1
|
Blary CLM, Duriez O, Bonadonna F, Mitkus M, Caro SP, Besnard A, Potier S. Low achromatic contrast sensitivity in birds: a common attribute shared by many phylogenetic orders. J Exp Biol 2024; 227:jeb246342. [PMID: 38099472 DOI: 10.1242/jeb.246342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/06/2023] [Indexed: 02/10/2024]
Abstract
Vision is an important sensory modality in birds, which can outperform other vertebrates in some visual abilities. However, sensitivity to achromatic contrasts - the ability to discern luminance difference between two objects or an object and its background - has been shown to be lower in birds compared with other vertebrates. We conducted a comparative study to evaluate the achromatic contrast sensitivity of 32 bird species from 12 orders using the optocollic reflex technique. We then performed an analysis to test for potential variability in contrast sensitivity depending on the corneal diameter to the axial length ratio, a proxy of the retinal image brightness. To account for potential influences of evolutionary relatedness, we included phylogeny in our analyses. We found a low achromatic contrast sensitivity for all avian species studied compared with other vertebrates (except small mammals), with high variability between species. This variability is partly related to phylogeny but appears to be independent of image brightness.
Collapse
Affiliation(s)
- Constance L M Blary
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
- Agence de l'environnement et de la Maîtrise de l'Energie 20, 49004 Angers Cedex 01, France
| | - Olivier Duriez
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| | | | - Mindaugas Mitkus
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Samuel P Caro
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| | - Aurélien Besnard
- CEFE, Univ Montpellier, CNRS, EPHE PSL University, IRD, 34293 Montpellier, France
| | - Simon Potier
- Lund Vision Group, Department of Biology, Lund University, Lund 22362, Sweden
- Les Ailes de l'Urga, 27320 Marcilly la Campagne, France
| |
Collapse
|
2
|
Nikbakht N. More Than the Sum of Its Parts: Visual-Tactile Integration in the Behaving Rat. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1437:37-58. [PMID: 38270852 DOI: 10.1007/978-981-99-7611-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
We experience the world by constantly integrating cues from multiple modalities to form unified sensory percepts. Once familiar with multimodal properties of an object, we can recognize it regardless of the modality involved. In this chapter we will examine the case of a visual-tactile orientation categorization experiment in rats. We will explore the involvement of the cerebral cortex in recognizing objects through multiple sensory modalities. In the orientation categorization task, rats learned to examine and judge the orientation of a raised, black and white grating using touch, vision, or both. Their multisensory performance was better than the predictions of linear models for cue combination, indicating synergy between the two sensory channels. Neural recordings made from a candidate associative cortical area, the posterior parietal cortex (PPC), reflected the principal neuronal correlates of the behavioral results: PPC neurons encoded both graded information about the object and categorical information about the animal's decision. Intriguingly single neurons showed identical responses under each of the three modality conditions providing a substrate for a neural circuit in the cortex that is involved in modality-invariant processing of objects.
Collapse
Affiliation(s)
- Nader Nikbakht
- Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Clark RW, Bakken GS, Reed EJ, Soni A. Pit viper thermography: the pit organ used by crotaline snakes to detect thermal contrast has poor spatial resolution. J Exp Biol 2022; 225:285597. [PMID: 36453156 DOI: 10.1242/jeb.244478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Pit vipers detect infrared radiation by means of temperature contrasts created on their pit organ membranes. Signals from pit organs integrate with visual signals in the optic tectum, leading to the conjecture that the facial pits operate as an extension of the visual system. Because similar mechanisms underlie thermal imaging technology, imagery from thermal cameras is often used to infer how pit vipers perceive their environment. However, pit organs lack a focusing mechanism, and biophysical models predict that pit organs should have poor spatial resolution compared with thermal imaging cameras. Nevertheless, behavioral studies occasionally suggest pits may have better resolution than predicted by biophysical models, indicating that processing in the central nervous system may improve imaging. To estimate the spatial resolution of the neural image informing behavior, we recorded snake responses evoked by targets moving across backgrounds composed of two contrasting temperatures with an average temperature equal to the target temperature. An unresolved background would appear uniform; thus, the target would be detectable only if the background pattern were resolved. Western rattlesnakes (Crotalus oreganus) displayed no statistically significant responses to targets presented in front of patterned backgrounds, regardless of the temperature contrasts or spatial frequencies within the background, but responded strongly to targets presented in front of homogeneous backgrounds. We found no evidence that the pit organ system can resolve spatial details subtending an angle of 9 deg or less. We discuss the implications of these results for understanding pit organ function in ecologically relevant habitats with thermal heterogeneity.
Collapse
Affiliation(s)
- Rulon W Clark
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - George S Bakken
- Department of Biology, San Diego State University, San Diego, CA 92182, USA.,4431 East Park Avenue, Terre Haute, IN 47805, USA
| | - Evan J Reed
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Ashana Soni
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
4
|
Caramellino R, Piasini E, Buccellato A, Carboncino A, Balasubramanian V, Zoccolan D. Rat sensitivity to multipoint statistics is predicted by efficient coding of natural scenes. eLife 2021; 10:e72081. [PMID: 34872633 PMCID: PMC8651284 DOI: 10.7554/elife.72081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/18/2021] [Indexed: 01/23/2023] Open
Abstract
Efficient processing of sensory data requires adapting the neuronal encoding strategy to the statistics of natural stimuli. Previously, in Hermundstad et al., 2014, we showed that local multipoint correlation patterns that are most variable in natural images are also the most perceptually salient for human observers, in a way that is compatible with the efficient coding principle. Understanding the neuronal mechanisms underlying such adaptation to image statistics will require performing invasive experiments that are impossible in humans. Therefore, it is important to understand whether a similar phenomenon can be detected in animal species that allow for powerful experimental manipulations, such as rodents. Here we selected four image statistics (from single- to four-point correlations) and trained four groups of rats to discriminate between white noise patterns and binary textures containing variable intensity levels of one of such statistics. We interpreted the resulting psychometric data with an ideal observer model, finding a sharp decrease in sensitivity from two- to four-point correlations and a further decrease from four- to three-point. This ranking fully reproduces the trend we previously observed in humans, thus extending a direct demonstration of efficient coding to a species where neuronal and developmental processes can be interrogated and causally manipulated.
Collapse
Affiliation(s)
| | - Eugenio Piasini
- Computational Neuroscience Initiative, University of PennsylvaniaPhiladelphiaUnited States
| | - Andrea Buccellato
- Visual Neuroscience Lab, International School for Advanced StudiesTriesteItaly
| | - Anna Carboncino
- Visual Neuroscience Lab, International School for Advanced StudiesTriesteItaly
| | - Vijay Balasubramanian
- Computational Neuroscience Initiative, University of PennsylvaniaPhiladelphiaUnited States
| | - Davide Zoccolan
- Visual Neuroscience Lab, International School for Advanced StudiesTriesteItaly
| |
Collapse
|
5
|
Sriram B, Li L, Cruz-Martín A, Ghosh A. A Sparse Probabilistic Code Underlies the Limits of Behavioral Discrimination. Cereb Cortex 2021; 30:1040-1055. [PMID: 31403676 PMCID: PMC7132908 DOI: 10.1093/cercor/bhz147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 11/17/2022] Open
Abstract
The cortical code that underlies perception must enable subjects to perceive the world at time scales relevant for behavior. We find that mice can integrate visual stimuli very quickly (<100 ms) to reach plateau performance in an orientation discrimination task. To define features of cortical activity that underlie performance at these time scales, we measured single-unit responses in the mouse visual cortex at time scales relevant to this task. In contrast to high-contrast stimuli of longer duration, which elicit reliable activity in individual neurons, stimuli at the threshold of perception elicit extremely sparse and unreliable responses in the primary visual cortex such that the activity of individual neurons does not reliably report orientation. Integrating information across neurons, however, quickly improves performance. Using a linear decoding model, we estimate that integrating information over 50–100 neurons is sufficient to account for behavioral performance. Thus, at the limits of visual perception, the visual system integrates information encoded in the probabilistic firing of unreliable single units to generate reliable behavior.
