1
|
Pourbagher-Shahri AM, Forouzanfar F. Saffron (Crocus sativus) and its constituents for pain management: A review of current evidence. Phytother Res 2023; 37:5041-5057. [PMID: 37528638 DOI: 10.1002/ptr.7968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 08/03/2023]
Abstract
Pain can become a chronic and deliberating experience with a significant burden. In preclinical and clinical studies, Saffron (Crocus sativus L.) has shown analgesic activities. Considering the unsatisfactory results of current therapeutic management for chronic pain conditions, we aimed to review saffron's analgesic activity and underlying mechanisms. Saffron showed antinociceptive activities in formalin-, carrageenan-, and capsaicin-induced experimental pain models. Saffron analgesic activities affected several targets, including ion channels of nociceptors; the adrenergic system and central histaminic system; inhibition of inflammatory pathways, apoptotic pathways, and oxidative stress; regulation of NO pathway, and the endocannabinoid system. Clinical studies showed analgesia of Saffron in rheumatoid arthritis, after-pain following childbirth, dysmenorrhea, and fibromyalgia. Our literature review showed that saffron can be beneficial as an adjunct therapy to commonly used analgesics in practice, particularly in chronic pain conditions.
Collapse
Affiliation(s)
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Cascio MG, Valeri D, Tucker SJ, Marini P. A1-adenosine acute withdrawal response and cholecystokinin-8 induced contractures are regulated by Ca(2+)- and ATP-activated K(+) channels. Pharmacol Res 2015; 95-96:82-91. [PMID: 25836919 DOI: 10.1016/j.phrs.2015.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 01/29/2023]
Abstract
In isolated guinea-pig ileum (GPI), the A1-adenosine acute withdrawal response is under the control of several neuronal signalling systems, including the μ/κ-opioid and the cannabinoid CB1 systems. It is now well established that after the stimulation of the A1-adenosine system, the indirect activation of both μ/κ-opioid and CB1 systems is prevented by the peptide cholecystokinin-8 (CCk-8). In the present study, we have investigated the involvement of the Ca(2+)/ATP-activated K(+) channels in the regulation of both acute A1-withdrawal and CCk-8-induced contractures in the GPI preparation. Interestingly, we found that: (a) the A1-withdrawal contracture is inhibited by voltage dependent Ca(2+)-activated K(+) channels, Kv, while it is enhanced by the voltage independent Ca(2+)-activated K(+) channels, SKCa; (b) in the presence of CCk-8, the inhibitory effect of the A1 agonist, CPA, on the peptide induced contracture is significantly enhanced by the voltage independent Ca(2+)-activated K(+) channel, SKCa; and (c) the A1-withdrawal contracture precipitated in the presence of CCk-8 is controlled by the ATP-sensitive potassium channels, KATP. Our data suggest, for the first time, that both Ca(2+)- and ATP-activated K(+) channels are involved in the regulation of both A1-withdrawal precipitated and CCk-8 induced contractures.
Collapse
Affiliation(s)
- Maria Grazia Cascio
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Daniela Valeri
- Department of Human Physiology and Pharmacology 'Vittorio Erspamer', University of Rome "La Sapienza", Rome, Italy
| | - Steven J Tucker
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Pietro Marini
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
3
|
Ellis M, Chambers JD, Gwynne RM, Bornstein JC. Serotonin and cholecystokinin mediate nutrient-induced segmentation in guinea pig small intestine. Am J Physiol Gastrointest Liver Physiol 2013; 304:G749-61. [PMID: 23392236 DOI: 10.1152/ajpgi.00358.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Segmentation is an important process in nutrient mixing and absorption; however, the mechanisms underlying this motility pattern are poorly understood. Segmentation can be induced by luminal perfusion of fatty acid in guinea pig small intestine in vitro and mimicked by the serotonin (5-HT) reuptake inhibitor fluoxetine (300 nM) and by cholecystokinin (CCK). Serotonergic and CCK-related mechanisms underlying nutrient-induced segmentation were investigated using selective 5-HT and CCK receptor antagonists on isolated segments of small intestine luminally perfused with 1 mM decanoic acid. Motility patterns were analyzed using video imaging and spatiotemporal maps. Segmenting activity mediated by decanoic acid was depressed following luminal application of the 5-HT receptor antagonists granisetron (5-HT(3), 1 μM) and SB-207266 (5-HT(4), 10 nM) and the CCK receptor antagonists devazepide (CCK-1, 300 nM) and L-365260 (CCK-2, 300 nM), but these antagonists did not further depress segmentation when combined. The P2 receptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonate (10 μM) had no effect on activity. Serosal application of 5-HT antagonists had little effect on segmentation in the duodenum but reduced activity in the jejunum when granisetron and SB-207266 were applied together. These results reveal that 5-HT(3) and 5-HT(4) receptors, as well as CCK-1 and CCK-2 receptors, are critical in regulating decanoic acid-induced segmentation. Computational simulation indicated that these data are consistent with decanoic acid activating two pathways in the mucosa that converge within the enteric neural circuitry, while contraction-induced release of 5-HT from the mucosa provides feedback into the neural circuit to set the time course of the overall contractile activity.
