1
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
2
|
Shen JK, Zhang HT. Function and structure of bradykinin receptor 2 for drug discovery. Acta Pharmacol Sin 2023; 44:489-498. [PMID: 36075965 PMCID: PMC9453710 DOI: 10.1038/s41401-022-00982-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022] Open
Abstract
Type 2 bradykinin receptor (B2R) is an essential G protein-coupled receptor (GPCR) that regulates the cardiovascular system as a vasodepressor. Dysfunction of B2R is also closely related to cancers and hereditary angioedema (HAE). Although several B2R agonists and antagonists have been developed, icatibant is the only B2R antagonist clinically used for treating HAE. The recently determined structures of B2R have provided molecular insights into the functions and regulation of B2R, which shed light on structure-based drug design for the treatment of B2R-related diseases. In this review, we summarize the structure and function of B2R in relation to drug discovery and discuss future research directions to elucidate the remaining unknown functions of B2R dimerization.
Collapse
Affiliation(s)
- Jin-Kang Shen
- Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hai-Tao Zhang
- Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
3
|
Rex DAB, Vaid N, Deepak K, Dagamajalu S, Prasad TSK. A comprehensive review on current understanding of bradykinin in COVID-19 and inflammatory diseases. Mol Biol Rep 2022; 49:9915-9927. [PMID: 35596055 PMCID: PMC9122735 DOI: 10.1007/s11033-022-07539-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/28/2022] [Indexed: 12/28/2022]
Abstract
Bradykinin, a member of the kallikrein–kinin system (KKS), is a potent, short-lived vasoactive peptide that acts as a vasodilator and an inflammatory mediator in a number of signaling mechanisms. Bradykinin induced signaling is mediated through kinin B1 (BDKRB1) and B2 (BDKRB2) transmembrane receptors coupled with different subunits of G proteins (Gαi/Gα0, Gαq and Gβ1γ2). The bradykinin-mediated signaling mechanism activates excessive pro-inflammatory cytokines, including IL-6, IL-1β, IL-8 and IL-2. Upregulation of these cytokines has implications in a wide range of clinical conditions such as inflammation leading to fibrosis, cardiovascular diseases, and most recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In SARS-CoV-2 infection, bradykinin is found to be at raised levels and is reported to trigger a diverse array of symptoms. All of this brings bradykinin to the core point as a molecule of immense therapeutic value. Our understanding of its involvement in various pathways has expanded with time. Therefore, there is a need to look at the overall picture that emerges from the developments made by deciphering the bradykinin mediated signaling mechanisms involved in the pathological conditions. It will help devise strategies for developing better treatment modalities in the implicated diseases. This review summarizes the current state of knowledge on bradykinin mediated signaling in the diverse conditions described above, with a marked emphasis on the therapeutic potential of targeting the bradykinin receptor.
Collapse
Affiliation(s)
- Devasahayam Arokiar Balaya Rex
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Neelanchal Vaid
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - K Deepak
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
4
|
Perez JJ. Exploiting Knowledge on Structure-Activity Relationships for Designing Peptidomimetics of Endogenous Peptides. Biomedicines 2021; 9:651. [PMID: 34200402 PMCID: PMC8229937 DOI: 10.3390/biomedicines9060651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/01/2022] Open
Abstract
Endogenous peptides are important mediators in cell communication, being consequently involved in many physiological processes. Their use as therapeutic agents is limited due to their poor pharmacokinetic profile. To circumvent this drawback, alternative diverse molecules based on the stereochemical features that confer their activity can be synthesized, using them as guidance; from peptide surrogates provided with a better pharmacokinetic profile, to small molecule peptidomimetics, through cyclic peptides. The design process requires a competent use of the structure-activity results available on individual peptides. Specifically, it requires synthesis and analysis of the activity of diverse analogs, biophysical information and computational work. In the present work, we show a general framework of the process and show its application to two specific examples: the design of selective AT1 antagonists of angiotensin and the design of selective B2 antagonists of bradykinin.
Collapse
Affiliation(s)
- Juan J Perez
- Department of Chemical Engineering, Universitat Politecnica de Catalunya, 08028 Barcelona, Spain
| |
Collapse
|
5
|
A Robust Bioassay of the Human Bradykinin B 2 Receptor that Extends Molecular and Cellular Studies: The Isolated Umbilical Vein. Pharmaceuticals (Basel) 2021; 14:ph14030177. [PMID: 33668382 PMCID: PMC7996148 DOI: 10.3390/ph14030177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 11/18/2022] Open
Abstract
Bradykinin (BK) has various physiological and pathological roles. Medicinal chemistry efforts targeted toward the widely expressed BK B2 receptor (B2R), a G-protein-coupled receptor, were primarily aimed at developing antagonists. The only B2R antagonist in clinical use is the peptide icatibant, approved to abort attacks of hereditary angioedema. However, the anti-inflammatory applications of B2R antagonists are potentially wider. Furthermore, the B2R antagonists notoriously exhibit species-specific pharmacological profiles. Classical smooth muscle contractility assays are exploited over a time scale of several hours and support determining potency, competitiveness, residual agonist activity, specificity, and reversibility of pharmacological agents. The contractility assay based on the isolated human umbilical vein, expressing B2R at physiological density, was introduced when investigating the first non-peptide B2R antagonist (WIN 64338). Small ligand molecules characterized using the assay include the exquisitely potent competitive antagonist, Pharvaris Compound 3 or the partial agonist Fujisawa Compound 47a. The umbilical vein assay is also useful to verify pharmacologic properties of special peptide B2R ligands, such as the carboxypeptidase-activated latent agonists and fluorescent probes. Furthermore, the proposed agonist effect of tissue kallikrein on the B2R has been disproved using the vein. This assay stands in between cellular and molecular pharmacology and in vivo studies.
Collapse
|
6
|
Marceau F, Bachelard H, Bouthillier J, Fortin JP, Morissette G, Bawolak MT, Charest-Morin X, Gera L. Bradykinin receptors: Agonists, antagonists, expression, signaling, and adaptation to sustained stimulation. Int Immunopharmacol 2020; 82:106305. [PMID: 32106060 DOI: 10.1016/j.intimp.2020.106305] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/10/2020] [Indexed: 01/23/2023]
Abstract
Bradykinin-related peptides, the kinins, are blood-derived peptides that stimulate 2 G protein-coupled receptors, the B1 and B2 receptors (B1R, B2R). The pharmacologic and molecular identities of these 2 receptor subtypes will be succinctly reviewed herein, with emphasis on drug development, receptor expression, signaling, and adaptation to persistent stimulation. Peptide and non-peptide antagonists and fluorescent ligands have been produced for each receptor. The B2R is widely and constitutively expressed in mammalian tissues, whereas the B1R is mostly inducible under the effect of cytokines during infection and immunopathology. The B2R is temporarily desensitized by a cycle of phosphorylation/endocytosis followed by recycling, whereas the nonphosphorylable B1R is relatively resistant to desensitization and translocated to caveolae on activation. Both receptor subtypes, mainly coupled to protein G Gq, phospholipase C and calcium signaling, mediate the vascular aspects of inflammation (vasodilation, edema formation). On this basis, icatibant, a peptide antagonist of the B2R, is approved in the management of hereditary angioedema attacks. This disease is the therapeutic showcase of the kallikrein-kinin system, with an orally bioavailable B2R antagonist under development, as well as other agents that inhibit the kinin forming protease, plasma kallikrein. Other clinical applications are still elusive despite the maturity of the medicinal chemistry efforts applied to kinin receptors.
Collapse
Affiliation(s)
- François Marceau
- Division of Infectious Disease and Immunity, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada.
| | - Hélène Bachelard
- Division of Endocrinology and Nephrology, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Johanne Bouthillier
- Division of Infectious Disease and Immunity, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Jean-Philippe Fortin
- Division of Infectious Disease and Immunity, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Guillaume Morissette
- Division of Infectious Disease and Immunity, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Marie-Thérèse Bawolak
- Division of Infectious Disease and Immunity, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Xavier Charest-Morin
- Division of Infectious Disease and Immunity, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Lajos Gera
- Department of Biochemistry, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
7
|
Charest-Morin X, Lodge R, Marceau F. Bifunctional fusion proteins containing the sequence of the bradykinin homologue maximakinin: activities at the rat bradykinin B2 receptor. Can J Physiol Pharmacol 2018; 96:459-470. [DOI: 10.1139/cjpp-2017-0692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To support bradykinin (BK) B2 receptor (B2R) detection and therapeutic stimulation, we developed and characterized fusion proteins consisting of the BK homolog maximakinin (MK), or variants, positioned at the C-terminus of functional proteins (enhanced green fluorescent protein (EGFP), the peroxidase APEX2, or human serum albumin (HSA)). EGFP-MK loses its reactivity with anti-BK antibodies and molecular mass as it progresses in the endosomal tract of cells expressing rat B2Rs (immunoblots, epifluorescence microscopy). APEX2-(NG)15-MK is a bona fide agonist of the rat, but not of the human B2R (calcium and c-Fos signaling) and is compatible with the cytochemistry reagent TrueBlue (microscopy), a luminol-based reagent, or 3,3′,5,5′-tetramethylbenzidine (luminescence or colourimetric B2R detection, cell well plate format). APEX2-(NG)15-MK is a non-isotopic ligand suitable for drug discovery via binding competition. Affinity-purified secreted forms of HSA fused with peptides possessing the C-terminal MK or BK sequence failed to stimulate the rat B2R in the concentration range of 50–600 nmol/L. However, the non-secreted construction myc-HSA-MK is a B2R agonist, indicating that protein denaturation made the C-terminal sequence available for receptor binding. Fusion protein ligands of the B2R are stable but subjected to slow intracellular inactivation, strong species specificity, and possible steric hindrance between the receptor and large proteins.