Collapse
Affiliation(s)
- Balaji Sriram
- Division of Biology, University of California San Diego, La Jolla, CA 92093, USA.,Research and Early Development, Biogen, Cambridge, MA 02142, USA
| | - Lillian Li
- Division of Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Alberto Cruz-Martín
- Department of Biology.,Neurophotonics Center.,Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA 02215, USA
| | - Anirvan Ghosh
- Division of Biology, University of California San Diego, La Jolla, CA 92093, USA.,Research and Early Development, Biogen, Cambridge, MA 02142, USA
| |
Collapse
|
6
|
Palmer D, Dumont JR, Dexter TD, Prado MAM, Finger E, Bussey TJ, Saksida LM. Touchscreen cognitive testing: Cross-species translation and co-clinical trials in neurodegenerative and neuropsychiatric disease. Neurobiol Learn Mem 2021; 182:107443. [PMID: 33895351 DOI: 10.1016/j.nlm.2021.107443] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 02/06/2021] [Accepted: 02/26/2021] [Indexed: 01/06/2023]
Abstract
Translating results from pre-clinical animal studies to successful human clinical trials in neurodegenerative and neuropsychiatric disease presents a significant challenge. While this issue is clearly multifaceted, the lack of reproducibility and poor translational validity of many paradigms used to assess cognition in animal models are central contributors to this challenge. Computer-automated cognitive test batteries have the potential to substantially improve translation between pre-clinical studies and clinical trials by increasing both reproducibility and translational validity. Given the structured nature of data output, computer-automated tests also lend themselves to increased data sharing and other open science good practices. Over the past two decades, computer automated, touchscreen-based cognitive testing methods have been developed for non-human primate and rodent models. These automated methods lend themselves to increased standardization, hence reproducibility, and have become increasingly important for the elucidation of the neurobiological basis of cognition in animal models. More recently, there have been increased efforts to use these methods to enhance translational validity by developing task batteries that are nearly identical across different species via forward (i.e., translating animal tasks to humans) and reverse (i.e., translating human tasks to animals) translation. An additional benefit of the touchscreen approach is that a cross-species cognitive test battery makes it possible to implement co-clinical trials-an approach developed initially in cancer research-for novel treatments for neurodegenerative disorders. Co-clinical trials bring together pre-clinical and early clinical studies, which facilitates testing of novel treatments in mouse models with underlying genetic or other changes, and can help to stratify patients on the basis of genetic, molecular, or cognitive criteria. This approach can help to determine which patients should be enrolled in specific clinical trials and can facilitate repositioning and/or repurposing of previously approved drugs. This has the potential to mitigate the resources required to study treatment responses in large numbers of human patients.
Collapse
Affiliation(s)
- Daniel Palmer
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada.
| | - Julie R Dumont
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; BrainsCAN, The University of Western Ontario, Ontario, Canada
| | - Tyler D Dexter
- Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada; Graduate Program in Neuroscience, The University of Western Ontario, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada; Graduate Program in Neuroscience, The University of Western Ontario, Ontario, Canada; Department of Anatomy and Cell Biology, The University of Western Ontario, Ontario, Canada
| | - Elizabeth Finger
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Clinical Neurological Sciences, The University of Western Ontario, Ontario, Canada; Lawson Health Research Institute, Ontario, Canada; Parkwood Institute, St. Josephs Health Care, Ontario, Canada
| | - Timothy J Bussey
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada; Brain and Mind Institute, The University of Western Ontario, Ontario, Canada
| | - Lisa M Saksida
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada; Brain and Mind Institute, The University of Western Ontario, Ontario, Canada
| |
Collapse
|
7
|
Tong M, Yu X, Shao J, Shao Z, Li W, Lin W. Automated measuring method based on Machine learning for optomotor response in mice. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Johnson NP, Gregorich SM, Passaglia CL. Spatiotemporal Contrast Sensitivity of Brown-Norway Rats under Scotopic and Photopic Illumination. Neuroscience 2020; 449:63-73. [PMID: 33035619 DOI: 10.1016/j.neuroscience.2020.09.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/03/2020] [Accepted: 09/28/2020] [Indexed: 11/24/2022]
Abstract
Rats are a popular animal model for vision research and for investigating disorders of the visual system. The study aimed to quantify the spatiotemporal contrast sensitivity function (CSF) of healthy adult Brown-Norway rats under scotopic and photopic illumination. Animals were trained to jump onto the one of two adjacent platforms behind which was displayed a sinewave grating pattern. Contrast thresholds of light- and dark-adapted rats were determined using a staircase method of adjustment for gratings that varied in spatial frequency (sf) and temporal frequency (tf) and ranged several log-units in mean luminance. Photopic CSFs showed strong bandpass spatial tuning, consistent with prior measurements, and weak bandpass temporal tuning. CSFs were parameterized by a truncated log-parabola model, yielding a peak contrast sensitivity of 52 ± 9, peak sf of 0.17 ± 0.05 cycles/degree, sf limit of 1.6 ± 0.3 cycles/degree, low sf attenuation of 85 ± 9%, peak tf of 1.7 ± 1.1 Hz, extrapolated tf limit of 166 ± 44 Hz, and low tf attenuation of 55 ± 12%. CSFs became more lowpass and decreased systematically in contrast sensitivity and spatiotemporal acuity as mean luminance was reduced. CSFs were also measured via the visual head-tracking reflex. Photopic contrast sensitivity, spatial acuity, and temporal acuity were all markedly below that of the grating detection task and optomotor findings for other rat strains. The CSF data provide a comprehensive and quantitative description of rat spatial and temporal vision and a benchmark for evaluating effects of ocular diseases on their ability to see.
Collapse
Affiliation(s)
- Nicholas P Johnson
- University of South Florida, Molecular Pharmacology & Physiology Department, 12901 Bruce B Downs Boulevard MDC 40, Tampa, FL 33612, United States
| | - Sarah M Gregorich
- University of South Florida, Medical Engineering Department, 4202 E Fowler Avenue, Tampa, FL 33620, United States
| | - Christopher L Passaglia
- University of South Florida, Molecular Pharmacology & Physiology Department, 12901 Bruce B Downs Boulevard MDC 40, Tampa, FL 33612, United States; University of South Florida, Medical Engineering Department, 4202 E Fowler Avenue, Tampa, FL 33620, United States; University of South Florida, Ophthalmology Department, 12901 Bruce B Downs Boulevard MDC21, Tampa, FL 33612, United States.
| |
Collapse
|
9
|
Broschard MB, Kim J, Love BC, Freeman JH. Category learning in rodents using touchscreen‐based tasks. GENES BRAIN AND BEHAVIOR 2020; 20:e12665. [DOI: 10.1111/gbb.12665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 01/29/2023]
Affiliation(s)
- Matthew B. Broschard
- Department of Psychological and Brain Sciences University of Iowa Iowa City Iowa USA
| | - Jangjin Kim
- Department of Psychological and Brain Sciences University of Iowa Iowa City Iowa USA
| | - Bradley C. Love
- Department of Experimental Psychology and The Alan Turing Institute University College London London UK
| | - John H. Freeman
- Department of Psychological and Brain Sciences University of Iowa Iowa City Iowa USA
| |
Collapse
|
10
|
Crijns E, Op de Beeck H. The Visual Acuity of Rats in Touchscreen Setups. Vision (Basel) 2019; 4:vision4010004. [PMID: 31906140 PMCID: PMC7157561 DOI: 10.3390/vision4010004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/13/2019] [Accepted: 12/21/2019] [Indexed: 01/08/2023] Open
Abstract
Touchscreen setups are increasingly used in rodents for a wide range of cognitive tasks, including visual discrimination. The greater automation and high throughput of this platform could greatly facilitate future vision research. However, little information is available regarding decision distance and on the limitations of stimulus size. Especially when studying visual functions, the lack of control of basic visual properties is a drawback. Therefore, we determined the maximal number of cycles per screen gratings can have so that Long Evans rats can reliably perform orientation discrimination. To relate our results to literature on visual acuity we tried to make an estimate of the decision distance in the touchscreen platform. The rats can discriminate between orientations with 70% accuracy up to 44 cycles per screen. This could roughly translates to the previously reported visual acuity of 1 c/degree assuming a viewing distance of 12.5 cm. This could be useful when designing new stimuli based on published results in c/degree. One could assume a viewing distance of 12.5 cm and expect similar discrimination performance in the touchscreen setup as in other tasks with a predefined viewing distance.
Collapse
Affiliation(s)
- Els Crijns
- Laboratory for Biological Psychology, Department of Brain and Cognition, KU Leuven, Tiensestraat 102 box 3714, 3000 Leuven, Belgium;
- Leuven Brain Institute, 3000 Leuven, Belgium
| | - Hans Op de Beeck
- Laboratory for Biological Psychology, Department of Brain and Cognition, KU Leuven, Tiensestraat 102 box 3714, 3000 Leuven, Belgium;
- Leuven Brain Institute, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
11
|
Optimization of Optomotor Response-based Visual Function Assessment in Mice. Sci Rep 2018; 8:9708. [PMID: 29946119 PMCID: PMC6018764 DOI: 10.1038/s41598-018-27329-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/21/2018] [Indexed: 12/22/2022] Open
Abstract
Optomotor response/reflex (OMR) assays are emerging as a powerful and versatile tool for phenotypic study and new drug discovery for eye and brain disorders. Yet efficient OMR assessment for visual performance in mice remains a challenge. Existing OMR testing devices for mice require a lengthy procedure and may be subject to bias due to use of artificial criteria. We developed an optimized staircase protocol that utilizes mouse head pausing behavior as a novel indicator for the absence of OMR, to allow rapid and unambiguous vision assessment. It provided a highly sensitive and reliable method that can be easily implemented into automated or manual OMR systems to allow quick and unbiased assessment for visual acuity and contrast sensitivity in mice. The sensitivity and quantitative capacity of the protocol were validated using wild type mice and an inherited mouse model of retinal degeneration – mice carrying rhodopsin deficiency and exhibiting progressive loss of photoreceptors. Our OMR system with this protocol was capable of detecting progressive visual function decline that was closely correlated with the loss of photoreceptors in rhodopsin deficient mice. It provides significant advances over the existing methods in the currently available OMR devices in terms of sensitivity, accuracy and efficiency.
