1
|
Anaya-Plaza E, Aljarilla A, Beaune G, Timonen JVI, de la Escosura A, Torres T, Kostiainen MA. Phthalocyanine-Virus Nanofibers as Heterogeneous Catalysts for Continuous-Flow Photo-Oxidation Processes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902582. [PMID: 31392780 DOI: 10.1002/adma.201902582] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/10/2019] [Indexed: 06/10/2023]
Abstract
The generation of highly reactive oxygen species (ROS) at room temperature for application in organic synthesis and wastewater treatment represents a great challenge of the current chemical industry. In fact, the development of biodegradable scaffolds to support ROS-generating active sites is an important prerequisite for the production of environmentally benign catalysts. Herein, the electrostatic cocrystallization of a cationic phthalocyanine (Pc) and negatively charged tobacco mosaic virus (TMV) is described, together with the capacity of the resulting crystals to photogenerate ROS. To this end, a novel peripherally crowded zinc Pc (1) is synthesized. With 16 positive charges, this photosensitizer shows no aqueous aggregation, and is able to act as a molecular glue in the unidimensional assembly of TMV. A step-wise decrease of ionic strength in mixtures of both components results in exceptionally long fibers, constituted by hexagonally bundled viruses thoroughly characterized by electron and confocal microscopy. The fibers are able to produce ROS in a proof-of-concept microfluidic device, where they are immobilized and irradiated in several cycles, showing a resilient performance. The bottom-up approach also enables the light-triggered disassembly of fibers after use. This work represents an important example of a biohybrid material with projected application in light-mediated heterogeneous catalysis.
Collapse
Affiliation(s)
- Eduardo Anaya-Plaza
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Ana Aljarilla
- Department of Organic Chemistry, Universidad Autónoma de Madrid (UAM), Calle Francisco Tomás y Valiente, 7, 28049, Madrid, Spain
| | - Grégory Beaune
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, FI-02150, Espoo, Finland
| | - Jaakko V I Timonen
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, FI-02150, Espoo, Finland
| | - Andrés de la Escosura
- Department of Organic Chemistry, Universidad Autónoma de Madrid (UAM), Calle Francisco Tomás y Valiente, 7, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Tomás Torres
- Department of Organic Chemistry, Universidad Autónoma de Madrid (UAM), Calle Francisco Tomás y Valiente, 7, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, Campus de Cantoblanco, 28049, Madrid, Spain
- IMDEA-Nanociencia, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Mauri A Kostiainen
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| |
Collapse
|
2
|
Korpi A, Anaya-Plaza E, Välimäki S, Kostiainen M. Highly ordered protein cage assemblies: A toolkit for new materials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1578. [PMID: 31414574 DOI: 10.1002/wnan.1578] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/19/2019] [Accepted: 06/28/2019] [Indexed: 12/16/2022]
Abstract
Protein capsids are specialized and versatile natural macromolecules with exceptional properties. Their homogenous, spherical, rod-like or toroidal geometry, and spatially directed functionalities make them intriguing building blocks for self-assembled nanostructures. High degrees of functionality and modifiability allow for their assembly via non-covalent interactions, such as electrostatic and coordination bonding, enabling controlled self-assembly into higher-order structures. These assembly processes are sensitive to the molecules used and the surrounding conditions, making it possible to tune the chemical and physical properties of the resultant material and generate multifunctional and environmentally sensitive systems. These materials have numerous potential applications, including catalysis and drug delivery. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Antti Korpi
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
| | - Eduardo Anaya-Plaza
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
| | - Salla Välimäki
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
| | - Mauri Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
| |
Collapse
|
3
|
Virus capsid assembly across different length scales inspire the development of virus-based biomaterials. Curr Opin Virol 2019; 36:38-46. [PMID: 31071601 DOI: 10.1016/j.coviro.2019.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 01/26/2023]
Abstract
In biology, there are an abundant number of self-assembled structures organized according to hierarchical levels of complexity. In some examples, the assemblies formed at each level exhibit unique properties and behaviors not present in individual components. Viruses are an example of such where first individual subunits come together to form a capsid structure, some utilizing a scaffolding protein to template or catalyze the capsid formation. Increasing the level of complexity, the viral capsids can then be used as building blocks of higher-level assemblies. This has inspired scientists to design and construct virus capsid-based functional nano-materials. This review provides some insight into the assembly of virus capsids across several length scales, and certain properties that arise at different levels, providing examples found in naturally occurring systems and those that are synthetically designed.
