1
|
Chatard C, Meiller A, Marinesco S. Microelectrode Biosensors forin vivoAnalysis of Brain Interstitial Fluid. ELECTROANAL 2018. [DOI: 10.1002/elan.201700836] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Charles Chatard
- INSERM U1028, CNRS UMR5292; Lyon Neuroscience Research Center, Team TIGER
- Université Claude Bernard Lyon 1; Lyon France
| | - Anne Meiller
- AniRA-Neurochem Technological Platform; Lyon France
- Université Claude Bernard Lyon 1; Lyon France
| | - Stéphane Marinesco
- INSERM U1028, CNRS UMR5292; Lyon Neuroscience Research Center, Team TIGER
- AniRA-Neurochem Technological Platform; Lyon France
- Université Claude Bernard Lyon 1; Lyon France
- Lyon Neuroscience Research Center, Team TIGER; Faculty of Medicine; 8 Avenue Rockefeller 69373 Lyon Cedex 08 France
| |
Collapse
|
2
|
Sirca D, Vardeu A, Pinna M, Diana M, Enrico P. A robust, state-of-the-art amperometric microbiosensor for glutamate detection. Biosens Bioelectron 2014; 61:526-31. [PMID: 24951923 DOI: 10.1016/j.bios.2014.04.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 04/10/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
Abstract
Scientific knowledge of glutamate (GLU) neurobiology is severely hampered by the inadequacy of the available in vivo brain sampling techniques. Due to the crucial role of GLU in central nervous system function and pathology, the development of a reliable sampling device is mandatory. GLU biosensor holds potential to address many of the known issues of in vivo GLU measurement. We report here on the development and test of a labor- and cost-effective microbiosensor, suitable to be applied for measuring brain GLU. A glycerol-based cryopreservation method was also tested. Needle type Pt biosensors were coated with a permselective Nafion-Poly(o-phenylenediamine) layer and cross-linked to l-glutamate oxidase with poly(ethylene glycol) diglycidyl ether. Tested in vitro, the device shows high sensitivity and specificity for GLU, while being poorly influenced by common interfering substances such as ascorbate, dopamine and dihydroxyphenylacetic acid. Further, the cryopreservation procedure kept sensitivity unaltered for 30 days and possibly longer. We conclude that a highly efficient GLU biosensor of minimal dimensions can be consistently and affordably constructed with relative ease. Together with the possibility of cryopreservation this shall foster diffusion and exploitation of GLU biosensors technology.
Collapse
Affiliation(s)
- Donatella Sirca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Antonella Vardeu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Milo Pinna
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marco Diana
- "G. Minardi" Laboratory of Cognitive Neuroscience, Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Paolo Enrico
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
3
|
Wu Q, Wu D, Guan Y. In Vivo Fast Equilibrium Microextraction by Stable and Biocompatible Nanofiber Membrane Sandwiched in Microfluidic Device. Anal Chem 2013; 85:11524-31. [DOI: 10.1021/ac4028438] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qian Wu
- Key Laboratory
of Separation Science for Analytical Chemistry, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- Dalian Institute
of Chemical Physics, Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Dapeng Wu
- Key Laboratory
of Separation Science for Analytical Chemistry, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Yafeng Guan
- Key Laboratory
of Separation Science for Analytical Chemistry, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| |
Collapse
|
4
|
Lugo-Morales LZ, Loziuk PL, Corder AK, Toups JV, Roberts JG, McCaffrey KA, Sombers LA. Enzyme-modified carbon-fiber microelectrode for the quantification of dynamic fluctuations of nonelectroactive analytes using fast-scan cyclic voltammetry. Anal Chem 2013; 85:8780-6. [PMID: 23919631 PMCID: PMC3795517 DOI: 10.1021/ac4017852] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neurotransmission occurs on a millisecond time scale, but conventional methods for monitoring nonelectroactive neurochemicals are limited by slow sampling rates. Despite a significant global market, a sensor capable of measuring the dynamics of rapidly fluctuating, nonelectroactive molecules at a single recording site with high sensitivity, electrochemical selectivity, and a subsecond response time is still lacking. To address this need, we have enabled the real-time detection of dynamic glucose fluctuations in live brain tissue using background-subtracted, fast-scan cyclic voltammetry. The novel microbiosensor consists of a simple carbon fiber surface modified with an electrodeposited chitosan hydrogel encapsulating glucose oxidase. The selectivity afforded by voltammetry enables quantitative and qualitative measurements of enzymatically generated H2O2 without the need for additional strategies to eliminate interfering agents. The microbiosensors possess a sensitivity and limit of detection for glucose of 19.4 ± 0.2 nA mM(-1) and 13.1 ± 0.7 μM, respectively. They are stable, even under deviations from physiological normoxic conditions, and show minimal interference from endogenous electroactive substances. Using this approach, we have quantitatively and selectively monitored pharmacologically evoked glucose fluctuations with unprecedented chemical and spatial resolution. Furthermore, this novel biosensing strategy is widely applicable to the immobilization of any H2O2 producing enzyme, enabling rapid monitoring of many nonelectroactive enzyme substrates.