Collapse
|
12
|
Reinagel P. Training Rats Using Water Rewards Without Water Restriction. Front Behav Neurosci 2018; 12:84. [PMID: 29773982 PMCID: PMC5943498 DOI: 10.3389/fnbeh.2018.00084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 04/17/2018] [Indexed: 11/22/2022] Open
Abstract
High-throughput behavioral training of rodents has been a transformative development for systems neuroscience. Water or food restriction is typically required to motivate task engagement. We hypothesized a gap between physiological water need and hedonic water satiety that could be leveraged to train rats for water rewards without water restriction. We show that when Citric Acid (CA) is added to water, female rats drink less, yet consume enough to maintain long term health. With 24 h/day access to a visual task with water rewards, rats with ad lib CA water performed 84% ± 18% as many trials as in the same task under water restriction. In 2-h daily sessions, rats with ad lib CA water performed 68% ± 13% as many trials as under water restriction. Using reward sizes <25 μl, rats with ad lib CA performed 804 ± 285 trials/day in live-in sessions or 364 ± 82 trials/day in limited duration daily sessions. The safety of CA water amendment was previously shown for male rats, and the gap between water need and satiety was similar to what we observed in females. Therefore, it is likely that this method will generalize to male rats, though this remains to be shown. We conclude that at least in some contexts rats can be trained using water rewards without water restriction, benefitting both animal welfare and scientific productivity.
Collapse
Affiliation(s)
- Pamela Reinagel
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
13
|
Accuracy of Rats in Discriminating Visual Objects Is Explained by the Complexity of Their Perceptual Strategy. Curr Biol 2018; 28:1005-1015.e5. [PMID: 29551414 PMCID: PMC5887110 DOI: 10.1016/j.cub.2018.02.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/17/2018] [Accepted: 02/15/2018] [Indexed: 11/20/2022]
Abstract
Despite their growing popularity as models of visual functions, it remains unclear whether rodents are capable of deploying advanced shape-processing strategies when engaged in visual object recognition. In rats, for instance, pattern vision has been reported to range from mere detection of overall object luminance to view-invariant processing of discriminative shape features. Here we sought to clarify how refined object vision is in rodents, and how variable the complexity of their visual processing strategy is across individuals. To this aim, we measured how well rats could discriminate a reference object from 11 distractors, which spanned a spectrum of image-level similarity to the reference. We also presented the animals with random variations of the reference, and processed their responses to these stimuli to derive subject-specific models of rat perceptual choices. Our models successfully captured the highly variable discrimination performance observed across subjects and object conditions. In particular, they revealed that the animals that succeeded with the most challenging distractors were those that integrated the wider variety of discriminative features into their perceptual strategies. Critically, these strategies were largely preserved when the rats were required to discriminate outlined and scaled versions of the stimuli, thus showing that rat object vision can be characterized as a transformation-tolerant, feature-based filtering process. Overall, these findings indicate that rats are capable of advanced processing of shape information, and point to the rodents as powerful models for investigating the neuronal underpinnings of visual object recognition and other high-level visual functions. The ability of rats to discriminate visual objects varies greatly across subjects Such variability is accounted for by the diversity of rat perceptual strategies Animals building richer perceptual templates achieve higher accuracy Perceptual strategies remain largely invariant across object transformations
Collapse
|
14
|
Jensen R. Effects of GABACR and mGluR1 antagonists on contrast response functions of Sprague-Dawley and P23H rat retinal ganglion cells. PLoS One 2017; 12:e0189980. [PMID: 29253887 PMCID: PMC5734767 DOI: 10.1371/journal.pone.0189980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/06/2017] [Indexed: 01/07/2023] Open
Abstract
The GABACR antagonist TPMPA and the mGluR1 antagonist JNJ16259685 have been shown previously to alter the sensitivity of retinal ganglion cells (RGCs) in the Sprague-Dawley (SD) rat and P23H rat (animal model of retinitis pigmentosa) to brief flashes of light. In order to better understand the effects of these antagonists on the visual responses of SD and P23H rat RGCs, I examined the responses of RGCs to a drifting sinusoidal grating of various contrasts. Multielectrode array recordings were made from RGCs to a drifting sinusoidal grating of a spatial frequency of 1 cycle/mm and a temporal frequency of 2 cycles/s. In both SD and P23H rat retinas, contrast response functions were found to have a variable shape across cells. Some cells showed saturation of responses at high contrast levels while others did not. Whereas 49% of SD rat RGCs exhibited response saturation, only 14% of P23H rat RGCs showed response saturation. TPMPA decreased the responses of saturating SD rat RGCs to low (6% to 13%) grating contrasts but increased the response to the highest contrast (83%) tested. JNJ16259685 did not significantly affect the contrast response functions of either saturating or non-saturating SD rat RGCs. In contrast, both TPMPA and JNJ16259685 increased the responses of saturating and non-saturating P23H rat RGCs to all grating contrasts. Neither TPMPA nor JNJ16259685 affected the contrast thresholds of SD rat RGCs, but both antagonists lowered the contrast thresholds of P23H rat RGCs. Overall, the findings show that GABACR and mGluR1 antagonists have differential effects on the contrast response functions of SD and P23H rat RGCs. Notably, these receptor antagonists increase the responsiveness of P23H rat RGCs to both low and high contrast visual stimuli.
Collapse
Affiliation(s)
- Ralph Jensen
- Research Service, VA Boston Healthcare System, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
15
|
Gökhan N, Neuwirth LS, Meehan EF. The effects of low dose MK-801 administration on NMDAR dependent executive functions in pigeons. Physiol Behav 2017; 173:243-251. [DOI: 10.1016/j.physbeh.2017.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 01/23/2023]
|
16
|
Ghodrati M, Alwis DS, Price NSC. Orientation selectivity in rat primary visual cortex emerges earlier with low-contrast and high-luminance stimuli. Eur J Neurosci 2016; 44:2759-2773. [PMID: 27563930 DOI: 10.1111/ejn.13379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/20/2016] [Accepted: 08/20/2016] [Indexed: 11/25/2022]
Abstract
In natural vision, rapid and sustained variations in luminance and contrast change the reliability of information available about a visual scene, and markedly affect both neuronal and behavioural responses. The hallmark property of neurons in primary visual cortex (V1), orientation selectivity, is unaffected by changes in stimulus contrast, but it remains unclear how sustained differences in mean luminance and contrast affect the time-course of orientation selectivity, and the amount of information that neurons carry about orientation. We used reverse correlation with characterize the temporal dynamics of orientation selectivity in rat V1 neurons under four luminance-contrast conditions. We show that orientation selectivity and mutual information between neuronal responses and stimulus orientation are invariant to contrast or mean luminance. Critically, the time-course of the emergence of orientation selectivity was affected by both factors; response latencies were longer for low- than high-luminance gratings, and surprisingly, response latencies were also longer for high- than low-contrast gratings. Modelling suggests that luminance-modulated changes in feedforward gain, in combination with hyperpolarization caused by high contrasts can account for our physiological data. The hyperpolarization at high contrasts may increase signal-to-noise ratios, whereas a more depolarized membrane may lead to greater sensitivity to weak stimuli.
Collapse
Affiliation(s)
- Masoud Ghodrati
- Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Vic., 3800, Australia.,Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Dasuni S Alwis
- Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Vic., 3800, Australia.,Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Nicholas S C Price
- Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Vic., 3800, Australia.,Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia.,ARC Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Vic., Australia
| |
Collapse
|
17
|
Melin AD, Kline DW, Hiramatsu C, Caro T. Zebra Stripes through the Eyes of Their Predators, Zebras, and Humans. PLoS One 2016; 11:e0145679. [PMID: 26799935 PMCID: PMC4723339 DOI: 10.1371/journal.pone.0145679] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/07/2015] [Indexed: 11/26/2022] Open
Abstract
The century-old idea that stripes make zebras cryptic to large carnivores has never been examined systematically. We evaluated this hypothesis by passing digital images of zebras through species-specific spatial and colour filters to simulate their appearance for the visual systems of zebras’ primary predators and zebras themselves. We also measured stripe widths and luminance contrast to estimate the maximum distances from which lions, spotted hyaenas, and zebras can resolve stripes. We found that beyond ca. 50 m (daylight) and 30 m (twilight) zebra stripes are difficult for the estimated visual systems of large carnivores to resolve, but not humans. On moonless nights, stripes are difficult for all species to resolve beyond ca. 9 m. In open treeless habitats where zebras spend most time, zebras are as clearly identified by the lion visual system as are similar-sized ungulates, suggesting that stripes cannot confer crypsis by disrupting the zebra’s outline. Stripes confer a minor advantage over solid pelage in masking body shape in woodlands, but the effect is stronger for humans than for predators. Zebras appear to be less able than humans to resolve stripes although they are better than their chief predators. In conclusion, compared to the uniform pelage of other sympatric herbivores it appears highly unlikely that stripes are a form of anti-predator camouflage.