Collapse
Affiliation(s)
- Melina Ellis
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | |
Collapse
|
4
|
Gwynne RM, Bornstein JC. Synaptic transmission at functionally identified synapses in the enteric nervous system: roles for both ionotropic and metabotropic receptors. Curr Neuropharmacol 2010; 5:1-17. [PMID: 18615154 DOI: 10.2174/157015907780077141] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/28/2006] [Accepted: 12/04/2006] [Indexed: 12/18/2022] Open
Abstract
Digestion and absorption of nutrients and the secretion and reabsorption of fluid in the gastrointestinal tract are regulated by neurons of the enteric nervous system (ENS), the extensive peripheral nerve network contained within the intestinal wall. The ENS is an important physiological model for the study of neural networks since it is both complex and accessible. At least 20 different neurochemically and functionally distinct classes of enteric neurons have been identified in the guinea pig ileum. These neurons express a wide range of ionotropic and metabotropic receptors. Synaptic potentials mediated by ionotropic receptors such as the nicotinic acetylcholine receptor, P2X purinoceptors and 5-HT(3) receptors are seen in many enteric neurons. However, prominent synaptic potentials mediated by metabotropic receptors, like the P2Y(1) receptor and the NK(1) receptor, are also seen in these neurons. Studies of synaptic transmission between the different neuron classes within the enteric neural pathways have shown that both ionotropic and metabotropic synaptic potentials play major roles at distinct synapses within simple reflex pathways. However, there are still functional synapses at which no known transmitter or receptor has been identified. This review describes the identified roles for both ionotropic and metabotropic neurotransmission at functionally defined synapses within the guinea pig ileum ENS. It is concluded that metabotropic synaptic potentials act as primary transmitters at some synapses. It is suggested identification of the interactions between different synaptic potentials in the production of complex behaviours will require the use of well validated computer models of the enteric neural circuitry.
Collapse
Affiliation(s)
- R M Gwynne
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | |
Collapse
|
5
|
Abstract
Digestion and absorption of a meal are time-intensive processes. To optimize digestion and absorption, transit of the meal through the gastrointestinal tract is regulated by a complex integration of neuropeptidergic signals generated as the jejunal brake and ileal brake response to nutrients. Mediators involved in the slowing of transit responses include peptide YY (PYY), chemosensitive afferent neurons, intestinofugal nerves, noradrenergic nerves, myenteric serotonergic neurons, and opioid neurons. The activation of this circuitry modifies the peristaltic reflex to convert the intestinal motility pattern from propagative to segmenting. Fat is the most potent trigger of these transit control mechanisms. The integrated circuitry of gut peptides and neurons involved in transit control in response to nutrients is described in this review.
Collapse
Affiliation(s)
- Gregg W Van Citters
- Division of Gastroinestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | |
Collapse
|
6
|
Webb T, Gulley S, Pruitt F, Esdaile AR, Sharma SK, Cox JE, Smith GP, Sayegh AI. Cholecystokinin-8 increases Fos-like immunoreactivity in myenteric neurons of the duodenum and jejunum more after intraperitoneal than after intravenous injection. Neurosci Lett 2005; 389:157-62. [PMID: 16105718 DOI: 10.1016/j.neulet.2005.07.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 07/14/2005] [Accepted: 07/22/2005] [Indexed: 11/23/2022]
Abstract
The objective of this study was to measure the relative efficacy and potency of cholecystokinin-8 (CCK-8) given by intraperitoneal (i.p.) and intravenous (i.v.) injection to stimulate Fos-like immunoreactivity (Fos-LI) in neurons of the myenteric plexus in the duodenum and jejunum. The subjects for his experiment were 40 male Sprague-Dawley rats divided into eight treatment groups (n=5 rats per treatment). Four groups of rats were injected with 5, 10, and 40 microg/kg sulfated CCK-8 and saline (control) i.p., and the remaining groups with the same treatments i.v. We then detected Fos-LI, a marker for neuronal activation, in the myenteric plexus of the duodenum and jejunum, in response to the previous doses and routes. All of the CCK-8 doses administered by both routes increased Fos-LI in the myenteric plexus of the duodenum and jejunum significantly more than saline did. Although both routes were efficacious in increasing Fos-LI, CCK-8 i.p. was significantly more potent than CCK-8 i.v. These data provide immunohistochemical evidence that i.p. administration of CCK-8 is a more potent stimulant of Fos-LI in the neurons of the myenteric plexus of the duodenum and jejunum than i.v. injection.