Collapse
Affiliation(s)
- Xavier Charest-Morin
- Axe Microbiologie-Infectiologie et Immunologie, Research Center, CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Robert Lodge
- Human Retrovirology Laboratory, Montreal Clinical Research Institute, Montréal, QC H2W 1R7, Canada
| | - François Marceau
- Axe Microbiologie-Infectiologie et Immunologie, Research Center, CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| |
Collapse
|
8
|
Lupala CS, Gomez-Gutierrez P, Perez JJ. New insights into the stereochemical requirements of the bradykinin B2 receptor antagonists binding. J Comput Aided Mol Des 2015; 30:85-101. [DOI: 10.1007/s10822-015-9890-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
|
9
|
Charest-Morin X, Raghavan A, Charles ML, Kolodka T, Bouthillier J, Jean M, Robbins MS, Marceau F. Pharmacological effects of recombinant human tissue kallikrein on bradykinin B2 receptors. Pharmacol Res Perspect 2015; 3:e00119. [PMID: 26038695 PMCID: PMC4448978 DOI: 10.1002/prp2.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/23/2014] [Accepted: 09/26/2014] [Indexed: 12/13/2022] Open
Abstract
Tissue kallikrein (KLK-1), a serine protease, initiates the release of bradykinin (BK)-related peptides from low-molecular weight kininogen. KLK-1 and the BK B2 receptor (B2R) mediate beneficial effects on the progression of type 2 diabetes and renal disease, but the precise role of KLK-1 independent of its kinin-forming activity remains unclear. We used DM199, a recombinant form of human KLK-1, along with the isolated human umbilical vein, a robust bioassay of the B2R, to address the previous claims that KLK-1 directly binds to and activates the human B2R, with possible receptor cleavage. DM199 (1–10 nmol/L) contracted the isolated vein via the B2R, but in a tachyphylactic, kinin-dependent manner, without desensitization of the tissue to exogenously added BK. In binding experiments with recombinant N-terminally tagged myc-B2Rs expressed in HEK 293a cells, DM199 displaced [3H]BK binding from the rabbit myc-B2R, but not from the human or rat myc-B2Rs. No evidence of myc-B2R degradation by immunoblot analysis was apparent following treatment of these 3 myc-B2R constructs with DM199 (30 min, ≤10 nmol/L). In HEK 293 cells stably expressing rabbit B2R-GFP, DM199 (11–108 pmol/L) elicited signaling-dependent endocytosis and reexpression, while a higher concentration (1.1 nmol/L) induced a partially irreversible endocytosis of the construct (microscopy), paralleled by the appearance of free GFP in cells (immunoblotting, indicative of incomplete receptor down-regulation). The pharmacology of DM199 at relevant concentrations (<10 nmol/L) is essentially based on the activity of locally generated kinins. Binding to and mild down-regulation of the B2R is possibly a species-dependent idiosyncratic response to DM199.
Collapse
Affiliation(s)
- Xavier Charest-Morin
- Centre de recherche en rhumatologie et immunologie, CHU de Québec Québec City, Québec, Canada, G1V 4G2
| | - Arvind Raghavan
- DiaMedica Inc. One Carlson Parkway, Suite 124, Minneapolis, Minnesota, 55447
| | - Matthew L Charles
- DiaMedica Inc. One Carlson Parkway, Suite 124, Minneapolis, Minnesota, 55447
| | - Tadeusz Kolodka
- DiaMedica Inc. One Carlson Parkway, Suite 124, Minneapolis, Minnesota, 55447
| | - Johanne Bouthillier
- Centre de recherche en rhumatologie et immunologie, CHU de Québec Québec City, Québec, Canada, G1V 4G2
| | - Mélissa Jean
- Centre de recherche en rhumatologie et immunologie, CHU de Québec Québec City, Québec, Canada, G1V 4G2
| | - Mark S Robbins
- DiaMedica Inc. One Carlson Parkway, Suite 124, Minneapolis, Minnesota, 55447
| | - François Marceau
- Centre de recherche en rhumatologie et immunologie, CHU de Québec Québec City, Québec, Canada, G1V 4G2
| |
Collapse
|
10
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. Br J Pharmacol 2013; 170:1459-581. [PMID: 24517644 PMCID: PMC3892287 DOI: 10.1111/bph.12445] [Citation(s) in RCA: 505] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
11
|
Gera L, Roy C, Charest-Morin X, Marceau F. Vasopeptidase-activated latent ligands of the histamine receptor-1. Int Immunopharmacol 2013; 17:677-83. [DOI: 10.1016/j.intimp.2013.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/19/2013] [Accepted: 08/23/2013] [Indexed: 12/21/2022]
|
12
|
Charest-Morin X, Fortin JP, Bawolak MT, Lodge R, Marceau F. Green fluorescent protein fused to peptide agonists of two dissimilar G protein-coupled receptors: novel ligands of the bradykinin B2 (rhodopsin family) receptor and parathyroid hormone PTH1 (secretin family) receptor. Pharmacol Res Perspect 2013; 1:e00004. [PMID: 25505558 PMCID: PMC4184569 DOI: 10.1002/prp2.4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/26/2013] [Accepted: 08/02/2013] [Indexed: 01/27/2023] Open
Abstract
We hypothesized that peptide hormone sequences that stimulate and internalize G protein-coupled receptors (GPCRs) could be prolonged with a functional protein cargo. To verify this, we have selected two widely different pairs of peptide hormones and GPCRs that nevertheless share agonist-induced arrestin-mediated internalization. For the parathyroid hormone (PTH) PTH1 receptor (PTH1R) and the bradykinin (BK) B2 receptor (B2R), we have designed fusion proteins of the agonists PTH1-34 and maximakinin (MK, a BK homologue) with the enhanced green fluorescent protein (EGFP), thus producing candidate high molecular weight ligands. According to docking models of each hormone to its receptor, EGFP was fused either at the N-terminus (MK) or C-terminus (PTH1-34) of the ligand; the last construction is also secretable due to inclusion of the preproinsulin signal peptide and has been produced as a conditioned medium. EGFP-MK has been produced as a lysate of transfected cells. Using an enzyme-linked immunosorbent assay (ELISA) for GFP, average concentrations of 1.5 and 1670 nmol/L, respectively, of ligand were found in these preparations. The functional properties and potential of these analogs for imaging receptor-expressing cells were examined. Microscopic and cytofluorometric evidence of specific binding and internalization of both fusion proteins was obtained using recipient HEK 293a cells that expressed the cognate recombinant receptor. Endosomal colocalization studies were conducted (Rab5, Rab7, β-arrestin1). Evidence of agonist signaling was obtained (expression of c-Fos, cyclic AMP responsive element (CRE) reporter gene for PTH1-34-EGFP). The constructs PTH1-34-EGFP and EGFP-MK represent bona fide agonists that support the feasibility of transporting protein cargoes inside cells using GPCRs.
Collapse
Affiliation(s)
- Xavier Charest-Morin
- Centre de recherche en rhumatologie et immunologie, CHU de Québec, Université Laval Québec, Canada, G1V 4G2
| | - Jean-Philippe Fortin
- Pfizer's Cardiovascular and Metabolic Diseases Research Unit Cambridge, Massachusetts, 02139
| | - Marie-Thérèse Bawolak
- Centre de recherche en rhumatologie et immunologie, CHU de Québec, Université Laval Québec, Canada, G1V 4G2
| | - Robert Lodge
- Laboratory of Human Retrovirology, Institut de recherches cliniques de Montréal Montreal, Québec, Canada, H2W 1R7
| | - François Marceau
- Centre de recherche en rhumatologie et immunologie, CHU de Québec, Université Laval Québec, Canada, G1V 4G2
| |
Collapse
|
13
|
Whalley ET, Figueroa CD, Gera L, Bhoola KD. Discovery and therapeutic potential of kinin receptor antagonists. Expert Opin Drug Discov 2012; 7:1129-48. [DOI: 10.1517/17460441.2012.729038] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Prolonged signalling and trafficking of the bradykinin B2 receptor stimulated with the amphibian peptide maximakinin: Insight into the endosomal inactivation of kinins. Pharmacol Res 2012; 65:247-53. [DOI: 10.1016/j.phrs.2011.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/06/2011] [Accepted: 11/07/2011] [Indexed: 11/23/2022]
|
15
|
Met-Lys-bradykinin-Ser-Ser, a peptide produced by the neutrophil from kininogen, is metabolically activated by angiotensin converting enzyme in vascular tissue. Pharmacol Res 2011; 64:528-34. [DOI: 10.1016/j.phrs.2011.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 08/05/2011] [Accepted: 08/06/2011] [Indexed: 12/29/2022]
|
16
|
Gera L, Bawolak MT, Roy C, Lodge R, Marceau F. Design of Fluorescent Bradykinin Analogs: Application to Imaging of B2 Receptor-Mediated Agonist Endocytosis and Trafficking and Angiotensin-Converting Enzyme. J Pharmacol Exp Ther 2011; 337:33-41. [DOI: 10.1124/jpet.110.177147] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
17
|
Meini S, Cucchi P, Catalani C, Bellucci F, Santicioli P, Giuliani S, Maggi CA. Radioligand binding characterization of the bradykinin B2 receptor in the rabbit and pig ileal smooth muscle. Eur J Pharmacol 2010; 635:34-9. [DOI: 10.1016/j.ejphar.2010.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/16/2010] [Accepted: 03/03/2010] [Indexed: 11/29/2022]
|
18
|
Adam A, Montpas N, Keire D, Désormeaux A, Brown NJ, Marceau F, Westenberger B. Bradykinin forming capacity of oversulfated chondroitin sulfate contaminated heparin in vitro. Biomaterials 2010; 31:5741-8. [PMID: 20427081 DOI: 10.1016/j.biomaterials.2010.03.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 03/29/2010] [Indexed: 10/19/2022]
Abstract
UNLABELLED Oversulfated chondroitin sulfate (OSCS) contaminated heparin has been associated with severe anaphylactoid reaction (AR), mainly in dialysed patients. Although attributed to bradykinin (BK) released during contact system activation by OSCS, no definitive evidence exists until now for a BK release during incubation of contaminated heparin with human plasma. In this study, we investigated the kinin forming capacity of OSCS and OSCS contaminated heparin when incubated in vitro with a pool of human plasma. At 100 microg/mL, OSCS liberates BK in a profile similar but not identical to dextran sulfate, a well known activator of the plasma contact system. The results have highlighted that the quantity of BK accumulated during contact system activation depends not only on the concentration of OSCS but also on the plasma dilution and the presence of an angiotensin converting enzyme inhibitor. We demonstrate a highly significant correlation between the concentration of OSCS present in the contaminated heparin and BK released concentration. In conclusion, for the first time, we show that OSCS contaminated heparin incubated with human plasma has the capacity to liberate BK at a concentration that could explain the role of this inflammatory peptide in the pathophysiology of AR associated with OSCS contaminated heparin. DISCLAIMER The findings and conclusions in this article have not been formally disseminated by the Food and Drug Administration and should not be construed to represent any Agency determination or policy.