Collapse
|
4
|
Sinitsyna OV, Makarov VV, McGeachy K, Bukharova T, Whale E, Hepworth D, Yaminsky IV, Kalinina NO, Taliansky ME, Love AJ. Virus-Like Particle Facilitated Deposition of Hydroxyapatite Bone Mineral on Nanocellulose after Exposure to Phosphate and Calcium Precursors. Int J Mol Sci 2019; 20:E1814. [PMID: 31013736 PMCID: PMC6515374 DOI: 10.3390/ijms20081814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 11/28/2022] Open
Abstract
We produced and isolated tobacco mosaic virus-like particles (TMV VLPs) from bacteria, which are devoid of infectious genomes, and found that they have a net negative charge and can bind calcium ions. Moreover, we showed that the TMV VLPs could associate strongly with nanocellulose slurry after a simple mixing step. We sequentially exposed nanocellulose alone or slurries mixed with the TMV VLPs to calcium and phosphate salts and utilized physicochemical approaches to demonstrate that bone mineral (hydroxyapatite) was deposited only in nanocellulose mixed with the TMV VLPs. The TMV VLPs confer mineralization properties to the nanocellulose for the generation of new composite materials.
Collapse
Affiliation(s)
- Olga V Sinitsyna
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow 119991, Russia.
| | - Valentine V Makarov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 119991, Russia.
| | - Kara McGeachy
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK.
| | - Tatyana Bukharova
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK.
| | - Eric Whale
- CelluComp Ltd., Unit 3, West Dock, Harbour Place, Burntisland KY3 9DW, UK.
| | - David Hepworth
- CelluComp Ltd., Unit 3, West Dock, Harbour Place, Burntisland KY3 9DW, UK.
| | - Igor V Yaminsky
- Physical Faculty, Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Natalia O Kalinina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 119991, Russia.
| | - Michael E Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 119991, Russia.
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK.
| | - Andrew J Love
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK.
| |
Collapse
|
5
|
Lomonossoff GP, Wege C. TMV Particles: The Journey From Fundamental Studies to Bionanotechnology Applications. Adv Virus Res 2018; 102:149-176. [PMID: 30266172 PMCID: PMC7112118 DOI: 10.1016/bs.aivir.2018.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ever since its initial characterization in the 19th century, tobacco mosaic virus (TMV) has played a prominent role in the development of modern virology and molecular biology. In particular, research on the three-dimensional structure of the virus particles and the mechanism by which these assemble from their constituent protein and RNA components has made TMV a paradigm for our current view of the morphogenesis of self-assembling structures, including viral particles. More recently, this knowledge has been applied to the development of novel reagents and structures for applications in biomedicine and bionanotechnology. In this article, we review how fundamental science has led to TMV being at the vanguard of these new technologies.
Collapse
Affiliation(s)
| | - Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
6
|
Bayram SS, Green P, Blum AS. Sensing of heavy metal ions by intrinsic TMV coat protein fluorescence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 195:21-24. [PMID: 29367022 DOI: 10.1016/j.saa.2018.01.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 06/07/2023]
Abstract
We propose the use of a cysteine mutant of TMV coat protein as a signal transducer for the selective sensing and quantification of the heavy metal ions, Cd2+, Pb2+, Zn2+ and Ni2+ based on intrinsic tryptophan quenching. TMV coat protein is inexpensive, can be mass-produced since it is expressed and extracted from E-coli. It also displays several different functional groups, enabling a wide repertoire of bioconjugation chemistries; thus it can be easily integrated into functional devices. In addition, TMV-ion interactions have been widely reported and utilized for metallization to generate organic-inorganic hybrid composite novel materials. Building on these previous observations, we herein determine, for the first time, the TMV-ion binding constants assuming the static fluorescence quenching model. We also show that by comparing TMV-ion interactions between native and denatured coat protein, we can distinguish between chemically similar heavy metal ions such as cadmium and zinc ions.