Collapse
Affiliation(s)
- Amanda D. Melin
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, 63130, United States of America
- Departments of Anthropology & Archaeology and Cell Biology & Anatomy University of Calgary, Calgary, Alberta T2N 1N4, Canada
- * E-mail:
| | - Donald W. Kline
- Departments of Psychology and Surgery (Ophthalmology), University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Chihiro Hiramatsu
- Department of Human Science, Faculty of Design, Kyushu University, Fukuoka, 815–8540, Japan
| | - Tim Caro
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, California 95616, United States of America
| |
Collapse
|
18
|
Comparison of visual receptive field properties of the superior colliculus and primary visual cortex in rats. Brain Res Bull 2015. [DOI: 10.1016/j.brainresbull.2015.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Reinagel P. Using rats for vision research. Neuroscience 2015; 296:75-9. [DOI: 10.1016/j.neuroscience.2014.12.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 12/10/2014] [Accepted: 12/13/2014] [Indexed: 11/16/2022]
|
20
|
Rosselli FB, Alemi A, Ansuini A, Zoccolan D. Object similarity affects the perceptual strategy underlying invariant visual object recognition in rats. Front Neural Circuits 2015; 9:10. [PMID: 25814936 PMCID: PMC4357263 DOI: 10.3389/fncir.2015.00010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/23/2015] [Indexed: 12/04/2022] Open
Abstract
In recent years, a number of studies have explored the possible use of rats as models of high-level visual functions. One central question at the root of such an investigation is to understand whether rat object vision relies on the processing of visual shape features or, rather, on lower-order image properties (e.g., overall brightness). In a recent study, we have shown that rats are capable of extracting multiple features of an object that are diagnostic of its identity, at least when those features are, structure-wise, distinct enough to be parsed by the rat visual system. In the present study, we have assessed the impact of object structure on rat perceptual strategy. We trained rats to discriminate between two structurally similar objects, and compared their recognition strategies with those reported in our previous study. We found that, under conditions of lower stimulus discriminability, rat visual discrimination strategy becomes more view-dependent and subject-dependent. Rats were still able to recognize the target objects, in a way that was largely tolerant (i.e., invariant) to object transformation; however, the larger structural and pixel-wise similarity affected the way objects were processed. Compared to the findings of our previous study, the patterns of diagnostic features were: (i) smaller and more scattered; (ii) only partially preserved across object views; and (iii) only partially reproducible across rats. On the other hand, rats were still found to adopt a multi-featural processing strategy and to make use of part of the optimal discriminatory information afforded by the two objects. Our findings suggest that, as in humans, rat invariant recognition can flexibly rely on either view-invariant representations of distinctive object features or view-specific object representations, acquired through learning.
Collapse
Affiliation(s)
- Federica B Rosselli
- Visual Neuroscience Lab, International School for Advanced Studies (SISSA) Trieste, Italy
| | - Alireza Alemi
- Visual Neuroscience Lab, International School for Advanced Studies (SISSA) Trieste, Italy ; Department of Applied Science and Technology, Center for Computational Sciences, Politecnico di Torino Torino, Italy ; Human Genetics Foundation Torino, Italy
| | - Alessio Ansuini
- Visual Neuroscience Lab, International School for Advanced Studies (SISSA) Trieste, Italy
| | - Davide Zoccolan
- Visual Neuroscience Lab, International School for Advanced Studies (SISSA) Trieste, Italy
| |
Collapse
|
21
|
Zoccolan D. Invariant visual object recognition and shape processing in rats. Behav Brain Res 2015; 285:10-33. [PMID: 25561421 PMCID: PMC4383365 DOI: 10.1016/j.bbr.2014.12.053] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 12/19/2014] [Accepted: 12/25/2014] [Indexed: 12/28/2022]
Abstract
Invariant visual object recognition is the ability to recognize visual objects despite the vastly different images that each object can project onto the retina during natural vision, depending on its position and size within the visual field, its orientation relative to the viewer, etc. Achieving invariant recognition represents such a formidable computational challenge that is often assumed to be a unique hallmark of primate vision. Historically, this has limited the invasive investigation of its neuronal underpinnings to monkey studies, in spite of the narrow range of experimental approaches that these animal models allow. Meanwhile, rodents have been largely neglected as models of object vision, because of the widespread belief that they are incapable of advanced visual processing. However, the powerful array of experimental tools that have been developed to dissect neuronal circuits in rodents has made these species very attractive to vision scientists too, promoting a new tide of studies that have started to systematically explore visual functions in rats and mice. Rats, in particular, have been the subjects of several behavioral studies, aimed at assessing how advanced object recognition and shape processing is in this species. Here, I review these recent investigations, as well as earlier studies of rat pattern vision, to provide an historical overview and a critical summary of the status of the knowledge about rat object vision. The picture emerging from this survey is very encouraging with regard to the possibility of using rats as complementary models to monkeys in the study of higher-level vision.
Collapse
Affiliation(s)
- Davide Zoccolan
- Visual Neuroscience Lab, International School for Advanced Studies (SISSA), 34136 Trieste, Italy.
| |
Collapse
|
22
|
Kurylo DD, Chung C, Yeturo S, Lanza J, Gorskaya A, Bukhari F. Effects of contrast, spatial frequency, and stimulus duration on reaction time in rats. Vision Res 2014; 106:20-6. [PMID: 25451244 DOI: 10.1016/j.visres.2014.10.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/03/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
Abstract
Early visual processing in rats is mediated by several pre-cortical pathways as well as multiple retinal ganglion cell types that vary in response characteristics. Discrete processing is thereby optimized for select ranges of stimulus parameters. In order to explore variation in response characteristics at a perceptual level, visual detection in rats was measured across a range of contrasts, spatial frequencies, and durations. Rats responded to the onset of Gabor patches. Onset time occurred after a random delay, and reaction time (RT) frequency distribution served to index target visibility. It was found that lower spatial frequency produced shorter RTs, as well as increased RT equivalent of contrast gain. Brief stimulus presentation reduced target visibility, slowed RTs, and reduced contrast gain at higher spatial frequencies. However, brief stimuli shortened RTs at low contrasts and low spatial frequencies, suggesting transient stimuli are more efficiently processed under these conditions. Collectively, perceptual characteristics appear to reflect distinctions in neural responses at early stages of processing. The RT characteristics found here may thereby reflect the contribution of multiple channels, and suggest a progressive shift in relative involvement across parameter levels.
Collapse
Affiliation(s)
- Daniel D Kurylo
- Department of Psychology, Brooklyn College CUNY, Brooklyn, NY 11210, United States.
| | - Caroline Chung
- Department of Psychology, Brooklyn College CUNY, Brooklyn, NY 11210, United States
| | - Sowmya Yeturo
- Department of Psychology, Brooklyn College CUNY, Brooklyn, NY 11210, United States
| | - Joseph Lanza
- Department of Psychology, Brooklyn College CUNY, Brooklyn, NY 11210, United States
| | - Arina Gorskaya
- Department of Psychology, Brooklyn College CUNY, Brooklyn, NY 11210, United States
| | - Farhan Bukhari
- Department of Computer Science, The Graduate Center CUNY, New York, NY 10016, United States
| |
Collapse
|
23
|
Lee TH, Baek J, Lu ZL, Mather M. How arousal modulates the visual contrast sensitivity function. ACTA ACUST UNITED AC 2014; 14:978-84. [PMID: 24932842 DOI: 10.1037/a0037047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent evidence indicates that emotion enhances contrast thresholds in subsequent visual perception (Phelps, Ling, & Carrasco, 2006) and perceptual sensitivity for low-spatial frequency but not high-spatial frequency targets (Bocanegra & Zeelenberg, 2009b). However, these studies just report responses to various frequencies at a fixed contrast level or responses to various contrasts at a fixed frequency. In the current study, we measured the full contrast sensitivity function as a function of emotional arousal in order to investigate potential interactions between spatial frequency and contrast. We used a Bayesian adaptive inference with a trial-to-trial information gain strategy (Lesmes, Lu, Baek, & Albright, 2010) and a fear-conditioned stimulus to manipulate arousal level. The spatial frequency at which people showed peak contrast sensitivity shifted to lower spatial frequencies in the arousing condition compared with the nonarousing condition and people had greater contrast sensitivity function bandwidth in the arousing than in the nonarousing condition.
Collapse
|
24
|
Thurley K, Henke J, Hermann J, Ludwig B, Tatarau C, Wätzig A, Herz AVM, Grothe B, Leibold C. Mongolian gerbils learn to navigate in complex virtual spaces. Behav Brain Res 2014; 266:161-8. [PMID: 24631394 DOI: 10.1016/j.bbr.2014.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 02/21/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
Abstract
Virtual reality (VR) environments are increasingly used to study spatial navigation in rodents. So far behavioral paradigms in virtual realities have been limited to linear tracks or open fields. However, little is known whether rodents can learn to navigate in more complex virtual spaces. We used a VR setup with a spherical treadmill but no head-fixation, which permits animals not only to move in a virtual environment but also to freely rotate around their vertical body axis. We trained Mongolian gerbils to perform spatial tasks in virtual mazes of different complexity. Initially the animals learned to run back and forth between the two ends of a virtual linear track for food reward. Performance, measured as path length and running time between the virtual reward locations, improved to asymptotic performance within about five training sessions. When more complex mazes were presented after this training epoch, the animals generalized and explored the new environments already at their first exposure. In a final experiment, the animals also learned to perform a two-alternative forced choice task in a virtual Y-maze. Our data thus shows that gerbils can be trained to solve spatial tasks in virtual mazes and that this behavior can be used as a readout for psychophysical measurements.