Collapse
Affiliation(s)
- Leyda Z. Lugo-Morales
- Department of Chemistry North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Philip L. Loziuk
- Department of Chemistry North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Amanda K. Corder
- Department of Chemistry North Carolina State University, Raleigh, North Carolina 27695, United States
| | - J. Vincent Toups
- Department of Chemistry North Carolina State University, Raleigh, North Carolina 27695, United States
| | - James G. Roberts
- Department of Chemistry North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Katherine A. McCaffrey
- Department of Biology, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Leslie A. Sombers
- Department of Chemistry North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
5
|
Vasylieva N, Marinesco S. Enzyme Immobilization on Microelectrode Biosensors. NEUROMETHODS 2013. [DOI: 10.1007/978-1-62703-370-1_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Roberts JG, Hamilton KL, Sombers LA. Comparison of electrode materials for the detection of rapid hydrogen peroxide fluctuations using background-subtracted fast scan cyclic voltammetry. Analyst 2011; 136:3550-6. [PMID: 21727955 DOI: 10.1039/c1an15337d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen peroxide (H(2)O(2)) is a critically important signaling molecule. Endogenous H(2)O(2) mediates diverse physiological processes both intra- and intercellularly; and enzymatically generated H(2)O(2) is a widely used reporter molecule at biosensors that rely on enzymes to detect non-electroactive species. However, the development and application of electroanalytical methods for the direct detection of this molecule has been challenging because the electron transfer kinetics for the irreversible oxidation of H(2)O(2) are slow. We comparatively characterize the electrochemical oxidation of H(2)O(2) on bare and Nafion(®)-coated platinum and carbon-fiber microdisc electrodes using fast-scan cyclic voltammetry (FSCV). Using a waveform ranging from +0.2 to +1.3 V at 400 V s(-1), the electrocatalytic properties of the platinum surface were not readily apparent, and the carbon-fiber microelectrode demonstrated greater sensitivity and selectivity toward H(2)O(2). Nafion(®)-coating further enhanced detection on carbon electrodes. These results confirm that platinum electrodes, with or without Nafion(®), will not work acceptably with this approach, and confirm the value of carbon-fiber microelectrodes relative to more traditionally used platinum electrodes in the direct detection of rapid H(2)O(2) fluctuations using FSCV.
Collapse
Affiliation(s)
- James G Roberts
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Box 8204, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
7
|
Frey O, van der Wal P, de Rooij N, Koudelka-Hep M. Biosensor Microprobe Functionalisation Using an On-Chip Dispensing Approach. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.proche.2009.07.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
A new microdialysis-electrochemical device for in vivo simultaneous determination of acetylcholine and choline in rat brain treated with N-methyl-(R)-salsolinol. Biosens Bioelectron 2009; 24:3594-9. [DOI: 10.1016/j.bios.2009.05.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 05/15/2009] [Accepted: 05/19/2009] [Indexed: 11/21/2022]
|
9
|
Wilson GS, Johnson MA. In-vivo electrochemistry: what can we learn about living systems? Chem Rev 2008; 108:2462-81. [PMID: 18558752 DOI: 10.1021/cr068082i] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- George S Wilson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA.