Collapse
Affiliation(s)
- Serene S Bayram
- Department of Chemistry, Center for Self-Assembled Chemical Structures, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Philippe Green
- Department of Chemistry, Center for Self-Assembled Chemical Structures, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Amy Szuchmacher Blum
- Department of Chemistry, Center for Self-Assembled Chemical Structures, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada.
| |
Collapse
|
7
|
Liljeström V, Ora A, Hassinen J, Rekola HT, Nonappa, Heilala M, Hynninen V, Joensuu JJ, Ras RHA, Törmä P, Ikkala O, Kostiainen MA. Cooperative colloidal self-assembly of metal-protein superlattice wires. Nat Commun 2017; 8:671. [PMID: 28939801 PMCID: PMC5610313 DOI: 10.1038/s41467-017-00697-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/21/2017] [Indexed: 01/12/2023] Open
Abstract
Material properties depend critically on the packing and order of constituent units throughout length scales. Beyond classically explored molecular self-assembly, structure formation in the nanoparticle and colloidal length scales have recently been actively explored for new functions. Structure of colloidal assemblies depends strongly on the assembly process, and higher structural control can be reliably achieved only if the process is deterministic. Here we show that self-assembly of cationic spherical metal nanoparticles and anionic rod-like viruses yields well-defined binary superlattice wires. The superlattice structures are explained by a cooperative assembly pathway that proceeds in a zipper-like manner after nucleation. Curiously, the formed superstructure shows right-handed helical twisting due to the right-handed structure of the virus. This leads to structure-dependent chiral plasmonic function of the material. The work highlights the importance of well-defined colloidal units when pursuing unforeseen and complex assemblies.Colloidal self-assembly is a unique method to produce three-dimensional materials with well-defined hierarchical structures and functionalities. Liljeström et al. show controlled preparation of macroscopic chiral wires with helical plasmonic superlattice structure composed of metal nanoparticles and viruses.
Collapse
Affiliation(s)
- Ville Liljeström
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076, Aalto, Finland
- HYBER Centre of Excellence, Department of Bioproducts and Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Ari Ora
- HYBER Centre of Excellence, Department of Bioproducts and Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Jukka Hassinen
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076, Aalto, Finland
| | - Heikki T Rekola
- COMP Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076, Aalto, Finland
| | - Nonappa
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076, Aalto, Finland
| | - Maria Heilala
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076, Aalto, Finland
| | - Ville Hynninen
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076, Aalto, Finland
| | - Jussi J Joensuu
- HYBER Centre of Excellence, VTT Technical Research Centre of Finland Ltd, 02150, Espoo, Finland
| | - Robin H A Ras
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076, Aalto, Finland
- HYBER Centre of Excellence, Department of Bioproducts and Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Päivi Törmä
- COMP Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076, Aalto, Finland
| | - Olli Ikkala
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076, Aalto, Finland
| | - Mauri A Kostiainen
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076, Aalto, Finland.
- HYBER Centre of Excellence, Department of Bioproducts and Biosystems, Aalto University, FI-00076, Aalto, Finland.
| |
Collapse
|
8
|
Schenk AS, Eiben S, Goll M, Reith L, Kulak AN, Meldrum FC, Jeske H, Wege C, Ludwigs S. Virus-directed formation of electrocatalytically active nanoparticle-based Co 3O 4 tubes. NANOSCALE 2017; 9:6334-6345. [PMID: 28387406 DOI: 10.1039/c7nr00508c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Spinel-type Co3O4 finds applications in a wide range of fields, including clean energy conversion, where nanostructured Co3O4 may provide a cost-efficient alternative to platinum- and iridium-based catalysts for electrocatalytic water-splitting. We here describe a novel strategy in which basic cobalt carbonate - a precursor to Co3O4 - is precipitated as sheet-like structures and microspheres covered with fine surface protrusions, via ammonium carbonate decomposition at room temperature. Importantly, these mild reaction conditions enable us to employ bio-inspired templating approaches to further control the mineral structure. Rod-like tobacco mosaic viruses (TMV) were used as biotemplates for mineral deposition, where we profit from the ability of Co(ii) ions to mediate the ordered assembly of the virus nanorods to create complex tubular superstructures of TMV/ basic cobalt carbonate. Calcination of these tubules is then achieved with retention of the gross morphology, and generates a hierarchically-structured solid comprising interconnected Co3O4 nanoparticles. Evaluation of these Co3O4 materials as electrocatalysts for the oxygen evolution reaction (OER) demonstrates that the activity of Co3O4 prepared by calcination of ammonia diffusion-grown precursors in both, the absence or presence of TMV exceeds that of a commercial nanopowder.