Collapse
Affiliation(s)
- Kay Thurley
- Department Biologie II, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany; Bernstein Center for Computational Neuroscience Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany.
| | - Josephine Henke
- Department Biologie II, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Joachim Hermann
- Department Biologie II, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany; Bernstein Center for Computational Neuroscience Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Benedikt Ludwig
- Department Biologie II, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Christian Tatarau
- Department Biologie II, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Aline Wätzig
- Department Biologie II, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Andreas V M Herz
- Department Biologie II, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany; Bernstein Center for Computational Neuroscience Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Benedikt Grothe
- Department Biologie II, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany; Bernstein Center for Computational Neuroscience Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Christian Leibold
- Department Biologie II, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany; Bernstein Center for Computational Neuroscience Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
25
|
Jacobson TK, Ho JW, Kent BW, Yang FC, Burwell RD. Automated visual cognitive tasks for recording neural activity using a floor projection maze. J Vis Exp 2014:e51316. [PMID: 24638057 DOI: 10.3791/51316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Neuropsychological tasks used in primates to investigate mechanisms of learning and memory are typically visually guided cognitive tasks. We have developed visual cognitive tasks for rats using the Floor Projection Maze(1,2) that are optimized for visual abilities of rats permitting stronger comparisons of experimental findings with other species. In order to investigate neural correlates of learning and memory, we have integrated electrophysiological recordings into fully automated cognitive tasks on the Floor Projection Maze(1,2). Behavioral software interfaced with an animal tracking system allows monitoring of the animal's behavior with precise control of image presentation and reward contingencies for better trained animals. Integration with an in vivo electrophysiological recording system enables examination of behavioral correlates of neural activity at selected epochs of a given cognitive task. We describe protocols for a model system that combines automated visual presentation of information to rodents and intracranial reward with electrophysiological approaches. Our model system offers a sophisticated set of tools as a framework for other cognitive tasks to better isolate and identify specific mechanisms contributing to particular cognitive processes.
Collapse
Affiliation(s)
- Tara K Jacobson
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University
| | - Jonathan W Ho
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University
| | - Brendon W Kent
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University
| | - Fang-Chi Yang
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University
| | - Rebecca D Burwell
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University; Department of Neuroscience, Brown University;
| |
Collapse
|
26
|
O'Carroll DC, Wiederman SD. Contrast sensitivity and the detection of moving patterns and features. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130043. [PMID: 24395970 DOI: 10.1098/rstb.2013.0043] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Theories based on optimal sampling by the retina have been widely applied to visual ecology at the level of the optics of the eye, supported by visual behaviour. This leads to speculation about the additional processing that must lie in between-in the brain itself. But fewer studies have adopted a quantitative approach to evaluating the detectability of specific features in these neural pathways. We briefly review this approach with a focus on contrast sensitivity of two parallel pathways for motion processing in insects, one used for analysis of wide-field optic flow, the other for detection of small features. We further use a combination of optical modelling of image blur and physiological recording from both photoreceptors and higher-order small target motion detector neurons sensitive to small targets to show that such neurons operate right at the limits imposed by the optics of the eye and the noise level of single photoreceptors. Despite this, and the limitation of only being able to use information from adjacent receptors to detect target motion, they achieve a contrast sensitivity that rivals that of wide-field motion sensitive pathways in either insects or vertebrates-among the highest in absolute terms seen in any animal.
Collapse
Affiliation(s)
- David C O'Carroll
- Adelaide Centre for Neuroscience Research, School of Medical Sciences, The University of Adelaide, , Adelaide, South Australia 5000, Australia
| | | |
Collapse
|
27
|
Meier PM, Reinagel P. Rats and humans differ in processing collinear visual features. Front Neural Circuits 2013; 7:197. [PMID: 24379758 PMCID: PMC3862114 DOI: 10.3389/fncir.2013.00197] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 11/28/2013] [Indexed: 11/27/2022] Open
Abstract
Behavioral studies in humans and rats demonstrate that visual detection of a target stimulus is sensitive to surrounding spatial patterns. In both species, the detection of an oriented visual target is affected when the surrounding region contains flanking stimuli that are collinear to the target. In many studies, collinear flankers have been shown to improve performance in humans, both absolutely (compared to performance with no flankers) and relative to non-collinear flankers. More recently, collinear flankers have been shown to impair performance in rats both absolutely and relative to non-collinear flankers. However, these observations spanned different experimental paradigms. Past studies in humans have shown that the magnitude and even sign of flanker effects can depend critically on the details of stimulus and task design. Therefore either task differences or species could explain the opposite findings. Here we provide a direct comparison of behavioral data between species and show that these differences persist – collinear flankers improve performance in humans, and impair performance in rats – in spite of controls that match stimuli, experimental paradigm, and learning procedure. There is evidence that the contrasts of the target and the flankers could affect whether surround processing is suppressive or facilitatory. In a second experiment, we explored a range of contrast conditions in the rat, to determine if contrast could explain the lack of collinear facilitation. Using different pairs of target and flanker contrast, the rat’s collinear impairment was confirmed to be robust across a range of contrast conditions. We conclude that processing of collinear features is indeed different between rats and humans. We speculate that the observed difference between rat and human is caused by the combined impact of differences in the statistics in natural retinal images, the representational capacity of neurons in visual cortex, and attention.
Collapse
Affiliation(s)
- Philip M Meier
- Department of Neurosciences, Division of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Pamela Reinagel
- Section of Neurobiology, Division of Biology, University of California at San Diego La Jolla, CA, USA
| |
Collapse
|
28
|
Henrich-Noack P, Lazik S, Sergeeva E, Wagner S, Voigt N, Prilloff S, Fedorov A, Sabel BA. Transcorneal alternating current stimulation after severe axon damage in rats results in “long-term silent survivor” neurons. Brain Res Bull 2013; 95:7-14. [DOI: 10.1016/j.brainresbull.2013.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 02/05/2013] [Accepted: 02/26/2013] [Indexed: 11/25/2022]
|
29
|
Abstract
The ability to recognize objects despite substantial variation in their appearance (e.g., because of position or size changes) represents such a formidable computational feat that it is widely assumed to be unique to primates. Such an assumption has restricted the investigation of its neuronal underpinnings to primate studies, which allow only a limited range of experimental approaches. In recent years, the increasingly powerful array of optical and molecular tools that has become available in rodents has spurred a renewed interest for rodent models of visual functions. However, evidence of primate-like visual object processing in rodents is still very limited and controversial. Here we show that rats are capable of an advanced recognition strategy, which relies on extracting the most informative object features across the variety of viewing conditions the animals may face. Rat visual strategy was uncovered by applying an image masking method that revealed the features used by the animals to discriminate two objects across a range of sizes, positions, in-depth, and in-plane rotations. Noticeably, rat recognition relied on a combination of multiple features that were mostly preserved across the transformations the objects underwent, and largely overlapped with the features that a simulated ideal observer deemed optimal to accomplish the discrimination task. These results indicate that rats are able to process and efficiently use shape information, in a way that is largely tolerant to variation in object appearance. This suggests that their visual system may serve as a powerful model to study the neuronal substrates of object recognition.
Collapse
|
30
|
Histed MH, Carvalho LA, Maunsell JHR. Psychophysical measurement of contrast sensitivity in the behaving mouse. J Neurophysiol 2011; 107:758-65. [PMID: 22049334 DOI: 10.1152/jn.00609.2011] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To understand how activity in mammalian neural circuits controls behavior, the mouse is a promising model system due to the convergence of genetic, optical, and physiological methods. The ability to control and quantify behavior precisely is also essential for these studies. We developed an operant visual detection paradigm to make visual psychophysical measurements: head-fixed mice make responses by pressing a lever. We designed this task to permit neurophysiological studies of behavior in cerebral cortex, where activity is variable from trial to trial and neurons encode many types of information simultaneously. To study neural responses in the face of this complexity, we trained mice to do a task where they perform hundreds of trials daily and perceptual thresholds can be measured. We used this task to measure both visual acuity and the minimum detectable contrast in behaving mice. We found that the mouse contrast response function is similar in shape to other species. They can detect low-contrast stimuli, with a peak contrast threshold of 2%, equivalent to ∼15° eccentric in human vision. Mouse acuity is modest, with an upper limit near 0.5 cycles/°, consistent with prior data.
Collapse
Affiliation(s)
- Mark H Histed
- Dept. of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
31
|
Luminance-dependence of spatial vision in budgerigars (Melopsittacus undulatus) and Bourke’s parrots (Neopsephotus bourkii). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 198:69-77. [DOI: 10.1007/s00359-011-0689-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 10/03/2011] [Accepted: 10/03/2011] [Indexed: 10/16/2022]
|
32
|
Krubitzer L, Campi KL, Cooke DF. All rodents are not the same: a modern synthesis of cortical organization. BRAIN, BEHAVIOR AND EVOLUTION 2011; 78:51-93. [PMID: 21701141 PMCID: PMC3182045 DOI: 10.1159/000327320] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rodents are a major order of mammals that is highly diverse in distribution and lifestyle. Five suborders, 34 families, and 2,277 species within this order occupy a number of different niches and vary along several lifestyle dimensions such as diel pattern (diurnal vs. nocturnal), terrain niche, and diet. For example, the terrain niche of rodents includes arboreal, aerial, terrestrial, semi-aquatic, burrowing, and rock dwelling. Not surprisingly, the behaviors associated with particular lifestyles are also highly variable and thus the neocortex, which generates these behaviors, has undergone corresponding alterations across species. Studies of cortical organization in species that vary along several dimensions such as terrain niche, diel pattern, and rearing conditions demonstrate that the size and number of cortical fields can be highly variable within this order. The internal organization of a cortical field also reflects lifestyle differences between species and exaggerates behaviorally relevant effectors such as vibrissae, teeth, or lips. Finally, at a cellular level, neuronal number and density varies for the same cortical field in different species and is even different for the same species reared in different conditions (laboratory vs. wild-caught). These very large differences across and within rodent species indicate that there is no generic rodent model. Rather, there are rodent models suited for specific questions regarding the development, function, and evolution of the neocortex.