Collapse
Affiliation(s)
- Tennille Webb
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Webb T, Gulley S, Esdaile AR, Pruitt F, Sharma SK, Williams CS, Sayegh AI. Effects of cholecystokinin-receptor antagonists on Fos-like immunoreactivity stimulated by sulfated cholecystokinin-8 in neurons of the myenteric plexus and hindbrain of rats. Am J Vet Res 2005; 66:1308-13. [PMID: 16173470 DOI: 10.2460/ajvr.2005.66.1308] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the role of cholecystokinin (CCK)-receptor antagonists in the activation of enteric and hindbrain neurons by sulfated CCK-8. ANIMALS 81 male Sprague-Dawley rats. PROCEDURE Rats were allocated to 10 groups (5 to 22 rats/group). Each rat received 2 IP injections (15 minutes between injections). The first injection consisted of a specific CCK2-receptor (CCK2R) antagonist (L365,260; 150, 500, or 1,000 microg/kg), a specific CCK1-receptor (CCK1R) antagonist (devazepide; 150 microg/kg), or 1% dimethyl sulfoxide (DMSO [ie, vehicle]), and the second injection consisted of sulfated CCK-8 (10 microg/kg) or saline (0.9% NaCl) solution. Rats were anesthetized and perfused with 500 mL of Krebs saline solution, and the myenteric plexuses of the duodenum and jejunum were collected. Rats were then perfused with 500 mL of phosphate-buffered 4% formaldehyde solution; rats were then euthanatized, and the hindbrain of each was harvested. Tissues were stained by use of a diaminobenzidine reaction enhanced with nickel to reveal Fos-like immunoreactivity (Fos-LI), a marker of neuronal activation, in the aforementioned neurons. RESULTS Sulfated CCK-8 significantly increased Fos-LI in the myenteric and hindbrain neurons, compared with values for the DMSO injections. All dosages of L365,260 failed to attenuate this increase; however, injection of devazepide attenuated the increase in Fos-LI. CONCLUSIONS AND CLINICAL RELEVANCE Analysis of the results of this study reveals that sulfated CCK-8 activates myenteric and hindbrain neurons of rats primarily through CCK1 R. It provides evidence that CCK2R are lacking or not functional in the gastrointestinal tract of rats.
Collapse
Affiliation(s)
- Tennille Webb
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Covasa M, Ritter RC. Reduced CCK-induced Fos expression in the hindbrain, nodose ganglia, and enteric neurons of rats lacking CCK-1 receptors. Brain Res 2005; 1051:155-63. [PMID: 16005445 DOI: 10.1016/j.brainres.2005.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2004] [Revised: 05/29/2005] [Accepted: 06/05/2005] [Indexed: 02/04/2023]
Abstract
Many of the actions of cholecystokinin (CCK) are mediated by CCK-1 receptors, expressed by enteric and vagal afferent neurons. Otsuka Long-Evans Tokushima Fatty rats (OLETF) do not express CCK-1 receptors, and do not exhibit the vagally mediated responses to CCK. To determine whether the OLETF rat's failure to respond to CCK is correlated with failure of CCK to activate enteric and vagal neurons, we quantified neuronal Fos immunoreactivity in the dorsal vagal complex of the hindbrain, the nodose ganglia, and the ganglia of the myenteric and submucosal plexuses of the duodenum following intraperitoneal injection of CCK-8 (20 microg/kg). Compared to vehicle injection, CCK administration resulted in significant increases in the number of Fos-immunopositive neurons in the nucleus of the solitary tract, area postrema, and dorsal vagal motor nucleus of control, LETO rats. In OLETF rats, however, CCK did not increase numbers of Fos-immunoreactive neurons in any of these brain structures. CCK also induced significantly larger numbers of Fos-immunoreactive neuronal nuclei in the nodose ganglia of LETO rats, but not in the nodose ganglia of OLETF rats. Finally, LETO, but not OLETF rats exhibited striking increases in the number of Fos-immunoreactive nuclei of myenteric and submucosal neurons, following CCK injection. Absence of CCK-induced Fos expression in OLETF rats is consistent with attenuation of ingestive and gastrointestinal responses to CCK in the CCK-1 receptor deficient rats. These results also suggest that CCK-induced Fos expression in enteric and vagal sensory neurons of rats can be accounted for entirely by activation of CCK-1 receptors and is not due to occupation of CCK-2 (gastrin) receptors, which also are expressed in the intestine and by some vagal afferent neurons.
