understanding of the etiology of this neurodegenerative condition and, ideally, to develop neuroprotective drugs.
Collapse
Affiliation(s)
- Alexis Elbaz
- Inserm, U708, Neuroepidemiology, Hôpital de la Salpêtrière, Paris, France.
| | | |
Collapse
|
42
|
Fawzi MH, Fawzi MM, Khedr HH, Fawzi MM. Tobacco smoking in Egyptian schizophrenia patients with and without obsessive-compulsive symptoms. Schizophr Res 2007; 95:236-46. [PMID: 17662578 DOI: 10.1016/j.schres.2007.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 05/31/2007] [Accepted: 06/01/2007] [Indexed: 11/30/2022]
Abstract
BACKGROUND Nicotine dependence is common in schizophrenia patients but rare in patients with obsessive-compulsive disorder. Little is known, however, about smoking in schizophrenia patients with obsessive-compulsive symptoms (OCS) especially in a developing country, such as Egypt, that has the highest rate of tobacco consumption in the Middle East and North Africa. OBJECTIVES To test a hypothesis that nicotine dependence in schizophrenia patients with-OCS is lower than in those without-OCS. RESULTS Out of 87 consecutive schizophrenia patients attending a psychiatric out-patients clinic in Egypt, 34 patients (39%) had significant OCS, and a smoking rate (85.3%) not significantly lower than that of patients without-OCS (90.6%). Patients were reclassified by their Fagerström's scores into 3 groups of nicotine dependence: mild (37 patients), high (21 patients) and very high (29 patients). There were no differences between these groups in terms of YBOCS scores (F=0.324; p=0.724). When comparing PANSS scores of patients, with and without-OCS, those of the former group were higher on the positive symptoms (mean=24.2 versus 20.8; p=0.002), and anxiety/depression (mean=10.8 versus 10.1; p=0.03) but lower on the negative symptoms (mean=15.0 versus 19.4; p=0.000), disorganized thoughts (mean=14.5 versus 17.5; p=0.002), and uncontrolled hostility/excitement) (mean=7.5 versus 9.5; p=0.002). However, there was no significant between-group difference in the total PANSS scores. CONCLUSIONS The high and equal rates of smoking in patients with-, and without-OCS, and the lack of difference between YBOCS scores of mild, high and very high nicotine dependence groups undermined our initial hypothesis that nicotine dependence in schizophrenia patients with-OCS is lower than in those without them. Nevertheless, the finding of a distinctive PANSS scores, may support a suggestion that OCS in schizophrenia represent a distinct subtype or dimension.
Collapse
Affiliation(s)
- Mounir H Fawzi
- Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | | | | | | |
Collapse
|
43
|
Ono K, Hirohata M, Yamada M. Anti-fibrillogenic and fibril-destabilizing activity of nicotine in vitro: Implications for the prevention and therapeutics of Lewy body diseases. Exp Neurol 2007; 205:414-24. [PMID: 17425956 DOI: 10.1016/j.expneurol.2007.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Revised: 02/27/2007] [Accepted: 03/01/2007] [Indexed: 01/12/2023]
Abstract
The aggregation of alpha-synuclein (alphaS) has been implicated as a critical step in the development of Lewy body diseases (LBD) and multiple system atrophy (MSA). Both retrospective and prospective epidemiological studies have consistently demonstrated an inverse association between cigarette smoking and Parkinson's disease (PD). We used fluorescence spectroscopy with thioflavin S, electron microscopy and atomic force microscopy to examine the effects of nicotine, pyridine, and N-methylpyrrolidine on the formation of alphaS fibrils (f alphaS) from wild-type alphaS (alphaS (WT)) and A53T mutant alphaS (A53T) and on preformed f alpha Ss. Nicotine dose-dependently inhibited the f alphaS formation from both alphaS (WT) and A53T. Moreover, nicotine dose-dependently destabilized preformed f alpha Ss. These effects of nicotine were similar to those of N-methylpyrrolidine. The anti-fibrillogenic activity of nicotine may be exerted not only by the inhibition of f alphaS formation but also by the destabilization of preformed f alphaS. Additionally, this effect may be attributed to N-methylpyrrolidine moieties of nicotine.