| | | |
Collapse
|
10
|
|
11
|
Bruno JP, Gash C, Martin B, Zmarowski A, Pomerleau F, Burmeister J, Huettl P, Gerhardt GA. Second-by-second measurement of acetylcholine release in prefrontal cortex. Eur J Neurosci 2006; 24:2749-57. [PMID: 17156201 DOI: 10.1111/j.1460-9568.2006.05176.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microdialysis has been widely used to measure acetylcholine (ACh) release in vivo and has provided important insights into the regulation of cholinergic transmission. However, microdialysis can be constrained by limited spatial and temporal resolution. The present experiments utilize a microelectrode array (MEA) to rapidly measure ACh release and clearance in anaesthetized rats. The array electrochemically detects, on a second-by-second basis, changes in current selectively produced by the hydrolysis of ACh to choline (Ch) and the subsequent oxidation of choline and hydrogen peroxidase (H(2)O(2)) at the electrode surface. In vitro calibration of the microelectrode revealed linear responses to ACh (R(2) = 0.9998), limit of detection of 0.08 microm, and signal-to-noise ratio of 3.0. The electrode was unresponsive to ascorbic acid (AA), dopamine (DA), or norepinephrine (NE) interferents. In vivo experiments were conducted in prefrontal cortex (PFC) of anaesthetized rats. Pressure ejections of ACh (10 mm; 40 nL) through an adjoining micropipette produced a rapid rise in current, reaching maximum amplitude in approximately 1.0 s and cleared by 80% within 4-11 s. Endogenously released ACh, following local depolarization with KCl (70 mm; 40, 160 nL), was detected at values as low as 0.05 microm. These signals were volume-dependent and cleared within 4-12 s. Finally, nicotine (1.0 mm, 80 nL) stimulated ACh signals. Nicotine-induced signals reflected the hydrolysis of ACh by endogenous acetylcholinesterase (AChE) as inhibition of the enzyme following perfusion with neostigmine (10 microm) attenuated the signal (40-94%). Collectively, these data validate a novel method for rapidly measuring cholinergic transmission in vivo with a spatial and temporal resolution that far exceeds conventional microdialysis.
Collapse
Affiliation(s)
- John P Bruno
- Department of Psychology, 57 Psychology Building, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Mitala J, Michael A. Improving the performance of electrochemical microsensors based on enzymes entrapped in a redox hydrogel. Anal Chim Acta 2006. [DOI: 10.1016/j.aca.2005.09.053] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Dale N, Hatz S, Tian F, Llaudet E. Listening to the brain: microelectrode biosensors for neurochemicals. Trends Biotechnol 2005; 23:420-8. [PMID: 15950302 DOI: 10.1016/j.tibtech.2005.05.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 04/19/2005] [Accepted: 05/24/2005] [Indexed: 10/25/2022]
Abstract
Chemical signalling underlies every function of the nervous system, from those of which we are unaware, for example, control of the heart, to higher cognitive functions, such as emotions, learning and memory. Neurotransmitters and neuromodulators mediate communication between neurons and between neurons and non-neural cells such as glia and muscle. In the past, the means for studying the production and release of these signalling agents directly has been limited in its temporal and spatial resolution relative to the dynamics of chemical signalling and the structures of interest in the brain. Now microelectrode biosensors are becoming available that give unprecedented spatial and temporal resolution, enabling, for the first time, direct measurement in real time of the chemical conversations between cells in the nervous system.
Collapse
Affiliation(s)
- Nicholas Dale
- Warwick Biosensors Group, Department of Biological Sciences, The University of Warwick, Coventry, CV4 7AL, UK.
| | | | | | | |
Collapse
|
14
|
Schuvailo ON, Dzyadevych SV, El'skaya AV, Gautier-Sauvigné S, Csöregi E, Cespuglio R, Soldatkin AP. Carbon fibre-based microbiosensors for in vivo measurements of acetylcholine and choline. Biosens Bioelectron 2005; 21:87-94. [PMID: 15967355 DOI: 10.1016/j.bios.2004.09.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Revised: 09/22/2004] [Accepted: 09/22/2004] [Indexed: 10/26/2022]
Abstract
This report describes technical improvements to the manufacture of a carbon fibre electrode for the stable and sensitive detection of H2O2 (detection limit at 0.5 microM). This electrode was also modified through the co-immobilisation of acetylcholinesterase (AChE) and/or choline oxidase (ChOx) in a bovine serum albumin (BSA) membrane for the development of a sensor for in vivo measurements of acetylcholine and choline. Amperometric measurements were performed using a conventional three-electrode system forming part of a flow-injection set-up at an applied potential of 800-1100 mV relative to an Ag/AgCl reference electrode. The optimised biosensor obtained was reproducible and stable, and exhibited a detection limit of 1 microM for both acetylcholine and choline. However, due to the high operating potential used, the biosensor was prone to substantial interference from other electroactive compounds, such as ascorbic acid. Therefore, in a further step, a mediated electron transfer approach was used that incorporated horseradish peroxidase into an osmium-based redox hydrogel layered onto the active surface of the electrode. Afterwards, a Nafion layer and a coating containing AChE and/or ChOx co-immobilised in a BSA membrane were successively deposited. This procedure further increased the selectivity of the biosensor, when operated in the same flow-injection system but at an applied potential of -50 mV relative to an Ag/AgCl reference electrode. The sensor exhibited good selectivity and a high sensitivity over a concentration range (0.3-100 microM) suitable for the measurement of choline and acetylcholine in vivo.