Collapse
Affiliation(s)
- A S Schenk
- Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Schwarz B, Uchida M, Douglas T. Biomedical and Catalytic Opportunities of Virus-Like Particles in Nanotechnology. Adv Virus Res 2016; 97:1-60. [PMID: 28057256 DOI: 10.1016/bs.aivir.2016.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Within biology, molecules are arranged in hierarchical structures that coordinate and control the many processes that allow for complex organisms to exist. Proteins and other functional macromolecules are often studied outside their natural nanostructural context because it remains difficult to create controlled arrangements of proteins at this size scale. Viruses are elegantly simple nanosystems that exist at the interface of living organisms and nonliving biological machines. Studied and viewed primarily as pathogens to be combatted, viruses have emerged as models of structural efficiency at the nanoscale and have spurred the development of biomimetic nanoparticle systems. Virus-like particles (VLPs) are noninfectious protein cages derived from viruses or other cage-forming systems. VLPs provide incredibly regular scaffolds for building at the nanoscale. Composed of self-assembling protein subunits, VLPs provide both a model for studying materials' assembly at the nanoscale and useful building blocks for materials design. The robustness and degree of understanding of many VLP structures allow for the ready use of these systems as versatile nanoparticle platforms for the conjugation of active molecules or as scaffolds for the structural organization of chemical processes. Lastly the prevalence of viruses in all domains of life has led to unique activities of VLPs in biological systems most notably the immune system. Here we discuss recent efforts to apply VLPs in a wide variety of applications with the aim of highlighting how the common structural elements of VLPs have led to their emergence as paradigms for the understanding and design of biological nanomaterials.
Collapse
Affiliation(s)
- B Schwarz
- Indiana University, Bloomington, IN, United States
| | - M Uchida
- Indiana University, Bloomington, IN, United States
| | - T Douglas
- Indiana University, Bloomington, IN, United States.
| |
Collapse
|
10
|
Wen AM, Steinmetz NF. Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chem Soc Rev 2016; 45:4074-126. [PMID: 27152673 PMCID: PMC5068136 DOI: 10.1039/c5cs00287g] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review provides an overview of recent developments in "chemical virology." Viruses, as materials, provide unique nanoscale scaffolds that have relevance in chemical biology and nanotechnology, with diverse areas of applications. Some fundamental advantages of viruses, compared to synthetically programmed materials, include the highly precise spatial arrangement of their subunits into a diverse array of shapes and sizes and many available avenues for easy and reproducible modification. Here, we will first survey the broad distribution of viruses and various methods for producing virus-based nanoparticles, as well as engineering principles used to impart new functionalities. We will then examine the broad range of applications and implications of virus-based materials, focusing on the medical, biotechnology, and energy sectors. We anticipate that this field will continue to evolve and grow, with exciting new possibilities stemming from advancements in the rational design of virus-based nanomaterials.
Collapse
Affiliation(s)
- Amy M Wen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA. and Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
11
|
Vilona D, Di Lorenzo R, Carraro M, Licini G, Trainotti L, Bonchio M. Viral nano-hybrids for innovative energy conversion and storage schemes. J Mater Chem B 2015; 3:6718-6730. [PMID: 32262464 DOI: 10.1039/c5tb00924c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Typical rod-like viruses (the Tobacco Mosaic Virus (TMV) and the Bacteriophage M13) are biological nanostructures that couple a 1D mono-dispersed morphology with a precisely defined topology of surface spaced and orthogonal reactive domains. These biogenic scaffolds offer a unique alternative to synthetic nano-platforms for the assembly of functional molecules and materials. Spatially resolved 1D arrays of inorganic-organic hybrid domains can thus be obtained on viral nano-templates resulting in the functional arrangement of photo-triggers and catalytic sites with applications in light energy conversion and storage. Different synthetic strategies are herein highlighted depending on the building blocks and with a particular emphasis on the molecular design of viral-templated nano-interfaces holding great potential for the dream-goal of artificial photosynthesis.