Collapse
Affiliation(s)
- Albert Adam
- Faculty of Pharmacy, Université de Montréal, 2900, Boulevard E Montpetit, Montréal, Qc H3T 1J4, Canada.
| | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
|
21
|
Bawolak MT, Fortin S, Bouthillier J, Adam A, Gera L, C-Gaudreault R, Marceau F. Effects of inactivation-resistant agonists on the signalling, desensitization and down-regulation of bradykinin B(2) receptors. Br J Pharmacol 2009; 158:1375-86. [PMID: 19785654 DOI: 10.1111/j.1476-5381.2009.00409.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE A peptide bradykinin (BK) B(2) receptor agonist partially resistant to degradation, B-9972, down-regulates this receptor subtype. We have used another recently described non-peptide agonist, compound 47a, as a tool to study further the effects of metabolically more stable and thus persistent, agonists of the BK B(2) receptor on signalling, desensitization and down-regulation of this receptor. EXPERIMENTAL APPROACH AND KEY RESULTS Compound 47a was a partial agonist at the B(2) receptor in the human umbilical vein, where it shared with B-9972 a very slow relaxation on washout, and in HEK 293 cell lines expressing tagged forms [myc, green fluorescent protein (GFP)] of the rabbit B(2) receptor. Compound 47a desensitized the umbilical vein to BK. In the cellular systems, the inactivation-resistant agonists induced [Ca(2+)](i) transients as brief as those of BK but affected other functions with a longer duration than BK [12 h; receptor endocytosis, endosomal beta-arrestin(1/2) translocation, protein kinase C-dependent extracellular signal-regulated kinases (ERK)1/2 phosphorylation and c-Fos expression]. The B(2) receptor-GFP was degraded in cells exposed to B-9972 or compound 47a for 12 h. The non-peptide B(2) receptor antagonist LF 16-0687 prevented all effects of compound 47a, which were also absent in cells lacking recombinant B(2) receptors. CONCLUSION AND IMPLICATIONS Inactivation-resistant agonists revealed a long-lasting assembly of the agonist-B(2) receptor-beta-arrestin complexes in endosomal structures and induce 'biased signalling' (in terms of activation of ERK and c-Fos) as a function of time. Further, B-9972 and compound 47a, unlike BK, efficiently down-regulated BK B(2) receptors.
Collapse
Affiliation(s)
- Marie-Thérèse Bawolak
- Centre de recherche en rhumatologie et immunologie, Centre Hospitalier Universitaire de Québec and Department of Medicine, Université Laval, Québec, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Gibson C, Schnatbaum K, Pfeifer JR, Locardi E, Paschke M, Reimer U, Richter U, Scharn D, Faussner A, Tradler T. Novel small molecule bradykinin B2 receptor antagonists. J Med Chem 2009; 52:4370-9. [PMID: 19552431 DOI: 10.1021/jm9002445] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Blockade of the bradykinin B(2) receptor provides therapeutic benefit in hereditary angioedema (HAE) and potentially in many other diseases. Herein, we describe the development of highly potent B(2) receptor antagonists with a molecular weight of approximately 500 g/mol. First, known quinoline-based B(2) receptor antagonists were stripped down to their shared core motif 53, which turned out to be the minimum pharmacophore. Targeted modifications of 53 resulted in the highly water-soluble lead compound 8a. Extensive exploration of its structure-activity relationship resulted in a series of highly potent B(2) receptor antagonists, featuring a hydrogen bond accepting functionality, which presumably interacts with the side chain of Asn-107 of the B(2) receptor. Optimization of the microsomal stability and cytochrome P450 inhibition eventually led to the discovery of the highly potent and orally available B(2) receptor antagonist 52e (JSM10292), which showed the best overall properties.
Collapse
Affiliation(s)
- Christoph Gibson
- Department of Medicinal Chemistry, Jerini AG, Berlin D-10115, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Thal SC, Sporer S, Schmid-Elsaesser R, Plesnila N, Zausinger S. Inhibition of bradykinin B2 receptors before, not after onset of experimental subarachnoid hemorrhage prevents brain edema formation and improves functional outcome. Crit Care Med 2009; 37:2228-34. [DOI: 10.1097/ccm.0b013e3181a068fc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Zweckberger K, Plesnila N. Anatibant®, a selective non-peptide bradykinin B2 receptor antagonist, reduces intracranial hypertension and histopathological damage after experimental traumatic brain injury. Neurosci Lett 2009; 454:115-7. [DOI: 10.1016/j.neulet.2009.02.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 02/06/2009] [Accepted: 02/06/2009] [Indexed: 11/28/2022]
|
25
|
Dos Santos AC, Roffê E, Arantes RME, Juliano L, Pesquero JL, Pesquero JB, Bader M, Teixeira MM, Carvalho-Tavares J. Kinin B2 receptor regulates chemokines CCL2 and CCL5 expression and modulates leukocyte recruitment and pathology in experimental autoimmune encephalomyelitis (EAE) in mice. J Neuroinflammation 2008; 5:49. [PMID: 18986535 PMCID: PMC2596102 DOI: 10.1186/1742-2094-5-49] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 11/05/2008] [Indexed: 01/11/2023] Open
Abstract
Background Kinins are important mediators of inflammation and act through stimulation of two receptor subtypes, B1 and B2. Leukocyte infiltration contributes to the pathogenesis of autoimmune inflammation in the central nervous system (CNS), occurring not only in multiple sclerosis (MS) but also in experimental autoimmune encephalomyelitis (EAE). We have previously shown that the chemokines CCL2 and CCL5 play an important role in the adhesion of leukocytes to the brain microcirculation in EAE. The aim of the present study was to evaluate the relevance of B2 receptors to leukocyte-endothelium interactions in the cerebral microcirculation, and its participation in CNS inflammation in the experimental model of myelin-oligodendrocyte-glycoprotein (MOG)35–55-induced EAE in mice. Methods In order to evaluate the role of B2 receptor in the cerebral microvasculature we used wild-type (WT) and kinin B2 receptor knockout (B2-/-) mice subjected to MOG35–55-induced EAE. Intravital microscopy was used to investigate leukocyte recruitment on pial matter vessels in B2-/- and WT EAE mice. Histological documentation of inflammatory infiltrates in brain and spinal cords was correlated with intravital findings. The expression of CCL5 and CCL2 in cerebral tissue was assessed by ELISA. Results Clinical parameters of disease were reduced in B2-/- mice in comparison to wild type EAE mice. At day 14 after EAE induction, there was a significant decrease in the number of adherent leukocytes, a reduction of cerebral CCL5 and CCL2 expressions, and smaller inflammatory and degenerative changes in B2-/- mice when compared to WT. Conclusion Our results suggest that B2 receptors have two major effects in the control of EAE severity: (i) B2 regulates the expression of chemokines, including CCL2 and CCL5, and (ii) B2 modulates leukocyte recruitment and inflammatory lesions in the CNS.
Collapse
Affiliation(s)
- Adriana C Dos Santos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Beauchamp K, Mutlak H, Smith WR, Shohami E, Stahel PF. Pharmacology of traumatic brain injury: where is the "golden bullet"? Mol Med 2008; 14:731-40. [PMID: 18769636 DOI: 10.2119/2008-00050.beauchamp] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 08/18/2008] [Indexed: 01/17/2023] Open
Abstract
Traumatic brain injury (TBI) represents a major health care problem and a significant socioeconomic challenge worldwide. In the United States alone, approximately 1.5 million patients are affected each year, and the mortality of severe TBI remains as high as 35%-40%. These statistics underline the urgent need for efficient treatment modalities to improve posttraumatic morbidity and mortality. Despite advances in basic and clinical research as well as improved neurological intensive care in recent years, no specific pharmacological therapy for TBI is available that would improve the outcome of these patients. Understanding of the cellular and molecular mechanisms underlying the pathophysiological events after TBI has resulted in the identification of new potential therapeutic targets. Nevertheless, the extrapolation from basic research data to clinical application in TBI patients has invariably failed, and results from prospective clinical trials are disappointing. We review the published prospective clinical trials on pharmacological treatment modalities for TBI patients and outline future promising therapeutic avenues in the field.