Collapse
Affiliation(s)
- Mihai Covasa
- Department of Nutritional Sciences, College of Health and Human Development, The Pennsylvania State University, 126 South Henderson, University Park, PA, 16802, USA.
| | | |
Collapse
|
9
|
Sayegh AI, Reeve JR, Lampley ST, Hart B, Gulley S, Esdaile AR, Sharma SK, Webb T, Williams CS, Pruitt F. Role for the enteric nervous system in the regulation of satiety via cholecystokinin-8. J Am Vet Med Assoc 2005; 226:1809-16. [PMID: 15938055 DOI: 10.2460/javma.2005.226.1809] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Latorre M, Bartolomé-Nebreda JM, García-López MT, González-Muñiz R, Herranz R, Del Río J, Cenarruzabeitia E. Pharmacological Study of IQM-97,423, a Potent and Selective CCK 1 Receptor Antagonist with Protective Effect in Experimental Acute Pancreatitis. Pharmacology 2004; 72:68-76. [PMID: 15331911 DOI: 10.1159/000079134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Accepted: 02/10/2004] [Indexed: 11/19/2022]
Abstract
The pharmacological profile of the new CCK1 receptor antagonist IQM-97,423, (4aS,5R)-2-benzyl-5-(tert-butylaminocarbonyl-tryptophyl)amino-1,3-dioxoperhydropyrido-[1,2-c]pyrimidine, was examined in in vitro and in vivo studies and compared with typical CCK1 antagonists such as devazepide and lorglumide. IQM-97,423 showed a high affinity at [3H]-pCCK8-labeled rat pancreatic CCK1 receptors, and was virtually devoid of affinity at brain CCK2 receptors. IQM-97,423 antagonized CCK8S-stimulated alpha-amylase release from rat pancreatic acini with a potency similar to devazepide and much higher than lorglumide. In the guinea pig isolated longitudinal muscle-myenteric plexus preparation, IQM-97,423 produced a full antagonism of the contractile response elicited by CCK8S and a weaker effect on the contraction elicited by CCK4, suggesting a selective antagonism at CCK1 receptors. The protective effect of IQM-97,423 and devazepide was tested in two models of acute pancreatitis in rats, induced by injection of cerulein or by combined bile and pancreatic duct obstruction. The new compound fully prevented the cerulein-induced increase in plasma pancreatic enzymes and in pancreas weight with a potency similar to devazepide. In common bile-pancreatic duct ligature-induced acute pancreatitis, IQM-97,423 partially prevented, like devazepide, the increase in plasma pancreatic enzyme activity and in pancreas weight. Consequently, the pyridopyrimidine derivative IQM-97,423 is a potent and highly selective CCK1 receptor antagonist with preventive effects in two experimental models of acute pancreatitis and a potential therapeutic interest.
Collapse
Affiliation(s)
- M Latorre
- Department of Pharmacology, University of Navarra, Pamplona, Spain.
| | | | | | | | | | | | | |
Collapse
|
11
|
Wood JD, Kirchgessner A. Slow excitatory metabotropic signal transmission in the enteric nervous system. Neurogastroenterol Motil 2004; 16 Suppl 1:71-80. [PMID: 15066009 DOI: 10.1111/j.1743-3150.2004.00479.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metabotropic mechanisms of excitatory signalling in enteric neurones underlie both slow synaptic transmission and paracrine transmission from enteric non-neuronal cells. The type of neurone in which signalling occurs determines the characteristics of synaptic- and paracrine-mediated slow excitatory responses. Slow excitatory responses in neurones with AH-type electrophysiological behaviour and multipolar Dogiel type II morphology are characterized by membrane depolarization associated with closure of Ca2+ -gated K+ channels that is reflected by increased neuronal input resistance. Slow excitatory responses in neurones with S-type electrophysiological behaviour and uniaxonal morphology are characterized by membrane depolarization associated with opening of cationic channels and decreased neuronal input resistance. Postreceptor signalling that involves activation of adenylate cyclase, stimulation of cAMP formation and activation protein kinase A generates excitatory responses characterized by increased neuronal input resistance in AH neurones. Postreceptor signalling that involves activation of phospholipase C, release of IP3 and diacylglycerol and activation of protein kinase C and calmodulin kinases generates excitatory responses characterized by decreased neuronal input resistance in S neurones. Slow excitatory responses that are characterized by increased neuronal input resistance are a property of AH-type neurones that function as interneurones in the neural networks of the ENS. Slow excitatory responses that are characterized by decreased neuronal input resistance are a property of S-type neurones that function either as interneurones or as musculomotor and secretomotor neurones in the neural networks of the ENS.