Collapse
Affiliation(s)
- Kenjiro Ono
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | | | | |
Collapse
|
44
|
Hanagasi HA, Lees A, Johnson JO, Singleton A, Emre M. Smoking-responsive juvenile-onset Parkinsonism. Mov Disord 2007; 22:115-9. [PMID: 17080433 DOI: 10.1002/mds.21177] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We describe a patient with juvenile levodopa-responsive Parkinsonism who reported a dramatic response to cigarette smoking with transient but marked improvement of motor symptoms associated with oculogyric crises and psychotic behavior. His beta-CIT single-photon emission computed tomography scan showed a complete absence of presynaptic dopaminergic nerve terminals.
Collapse
Affiliation(s)
- Hasmet Ayhan Hanagasi
- Department of Neurology, Behavioral Neurology and Movement Disorders Unit, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | | | | | | | | |
Collapse
|
45
|
Buccafusco JJ, Powers JC, Hernandez MA, Prendergast MA, Terry AV, Jonnala RR. MHP-133, a drug with multiple CNS targets: potential for neuroprotection and enhanced cognition. Neurochem Res 2007; 32:1224-37. [PMID: 17404838 DOI: 10.1007/s11064-007-9294-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 01/19/2007] [Indexed: 01/08/2023]
Abstract
MHP-133 is one of a novel series of compounds designed to target multiple brain substrates expected to have synergistic actions in the treatment of cognitive and neurodegenerative disorders such as Alzheimer's disease. The strategy was to develop compounds with multiple targets relevant for enhancing cognition and memory, but avoiding the serious side effects attributed to high potency cholinergic agonists. MHP-133 was shown to interact with subtypes of cholinergic, serotonergic, and imidazoline receptors and to weakly inhibit acetylcholinesterase activity. In vitro, the drug enhanced nerve growth factor (TrkA) receptor expression; it prevented excitotoxicity in a hippocampal slice preparation; and increased the secretion of soluble (non-toxic) amyloid precursor protein. MHP-133 also enhanced cognitive performance by rats and by non-human primate in tasks designed to assess working memory. The results of this study are consistent with the potential use of MHP-133 in the treatment of neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Jerry J Buccafusco
- Alzheimer's Research Center, Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Schildan A, Patt M, Sabri O. Synthesis procedure for routine production of 2-[18F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-[18F]F-A-85380). Appl Radiat Isot 2007; 65:1244-8. [PMID: 17448665 DOI: 10.1016/j.apradiso.2007.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 02/08/2007] [Accepted: 02/19/2007] [Indexed: 11/22/2022]
Abstract
2-[18F]Fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-[18F]F-A-85380) was among the first subtype selective radioligands to visualise the in vivo distribution of alpha4beta2-containing neuronal nicotinic acetylcholine receptors (nAChRs) in human brain. We developed a one-pot synthesis for the preparation of 2-[18F]F-A-85380 in a commercially available TRACERlab FXF-N synthesis module. The synthesis comprises a nucleophilic substitution followed by hydrolysis of a t-butyloxycarbonyl (BOC)-protected intermediate. After formulation for intravenous application up to 20 G Bq 2-[18F]F-A-85380 were produced from a starting activity of 100 G Bq [18F]fluoride in 60 min with a specific activity of about 4.10(5)GBq/mmol and a mean radiochemical purity of more than 99%.
Collapse
Affiliation(s)
- Andreas Schildan
- Department of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | | | | |
Collapse
|
47
|
Nouri-Shirazi M, Tinajero R, Guinet E. Nicotine alters the biological activities of developing mouse bone marrow-derived dendritic cells (DCs). Immunol Lett 2007; 109:155-64. [PMID: 17368810 DOI: 10.1016/j.imlet.2007.02.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 02/03/2007] [Accepted: 02/10/2007] [Indexed: 01/22/2023]
Abstract
Cigarette smoke contains nicotine, an immunomodulatory component that is thought to affect immune surveillance and increase the progression of diseases. Dendritic cells (DCs) constitute a family of antigen-presenting (APCs) with inherent abilities to sense and translate environmental cues and to shape host immunity. We recently reported on the effects of nicotine on human DCs and proposed a possible mechanism that links cigarette smoke to higher incidences of respiratory tract infection and asthma. To establish the causal relationship between nicotine-induced DC alterations and immunomodulation in vivo, we translated our in vitro human results to the mouse system and studied the direct effects of nicotine exposure on the biological and functional properties of mouse bone marrow (BM) DCs differentiated in vitro from their precursors. We report that while the presence of nicotine in the microenvironment has no direct effect on competent mouse BM-derived DCs function, it promotes the development of mouse BM DC precursors into DCs (thereafter called nicDCs) with a semi-mature phenotype revealed by higher expression of costimulatory molecules CD80, CD86, CD40, MHC II molecules and the lymph node homing receptor, CCR7. Consistent with their maturational status, these nicDCs have reduced capacity for antigen uptake and produce substantially less Th1-promoting cytokine, IL-12, in response to Th1-polarizing adjuvant, lipopolysaccharide (LPS). Interestingly, we found that nicDCs preferentially support the proliferation and differentiation of ovalbumin (OVA)-specific naïve T cells into effector memory cells, producing significantly less IFN-gamma and more IL-4. These results provide evidence for the similarity in the effects of nicotine on mouse and human DCs, particularly the ability to modulate DC differentiation towards developing Th2 immunity.