Collapse
Affiliation(s)
- Kathryn Beauchamp
- Division of Neurosurgery, Department of Surgery, Denver Health Medical Center, University of Colorado School of Medicine, Denver, Colorado 80204, USA
| | | | | | | | | |
Collapse
|
27
|
Petcu M, Dias JP, Ongali B, Thibault G, Neugebauer W, Couture R. Role of kinin B1 and B2 receptors in a rat model of neuropathic pain. Int Immunopharmacol 2007; 8:188-96. [PMID: 18182225 DOI: 10.1016/j.intimp.2007.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 08/31/2007] [Accepted: 09/06/2007] [Indexed: 12/14/2022]
Abstract
Kinin B1 and B2 receptor (R) gene expression (mRNA) is increased in the sensory system after peripheral nerve injury. This study measured the densities of B1R and B2R binding sites in the spinal cord and dorsal root ganglia (DRG) by quantitative autoradiography, and evaluated the effects of two selective non-peptide antagonists at B1R (LF22-0542) and B2R (LF16-0687) on pain behavior after partial ligation of the left sciatic nerve. Increases of B1R binding sites were seen in superficial laminae of the ipsi- and contralateral spinal cord at 2 and 14 days while B2R binding sites were increased on the ipsilateral side at 2 days and on both sides at 14 days. In DRG, B1R and B2R binding sites were significantly increased at 2 days (ipsilateral) and 14 days on both sides. Whereas tactile allodynia started to develop progressively from 2 to 25 days post-ligation, the occurrence of cold allodynia and thermal hyperalgesia became significant from day 8 and day 14 post-ligation, respectively. At day 21 after sciatic nerve ligation, thermal hyperalgesia was blocked by LF22-0542 (10 mg/kg, s.c.) and LF16-0687 (3 mg/kg, s.c.), yet both antagonists had no effect on tactile and cold allodynia. Data highlight the implication of both kinin receptors in thermal hyperalgesia but not in tactile and cold allodynia associated with peripheral nerve injury. Hence LF22-0542 and LF16-0687 present therapeutic potential for the treatment of some aspects of neuropathic pain.
Collapse
Affiliation(s)
- M Petcu
- Département de Physiologie, Faculté de Médecine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | | | | | | | |
Collapse
|
28
|
Bawolak MT, Gera L, Morissette G, Stewart JM, Marceau F. B-9972 (D-Arg-[Hyp3,Igl5,Oic7,Igl8]-bradykinin) Is an Inactivation-Resistant Agonist of the Bradykinin B2Receptor Derived from the Peptide Antagonist B-9430 (D-Arg-[Hyp3,Igl5,D-Igl7,Oic8]-bradykinin): Pharmacologic Profile and Effective Induction of Receptor Degradation. J Pharmacol Exp Ther 2007; 323:534-46. [PMID: 17699739 DOI: 10.1124/jpet.107.123422] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The bradykinin B(2) receptor is a heptahelical receptor regulated by a cycle of phosphorylation, endocytosis, and extensive recycling at the cell surface following agonist stimulation. B-9430 (d-Arg-[Hyp(3),Igl(5),D-Igl(7),Oic(8)]-bradykinin) is a second generation peptide antagonist found to be competitive at the human B(2) receptor and insurmountable at the rabbit B(2) receptor (contractility assays, isolated human umbilical and rabbit jugular veins). Two isomers of this peptide were prepared: B-10344 (D-Arg-[Hyp(3),Igl(5),Oic(7),D-Igl(8)]-bradykinin; inverted sequence Oic(7), D-Igl(8)) and B-9972 (D-Arg-[Hyp(3),Igl(5),Oic(7),Igl(8)]-bradykinin); they are low- and high-potency agonists, respectively, in vascular preparations. The potency gap between bradykinin and B-9972 is narrow in contractility assays, despite the fact that B-9972 affinity is 7-fold inferior at the rabbit B(2) receptor (radioligand binding competition assay). The effects of agonists on receptors were compared using two chimerical constructions based on rabbit B(2) receptors: conjugate of the B(2) receptor with green fluorescent protein (B(2)R-GFP) and the N-terminally tagged conjugate of the myc epitope with the B(2) receptor. Imaging and immunoblotting showed that B-9972 induced a persistent endocytosis of cell surface B(2) receptors in human embryonic kidney 293 cells with slow receptor degradation (weak after 3 h of treatment, important at 12 h) and B(2)R-GFP desensitization ([(3)H]bradykinin endocytosis and extracellular signal-regulated kinase 1/2 phosphorylation assays). Bradykinin was not active in this respect but when combined with captopril, induced some degradation. B-9430 reduced the endocytosis and degradation of B(2) receptors by the agonists. The results illustrate the agonist-antagonist transition in B(2) receptor peptide ligands with a constrained C-terminal structure, the importance of species in their pharmacological profile, and the possibility of selectively degrading receptors using a peptidase-resistant agonist.
Collapse
Affiliation(s)
- Marie-Thérèse Bawolak
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | | | | | | | | |
Collapse
|
29
|
Bawolak MT, Marceau F. Does zaltoprofen antagonize the bradykinin receptors? ACTA ACUST UNITED AC 2007; 140:125-30. [PMID: 17258326 DOI: 10.1016/j.regpep.2006.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 11/19/2006] [Indexed: 11/20/2022]
Abstract
Zaltoprofen is a nonsteroidal antiinflammatory drug that has been proposed to inhibit with some selectivity the nociception mediated by the bradykinin (BK) B(2) receptor. In order to test the predictive power of this claim, we applied the drug to vascular smooth muscle assays previously found useful to characterize B(2) receptor antagonists (contractility, human isolated umbilical vein) or B(1) receptor antagonists (contraction, rabbit aorta; relaxation, rabbit mesenteric artery). Zaltoprofen (up to 30 microM) failed to antagonize BK or des-Arg(9)-BK-induced contraction in the umbilical vein and aorta, respectively. The drug (1 microM) abated des-Arg(9)-BK-induced, prostaglandin-mediated relaxation of the precontracted mesenteric artery, consistent with its known activity as a cyclooxygenase (COX) inhibitor. However, zaltoprofen (10 microM) did not inhibit kinin-stimulated phospholipase A(2) activity in HEK 293 cells expressing recombinant forms of the rabbit B(1) or B(2) receptors. Nonpeptide antagonists of either receptor subtype were active in this respect. The results do not support that zaltoprofen, a COX inhibitor, antagonizes kinin receptors or influences their signaling with selectivity in the tested systems.
Collapse
Affiliation(s)
- Marie-Thérèse Bawolak
- Centre de recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, 2705 Laurier Blvd., Québec (Québec), Canada G1V 4G2
| | | |
Collapse
|
30
|
Madeddu P, Emanueli C, El-Dahr S. Mechanisms of Disease: the tissue kallikrein–kinin system in hypertension and vascular remodeling. ACTA ACUST UNITED AC 2007; 3:208-21. [PMID: 17389890 DOI: 10.1038/ncpneph0444] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 01/16/2007] [Indexed: 11/09/2022]
Abstract
The pathogenesis of arterial hypertension often involves a rise in systemic vascular resistance (vasoconstriction and vascular remodeling) and impairment of salt excretion in the kidney (inappropriate salt retention despite elevated blood pressure). Experimental and clinical evidence implicate an imbalance between endogenous vasoconstrictor and vasodilator systems in the development and maintenance of hypertension. Kinins (bradykinin and lys-bradykinin) are endogenous vasodilators and natriuretic peptides known best for their ability to antagonize angiotensin-induced vasoconstriction and sodium retention. In humans, angiotensin-converting enzyme inhibitors, a potent class of antihypertensive agents, lower blood pressure at least partially by favoring enhanced kinin accumulation in plasma and target tissues. The beneficial actions of kinins in renal and cardiovascular disease are largely mediated by nitric oxide and prostaglandins, and extend beyond their recognized role in lowering blood pressure to include cardioprotection and nephroprotection. This article is a review of exciting, recently generated genetic, biochemical and clinical data from studies that have examined the importance of the tissue kallikrein-kinin system in protection from hypertension, vascular remodeling and renal fibrosis. Development of novel therapeutic approaches to bolster kinin activity in the vascular wall and in specific compartments in the kidney might be a highly effective strategy for the treatment of hypertension and its complications, including cardiac hypertrophy and renal failure.
Collapse
Affiliation(s)
- Paolo Madeddu
- Experimental Cardiovascular Medicine, Bristol Heart Institute, Bristol University, Bristol, UK.
| | | | | |
Collapse
|
31
|
Meini S, Cucchi P, Bellucci F, Catalani C, Giuliani S, Santicioli P, Maggi CA. Comparative antagonist pharmacology at the native mouse bradykinin B2 receptor: radioligand binding and smooth muscle contractility studies. Br J Pharmacol 2006; 150:313-20. [PMID: 17179941 PMCID: PMC2013903 DOI: 10.1038/sj.bjp.0706995] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE The aim was to characterize the recently discovered non-peptide antagonist MEN16132 at the mouse B2 receptor, relative to other antagonists. EXPERIMENTAL APPROACH [3H]-BK binding experiments used mouse lung and ileum tissue membranes and antagonist potency was measured in the isolated ileum contractility assay. KEY RESULTS Two BK binding sites resulted from saturation and homologous competition experiments. A role for the B1 receptor was excluded because of the poor affinity of B1 receptor ligands (pIC50<5). MEN16132, and the other reference antagonists, inhibited only one portion of BK specific binding, and the rank order of potency was (pIC50): Icatibant (lung 10.7; ileum 10.2)=MEN11270 (lung 10.4; ileum 9.9)=MEN16132 (lung 10.5; ileum 9.9).>LF16-0687 (lung 8.9; ileum 8.8)>FR173657 (lung 8.6; ileum 8.2). BK homologous curves performed with lung membranes after treatment with the antagonist MEN16132 or Icatibant (10 nM) displayed only the low affinity site. The functional antagonism by MEN16132 (pA2 9.4) and Icatibant (pA2 9.1), towards BK (control EC50 6.1 nM) induced ileum contractions, was concentration-dependent and surmountable, but the Schild plot slope was less than unity. CONCLUSIONS AND IMPLICATIONS In mouse tissue, radiolabelled BK recognizes two binding sites and B2 receptor antagonists can compete only for the higher affinity one. The pharmacological profile of the novel non-peptide antagonist MEN16132 indicates that it exhibits subnanomolar affinity and potency for the mouse B2 receptor and is suitable for further characterization in in vivo pathophysiological models.