Collapse
Affiliation(s)
- J D Wood
- Department of Physiology and Cell Biology, College of Medicine and Public Health, The Ohio State University, Columbus, OH, USA.
| | | |
Collapse
|
12
|
Simasko SM, Ritter RC. Cholecystokinin activates both A- and C-type vagal afferent neurons. Am J Physiol Gastrointest Liver Physiol 2003; 285:G1204-13. [PMID: 12946940 DOI: 10.1152/ajpgi.00132.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Patch-clamp electrophysiological methods were used on dissociated rat nodose neurons maintained in culture to determine whether responses to cholecystokinin (CCK) were associated with capsaicin-resistant (A type) or capsaicin-sensitive (C type) neurons. Nodose neurons were classified as A or C type on the basis of the characteristics of the Na+ current, a hyperpolarization-activated current, and sensitivity to a low concentration of capsaicin to ascertain the presence of vanilloid receptor 1 that has been associated with C-type neurons in sensory ganglia. It was expected that only capsaicin-sensitive C-type neurons would respond to CCK, because most vagally mediated actions of CCK are blocked by capsaicin treatment. However, we found that subpopulations of both A- and C-type neurons responded to CCK (24 and 38%, respectively). Thus some vagally mediated actions of CCK may be mediated by capsaicin insensitive A-type neurons.
Collapse
Affiliation(s)
- Steven M Simasko
- Program in Neuroscience, Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164-6520, USA.
| | | |
Collapse
|
13
|
Abstract
Reports over the past year provide significant advances in our knowledge of the neurohumoral control of exocrine pancreatic secretion, especially related to human physiology. Major findings include those demonstrating that human pancreatic acinar cells do not respond to cholecystokinin stimulation and that a major circulating form of cholecystokinin is CCK-58. These findings establish that in humans, cholecystokinin causes pancreatic secretion via a neural circuit after interacting with neural sensory receptors in the mucosa of the intestine and that CCK-58 is the likely form of cholecystokinin that stimulates the neural pathways. Other findings demonstrate significant differences in the pancreatic secretory response in humans as a function of the type of nutrient delivered to the gut, especially the fact the elemental diets and medium-chain triglycerides cause much less stimulation of pancreatic secretion than do complex diets. Finally, convincing evidence demonstrating that pancreatic proteases cause inhibition of pancreatic secretion in humans has been presented. In addition to new insights into the neurohumoral control of pancreatic secretion, these findings provide information relevant to both the pathogenesis of pancreatic disorders and their treatment.
Collapse
Affiliation(s)
- Stephen J Pandol
- Department of Medicine, VA Greater Los Angeles Health Care System and University of California, Los Angeles, California 90073, USA.
| |
Collapse
|
14
|
Abstract
Cholecystokinin (CCK) is a peptide hormone released from the I-cells of the upper small intestine. CCK evokes a variety of physiological responses, such as stimulation of pancreatic secretion, reduction of food intake and inhibition of gastric emptying. Previously, we reported that CCK activates enteric neurons in the rat. However the specific subpopulations of enteric neurons activated by CCK have not been identified. In the work reported here, we utilized immunohistochemical detection of nuclear Fos, a marker for neuronal activation, and selected phenotypic markers to identify some of the neuronal subpopulations activated by CCK. The phenotypic markers that we examined were: nitric oxide synthase (NOS), neurokinin-1 receptor (NK-1R), calbindin (Cal), Calretinin (Calr), and neurofilament-M (NF-M). We found that in the myenteric plexus of the rat duodenum and jejunum, CCK activated NOS immunoreactive neurons. In the submucosal plexus of duodenum and jejunum, CCK activated Cal, Calr and NF-M immunoreactive neurons. CCK failed to activate NK-1R immunoreactive neurons in either plexus. Our results indicate that CCK activates distinct enteric neurons in the rat upper small intestine. Furthermore the fact that NOS immunoreactive neurons were activated suggests that CCK modulates the activity of inhibitory motor neurons in the myenteric plexus. Expression of Fos immunoreactivity in Calr and Cal immunoreactive neurons is consistent with a role for CCK in modulation of intrinsic sensory and/or secretomotor neuronal activity in the submucosal plexus.