Collapse
Affiliation(s)
- D Vilona
- CNR-ITM and Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131 Padova, Italy.
| | | | | | | | | | | |
Collapse
|
12
|
Mikkilä J, Rosilo H, Nummelin S, Seitsonen J, Ruokolainen J, Kostiainen MA. Janus-Dendrimer-Mediated Formation of Crystalline Virus Assemblies. ACS Macro Lett 2013; 2:720-724. [PMID: 35606958 DOI: 10.1021/mz400307h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Amphiphilic dendrimers have been shown to self-assemble with nanosized protein particles (viruses) to form highly ordered hierarchical assemblies. Here we present Janus-type dendrimers that have been synthesized from Newkome-type dendrons with hydrophilic spermine groups and hydrophobic Percec-type dendrons. These amphiphilic dendrimers bind electrostatically on the surface of virus particles and co-assemble into crystalline complexes with a lattice constant (a = 42 nm) comparable to the size of the virus particles. Small-angle X-ray scattering and cryogenic transmission electron microscopy show that the complexes have a face-centered cubic structure (space group Fm3̅m) and remarkable long-range order. Results indicate that amphiphilic dendrimers can be utilized to create inclusion body mimicking nanostructures.
Collapse
Affiliation(s)
- Joona Mikkilä
- Molecular Materials, Department
of Applied Physics, Aalto University, 00076
Espoo, Finland
| | - Henna Rosilo
- Molecular Materials, Department
of Applied Physics, Aalto University, 00076
Espoo, Finland
| | - Sami Nummelin
- Molecular Materials, Department
of Applied Physics, Aalto University, 00076
Espoo, Finland
| | - Jani Seitsonen
- Molecular Materials, Department
of Applied Physics, Aalto University, 00076
Espoo, Finland
| | - Janne Ruokolainen
- Molecular Materials, Department
of Applied Physics, Aalto University, 00076
Espoo, Finland
| | - Mauri A. Kostiainen
- Molecular Materials, Department
of Applied Physics, Aalto University, 00076
Espoo, Finland
- Biohybrid
Materials, Department
of Biotechnology and Chemical Technology, Aalto University, 00076 Espoo, Finland
| |
Collapse
|
13
|
Zeitler B, Bernhard A, Meyer H, Sattler M, Koop HU, Lindermayr C. Production of a de-novo designed antimicrobial peptide in Nicotiana benthamiana. PLANT MOLECULAR BIOLOGY 2013; 81:259-72. [PMID: 23242916 DOI: 10.1007/s11103-012-9996-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 12/06/2012] [Indexed: 06/01/2023]
Abstract
Antimicrobial peptides are important defense compounds of higher organisms that can be used as therapeutic agents against bacterial and/or viral infections. We designed several antimicrobial peptides containing hydrophobic and positively charged clusters that are active against plant and human pathogens. Especially peptide SP1-1 is highly active with a MIC value of 0.1 μg/ml against Xanthomonas vesicatoria, Pseudomonas corrugata and Pseudomonas syringae pv syringae. However, for commercial applications high amounts of peptide are necessary. The synthetic production of peptides is still quite expensive and, depending on the physico-chemical features, difficult. Therefore we developed a plant/tobacco mosaic virus-based production system following the 'full virus vector strategy' with the viral coat protein as fusion partner for the designed antimicrobial peptide. Infection of Nicotiana benthamiana plants with such recombinant virus resulted in production of huge amounts of virus particles presenting the peptides all over their surface. After extraction of recombinant virions, peptides were released from the coat protein by chemical cleavage. A protocol for purification of the antimicrobial peptides using high resolution chromatographic methods has been established. Finally, we yielded up to 0.025 mg of peptide per g of infected leaf biomass. Mass spectrometric and NMR analysis revealed that the in planta produced peptide differs from the synthetic version only in missing of N-terminal amidation. But its antimicrobial activity was in the range of the synthetic one. Taken together, we developed a protocol for plant-based production and purification of biologically active, hydrophobic and positively charged antimicrobial peptide.
Collapse
Affiliation(s)
- Benjamin Zeitler
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, 85764, Munich, Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Korkmaz N, Kim YJ, Nam CH. Bacteriophages as Templates for Manufacturing Supramolecular Structures. Macromol Biosci 2012; 13:376-87. [DOI: 10.1002/mabi.201200290] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/18/2012] [Indexed: 01/31/2023]
|
15
|
Liu Z, Qiao J, Niu Z, Wang Q. Natural supramolecular building blocks: from virus coat proteins to viral nanoparticles. Chem Soc Rev 2012; 41:6178-94. [DOI: 10.1039/c2cs35108k] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Li T, Winans RE, Lee B. Superlattice of rodlike virus particles formed in aqueous solution through like-charge attraction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:10929-10937. [PMID: 21786809 DOI: 10.1021/la202121s] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Rodlike tobacco mosaic virus (TMV) has been found to assemble into a 2D superlattice in aqueous solution with hexagonally packed structures in the presence of Ba(2+) through like-charge attraction whereas lower-Z divalent ions such as Zn(2+), Cd(2+), Mg(2+), and Ca(2+) induce only liquidlike ordering. The molar ratio between Ba(2+) and TMV is a crucial parameter in the formation of the superlattice. There is a critical molar ratio of Ba(2+) to TMV at which TMV exhibits a transition from a nonordered colloidal state to an ordered crystalline state. It is also found that the superlattice is formed regardless of the pH and TMV concentration within the range studied.