Collapse
Affiliation(s)
- S Meini
- Department of Pharmacology, Menarini Ricerche, Florence, Italy.
| | | | | | | | | | | | | |
Collapse
|
32
|
Morissette G, Houle S, Gera L, Stewart JM, Marceau F. Antagonist, partial agonist and antiproliferative actions of B-9870 (CU201) as a function of the expression and density of the bradykinin B1 and B2 receptors. Br J Pharmacol 2006; 150:369-79. [PMID: 17179948 PMCID: PMC2013894 DOI: 10.1038/sj.bjp.0706982] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND PURPOSE A bradykinin (BK) B2 receptor (B2R) antagonist, B-9870 (CU201), has been proposed to behave as a 'biased agonist' at B2Rs and to exert anti-neoplasic effects. It was unclear whether these effects were determined by the activation of B2Rs by the drug. B-9870 was evaluated for antagonism or stimulation of several responses mediated by the rabbit B2R or B1 receptor (B1R); its anti-proliferative activity was also characterized. EXPERIMENTAL APPROACH AND KEY RESULTS B-9870 was an insurmountable B2R antagonist in the rabbit jugular vein contractility assay, but a partial agonist in HEK 293 cells expressing the rabbit B2R or a green fluorescent protein (GFP) conjugate of the latter (ERK1/2 phosphorylation, [Ca2+]i, [3H]-arachidonate release, endocytosis). The agonist-like effects of B-9870 were inhibited by the B2R antagonist LF 16.0687 and absent in untransfected cells. In addition, B-9870 was a surmontable antagonist of the rabbit B1R in the aorta contractility assay, and blocked Lys-des-Arg9-BK-induced ERK1/2 phosphorylation in HEK 293 cells expressing a fluorescent B1R conjugate. B-9870 inhibited the growth of MDA-MB-231 cells. The latter effect was not influenced by B1R or B2R antagonists and was not apoptotic. MDA-MB-231 cells expressed a small population of B2Rs but no B1Rs; they responded to BK (small calcium transients) and B-9870 behaved as an antagonist. CONCLUSION AND IMPLICATIONS B-9870 is a dual B1R and B2R antagonist with confirmed stimulating effects at the B2R in high expression systems only. Its cell type-specific anti-proliferative effect occurs at a high concentration, independently from kinin receptors and apoptosis.
Collapse
Affiliation(s)
- G Morissette
- Centre Hospitalier Universitaire de Québec, Centre de Recherche en Rhumatologie et Immunologie Québec, Québec, Canada
| | - S Houle
- Centre Hospitalier Universitaire de Québec, Centre de Recherche en Rhumatologie et Immunologie Québec, Québec, Canada
| | - L Gera
- University of Colorado Health Sciences Center Denver, CO, USA
| | - J M Stewart
- University of Colorado Health Sciences Center Denver, CO, USA
| | - F Marceau
- Centre Hospitalier Universitaire de Québec, Centre de Recherche en Rhumatologie et Immunologie Québec, Québec, Canada
- Author for correspondence:
| |
Collapse
|
33
|
Bawolak MT, Fortin JP, Vogel LK, Adam A, Marceau F. The bradykinin B2 receptor antagonist icatibant (Hoe 140) blocks aminopeptidase N at micromolar concentrations: Off-target alterations of signaling mediated by the bradykinin B1 and angiotensin receptors. Eur J Pharmacol 2006; 551:108-11. [PMID: 17026984 DOI: 10.1016/j.ejphar.2006.08.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 08/15/2006] [Accepted: 08/21/2006] [Indexed: 10/24/2022]
Abstract
The N-terminal sequence of icatibant, a widely used peptide antagonist of the bradykinin B(2) receptors, is analogous to that of other known aminopeptidase N inhibitors. Icatibant competitively inhibited the hydrolysis of L-Ala-p-nitroanilide by recombinant aminopeptidase N (K(i) 9.1 microM). In the rabbit aorta, icatibant (10-30 microM) potentiated angiotensin III, but not angiotensin II (contraction mediated by angiotensin AT(1) receptors), and Lys-des-Arg(9)-bradykinin, but not des-Arg(9)-bradykinin (effects mediated by the bradykinin B(1) receptors), consistent with the known susceptibility of these agonists to aminopeptidase N. At concentrations possibly reached in vivo (e.g., in kidneys), icatibant alters physiological systems different from bradykinin B(2) receptors.
Collapse
Affiliation(s)
- Marie-Thérèse Bawolak
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Québec Qc, Canada G1V 4G2
| | | | | | | | | |
Collapse
|
34
|
Ivashkova Y, Svetnitsky A, Mayzler O, Pruneau D, Benifla M, Fuxman Y, Cohen A, Artru AA, Shapira Y. Bradykinin B2 Receptor Antagonism With LF 18-1505T Reduces Brain Edema and Improves Neurological Outcome After Closed Head Trauma in Rats. ACTA ACUST UNITED AC 2006; 61:879-85. [PMID: 17033555 DOI: 10.1097/01.ta.0000234722.98537.01] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND We evaluated the effect of LF 18-1505T, a novel nonpeptide bradykinin type-2 receptor antagonist, on brain edema and neurologic severity score (NSS) after closed head trauma (CHT). METHODS There were 132 rats anesthetized and assigned for sham or CHT; infusion of saline or LF 18-1505T (0.3, 1, 3, 10, or 30 microg x kg x min); and determination of neurologic outcome (brain water content and NSS) or physiologic variables (blood pressure, glucose concentration, etc.). RESULTS Post-CHT brain water content was less with LF 18-1505T doses of 3 and 10 microg x kg x min (80.1 +/- 3.8 through 81.6 +/- 2.6%, mean +/- SD) than in the untreated group (84.6 +/- 1.9%, p < 0.01). Post-CHT NSS improved with doses of 3, 10, and 30 microg x kg x min (median, 7; range, 0-12 through median, 10; range, 8-18) as compared with that in the untreated group (median, 17; range, 14-23; p < 0.05). LF 18-1505T with or without CHT did not significantly alter physiologic variables. CONCLUSIONS LF 18-1505T decreased brain edema and improved neurologic status after CTH in rats without significantly altering physiologic values.
Collapse
Affiliation(s)
- Yulia Ivashkova
- Division of Anesthesiology, Soroka Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kläsner B, Lumenta DB, Pruneau D, Zausinger S, Plesnila N. Therapeutic window of bradykinin B2 receptor inhibition after focal cerebral ischemia in rats. Neurochem Int 2006; 49:442-7. [PMID: 16624448 DOI: 10.1016/j.neuint.2006.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 02/16/2006] [Accepted: 02/20/2006] [Indexed: 11/15/2022]
Abstract
Following cerebral ischemia bradykinin/kinin B(2) receptors mediate inflammatory responses resulting in edema formation and secondary brain damage. However, the therapeutic window for B(2) receptor inhibition determining its potential clinical use has not been investigated so far. The aim of the current study was therefore to investigate the effect of delayed B(2) receptor inhibition on morphological and functional outcome following experimental stroke. Rats were subjected to 90 min of middle cerebral artery occlusion (MCAo) by an intraluminal filament. Animals received 0.9% NaCl or 1.0mg/kg/day Anatibant (LF 16-0687 Ms), a selective bradykinin B(2) receptor antagonist, for 3 days beginning at different time points after MCAo: 1, 2.5, 4.5, or 6.5h (n=10 per group). Neurological recovery was examined daily, infarct volume on day 7 after MCAo. Animal physiology was not influenced by B(2) receptor inhibition. Significant improvement of functional outcome was observed when treatment was delayed up to 4.5h after ischemia (p<0.05 versus vehicle). Inhibition of B(2) receptors during ischemia, i.e. when the inhibitor was given 1h after MCAo, reduced infarct volume in the basal ganglia and in the cortex by 49% (p<0.05) and 26% (p<0.05), respectively. Inhibition of B(2) receptors at later time points (2.5, 4.5, or 6.5 after MCAo) reduced penumbral damage, i.e. cortical infarction, by 19-26% (p<0.05). In conclusion, the current study shows that the therapeutic window of B(2) receptor inhibition extends for up to 6.5h after MCAo. Our data therefore suggest that inhibition of kinin B(2) receptors represents a treatment strategy for ischemic stroke which may warrant clinical validation.
Collapse
Affiliation(s)
- Benjamin Kläsner
- Institute for Surgical Research, University of Munich Medical Center, Grosshadern, Germany
| | | | | | | | | |
Collapse
|
36
|
Morissette G, Bouthillier J, Marceau F. Dual antagonists of the bradykinin B1 and B2 receptors based on a postulated common pharmacophore from existing non-peptide antagonists. Biol Chem 2006; 387:189-94. [PMID: 16497151 DOI: 10.1515/bc.2006.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have recently drawn attention to the fact that most non-peptide antagonists of the kinin B1 receptor reported so far are structurally related, possessing the core motif phenyl-SO2-NR-(spacer(2-4))-CO-NRR. This is found in compound A (N-[2-[4-(4,5-dihydro-1H-imidazol-2- yl)phenyl]ethyl] - 2- [(2R)-1-(2-napthylsulfonyl)-3-oxo-1,2,3,4-tetrahydroquinoxalin-2-yl]acetamide), a very potent and selective B1 receptor antagonist. A subset of specific bradykinin B2 receptor antagonists (LF16-0687, bradyzide and derivatives) possesses a similar 'scaffold' (phenyl-SO2-NR-CRR-CO-NRR). We investigated whether simple molecules mimicking the postulated pharmacophores could be identified in two public chemical databases. Receptor binding to B1 and B2 receptors expressed by rabbit cultured smooth-muscle cells was confirmed for some of these newly identified agents, with a loss of receptor subtype selectivity. For instance, compound 3[2-(3-oxo-1-(toluene-4-sulfonyl)-1,2,3,4-4H-quinoxalin-2-yl)-N-phenyl-acetamide] exhibits IC50 values of 2.13 and 126 microM in the radioligand competition assays for B1 and B2 receptors, respectively, and a pA2 of 6.27 at the rabbit B1 receptor in a functional test (Lys-des-Arg9-bradykinin-induced contractility of the isolated aorta). Compound 5 (a close analog of compound 3) is a more balanced dual antagonist of low potency (IC50 values of 30 and 117 microM, respectively). As predicted, compounds modeled on a postulated pharmacophore common to some non-peptide B1 or B2 receptor antagonists exhibit measurable binding with decreased receptor subtype selectivity. Dual B1/B(2) receptor antagonists are of possible therapeutic interest and should be developed.