Collapse
Affiliation(s)
- Leah Krubitzer
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA.
| | | | | |
Collapse
|
33
|
Pinto MADS, de Souza JKS, Baron J, Tierra-Criollo CJ. A low-cost, portable, micro-controlled device for multi-channel LED visual stimulation. J Neurosci Methods 2011; 197:82-91. [PMID: 21320530 DOI: 10.1016/j.jneumeth.2011.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
Abstract
Light emitting diodes (LEDs) are extensively used as light sources to investigate visual and visually related function and dysfunction. Here, we describe the design of a compact, low-cost, stand-alone LED-based system that enables the configuration, storage and presentation of elaborate visual stimulation paradigms. The core functionality of this system is provided by a microcontroller whose ultra-low power consumption makes it well suited for long lasting battery applications. The effective use of hardware resources is managed by multi-layered architecture software that provides an intuitive and user-friendly interface. In the configuration mode, different stimulation sequences can be created and memorized for ten channels, independently. LED-driving current output can be set either as continuous or pulse modulated, up to 500 Hz, by duty cycle adjustments. In run mode, multiple-channel stimulus sequences are automatically applied according to the pre-programmed protocol. Steady state visual evoked potentials were successfully recorded in five subjects with no visible electromagnetic interferences from the stimulator, demonstrating the efficacy of combining our prototyped equipment with electrophysiological techniques. Finally, we discuss a number of possible improvements for future development of our project.
Collapse
Affiliation(s)
- Marcos Antonio da Silva Pinto
- Department of Electrical Engineering, School of Engineering, Laboratory of Biomedical Engineering, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-010 Belo Horizonte, MG, Brazil
| | | | | | | |
Collapse
|
34
|
Vision restoration after brain and retina damage: the "residual vision activation theory". PROGRESS IN BRAIN RESEARCH 2011; 192:199-262. [PMID: 21763527 DOI: 10.1016/b978-0-444-53355-5.00013-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vision loss after retinal or cerebral visual injury (CVI) was long considered to be irreversible. However, there is considerable potential for vision restoration and recovery even in adulthood. Here, we propose the "residual vision activation theory" of how visual functions can be reactivated and restored. CVI is usually not complete, but some structures are typically spared by the damage. They include (i) areas of partial damage at the visual field border, (ii) "islands" of surviving tissue inside the blind field, (iii) extrastriate pathways unaffected by the damage, and (iv) downstream, higher-level neuronal networks. However, residual structures have a triple handicap to be fully functional: (i) fewer neurons, (ii) lack of sufficient attentional resources because of the dominant intact hemisphere caused by excitation/inhibition dysbalance, and (iii) disturbance in their temporal processing. Because of this resulting activation loss, residual structures are unable to contribute much to everyday vision, and their "non-use" further impairs synaptic strength. However, residual structures can be reactivated by engaging them in repetitive stimulation by different means: (i) visual experience, (ii) visual training, or (iii) noninvasive electrical brain current stimulation. These methods lead to strengthening of synaptic transmission and synchronization of partially damaged structures (within-systems plasticity) and downstream neuronal networks (network plasticity). Just as in normal perceptual learning, synaptic plasticity can improve vision and lead to vision restoration. This can be induced at any time after the lesion, at all ages and in all types of visual field impairments after retinal or brain damage (stroke, neurotrauma, glaucoma, amblyopia, age-related macular degeneration). If and to what extent vision restoration can be achieved is a function of the amount of residual tissue and its activation state. However, sustained improvements require repetitive stimulation which, depending on the method, may take days (noninvasive brain stimulation) or months (behavioral training). By becoming again engaged in everyday vision, (re)activation of areas of residual vision outlasts the stimulation period, thus contributing to lasting vision restoration and improvements in quality of life.
Collapse
|
35
|
Prilloff S, Henrich-Noack P, Kropf S, Sabel BA. Experience-Dependent Plasticity and Vision Restoration in Rats after Optic Nerve Crush. J Neurotrauma 2010; 27:2295-307. [DOI: 10.1089/neu.2010.1439] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Sylvia Prilloff
- Institute of Medical Psychology, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| | - Petra Henrich-Noack
- Institute of Medical Psychology, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| | - Siegfried Kropf
- Institute for Biometry and Medical Informatics, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| | - Bernhard A. Sabel
- Institute of Medical Psychology, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
36
|
|
37
|
Lesmes LA, Lu ZL, Baek J, Albright TD. Bayesian adaptive estimation of the contrast sensitivity function: the quick CSF method. J Vis 2010; 10:17.1-21. [PMID: 20377294 PMCID: PMC4439013 DOI: 10.1167/10.3.17] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 11/10/2009] [Indexed: 11/24/2022] Open
Abstract
The contrast sensitivity function (CSF) predicts functional vision better than acuity, but long testing times prevent its psychophysical assessment in clinical and practical applications. This study presents the quick CSF (qCSF) method, a Bayesian adaptive procedure that applies a strategy developed to estimate multiple parameters of the psychometric function (A. B. Cobo-Lewis, 1996; L. L. Kontsevich & C. W. Tyler, 1999). Before each trial, a one-step-ahead search finds the grating stimulus (defined by frequency and contrast) that maximizes the expected information gain (J. V. Kujala & T. J. Lukka, 2006; L. A. Lesmes et al., 2006), about four CSF parameters. By directly estimating CSF parameters, data collected at one spatial frequency improves sensitivity estimates across all frequencies. A psychophysical study validated that CSFs obtained with 100 qCSF trials ( approximately 10 min) exhibited good precision across spatial frequencies (SD < 2-3 dB) and excellent agreement with CSFs obtained independently (mean RMSE = 0.86 dB). To estimate the broad sensitivity metric provided by the area under the log CSF (AULCSF), only 25 trials were needed to achieve a coefficient of variation of 15-20%. The current study demonstrates the method's value for basic and clinical investigations. Further studies, applying the qCSF to measure wider ranges of normal and abnormal vision, will determine how its efficiency translates to clinical assessment.
Collapse
Affiliation(s)
- Luis Andres Lesmes
- Vision Center Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zhong-Lin Lu
- Laboratory of Brain Processes, University of Southern California, Los Angeles, CA, USA
| | - Jongsoo Baek
- Laboratory of Brain Processes, University of Southern California, Los Angeles, CA, USA
| | - Thomas D. Albright
- Vision Center Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
38
|
Galizio M, McKinney P, Cerutti DT, Pitts RC. Effects of MDMA, methamphetamine and methylphenidate on repeated acquisition and performance in rats. Pharmacol Biochem Behav 2009; 94:305-11. [PMID: 19772870 DOI: 10.1016/j.pbb.2009.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 09/04/2009] [Accepted: 09/13/2009] [Indexed: 10/20/2022]
Abstract
Repeated-acquisition procedures that include performance controls for effects not specific to acquisition permit the assessment of drug effects on learning on a within-subject, within-session basis. Despite the advantages of this methodology, few studies have examined effects of psychomotor stimulants on repeated acquisition in rodents. The purpose of the present study was to investigate the effects of methylenedioxymethamphetamine (MDMA, 0.3-10mg/kg), methamphetamine (MA, 0.1-3mg/kg) and methylphenidate (MPD,1-17 mg/kg) using repeated-acquisition procedures with performance controls in rats using a touch-screen apparatus. Rats were presented a 2x3 array of stimuli using a computer touch-screen and nose-pokes to target locations within the array were reinforced. In the acquisition component, the correct location changed across sessions, whereas during the performance component, the correct location was constant across sessions. All three drugs reduced accuracy of responding to target locations in a dose-dependent fashion. None of the compounds enhanced learning at any dose. MPD and MA produced significant disruptions of acquisition accuracy only at doses that also disrupted performance, but the 3mg/kg dose of MDMA impaired acquisition of target responding without affecting performance. The selective impairment of acquisition found in the present study adds to the evidence of learning and memory disruption produced by acute MDMA administration and raise questions about the mechanisms for these actions.
Collapse
Affiliation(s)
- M Galizio
- Department of Psychology, University of North Carolina Wilmington, 601 S. College Rd. Wilmington, NC 28403-5612, United States.
| | | | | | | |
Collapse
|
39
|
A rodent model for the study of invariant visual object recognition. Proc Natl Acad Sci U S A 2009; 106:8748-53. [PMID: 19429704 DOI: 10.1073/pnas.0811583106] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human visual system is able to recognize objects despite tremendous variation in their appearance on the retina resulting from variation in view, size, lighting, etc. This ability--known as "invariant" object recognition--is central to visual perception, yet its computational underpinnings are poorly understood. Traditionally, nonhuman primates have been the animal model-of-choice for investigating the neuronal substrates of invariant recognition, because their visual systems closely mirror our own. Meanwhile, simpler and more accessible animal models such as rodents have been largely overlooked as possible models of higher-level visual functions, because their brains are often assumed to lack advanced visual processing machinery. As a result, little is known about rodents' ability to process complex visual stimuli in the face of real-world image variation. In the present work, we show that rats possess more advanced visual abilities than previously appreciated. Specifically, we trained pigmented rats to perform a visual task that required them to recognize objects despite substantial variation in their appearance, due to changes in size, view, and lighting. Critically, rats were able to spontaneously generalize to previously unseen transformations of learned objects. These results provide the first systematic evidence for invariant object recognition in rats and argue for an increased focus on rodents as models for studying high-level visual processing.