Collapse
Affiliation(s)
- O N Schuvailo
- Laboratory of Biomolecular Electronics, Institute of Molecular Biology and Genetics of Ukrainian NAS, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| | | | | | | | | | | | | |
Collapse
|
15
|
Wilson GS, Gifford R. Biosensors for real-time in vivo measurements. Biosens Bioelectron 2005; 20:2388-403. [PMID: 15854814 DOI: 10.1016/j.bios.2004.12.003] [Citation(s) in RCA: 363] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 11/01/2004] [Accepted: 12/02/2004] [Indexed: 11/29/2022]
Abstract
The current status of sensors capable of continuous measurement of analytes in biological media is reviewed. This review containing 173 references deals with devices whose use in single cells, tissue slices, animal models and humans has been demonstrated. In addition to sensors specific for glucose, lactate, glutamate, pyruvate, choline and acetylcholine, insights obtained from monitoring nitric oxide, Na(+), K(+), Ca(2+), and dopamine are presented. Performance criteria for sensor performance are described as is the subject of biosensor calibration. Biocompatibility issues are dealt with in some detail as is the status of continuous blood glucose monitoring in humans.
Collapse
Affiliation(s)
- George S Wilson
- Department of Chemistry, University of Kansas, Malott Hall, Lawrence, KS 66045, USA.
| | | |
Collapse
|
16
|
Parikh V, Pomerleau F, Huettl P, Gerhardt GA, Sarter M, Bruno JP. Rapid assessment of in vivo cholinergic transmission by amperometric detection of changes in extracellular choline levels. Eur J Neurosci 2004; 20:1545-54. [PMID: 15355321 DOI: 10.1111/j.1460-9568.2004.03614.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Conventional microdialysis methods for measuring acetylcholine (ACh) efflux do not provide sufficient temporal resolution to relate cholinergic transmission to individual stimuli or behavioral responses, or sufficient spatial resolution to investigate heterogeneities in such regulation within a brain region. In an effort to overcome these constraints, we investigated a ceramic-based microelectrode array designed to measure amperometrically rapid changes in extracellular choline as a marker for cholinergic transmission in the frontoparietal cortex of anesthetized rats. These microelectrodes exhibited detection limits of 300 nm for choline and selectivity (> 100 : 1) of choline over interferents such as ascorbic acid. Intracortical pressure ejections of choline (20 mm, 66-400 nL) and ACh (10 and 100 mm, 200 nL) dose-dependently increased choline-related signals that were cleared to background levels within 10 s. ACh, but not choline-induced signals, were significantly attenuated by co-ejection of the acetylcholinesterase inhibitor neostigmine (Neo; 100 mm). Pressure ejections of drugs known to increase cortical ACh efflux, potassium (KCl; 70 mm, 66, 200 nL) and scopolamine (Scop; 10 mm, 200 nL), also markedly increased extracellular choline signals, which again were inhibited by Neo. Scop-induced choline signals were also found to be tetrodotoxin-sensitive. Collectively, these findings suggest that drug-induced increases in current measured with these microelectrode arrays reflect the oxidation of choline that is neuronally derived from the release and subsequent hydrolysis of ACh. Choline signals assessed using enzyme-selective microelectrode arrays may represent a rapid, sensitive and spatially discrete measure of cholinergic transmission.