Collapse
Affiliation(s)
- Guillaume Morissette
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Québec City G1V 4G2, Canada
| | | | | |
Collapse
|
37
|
Marmarou A, Guy M, Murphey L, Roy F, Layani L, Combal JP, Marquer C. A single dose, three-arm, placebo-controlled, phase I study of the bradykinin B2 receptor antagonist Anatibant (LF16-0687Ms) in patients with severe traumatic brain injury. J Neurotrauma 2006; 22:1444-55. [PMID: 16379582 DOI: 10.1089/neu.2005.22.1444] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) mortality and morbidity remains a public health challenge. Because experimental studies support an important role of bradykinin (BK) in the neurological deterioration that follows TBI, a double-blind, randomized, placebo-controlled study of Anatibant (LF16- 0687Ms), a selective and potent antagonist of the BK B(2) receptor, was conducted in severe (Glasgow Coma Scale [GCS] < 8) TBI patients (n = 25) at six sites in the United States. At 8-12 h after injury (9.9 +/- 2.8 h), patients received a single subcutaneous injection of Anatibant (3.75 mg or 22.5 mg, n = 10 each) or placebo (n = 5). The primary objective was to investigate the pharmacokinetics of Anatibant; general safety, local tolerability, levels of the bradykinin metabolite BK1-5 in plasma and cerebrospinal fluid (CSF), intracranial pressure (ICP), and cerebral perfusion pressure were also assessed. We observed a dose-proportionality of the pharmacokinetics, Cmax, and AUC of Anatibant. V(d)/F, Cl/F, and t(1/2) were independent on the dose and protein binding was >97.7%. Anatibant, administered as single subcutaneous injections of 3.75 g and 22.5 mg, was well tolerated in severe TBI patients with no unexpected clinical adverse events or biological abnormalities observed. Interestingly, plasma and CSF levels of BK1-5 were significantly and markedly increased after trauma (e.g., 34,700 +/- 35,300 fmol/mL in plasma vs. 34.9 +/- 5.6 fmol/mL previously reported for normal volunteers), supporting the use of Anatibant as a treatment of secondary brain damage. To address this issue, a dose-response trial that would investigate the effects of Anatibant on the incidence of raised ICP and on functional outcome in severe TBI patients is needed.
Collapse
Affiliation(s)
- Anthony Marmarou
- American Brain Injury Consortium, ABIC Technical Center, Old City Hall Suite 235, 1001 East Broad Street, Richmond, VA 23298-0449, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Ongali B, Hellal F, Rodi D, Plotkine M, Marchand-Verrecchia C, Pruneau D, Couture R. Autoradiographic Analysis of Mouse Brain Kinin B1 and B2 Receptors after Closed Head Trauma and Ability of Anatibant Mesylate to Cross the Blood–Brain Barrier. J Neurotrauma 2006; 23:696-707. [PMID: 16689671 DOI: 10.1089/neu.2006.23.696] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The potent non-peptide B2 receptor (R) antagonist, Anatibant mesylate (Ms) (LF 16-0687 Ms), reduces brain edema and improves neurological function recovery in various focal and diffuse models of traumatic brain injury in rodents. In the present study, alteration of kinin B1 and B2R after closed head trauma (CHT) and in vivo binding properties of Anatibant Ms (3 mg/kg, s.c.) injected 30 min after CHT were studied in mice by autoradiography using the radioligands [125I]HPP-Hoe 140 (B2R), and [125I]HPP-des-Arg10-Hoe 140 (B1R). Whereas B1R is barely detected in most brain regions, B2R is extensively distributed, displaying the highest densities in the hindbrain. CHT was associated with a slight increase of B1R and a decrease of B2R (10-50%) in several brain regions. Anatibant Ms (Ki = 22 pM) displaced the B2R radioligand from its binding sites in several areas of the forebrain, basal ganglia and hindbrain. Displacement was achieved in 1 h and persisted at 4 h post-injection. The inhibition did not exceed 50% of the total specific binding in non-injured mice. After CHT, the displacement by Anatibant Ms was higher and almost complete in the cortex, caudate putamen, thalamus, hippocampus, medial geniculate nucleus, ventral tegmental area, and raphe. Evans blue extravasation in brain tissue at 4 h after CHT was abolished by Anatibant Ms. It appeared that Anatibant Ms penetrated into the brain in sufficient amounts, particularly after disruption of the blood-brain barrier, to account for its B2R-mediated neuro- and vascular protective effects. The diminished binding of B2R after CHT may reflect the occupancy or internalization of B2R following the endogenous production of bradykinin (BK).
Collapse
Affiliation(s)
- Brice Ongali
- Département de Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
39
|
Bradykinin. Br J Pharmacol 2006. [DOI: 10.1038/sj.bjp.0706523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
40
|
Cucchi P, Meini S, Bressan A, Catalani C, Bellucci F, Santicioli P, Lecci A, Faiella A, Rotondaro L, Giuliani S, Giolitti A, Quartara L, Maggi CA. MEN16132, a novel potent and selective nonpeptide antagonist for the human bradykinin B2 receptor. In vitro pharmacology and molecular characterization. Eur J Pharmacol 2005; 528:7-16. [PMID: 16324696 DOI: 10.1016/j.ejphar.2005.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 09/23/2005] [Accepted: 10/05/2005] [Indexed: 11/23/2022]
Abstract
The pharmacological characterization of the novel nonpeptide antagonist for the B2 receptor, namely MEN16132 (4-(S)-Amino-5-(4-{4-[2,4-dichloro-3-(2,4-dimethyl-8-quinolyloxymethyl)phenylsulfonamido]-tetrahydro-2H-4-pyranylcarbonyl}piperazino)-5-oxopentyl](trimethyl)ammonium chloride hydrochloride) is presented. The affinity of MEN16132 for the bradykinin B2 receptor has been investigated by means of competition studies at [3H]bradykinin binding to membranes prepared from Chinese Hamster Ovary (CHO) cells expressing the human bradykinin B2 receptor (pKi 10.5), human lung fibroblasts (pKi 10.5), guinea pig airways (pKi 10.0), guinea pig ileum longitudinal smooth muscle (pKi 10.2), or guinea pig cultured colonic myocytes (pKi 10.3). In all assays MEN16132 was as potent as the peptide antagonist Icatibant, and from 3- to 100-fold more potent than the reference nonpeptide antagonists FR173657 or LF16-0687. The selectivity for the bradykinin B2 receptor was checked at the human bradykinin B1 receptor (pKi<5), and at a panel of 26 different receptors and channels. The antagonist potency was measured in functional assays, i.e., in blocking the bradykinin induced inositolphosphates (IP) accumulation at the human (CHO: pKB 10.3) and guinea pig (colonic myocytes: pKB 10.3) B2 receptor, or in antagonizing the bradykinin induced contractile responses in human (detrusor smooth muscle: pKB 9.9) and guinea pig (ileum longitudinal smooth muscle: pKB 10.1) tissues. In both functional assay types MEN16132 exerted a different antagonist pattern, i.e., surmountable at the human and insurmountable at the guinea pig bradykinin B2 receptors. Moreover, the receptor determinants important for the high affinity interaction of MEN16132 with the human bradykinin B2 receptor were investigated by means of radioligand binding studies performed at 24 point-mutated receptors. The results obtained revealed that residues in transmembrane segment 2 (W86A), 3 (I110A), 6 (W256A), and 7 (Y295A, Y295F but not much Y295W), were crucial for the high affinity of MEN16132. In conclusion, MEN16132 is a new, potent, and selective nonpeptide bradykinin B2 receptor antagonist.
Collapse
Affiliation(s)
- Paola Cucchi
- Department of Pharmacology, Menarini Ricerche, S.p.A., via Rismondo 12A, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kam YL, Ro JY, Kim HJ, Choo HYP. Antagonistic effects of novel non-peptide chlorobenzhydryl piperazine compounds on contractile response to bradykinin in the guinea-pig ileum. Eur J Pharmacol 2005; 523:143-50. [PMID: 16226247 DOI: 10.1016/j.ejphar.2005.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 09/08/2005] [Indexed: 11/18/2022]
Abstract
Two novel compounds, N-phenylacetyl-N'-(4-methoxybenzyl)-N''-1-(4-chlorobenzhydryl)piperazine iminodiacetic acid triamide (compound I) and N-phenylacetyl-N'-(4-methylbenzyl)-N''-1-(4-chlorobenzhydryl)piperazine iminodiacetic acid triamide (compound II), designed and synthesized as novel non-peptide bradykinin B2 receptor antagonists, were studied for their functional activities in isolated guinea-pig ileum smooth muscle. These compounds were compared with the conventional peptide bradykinin B2 receptor antagonist, icatibant (H-DArg-Arg-Pro-Hyp-Gly-Thi-Ser-dTic-Oic-Arg-OH) for their in vitro functional activities. Compounds I and II showed highly potent, time-dependent insurmountable antagonism against contractile responses to bradykinin (pKB 8.80 and 8.57, respectively) with progressive reduction of maximum effect maintaining the concentration producing half maximal-response unchanged. Otherwise, icatibant, known as a non-competitive antagonist, showed a rightward displacement of cumulative concentration-response curves to bradykinin with decrease of its maximum effect (pKB 8.73). The IC50 values of compounds I and II were 3.56 x 10(-8) and 6.30 x 10(-8) M, respectively, while that of icatibant was 5.02 x 10(-8) M. The profile of action of compounds I and II varied when contact time was prolonged from 5 to 60 min, whereas that of icatibant did not. The inhibitory effects of the newly synthesized compounds and icatibant on the contractile response to bradykinin were differently reverted by washout (icatibant < 100 min, compounds I and II > 100 min). This class of compounds containing the chlorobenzhydryl piperazine moiety is expected to be a novel non-peptide bradykinin B2 receptor antagonists.