Collapse
|
40
|
Furtak SC, Cho CE, Kerr KM, Barredo JL, Alleyne JE, Patterson YR, Burwell RD. The Floor Projection Maze: A novel behavioral apparatus for presenting visual stimuli to rats. J Neurosci Methods 2009; 181:82-8. [PMID: 19422855 DOI: 10.1016/j.jneumeth.2009.04.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 04/24/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
Abstract
There is a long tradition of studying visual learning in rats by presenting stimuli vertically on cards or monitors. The procedures are often labor intensive and the rate of acquisition can be prohibitively low. Available evidence suggests that rats process visual information presented in the lower visual hemifield more effectively than information presented in the upper visual hemifield. We capitalized on these findings by developing a novel apparatus, the Floor Projection Maze, for presenting visual information directly to the floor of an exploratory maze. Two-dimensional (2D) visual stimuli were presented on the floor by back-projecting an image from a standard digital projector to the semi-transparent underside of the floor of an open maze. Long-Evans rats rapidly acquired easy 2D visual discriminations (Experiment 1). Rats were also able to learn a more difficult shape discrimination in dramatically fewer trials than previously reported for the same discrimination when presented vertically (Experiment 2). The two choice discrimination task was adapted to determine contrast sensitivity thresholds in a naïve group of rats (Experiment 3). Contrast sensitivity thresholds were uniform across three subjects, demonstrating that the Floor Projection Maze can be used for visual psychophysics in rats. Our findings demonstrate that rats can rapidly acquire visual tasks when stimuli are presented horizontally on the floor, suggesting that this novel behavioral apparatus will provide a powerful behavioral paradigm in the future.
Collapse
Affiliation(s)
- Sharon C Furtak
- Department of Psychology, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Sakiyama Y, Sujaku T, Furuta A. A novel automated method for measuring the effect of analgesics on formalin-evoked licking behavior in rats. J Neurosci Methods 2007; 167:167-75. [PMID: 17881061 DOI: 10.1016/j.jneumeth.2007.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 08/02/2007] [Accepted: 08/02/2007] [Indexed: 11/25/2022]
Abstract
The behavioral assessment of pain is essential for the analysis of pain mechanisms and the evaluation of analgesic drugs. The formalin test is one of such methods widely used as a model of injury-induced pain in rodents. This test is manually demanding and the recording of results is left to the subjectivity of the experimenters. Thus we developed a novel automated method to estimate the pharmacological response in formalin-induced licking behavior in rats using a multicolor detection technique. Two color markers were preliminarily applied to rats-yellow dye on the mouth and fluorescent green tape on the right hind paw. Behaviors of the animals were recorded from both above and below the subject, by a dual-view digital video camera system. After injection with formalin into the hind paw, rats exhibited a biphasic display of licking behavior. Licking time was measured by the sum of frames where the distance between these markers was less than an appropriate threshold of distance (TD). The split-plot analysis of variance demonstrated that the sum of squares of differences in licking time between manual and automated measurement was minimized when TD = 20mm. In addition, frames in which moving velocity of these markers is less than 2.5mm/s was neglected for calculation in order to eliminate sedative effect on the recorded data. On these conditions, subcutaneous administration of morphine in rats dose-dependently decreased formalin-elicited nociceptive responses. These results suggest that under optimal conditions the automated technique when applied to pharmacological studies are more reliable and efficient than if they are manually recorded.
Collapse
Affiliation(s)
- Yojiro Sakiyama
- Research Planning and Coordination, Nagoya Laboratories, Pfizer Global Research and Development, Pfizer Japan Inc., 5-2 Taketoyo, Aichi 470-2393, Japan.
| | | | | |
Collapse
|
42
|
Prévost F, Lepore F, Guillemot JP. Spatio-temporal receptive field properties of cells in the rat superior colliculus. Brain Res 2007; 1142:80-91. [PMID: 17303094 DOI: 10.1016/j.brainres.2007.01.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 01/11/2007] [Accepted: 01/14/2007] [Indexed: 10/23/2022]
Abstract
Although the rat is widely used in neurobehavioural research, the spatio-temporal receptive field properties of neurons in superficial layers of the superior colliculus are relatively unknown. Extracellular recordings were carried out in anesthetized Long Evans rats. Neurons in these layers had simple-like and complex-like receptive fields (RFs). Most cells (67%) had RFs showing band-pass and low-pass spatial frequency (SF) tuning profiles. Spatial band-pass profiles showed low optimal SF (mean=0.03 c/deg), low spatial resolution (mean=0.18 c/deg) and large spatial bandwidths (mean=2.3 octaves). More than two-thirds of the RFs (71%) were selective to orientation and only 11% were clearly direction selective. Nearly two-thirds of cells (68%) had band-pass temporal frequency (TF) tuning profiles with narrow bandwidths (mean=1.7 oct.) whereas the others showed low-pass TF tuning profiles. Temporal band-pass profiles had low optimal TFs (mean=3.5 c/s). Although some cells showed relatively low contrast thresholds (6%), most cells only responded to high contrast values (mean=38.2%). These results show that the spatial resolution of collicular cells is poor and that they respond mainly to highly contrasted moving stimuli.
Collapse
Affiliation(s)
- François Prévost
- Centre de Recherche en Neuropsychologie et Cognition, Département de Psychologie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | | | | |
Collapse
|
43
|
Hermer-Vazquez L, Hermer-Vazquez R, Chapin JK. The reach-to-grasp-food task for rats: a rare case of modularity in animal behavior? Behav Brain Res 2007; 177:322-8. [PMID: 17207541 PMCID: PMC1885543 DOI: 10.1016/j.bbr.2006.11.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 11/10/2006] [Accepted: 11/13/2006] [Indexed: 10/23/2022]
Abstract
Humans and non-human animals make use of sensory hierarchies in "selecting" strategies for solving many cognitive and behavioral tasks. Often, if a preferred type of sensory information is unavailable or is not useful for solving a given task, the animal can switch to a lower-priority strategy, making use of a different class of sensory information. In the case of rats performing a classic reach-to-grasp-food task, however, prior studies indicate that the reaching maneuver may be a fixed action pattern that is guided exclusively by the food's odor plume until the point of contact with the food morsel [Whishaw IQ, Tomie JA. Olfaction directs skilled forelimb reaching in the rat. Behav Brain Res 1989;32(1):11-21; Metz GA, Whishaw IQ. Skilled reaching an action pattern: stability in rat (Rattus norvegicus) grasping movements as a function of changing food pellet size. Behav Brain Res 2000;116(2):111-22; Whishaw IQ. Did a change in sensory control of skilled movements stimulate the evolution of the primate frontal cortex? Behav Brain Res 2003;146(1/2):31-41]. We sought to confirm and extend these findings in several ways. In Experiment 1, using a GO/NO-GO variant of the classic task, we demonstrated that rats used the GO target's odor both to trigger and guide their reaches. In Experiment 2, we showed that rats deprived of (a) vision, (b) object-recognizing rostral whiskers and forearm sinus hairs, or (c) both, displayed no deficits in triggering and guiding their reaches. Finally, in a third experiment in which the GO target's location varied randomly across trials and only olfactory cues were available, we demonstrated that rats could determine the spatial endpoint of their reach without any loss of accuracy. Combined with results from a prior study in which bulbectomized rats never developed a new, successful reaching strategy despite extensive post-operative training [Whishaw IQ, Tomie JA. Olfaction directs skilled forelimb reaching in the rat. Behav Brain Res 1989;32(1):11-21], these results indicate that rats do not have a sensory hierarchy for solving the reach-to-grasp-food task, but rather, are guided by olfaction alone until their paw contacts the food morsel.
Collapse
|
44
|
Pitts RC, Buda DR, Keith JR, Cerutti DT, Galizio M. Chlordiazepoxide and dizocilpine, but not morphine, selectively impair acquisition under a novel repeated-acquisition and performance task in rats. Psychopharmacology (Berl) 2006; 189:135-43. [PMID: 16972101 DOI: 10.1007/s00213-006-0538-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 07/27/2006] [Indexed: 10/24/2022]
Abstract
RATIONALE Some classes of drugs can selectively affect learning (i.e., acquisition of behavior) at doses that do not affect performance (i.e., previously learned behavior). Some drugs (e.g., benzodiazepines) show selective effects on acquisition across a wide variety of tasks. Other drugs [e.g., N-methyl-D-aspartate (NMDA) antagonists and opiate agonists], however, show selective effects under some tasks, but not others. OBJECTIVES The purpose of this study was to examine the effects of the NMDA-antagonist dizocilpine (0.01-0.3 mg/kg), the opiate-agonist morphine (1.0-17.0 mg/kg), and the benzodiazepine chlordiazepoxide (3.0-30.0 mg/kg) in rats under a novel repeated-acquisition and performance task. METHODS Nose pokes to a correct location within a 2x3 stimulus array on a computer touch screen were reinforced with food. In the acquisition component, the correct location changed across sessions but remained constant within sessions; in the performance component, the correct location was constant both across and within sessions. RESULTS Both chlordiazepoxide and dizocilpine selectively impaired accuracy in the acquisition component at doses that did not affect accuracy in the performance component or overall response speed. Morphine, however, did not affect acquisition without affecting performance or response speed. CONCLUSIONS These results with rats resembled those previously obtained for response-sequence learning in primates, rather than those previously reported for spatial learning in rats. Therefore, previous discrepancies in results for NMDA antagonists and opiate agonists across tasks probably were not a function of the species studied, but, rather, they more likely were a function of unique variables controlling acquisition within each task.