Collapse
Affiliation(s)
- Vinay Parikh
- Psychobiology and Behavioural Neuroscience, Department of Psychology, Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
17
|
Oldenziel WH, Beukema W, Westerink BHC. Improving the reproducibility of hydrogel-coated glutamate microsensors by using an automated dipcoater. J Neurosci Methods 2004; 140:117-26. [PMID: 15589341 DOI: 10.1016/j.jneumeth.2004.04.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Accepted: 04/06/2004] [Indexed: 11/17/2022]
Abstract
Hydrogel-coated microsensors based on carbon fiber electrodes (CFEs) are promising tools for in vivo analysis of endogeneous compounds such as glutamate. However, their construction generally depends on manual fabrication, which often results in poor reproducibility. The aim of this study was to improve the reproducibility and performance of glutamate microsensors. CFEs (10 microm diameter, 300-500 microm long) were coated with a cross-linked redox-polymer hydrogel containing l-glutamate oxidase, horseradish peroxidase and ascorbate oxidase. Various parameters that are likely to influence the reproducibility of the glutamate microsensors were studied. It appeared that the most crucial step in determining the microsensor performance is the manual hydrogel-application procedure. To control this procedure an automated dipcoater was constructed, which allowed mechanical application of the hydrogel on the CFE under standardized conditions. Significant improvements in performance were seen when the CFEs were dipcoated for 10 min at 37 degrees C. Further improvements were obtained when the automated hydrogel application was combined with other cross-link methods, such as electrodeposition and electrostatic complexation. A crucial factor in determining the microsensor performance is the hydrogel thickness. Microscopic observations revealed that, despite the use of an automated dipcoater, the layer thickness was not constant. By combining the automated dipcoat technique with amperometry, the layer thickness could be indirectly monitored and controlled, which resulted in significant improvements of the reproducibility of the sensors.
Collapse
Affiliation(s)
- W H Oldenziel
- Department of Biomonitoring and Sensoring, University Center for Pharmacy, 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
18
|
Gáspár S, Wang X, Suzuki H, Csöregi E. Amperometric biosensor-based flow-through microdetector for microdialysis applications. Anal Chim Acta 2004. [DOI: 10.1016/j.aca.2004.07.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
19
|
Phillis JW, O'Regan MH. Characterization of modes of release of amino acids in the ischemic/reperfused rat cerebral cortex. Neurochem Int 2003; 43:461-7. [PMID: 12742092 DOI: 10.1016/s0197-0186(03)00035-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brain extracellular levels of glutamate, aspartate, GABA and glycine increase rapidly following the onset of ischemia, remain at an elevated level during the ischemia, and then decline over 20-30 min following reperfusion. The elevated levels of the excitotoxic amino acids, glutamate and aspartate, are thought to contribute to ischemia-evoked neuronal injury and death. Calcium-evoked exocytotic release appears to account for the initial (1-2 min) efflux of neurotransmitter-type amino acids following the onset of ischemia, with non-vesicular release responsible for much of the subsequent efflux of these and other amino acids, including taurine and phosphoethanolamine. Extracellular Ca(2+)-independent release is mediated, in part by Na(+)-dependent amino acid transporters in the plasma membrane operating in a reversed mode, and by the opening of swelling-induced chloride channels, which allow the passage of amino acids down their concentration gradients. Experiments on cultured neurons and astrocytes have suggested that it is the astrocytes which make the primary contribution to this amino acid efflux. Inhibition of phospholipase A(2) attenuates ischemia-evoked release of both amino and free fatty acids from the rat cerebral cortex indicating that this group of enzymes is involved in amino acid efflux, and also accounting for the consistent ischemia-evoked release of phosphoethanolamine. It is, therefore, possible that disruption of membrane integrity by phospholipases plays a role in amino acid release. Recovery of amino acid levels to preischemic levels requires their uptake by high affinity Na(+)-dependent transporters, operating in their normal mode, following restoration of energy metabolism, cell resting potentials and ionic gradients.
Collapse
Affiliation(s)
- J W Phillis
- Department of Physiology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA.
| | | |
Collapse
|
20
|
Brown FO, Lowry JP. Microelectrochemical sensors for in vivo brain analysis: an investigation of procedures for modifying Pt electrodes using Nafion. Analyst 2003; 128:700-5. [PMID: 12866891 DOI: 10.1039/b300266g] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various Nafion coating procedures were examined in order to design a simple and reproducible coating method to maximise permselective characteristics, and thus eliminate signals from electroactive interferents, in sensors designed for direct in vivo measurements in the brain. Interferents investigated included ascorbic acid (AA), the principal endogenous electroactive interferent present in the brain, and uric acid. Application of the Nafion (5% commercial solution) using a thermally annealing procedure involving 5 pre-coats, and 2 subsequent dip-bake layers resulted in elimination of interferent signals. It also produced complete blocking of the signal for the neurotransmitter dopamine. The optimum time and temperature for annealing was found to be 5 min at 210 degrees C. An examination of shelf life over two weeks indicated negligible AA interference over this period. Preliminary investigations with respect to the potential use of these Nafion-modified Pt electrodes in the design of implantable, first generation, peroxide detecting biosensors indicated that the modified electrode had no effect on O2 permeability but did produce a significant decrease in H2O2 sensitivity. While this may preclude their use in biosensor development they may be more suitable for detection of gaseous neurochemicals such as nitric oxide.