Collapse
Affiliation(s)
- Yoo Lim Kam
- School of Pharmacy, Ewha Womans University, Seoul, 120-750, South Korea
| | | | | | | |
Collapse
|
42
|
Valenti C, Cialdai C, Giuliani S, Lecci A, Tramontana M, Meini S, Quartara L, Maggi CA. MEN16132, a novel potent and selective nonpeptide kinin B2 receptor antagonist: in vivo activity on bradykinin-induced bronchoconstriction and nasal mucosa microvascular leakage in anesthetized guinea pigs. J Pharmacol Exp Ther 2005; 315:616-23. [PMID: 16027229 DOI: 10.1124/jpet.105.088252] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have tested the activity of 4-(S)-amino-5-(4-[4-[2,4-dichloro-3-(2,4-dimethyl-8-quinolyloxymethyl)phenylsulfonamido]-tetrahydro-2H-4-pyranylcarbonyl] piperazino)-5-oxopentyl](trimethyl)ammonium chloride hydrochloride (MEN16132), a novel nonpeptide kinin B(2) receptor antagonist, on bradykinin (BK)-induced inflammatory responses, bronchoconstriction, and hypotension in guinea pigs. After i.v. (1-10 nmol/kg i.v.), intratracheal (i.t.) (10-100 nmol/kg i.t.), or aerosol (0.01-0.1 mM/5 min) administration, MEN16132 inhibited in a dose-dependent manner the bronchoconstriction induced by BK (10 nmol/kg i.v.). MEN16132 was more potent and possessed a longer duration of action as compared with the peptide B(2) receptor antagonist icatibant (HOE140; H-D-Arg-Arg-Pro-Hyp-Gly-Thi-Ser-D-Tic-Oic-Arg-OH trifluoroacetate). After i.v. administration, its inhibitory effect on bronchoconstriction lasted more than 8 h at 30 nmol/kg. When administered by i.v. or i.t. routes, the dose completely inhibiting bronchoconstriction also partially reduced the hypotensive response to BK, whereas after aerosol administration, the inhibitory effect was limited to respiratory level. Intranasal (i.n.) administration of MEN16132 (0.01-0.3 nmol/nostril) reduced, in a dose-dependent and long-lasting manner, the nasal mucosa plasma protein extravasation induced by BK (100 nmol/nostril), and it exerted a complete inhibition at about 30-fold lower dose than icatibant. At 1 nmol/nostril, MEN16132 activity was significant for at least 6 h with no systemic effect measured as inhibition of BK-induced hypotension, and at 10 nmol/nostril, the inhibitory effect lasted for more than 15 h with only a weak effect on hypotension. These findings indicate that in vivo MEN16132 is a potent kinin B(2) receptor antagonist with long duration of action, both after i.v. and local administration. A complete and prolonged inhibition of BK-induced bronchoconstriction or nasal inflammation can be achieved with MEN16132 topical administration (aerosol or i.n.) at doses devoid of systemic effects.
Collapse
Affiliation(s)
- Claudio Valenti
- Departments of Pharmacology, Menarini Ricerche, Florence, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Leeb-Lundberg LMF, Marceau F, Müller-Esterl W, Pettibone DJ, Zuraw BL. International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev 2005; 57:27-77. [PMID: 15734727 DOI: 10.1124/pr.57.1.2] [Citation(s) in RCA: 729] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Kinins are proinflammatory peptides that mediate numerous vascular and pain responses to tissue injury. Two pharmacologically distinct kinin receptor subtypes have been identified and characterized for these peptides, which are named B1 and B2 and belong to the rhodopsin family of G protein-coupled receptors. The B2 receptor mediates the action of bradykinin (BK) and lysyl-bradykinin (Lys-BK), the first set of bioactive kinins formed in response to injury from kininogen precursors through the actions of plasma and tissue kallikreins, whereas the B(1) receptor mediates the action of des-Arg9-BK and Lys-des-Arg9-BK, the second set of bioactive kinins formed through the actions of carboxypeptidases on BK and Lys-BK, respectively. The B2 receptor is ubiquitous and constitutively expressed, whereas the B1 receptor is expressed at a very low level in healthy tissues but induced following injury by various proinflammatory cytokines such as interleukin-1beta. Both receptors act through G alpha(q) to stimulate phospholipase C beta followed by phosphoinositide hydrolysis and intracellular free Ca2+ mobilization and through G alpha(i) to inhibit adenylate cyclase and stimulate the mitogen-activated protein kinase pathways. The use of mice lacking each receptor gene and various specific peptidic and nonpeptidic antagonists have implicated both B1 and B2 receptors as potential therapeutic targets in several pathophysiological events related to inflammation such as pain, sepsis, allergic asthma, rhinitis, and edema, as well as diabetes and cancer. This review is a comprehensive presentation of our current understanding of these receptors in terms of molecular and cell biology, physiology, pharmacology, and involvement in human disease and drug development.
Collapse
Affiliation(s)
- L M Fredrik Leeb-Lundberg
- Division of Cellular and Molecular Pharmacology, Department of Experimental Medical Science, Lund University, BMC, A12, SE-22184 Lund, Sweden.
| | | | | | | | | |
Collapse
|
45
|
Campos MM, Ongali B, Thibault G, Neugebauer W, Couture R. Autoradiographic distribution and alterations of kinin B2 receptors in the brain and spinal cord of streptozotocin-diabetic rats. Synapse 2005; 58:184-92. [PMID: 16138314 DOI: 10.1002/syn.20196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study investigates whether bradykinin (BK) B(2) receptor binding sites are increased in the brain and thoracic spinal cord of streptozotocin (STZ)-diabetic rats at 2, 7, and 21 days posttreatment by in vitro autoradiography with the radioligand [(125)I]HPP-Hoe 140. In control and diabetic rats, specific binding sites for B(2) receptors were detected in the brain and in various laminae of the spinal cord, predominantly in superficial laminae (K(d)=34 pM). In diabetic rats, B(2) receptor densities were significantly increased in lamina l of the dorsal horn (+35% at 7 and 21 days), spinal trigeminal nucleus (+70% at 7 and 21 days) and nucleus tractus solitarius (+100% at 2 and 7 days). B(2) receptor analogues D-Arg[Hyp(3),Thi(5),D-Tic(7),Oic(8)]-BK (Hoe 140), 3-(4 hydroxyphenyl)propionyl-Hoe 140 (HPP-Hoe 140), LF16-0687 mesylate ((2-Pyrrolidinecarboxamide, N-[3-[[4-aminoiminomethyl)benzoyl]amino]propyl]-1-[[2,4-dichoro-3-[[(2,4-dimethyl-8-quinolinyl)oxy]methyl]phenyl]sulfonyl]-(2S)-(9Cl)), and BK decreased binding of [(125)I]-HPP-Hoe 140 in the spinal dorsal horn, with K(i) values of 0.5, 1.5, 3.2, and 3.7 nM, respectively. These values were not significantly different in diabetic rats at 7 days (0.5 (Hoe 140), 0.7 (HPP-Hoe 140), 1.2 (BK), and 1.7 (LF16-0687) nM). While des-Arg(10)-Hoe 140 was three orders of magnitude less potent than Hoe 140, B(1) receptor agonist (des-Arg(9)-BK) and antagonist (AcLys[D-betaNal(7),Ile(8)]des-Arg(9)-BK, R-715) did not affect [(125)I]-HPP-Hoe 140 binding at 1 microM concentration. Data suggest a very discrete and temporal increase of B(2) receptor density (without affinity changes) in the spinal cord and hindbrain of STZ-diabetic rats. This contrasts with the early induction and over-expression of B(1) receptors reported in the brain and spinal cord of STZ-diabetic rats.
Collapse
MESH Headings
- Animals
- Autonomic Nervous System Diseases/etiology
- Autonomic Nervous System Diseases/metabolism
- Autonomic Nervous System Diseases/physiopathology
- Autoradiography
- Baroreflex/drug effects
- Baroreflex/physiology
- Binding, Competitive/drug effects
- Binding, Competitive/physiology
- Brain/metabolism
- Brain/physiopathology
- Cardiovascular Diseases/etiology
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/physiopathology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Hypertension/etiology
- Hypertension/metabolism
- Hypertension/physiopathology
- Iodine Radioisotopes
- Kinins/metabolism
- Ligands
- Male
- Neural Pathways/metabolism
- Neural Pathways/physiopathology
- Radioligand Assay
- Rats
- Rats, Wistar
- Receptor, Bradykinin B2/agonists
- Receptor, Bradykinin B2/metabolism
- Spinal Cord/metabolism
- Spinal Cord/physiopathology
- Tachycardia/etiology
- Tachycardia/metabolism
- Tachycardia/physiopathology
Collapse
Affiliation(s)
- Maria Martha Campos
- Département de Physiologie, Faculté de Médecine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | | | | | |
Collapse
|
46
|
Abstract
Kinins, which are produced by the action of kallikrein enzymes, are blood-derived local-acting peptides that have broad effects mediated by two related G-protein-coupled receptors termed the bradykinin receptors. The endogenous kallikrein-kinin system controls blood circulation and kidney function, and promotes inflammation and pain in pathological conditions, which has led to interest in developing modulators of bradykinin receptors as potential therapeutics. This review discusses recent progress in our understanding of the genetics, molecular biology and pathophysiology of kinins and their receptors, as well as developments in medicinal chemistry, which have brought us closer to therapeutic applications of kinin receptor ligands in various indications. The potential of kinin receptor antagonists as novel analgesic agents that do not result in tolerance or have a liability for abuse has attracted particular interest.