Collapse
Affiliation(s)
- R C Pitts
- Department of Psychology, University of North Carolina Wilmington, NC 28403-5612, USA.
| | | | | | | | | |
Collapse
|
45
|
Nekovarova T, Nedvidek J, Bures J. Spatial choices of rats based on abstract visual information: Pattern- or configuration-discrimination? Behav Brain Res 2006; 172:264-71. [PMID: 16806518 DOI: 10.1016/j.bbr.2006.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 05/09/2006] [Indexed: 11/30/2022]
Abstract
Animals demonstrate their ability to represent a geometric configuration of their environment and to use this information for spatial decisions in their response space in many situations. In presented experiment, we examined the ability of rats to interpret a configuration of abstract visual stimuli to make spatial decisions in a real response space. We tested whether they are able to interpret spatial configuration of abstract stimuli or whether they perceive such visual stimuli simply as geometric patterns associated to particular spatial choices. The rats were tested in a Skinner box with four nosing holes in the transparent front wall through which a computer screen was visible. According to the visual stimuli on the screen, the rats should choose the appropriate nosing hole to obtain a reward. We compared two groups of rats: the first group was exposed to the visual stimuli designed as a representation of the response space: the position of rewarded nosing hole was shown in relation to other nosing holes. The second group was exposed to one of four geometric patterns associated to one of the four nosing holes but without any implicit information about the response space. The results suggested that rats using the stimuli with information about configuration were significantly more successful than rats trained to respond to visual stimuli unrelated to the geometry of the environment.
Collapse
Affiliation(s)
- Tereza Nekovarova
- Institute of Physiology, Academy of Sciences of the Czech Republic, 1083 Videnska, 14220 Prague, Czech Republic.
| | | | | |
Collapse
|
46
|
Iny K, Heynen AJ, Sklar E, Bear MF. Bidirectional modifications of visual acuity induced by monocular deprivation in juvenile and adult rats. J Neurosci 2006; 26:7368-74. [PMID: 16837583 PMCID: PMC6674195 DOI: 10.1523/jneurosci.0124-06.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent electrophysiological studies of rodent visual cortex suggest that, in addition to deprived-eye depression, monocular deprivation (MD) also shifts ocular dominance by potentiation of open-eye responses. We used computer-based, two-choice discrimination tasks to assess the behavioral significance of these findings in rats. As expected, prolonged MD, from postnatal day 21 until adulthood (>150 d) markedly decreased visual acuity through the deprived eye. However, we also found that the acuity through the nondeprived eye was significantly enhanced compared with normally reared controls. Interestingly, when the deprived eye was opened in adults, there was a gradual but incomplete recovery of acuity in the deprived eye preceded by a loss of the enhanced acuity in the nondeprived eye. These changes were reversed by again reclosing the eye. These findings suggest that the bidirectional changes in visually evoked responses after MD are behaviorally meaningful and that significant plasticity is exhibited well into adulthood.
Collapse
|
47
|
Nekovarova T, Bures J. Spatial decisions in rats based on the geometry of computer-generated patterns. Neurosci Lett 2006; 394:211-5. [PMID: 16289319 DOI: 10.1016/j.neulet.2005.10.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 10/12/2005] [Accepted: 10/12/2005] [Indexed: 11/23/2022]
Abstract
Animals often demonstrate the ability to use the geometric configuration of multiple landmarks for orientation in the environment. We developed a new behavioral task using a computer screen for presentation of visual stimuli allowing the rats to make navigational decisions in real space according to the geometric configuration of external virtual patterns (designed as a possible representation of this space). The rats were placed in a Skinner box with four nosing holes in the transparent front wall through which the computer screen was visible. They were trained in successive phases: first the visual stimulus displayed on the screen directly marked the rewarded nosing hole, then the displayed stimuli were reduced in size or displaced, thus disconnected from the response space. The results suggested that rats were able to use the geometric configuration of stimuli presented on the computer screen for navigational decisions in real space.
Collapse
Affiliation(s)
- Tereza Nekovarova
- Institute of Physiology, Academy of Sciences of The Czech Republic, 1083 Videnska, 14220 Prague, Czech Republic.
| | | |
Collapse
|
48
|
Ghim MM, Hodos W. Spatial contrast sensitivity of birds. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 192:523-34. [PMID: 16404602 DOI: 10.1007/s00359-005-0090-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 11/27/2005] [Accepted: 12/22/2005] [Indexed: 10/25/2022]
Abstract
Contrast sensitivity (CS) is the ability of the observer to discriminate between adjacent stimuli on the basis of their differences in relative luminosity (contrast) rather than their absolute luminances. In previous studies, using a narrow range of species, birds have been reported to have low contrast detection thresholds relative to mammals and fishes. This was an unexpected finding because birds had been traditionally reported to have excellent visual acuity and color vision. This study reports CS in six species of birds that represent a range of visual adaptations to varying environments. The species studied were American kestrels (Falco sparverius), barn owls (Tyto alba), Japanese quail (Coturnix coturnix japonica), white Carneaux pigeons (Columba livia), starlings (Sturnus vulgaris), and red-bellied woodpeckers (Melanerpes carolinus). Contrast sensitivity functions (CSFs) were obtained from these birds using the pattern electroretinogram and compared with CSFs from the literature when possible. All of these species exhibited low CS relative to humans and most mammals, which suggests that low CS is a general characteristic of birds. Their low maximum CS may represent a trade-off of contrast detection for some other ecologically vital capacity such as UV detection or other aspects of their unique color vision.
Collapse
Affiliation(s)
- Mimi M Ghim
- Department of Psychology, University of Maryland at College Park, College Park, MD 20742-4411, USA
| | | |
Collapse
|
49
|
Van Hooser SD, Heimel JAF, Chung S, Nelson SB, Toth LJ. Orientation selectivity without orientation maps in visual cortex of a highly visual mammal. J Neurosci 2005; 25:19-28. [PMID: 15634763 PMCID: PMC6725193 DOI: 10.1523/jneurosci.4042-04.2005] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In mammalian neocortex, the orderly arrangement of columns of neurons is thought to be a fundamental organizing principle. In primary visual cortex (V1), neurons respond preferentially to bars of a particular orientation, and, in many mammals, these orientation-selective cells are arranged in a semiregular, smoothly varying map across the cortical surface. Curiously, orientation maps have not been found in rodents or lagomorphs. To explore whether this lack of organization in previously studied rodents could be attributable to low visual acuity, poorly differentiated visual brain areas, or small absolute V1 size, we examined V1 organization of a larger, highly visual rodent, the gray squirrel. Using intrinsic signal optical imaging and single-cell recordings, we found no evidence of an orientation map, suggesting that formation of orientation maps depends on mechanisms not found in rodents. We did find robust orientation tuning of single cells, and this tuning was invariant to stimulus contrast. Therefore, it seems unlikely that orientation maps are important for orientation tuning or its contrast invariance in V1. In vertical electrode penetrations, we found little evidence for columnar organization of orientation-selective neurons and little evidence for local anisotropy of orientation preferences. We conclude that an orderly and columnar arrangement of functional response properties is not a universal characteristic of cortical architecture.
Collapse
|
50
|
Heimel JA, Van Hooser SD, Nelson SB. Laminar organization of response properties in primary visual cortex of the gray squirrel (Sciurus carolinensis). J Neurophysiol 2005; 94:3538-54. [PMID: 16000528 DOI: 10.1152/jn.00106.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The gray squirrel (Sciurus carolinensis) is a diurnal highly visual rodent with a cone-rich retina. To determine which features of visual cortex are common to highly visual mammals and which are restricted to non-rodent species, we studied the laminar organization of response properties in primary visual area V1 of isoflurane-anesthetized squirrels using extra-cellular single-unit recording and sinusoidal grating stimuli. Of the responsive cells, 75% were tuned for orientation. Only 10% were directionally selective, almost all in layer 6, a layer receiving direct input from the dorsal lateral geniculate nucleus (LGN). Cone opponency was widespread but almost absent from layer 6. Median optimal spatial frequency tuning was 0.21 cycles/ degrees . Median optimal temporal frequency a high 5.3 Hz. Layer 4 had the highest percentage of simple cells and shortest latency (26 ms). Layers 2/3 had the lowest spontaneous activity and highest temporal frequency tuning. Layer 5 had the broadest spatial frequency tuning and most spontaneous activity. At the layer 4/5 border were sustained cells with high cone opponency. Simple cells, determined by modulation to drifting sinusoidal gratings, responded with shorter latencies, were more selective for orientation and direction, and were tuned to lower spatial frequencies. A comparison with other mammals shows that although the laminar organization of orientation selectivity is variable, the cortical input layers contain more linear cells in most mammals. Nocturnal mammals appear to have more orientation-selective neurons in V1 than diurnal mammals of similar size.
Collapse
|