Collapse
Affiliation(s)
- Finbar O Brown
- Sensors Development Unit, Bioelectroanalysis Laboratory, Department of Chemistry, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | | |
Collapse
|
21
|
Gordito MP, Kotsis DH, Minteer SD, Spence DM. Flow-based amperometric detection of dopamine in an immobilized cell reactor. J Neurosci Methods 2003; 124:129-34. [PMID: 12706842 DOI: 10.1016/s0165-0270(02)00383-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A protocol is described for immobilizing PC 12 cells on to the lumen of fused silica microbore tubing having an inside diameter of 250 microm and coated with a thin layer of poly-L-lysine. Optimization studies of the immobilization procedure indicated that a 50 microg ml(-1) solution of poly-L-lysine was the best material for cell adhesion to the fused silica tubing. In addition, it was found that the cells become attached to the poly-L-lysine in approximately 2 h, after which they could be maintained inside of the tubing for a period up to 5 days. Importantly, the immobilized cells ability to release neurotransmitters was evident by measuring the Ca(2+)-induced release of dopamine with an in column amperometric detection scheme involving a Nafion modified platinum ultramicroelectrode.
Collapse
|
22
|
Abstract
Electroanalytical techniques have been applied to monitoring chemical events including neurotransmitter release during rodent behaviour and the release of zeptomoles of molecules from single cells. Transgenic mice models have been developed and studied to identify specific cell types in vitro. Characterization and surface modification of electroanalytical probes has enhanced the selectivity and sensitivity of measurements.
Collapse
Affiliation(s)
- Kevin P Troyer
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Venable Hall, 27599, USA
| | | | | | | |
Collapse
|
23
|
Burmeister JJ, Pomerleau F, Palmer M, Day BK, Huettl P, Gerhardt GA. Improved ceramic-based multisite microelectrode for rapid measurements of L-glutamate in the CNS. J Neurosci Methods 2002; 119:163-71. [PMID: 12323420 DOI: 10.1016/s0165-0270(02)00172-3] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This paper describes improvements and further characterization of a ceramic-based multisite microelectrode for in vivo measurements of L-glutamate. Improvements include increased recording area, insulation deposition using photolithography for more uniform recording sites and forming the microelectrodes using a diamond saw providing smoother microelectrode edges. The new microelectrodes are triangular in shape, 1 cm in length and taper from 1 mm to a 2-5 microm tip. Details on performing in vivo measurements are given, including microelectrode preparation, pitfalls of the recording method and approaches to enhance reproducibility of the technique. The detection limit for L-glutamate was lowered to approximately 0.5 microM and a self-referencing recording technique was utilized to remove interferents as well as decrease noise. Applications of the microelectrodes to study L-glutamate uptake and release in rat prefrontal cortex, cortex, cerebellum and striatum are included.
Collapse
Affiliation(s)
- Jason J Burmeister
- Department of Anatomy and Neurobiology, Center for Sensor Technology, University of Kentucky, Chandler Medical Center, Room 306, Davis Mills Building, Lexington, KY 40536-0098, USA
| | | | | | | | | | | |
Collapse
|
24
|
Dressman SF, Peters JL, Michael AC. Carbon fiber microelectrodes with multiple sensing elements for in vivo voltammetry. J Neurosci Methods 2002; 119:75-81. [PMID: 12234638 DOI: 10.1016/s0165-0270(02)00180-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Electrically evoked dopamine release was monitored in the striatum of anesthetized rats using voltammetric microelectrode assemblies with two to four separately addressable carbon fiber sensing elements. The sensing elements were disk-shaped, had a diameter of about 1 microm, and were separated from each other by less than 15 microm. The microelectrodes were used to monitor extracellular dopamine at multiple depths beneath the brain surface during electrical stimulation of the medial forebrain bundle. When the sensing elements were 10-15 microm apart, the stimulus responses at each element were distinct, suggesting that each response was representative of a distinct recording site. The possibility of performing measurements at distinct but closely spaced sites provides a potential route to high spatial resolution information about extracellular events. On the other hand, when the individual sensing elements were about 1 microm apart, similarities between the observed stimulus responses suggest that the multiple elements were recording from a single site. The ability to perform multiple chemical measurements at a single site presents several opportunities for new approaches to the in vivo study of neurochemistry.
Collapse
Affiliation(s)
- Shawn F Dressman
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|