Collapse
Affiliation(s)
- Ayman I Sayegh
- Gastroenterology Laboratory, Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, 36088, Tuskegee, AL, USA.
| | | |
Collapse
|
15
|
Zhang W, Segura BJ, Mulholland MW. Cholecystokinin-8 induces intracellular calcium signaling in cultured myenteric neurons from neonatal guinea pigs. Peptides 2002; 23:1793-1801. [PMID: 12383867 DOI: 10.1016/s0196-9781(02)00136-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The responsiveness of cultured myenteric neurons to cholecystokinin (CCK-8) was examined using fura-2-based digital microfluorimetric measurement of intracellular calcium ([Ca(2+)](i)). CCK-8 (10(-10)-10(-6)M) evoked concentration-dependent increases in percentage of neurons responding (8-52%) and delta[Ca(2+)](i) (76-169 nM). Gastrin (1 microM) also induced an increase in [Ca(2+)](i) in 29+/-6% of neurons (delta[Ca(2+)](i): 71+/-3 nM). L-364,718, an antagonist for the CCK-A receptor, blocked [Ca(2+)](i) response to CCK-8. Removal of extracellular calcium eliminated CCK-induced [Ca(2+)](i) increments, as did the addition of the calcium channel inhibitors nickel (1mM) and lanthanum (5mM). Nifedipine (1-50 microM) dose-dependently attenuated CCK-caused [Ca(2+)](i) responses. CCK evokes [Ca(2+)](i) signaling in myenteric neurons by the influx of extracellular calcium, likely through L-type calcium channels.
Collapse
Affiliation(s)
- Weizhen Zhang
- Department of Surgery, Michigan Gastrointestinal Peptide Center, University of Michigan, Ann Arbor, MI 48109-0331, USA
| | | | | |
Collapse
|
16
|
Gay J, Fioramonti J, Garcia-Villar R, Buéno L. Enhanced intestinal motor response to cholecystokinin in post-Nippostrongylus brasiliensis-infected rats: modulation by CCK receptors and the vagus nerve. Neurogastroenterol Motil 2001; 13:155-62. [PMID: 11298994 DOI: 10.1046/j.1365-2982.2001.00254.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The jejunal inflammation induced in rats by the nematode Nippostrongylus brasiliensis is followed by intestinal neuroimmune alterations including mast cell hyperplasia and nerve remodelling. On the other hand, cholecystokinin (CCK) plays a pivotal role in the regulation of intestinal motility. The aim of this study was to determine whether the intestinal motor response to CCK is altered 30 days after infection by N. brasiliensis. Thus, CCK-8 (50 microg kg(-1) intraperitoneally) disrupted the pattern of jejunal migrating myoelectric complexes for a longer time in postinfected rats (95.5 +/- 3.5 min) than in controls (48.1 +/- 5.1 min). This enhanced jejunal response was also found after oral administration of the potent releaser of endogenous CCK, soybean trypsin inhibitor. In contrast, no alteration of the inhibition of colonic motility by CCK administration was observed. The increased responsiveness of jejunal motility to CCK persisted after mast cell stabilisation or depletion but was prevented by atropine, devazepide and L-365260 (CCK-A and CCK-B receptor antagonists, respectively) and vagotomy. These results indicate that neuroimmune alterations after N. brasiliensis infection lead to an increased intestinal motility response to CCK that involves a cholinergic mediation, a vagal pathway and alterations in intestinal CCK-A and CCK-B receptors.
Collapse
Affiliation(s)
- J Gay
- Neurogastroenterology and Nutrition Unit, INRA, Toulouse, France
| | | | | | | |
Collapse
|
17
|
Covasa M, Grahn J, Ritter RC. Reduced hindbrain and enteric neuronal response to intestinal oleate in rats maintained on high-fat diet. Auton Neurosci 2000; 84:8-18. [PMID: 11109985 DOI: 10.1016/s1566-0702(00)00176-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Rats maintained on a high-fat diet (HF) reduce their food intake less in response to intestinal infusion of oleic acid than rats maintained on a low-fat diet (LF). Inhibition of gastric emptying by intestinal infusion of oleate also is attenuated in rats fed a high-fat diet. It is well documented that intestinal oleate reduces food intake and inhibits gastric emptying via vagal sensory neurons. In addition, activation of intrinsic myenteric neurons participates in oleate-induced changes in gastrointestinal motility. To determine whether diminished behavioral and gastric reflex responses to intestinal oleate infusion is accompanied by reduced vagal sensory and myenteric neuronal activation, we examined expression of Fos-like immunoreactivity (Fos-li) in the dorsal hindbrains and the small intestinal enteric plexuses of rats maintained on HF or LF, following, intraintestinal infusion of oleate (0.06 kcal/ml) or the oligosaccharide, maltotriose (0.26 kcal/ml). Following oleate infusion there was a dramatic increase in the number of Fos-li nuclei in the NTS and AP of LF rats but not in HF rats. There also were significantly more Fos-li neuronal nuclei in the upper small intestinal submucosal and myenteric plexuses of the LF rats than the HF rats. In contrast to the effects of oleate infusion, maltotriose infusion significantly and similarly increased Fos-li nuclei in the hindbrains of both LF and HF rats. The results indicate that adaptation to high-fat diet selectively reduces vagal and enteric neuronal sensitivity to intestinal oleate and suggests that reduced sensitivity to the satiation and gastric inhibitory effects of oleate in high-fat fed rats may be mediated by a selective reduction in the neuronal response to intestinal stimulation by fatty acid.