Collapse
Affiliation(s)
- Tao Li
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, USA
| | | | | |
Collapse
|
17
|
Lee DJ, Leikin S, Wynveen A. Fluctuations and interactions of semi-flexible polyelectrolytes in columnar assemblies. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:72202. [PMID: 20352061 PMCID: PMC2844736 DOI: 10.1088/0953-8984/22/7/072202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We have developed a statistical theory for columnar aggregates of semi-flexible polyelectrolytes. The applicability of previous, simplified theories was limited to polyelectrolytes with unrealistically high effective charge and, hence, with strongly suppressed thermal undulations. To avoid this problem, we utilized more consistent approximations for short-range image-charge forces and steric confinement, resulting in new predictions for polyelectrolytes with more practically important, lower effective linear charge densities. In the present paper, we focus on aggregates of wormlike chains with uniform surface charge density, although the same basic ideas may also be applied to structured polyelectrolytes. We find that undulations effectively extend the range of electrostatic interactions between polyelectrolytes upon decreasing aggregate density, in qualitative agreement with previous theories. However, in contrast to previous theories, we demonstrate that steric confinement provides the dominant rather than a negligible contribution at higher aggregate densities and significant quantitative corrections at lower densities, resulting in osmotic pressure isotherms that drastically differ from previous predictions.
Collapse
Affiliation(s)
- D J Lee
- Max Planck institute for the physics of complex systems, D-01187, Dresden, Germany.
| | | | | |
Collapse
|
18
|
|
19
|
Dmitriev A, Shevchenko O, Polischuk V, Guscha N. Effects of Low Dose Chronic Radiation and Heavy Metals on Plants and Their Fungal and Virus Infections. DATA SCIENCE JOURNAL 2009. [DOI: 10.2481/dsj.br-07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Hartschuh RD, Wargacki SP, Xiong H, Neiswinger J, Kisliuk A, Sihn S, Ward V, Vaia RA, Sokolov AP. How rigid are viruses. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:021907. [PMID: 18850865 DOI: 10.1103/physreve.78.021907] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2008] [Revised: 04/21/2008] [Indexed: 05/03/2023]
Abstract
Viruses have traditionally been studied as pathogens, but in recent years they have been adapted for applications ranging from drug delivery and gene therapy to nanotechnology, photonics, and electronics. Although the structures of many viruses are known, most of their biophysical properties remain largely unexplored. Using Brillouin light scattering, we analyzed the mechanical rigidity, intervirion coupling, and vibrational eigenmodes of Wiseana iridovirus (WIV). We identified phonon modes propagating through the viral assemblies as well as the localized vibrational eigenmode of individual viruses. The measurements indicate a Young's modulus of approximately 7 GPa for single virus particles and their assemblies, surprisingly high for "soft" materials. Mechanical modeling confirms that the DNA core dominates the WIV rigidity. The results also indicate a peculiar mechanical coupling during self-assembly of WIV particles.
Collapse
Affiliation(s)
- R D Hartschuh
- Department of Polymer Science, University of Akron, Akron, Ohio 44325, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Balci S, Noda K, Bittner AM, Kadri A, Wege C, Jeske H, Kern K. Self-assembly of metal-virus nanodumbbells. Angew Chem Int Ed Engl 2007; 46:3149-51. [PMID: 17372998 DOI: 10.1002/anie.200604558] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sinan Balci
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Holder P, Francis M. Integration of a Self-Assembling Protein Scaffold with Water-Soluble Single-Walled Carbon Nanotubes. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200700333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Holder PG, Francis MB. Integration of a Self-Assembling Protein Scaffold with Water-Soluble Single-Walled Carbon Nanotubes. Angew Chem Int Ed Engl 2007; 46:4370-3. [PMID: 17458849 DOI: 10.1002/anie.200700333] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Patrick G Holder
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
24
|
Balci S, Noda K, Bittner A, Kadri A, Wege C, Jeske H, Kern K. Selbstorganisation von Metall-Virus-Nanohanteln. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200604558] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Affiliation(s)
- Rafael A Vega
- Department of Chemistry and Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA.