Collapse
Affiliation(s)
- François Marceau
- Centre de Recherche, Centre Hospitalier Universitaire de Québec, Pavillon L'Hôtel-Dieu de Québec, 11 Côte-du-Palais,Québec, Canada G1R 2J6.
| | | |
Collapse
|
47
|
Morissette G, Fortin JP, Otis S, Bouthillier J, Marceau F. A Novel Nonpeptide Antagonist of the Kinin B1Receptor: Effects at the Rabbit Receptor. J Pharmacol Exp Ther 2004; 311:1121-30. [PMID: 15277582 DOI: 10.1124/jpet.104.071266] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The kinin B1 receptor (B1R) has attracted interest as a potential therapeutic target because this inducible G protein-coupled receptor is involved in sustained inflammation and inflammatory pain production. Compound 11 (2-[(2R)-1-[(3,4-dichlorophenyl) sulfonyl]-3-oxo-1,2,3,4-tetrahydroquinoxalin-2-yl]-N-[2-[4-(4,5-dihydro-1H-imidazol-2-yl)phenyl]ethyl]acetamide) is a high-affinity nonpeptide antagonist for the human B1R, but it is potent at the rabbit B1R as well: its Ki value for the inhibition of [3H]Lys-des-Arg9-BK (bradykinin) binding to a novel myc-labeled rabbit B1R expressed in COS-1 is 22 pM. In contractility tests (organ bath pharmacology), we found that compound 11 is an apparently surmountable antagonist of des-Arg9-BK- or Lys-des-Arg9-BK-induced contraction of the rabbit isolated aorta (pA2 values of 10.6+/-0.14 and 10.4+/-0.12, respectively). It did not influence contractions induced by angiotensin II in the rabbit aorta or by BK or histamine in the jugular vein, but it suppressed the prostaglandin-mediated relaxant effect of des-Arg9-BK on the rabbit isolated mesenteric artery. Compound 11 (1 nM) inhibited both the phosphorylation of the extracellular signal-regulated kinase1/2 mitogen-activated protein kinases induced by Lys-des-Arg9-BK in serum-starved rabbit aortic smooth muscle cells and the agonist-induced translocation of the fusion protein B1R-yellow fluorescent protein expressed in human embryonic kidney (HEK) 293 cells. Compound 11 does not importantly modify the expression of myc-B1R over 24 h in HEK 293 cells (no detectable action as "pharmacological chaperone"). The present results support that compound 11 is a potent and highly selective antagonist suitable for further investigations of the role of the kinin B1R in models of inflammation, pain, and sepsis based on the rabbit.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/cytology
- Aorta, Thoracic/drug effects
- Blotting, Western
- Bradykinin B1 Receptor Antagonists
- COS Cells
- Cell Line
- Chlorocebus aethiops
- Epitopes/genetics
- Genes, myc/genetics
- Image Cytometry
- In Vitro Techniques
- Microscopy, Confocal
- Muscle Contraction/drug effects
- Muscle, Smooth, Vascular/drug effects
- Protein Folding
- Quinoxalines/pharmacology
- Rabbits
- Receptor, Bradykinin B1/biosynthesis
- Receptors, Cell Surface/biosynthesis
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Sulfones/pharmacology
Collapse
Affiliation(s)
- Guillaume Morissette
- Centre Hospitalier Universitaire de Québec, Centre de recherche, Pavillon l'Hôtel-Dieu de Québec, 11 Côte-du-Palais, Québec, QC, Canada G1R 2J6
| | | | | | | | | |
Collapse
|
48
|
Bellucci F, Meini S, Cucchi P, Catalani C, Giuliani S, Zappitelli S, Rotondaro L, Quartara L, Giolitti A, Maggi CA. The N-terminal of Icatibant and bradykinin interact with the same Asp residues in the human B2 receptor. Eur J Pharmacol 2004; 491:121-5. [PMID: 15140628 DOI: 10.1016/j.ejphar.2004.03.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 03/17/2004] [Indexed: 11/23/2022]
Abstract
The pharmacology of peptide and non-peptide bradykinin B2 receptor ligands was evaluated in the inositol phosphate (IP) production assay in CHO cells expressing the human bradykinin B2 receptor. The effect of single and double alanine mutation of D266 and D284 residues at the human bradykinin B2 receptor was evaluated on the agonist profile of bradykinin (H-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg-OH) and the synthetic agonist FR190997 (8-[2,6-dichloro-3-[N-methylcarbamoyl)cinnamidoacetyl]-N-methylamino]benzyloxy]-2-methyl-4-(2-pyridylmethoxy)quinoline). Bradykinin potency (EC50 0.5 nM at the wild-type receptor) was reduced by 16-fold at D266A and D284A mutants and by 2300-fold at the D266A/D284A double mutant. None of the mutants affected the potency or the efficacy of FR190997. Peptide antagonists, Icatibant (H-DArg-Arg-Pro-Hyp-Gly-Thi-Ser-Dtic-Oic-Arg-OH) and MEN11270 (H-DArg-Arg-Pro-Hyp-Gly-Thi-c(Dab-DTic-Oic-Arg)c(7gamma-10alpha)) (100 nM) similarly antagonized the concentration-response curve to bradykinin or FR190997 (pA2 values 8.5 and 8.4 versus bradykinin and 8.2 and 8.4 versus FR190997) at the wild-type receptor. Non-peptide antagonists FR173657 ((E)-3-(6-acetamido-3-pyridyl)-N-[N-[2,4-dichloro-3-[(2-methyl-8-quinolinyl) oxymethyl]phenyl]-N-methylaminocarbonyl methyl]acrylamide) and LF16-0687 (1-[[2,4-dichloro-3-[(2,4-dimethylquinolin-8-yl)oxy] methyl]-phenyl]sulfonyl]-N-[3-[[4-(aminoiminomethyl)-phenyl]carbonylamino]propyl]-(S)-pyrrolidine carboxamide) (100 nM) showed an equivalent potency values in blocking the IP production induced by bradykinin or FR190997 (pA2 values 8.7 and 8.8 versus bradykinin and 8.8 and 8.6 versus FR190997). Whilst the antagonist potency of FR173657 and LF16-0687 was not affected by D266A/D284A double mutation (IP production induced by the synthetic agonist), that of Icatibant and MEN11270 was reduced by 50- and 200-fold. The antagonist potency of [Ala1]-Icatibant and [Ala2]-Icatibant (pA2 values at wild-type 7.7 and 6.4) was significantly less reduced (20-fold and 13-fold, respectively) by the D266A/D284A double mutation. Our results highlight a crucial role for two aspartic residues, D266 and D284, located at the top of transmembrane segments 6 and 7, in the high-affinity interaction of peptide antagonists with the human bradykinin B2 receptor. An interaction of these receptor residues with the N-terminal basic residues of Icatibant is hypothesized.
Collapse
Affiliation(s)
- Francesca Bellucci
- Department of Pharmacology, Menarini Ricerche S.p.A., via Rismondo 12A, 50131, Florence, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sawada Y, Kayakiri H, Abe Y, Imai K, Mizutani T, Inamura N, Asano M, Aramori I, Hatori C, Katayama A, Oku T, Tanaka H. A New Series of Highly Potent Non-Peptide Bradykinin B2 Receptor Antagonists Incorporating the 4-Heteroarylquinoline Framework. Improvement of Aqueous Solubility and New Insights into Species Difference. J Med Chem 2004; 47:1617-30. [PMID: 15027853 DOI: 10.1021/jm030159x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Introduction of nitrogen-containing heteroaromatic groups at the 4-position of the quinoline moiety of our non-peptide B(2) receptor antagonists resulted in enhancing binding affinities for the human B(2) receptor and reducing binding affinities for the guinea pig one, providing new structural insights into species difference. A CoMFA study focused on the diversity of the quinoline moiety afforded correlative and predictive QSAR models of binding for the human B(2) receptor but not for the guinea pig one. A series of 4-(1-imidazolyl)quinoline derivatives could be dissolved in a 5% aqueous solution of citric acid up to a concentration of 10 mg/mL. A representative compound 48a inhibited the specific binding of [(3)H]BK to the cloned human B(2) receptor expressed in Chinese hamster ovary cells with an IC(50) value of 0.26 nM and significantly inhibited BK-induced bronchoconstriction in guinea pigs even at 1 microg/kg by intravenous administration.
Collapse
Affiliation(s)
- Yuki Sawada
- Exploratory Research Laboratories, Fujisawa Pharmaceutical Co. Ltd., 5-2-3 Tokodai, Tsukuba, Ibaraki 300-2698, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Practical bradykinin antagonists were discovered in 1984 by Vavrek and Stewart and reported in "Peptides." At that time there was already much evidence for involvement of bradykinin in inflammation and pain, so the specific, competitive antagonists were widely accepted and applied. The key to conversion of bradykinin into an antagonist was replacement of the proline residue at position 7 with a D-aromatic amino acid. Other modifications converted the initial weak antagonists into modern peptides which are totally resistant to all degrading enzymes, are orally available, and have been used in clinical trials. Non-peptide bradykinin antagonists have also been developed.
Collapse
Affiliation(s)
- John M Stewart
- Department of Biochemistry, University of Colorado Medical School, Denver, CO 80262, USA.
| |
Collapse
|