Collapse
Affiliation(s)
- M Covasa
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman 99164, USA.
| | | | | |
Collapse
|
18
|
Sayegh AI, Ritter RC. Vagus nerve participates in CCK-induced Fos expression in hindbrain but not myenteric plexus. Brain Res 2000; 878:155-62. [PMID: 10996146 DOI: 10.1016/s0006-8993(00)02731-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
CCK activates neurons in rat hindbrain and small intestinal myenteric ganglia. Activation of neurons at both sites is mediated through type A CCK receptors. CCK-induced activation of hindbrain neurons is mediated by capsaicin-sensitive vagal fibers. Therefore, it is possible that CCK-induced activation of myenteric neurons also depends upon vagal activation. To test this hypothesis, we examined hindbrain and myenteric neuronal expression of Fos immunoreactivity following CCK injection in rats that had undergone bilateral subdiaphragmatic vagotomy or systemic treatment with capsaicin, a neurotoxin that destroys small unmyelinated primary sensory neurons in the vagus, as well as in other peripheral nerves. We found that CCK (2 or 10 microg/kg) significantly increased Fos expression in both the brains and small intestinal myenteric plexuses of control rats. CCK-induced Fos expression was abolished or attenuated in the brains of vagotomized or capsaicin-treated animals. However, vagotomy or capsaicin treatment did not diminish CCK-induced Fos expression in the small intestinal myenteric plexus. We conclude that CCK-induced activation of intestinal myenteric neurons does not depend on activation of vagal sensory or motor neurons, while activation of neurons in the dorsal hindbrain is mediated, at least in part by CCK-induced activity of small unmyelinated vagal sensory neurons.
Collapse
Affiliation(s)
- A I Sayegh
- Neuroscience Program, Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| | | |
Collapse
|
19
|
Giralt M, Vergara P. Inhibition by CCK of ascending contraction elicited by mucosal stimulation in the duodenum of the rat. Neurogastroenterol Motil 2000; 12:173-80. [PMID: 10877605 DOI: 10.1046/j.1365-2982.2000.00192.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CCK released by intraluminal stimuli modifies duodenal activity contributing to a decrease in gastric emptying. However, the neural mechanisms by which CCK controls motility are not well known. The aim of this study was to investigate the interaction between CCK and the enteric nervous system through the study of the effects of CCK-8 on ascending excitation. Anaesthetized Sprague-Dawley rats were prepared with a strain-gauge sutured to the duodenum wall. An electrode holder was placed in the duodenum lumen to elicit ascending contraction. Electrical field stimulation of the duodenal mucosa (4 Hz, 0.6 ms, 30 V) induced an ascending excitation which was blocked by hexamethonium (10 mg kg-1; n=5) and atropine (0.3 mg kg-1; n=5), but enlarged by L-NNA (10(-5) mol kg-1; n=5). CCK-8 (3 ¿ 10(-9) mol kg-1 10 min-1) blocked ascending excitation and an inhibition of the induced phasic activity was observed instead (n=18). Individually, none of the CCK receptor antagonists (L-364 718 and L-365 260) (3 ¿ 10(-7) mol kg-1; n=6 each) blocked the inhibition of ascending excitation induced by CCK-8. However, simultaneous infusion of both antagonists abolished CCK-8 effect on electrical stimulation (n=5). Similarly, none of the CCK-8 agonists (A-71623, A-71378, gastrin) modified the ascending excitation. In contrast, the simultaneous infusion of A-71623 and CCK-4 (n=4) induced an effect similar to CCK-8. In conclusion, CCK-8 blocked ascending contraction elicited by electrical field stimulation of duodenal mucosa by means of simultaneous activation of CCK-A and CCK-B receptors.