| | | | | | | |
Collapse
|
26
|
Lee SY, Culver JN, Harris MT. Effect of CuCl2 concentration on the aggregation and mineralization of Tobacco mosaic virus biotemplate. J Colloid Interface Sci 2006; 297:554-60. [PMID: 16364358 DOI: 10.1016/j.jcis.2005.11.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 11/16/2005] [Accepted: 11/16/2005] [Indexed: 11/16/2022]
Abstract
Aggregation of the biotemplates in mineralization processes is a considerable obstacle in preparing well-dispersed bio-inorganic hybrid materials. In this study, aggregation and mineralization of Tobacco mosaic virus (TMV) biotemplates were investigated as a function of the copper precursor (CuCl2) concentration. The mean hydrodynamic radius of TMV in an aqueous CuCl2 solution was determined by dynamic light scattering for the monitoring of the TMV aggregation. At CuCl2 concentration of 0.5 mM or higher, the mean hydrodynamic radius of TMV increased dramatically indicating aggregation of the TMV particles. Numerical calculations on the long-range interaction energy between parallel model TMV particles agreed with the experimental observations for the TMV aggregation. Mineralization of copper precursors on the TMV biotemplates was achieved only at the CuCl2 concentrations that induced considerable aggregation of the biotemplate. From the numerical calculations and experimental results, it was concluded that a dense copper cluster deposition cannot be achieved without aggregation of TMV templates.
Collapse
Affiliation(s)
- Sang-Yup Lee
- School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
27
|
Vega RA, Maspoch D, Salaita K, Mirkin CA. Nanoarrays of Single Virus Particles. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200501978] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Vriezema DM, Comellas Aragonès M, Elemans JAAW, Cornelissen JJLM, Rowan AE, Nolte RJM. Self-assembled nanoreactors. Chem Rev 2005; 105:1445-89. [PMID: 15826017 DOI: 10.1021/cr0300688] [Citation(s) in RCA: 1143] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Dennis M Vriezema
- Department of Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Biomolecules are vitally important elements in nanoscale science and also in future nanotechnology. Their shape and their chemical and physical functionality can give them a big advantage over inorganic and organic substances. While this becomes most obvious in proteins and peptides, with their complicated, but easily controlled chemistry, other biomolecular substances such as DNA, lipids and carbohydrates can also be important. In this review, the emphasis is on one-dimensional molecules and on molecules that self-assemble into linear structures, and on their potential applications. An important aspect is that biomolecules can act as templates, i.e. their shape and chemical properties can be employed to arrange inorganic substances -- such as metals or metal compounds -- on the nanometre scale. In particular, rod- and tube-like nanostructures can show physical properties that are different from those of the bulk material, and thus these structures are likely to be a basis for new technology.
Collapse
Affiliation(s)
- Alexander M Bittner
- Department of Nanoscale Science, Max-Planck-Institut für Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany.
| |
Collapse
|
30
|
Knez M, Sumser MP, Bittner AM, Wege C, Jeske H, Hoffmann DMP, Kuhnke K, Kern K. Binding the tobacco mosaic virus to inorganic surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:441-447. [PMID: 15743089 DOI: 10.1021/la035425o] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We studied the adsorption behavior and surface chemistry of the tobacco mosaic virus (TMV) on well-defined metal and insulator surfaces. TMV serves as a tubular supramolecular model system with precisely known surface termination. We show that if the surface chemistry of the substrate and the pH-dependent chemistry of the molecular surface match, for example, by hydrogen bonding, a strong adsorption occurs, and lateral movement is impeded. Due to the immobilization, the virion can be imaged by atomic force microscopy (AFM) in contact mode. We also used self-assembled monolayers with an acyl chloride group to induce covalent bonding via ester formation. Noncontact AFM proved that TMV keeps its cylindrical cross section only under weak adsorption conditions, that is, on hydrophobic surfaces, while on hydrophilic substrates a deformation occurs to maximize the number of interacting chemical groups.
Collapse
Affiliation(s)
- M Knez
- Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart, Germany
| | | | | | | | | | | | | | | |
Collapse
|