Collapse
Affiliation(s)
- M Nouri-Shirazi
- Department of Biomedical Sciences, Immunology Laboratory, Texas A&M University System Health Science Center, Baylor College of Dentistry, Dallas, TX 75246, USA.
| | | | | |
Collapse
|
48
|
Singh N, Pillay V, Choonara YE. Advances in the treatment of Parkinson's disease. Prog Neurobiol 2007; 81:29-44. [PMID: 17258379 DOI: 10.1016/j.pneurobio.2006.11.009] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 11/14/2006] [Accepted: 11/22/2006] [Indexed: 11/21/2022]
Abstract
Parkinson's disease (PD) affects one in every 100 persons above the age of 65 years, making it the second most common neurodegenerative disease after Alzheimer's disease. PD is a disease of the central nervous system that leads to severe difficulties with body motions. The currently available therapies aim to improve the functional capacity of the patient for as long as possible; however they do not modify the progression of the neurodegenerative process. The need for newer and more effective agents is consequently receiving a great deal of attention and consequently being subjected to extensive research. This review concisely compiles the limitations of currently available therapies and the most recent research regarding neuroprotective agents, antioxidants, stem cell research, vaccines and various surgical techniques available and being developed for the management of PD.
Collapse
Affiliation(s)
- Neha Singh
- University of the Witwatersrand, Department of Pharmacy and Pharmacology, 7 York Road, Parktown 2193, Johannesburg, Gauteng, South Africa
| | | | | |
Collapse
|
49
|
Samadi P, Rouillard C, Bédard PJ, Di Paolo T. Functional neurochemistry of the basal ganglia. HANDBOOK OF CLINICAL NEUROLOGY 2007; 83:19-66. [DOI: 10.1016/s0072-9752(07)83002-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
50
|
Janhunen S, Ahtee L. Differential nicotinic regulation of the nigrostriatal and mesolimbic dopaminergic pathways: implications for drug development. Neurosci Biobehav Rev 2006; 31:287-314. [PMID: 17141870 DOI: 10.1016/j.neubiorev.2006.09.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 09/10/2006] [Accepted: 09/18/2006] [Indexed: 01/21/2023]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) modulate dopaminergic function. Discovery of their multiplicity has lead to the search for subtype-selective nAChR agonists that might be therapeutically beneficial in diseases linked to brain dopaminergic pathways. The regulation and responses of the nigrostriatal and mesolimbic dopaminergic pathways are often similar, but some differences do exist. The cerebral distribution and characteristics of various nAChR subtypes differ between nigrostriatal and mesolimbic dopaminergic pathways. Comparison of nicotine and epibatidine, two nAChR agonists whose relative affinities for various nAChR subtypes differ, revealed differences in the nAChR-mediated regulation of dopaminergic activation between these dopamine systems. Nicotine preferentially stimulates the mesolimbic pathway, whereas epibatidine's stimulatory effect falls on the nigrostriatal pathway. Thus, it may be possible to stimulate the nigrostriatal pathway with selective nAChR agonists that do not significantly affect the mesolimbic pathway, and thus lack addictive properties. Furthermore, dopamine uptake inhibition revealed a novel inhibitory effect of epibatidine on accumbal dopamine release, which could form a basis for novel antipsychotics that could alleviate the elevated accumbal dopaminergic tone found in schizophrenia during the active psychotic state. Different regulation of nigrostriatal and mesolimbic dopaminergic pathways by nAChRs could be an important basis for developing novel drugs for treatment of Parkinson's disease and schizophrenia.
Collapse
Affiliation(s)
- Sanna Janhunen
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5), Helsinki, FIN-00014, Finland.
| | | |
Collapse
|