Collapse
Affiliation(s)
- M Giralt
- Department of Cell Biology, Physiology and Immunology, Universität Autònoma de Barcelona, Spain
| | | |
Collapse
|
20
|
Sayegh AI, Ritter RC. CCK-A receptor activation induces fos expression in myenteric neurons of rat small intestine. REGULATORY PEPTIDES 2000; 88:75-81. [PMID: 10706955 DOI: 10.1016/s0167-0115(99)00124-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cholecystokinin (CCK), a hormone secreted from endocrine cells of the small intestine, participates in the control of motility and secretion in the gastrointestinal tract, and in the control of food intake. At least some of the effects of CCK on intestinal function appear to be mediated via activation of intrinsic neurons in the myenteric plexus. However, the distribution of CCK-responsive enteric neurons within the rat small intestine is not known. Neither has the role of CCK-A receptors in the activation of rat myenteric neurons been investigated. Therefore, to determine the distribution of CCK-responsive neurons in the small intestinal myenteric plexus we utilized immunohistochemical detection of Fos, the protein product of the immediate early gene c-fos, to identify neurons that were activated by exogenous CCK. We also monitored Fos expression in the dorsal hindbrain, and examined CCK-induced Fos expression in the presence or absence of a receptor antagonist for the type-A CCK receptor. We found that CCK significantly increased Fos expression in the hindbrain and in myenteric neurons of the duodenum and jejunum, but not the ileum. Neuronal Fos responsiveness in both brain and myenteric neurons was mediated by CCK-A receptors, as CCK-induced Fos expression was eliminated in rats pretreated with a CCK-A receptor antagonist. We conclude that CCK activates small intestinal myenteric neurons, via CCK-A receptors. Activation of these intrinsic intestinal neurons may participate in reflexes and behaviors that are mediated by CCK.
Collapse
Affiliation(s)
- A I Sayegh
- Neuroscience Program and Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology (VCAPP), College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA.
| | | |
Collapse
|
21
|
Abstract
Retrograde labeling of duodenum-sphincter of Oddi (SO) preparations in vitro with the carbocyanine dye DiI revealed that duodenal neurons project to the SO. The duodenum-SO-projecting neurons were immunoreactive (IR) for choline acetyltransferase but not nitric oxide synthase or calretinin, indicating that this is a cholinergic projection and that this pathway is distinct from the circuitry involved in the ascending limb of the peristaltic reflex. Approximately 20% of the duodenum-SO projection neurons were IR for calbindin. Calbindin-IR nerves within SO ganglia degenerated when the SO was maintained in organ culture alone, but persisted when the SO was cultured with the duodenum intact. Therefore, SO ganglia are a target of the calbindin-positive duodenum-SO projection. Because calbindin is a marker of intrinsic sensory neurons that have processes that pass to the mucosa, these neurons are in position to detect the release of a compound from the mucosa and signal its release to SO ganglia. When applied to retrogradely labeled neurons, cholecystokinin (CCK) elicited a prolonged depolarization, indicating that duodenum-SO-projecting neurons could be capable of detecting CCK released from the mucosa. It is proposed that the role of the intrinsic sensory neurons that project to the SO may be to signal the postprandial release of CCK, thus providing an instruction to decrease SO resistance and facilitate the flow of bile into the duodenum.
Collapse
|
22
|
Wechsung E, Houvenaghel A. Effect of some gastrointestinal hormones on antral, small intestinal and caecal myoelectrical activity in the conscious miniature pig. ZENTRALBLATT FUR VETERINARMEDIZIN. REIHE A 1998; 45:361-7. [PMID: 9793467 DOI: 10.1111/j.1439-0442.1998.tb00839.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of i.v. infusion of gastrin (CCK-4), cholecystokinin (CCK-8) and pancreatic polypeptide (PP), 20 and 200 ng/kg/min for 1 h, on gastrointestinal electrical activity and arterial pressure was studied in conscious miniature pigs. During infusion of CCK-8 a transient hypertension was observed. In the antrum, the 3 peptides provoked an increase in slow wave activity and a decrease in spike activity. In the intestine, CCK-8 induced an increase in ileal spiking activity, whereas infusion of PP resulted in an increased frequency of long spike bursts in the caecum.
Collapse
Affiliation(s)
- E Wechsung
- Laboratory of Veterinary Physiology, University Centre of Antwerp, Belgium
| | | |
Collapse
|
23
|
Schutte IW, Hollestein KB, Akkermans LM, Kroese AB. Evidence for a role of cholecystokinin as neurotransmitter in the guinea-pig enteric nervous system. Neurosci Lett 1997; 236:155-8. [PMID: 9406760 DOI: 10.1016/s0304-3940(97)00786-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Intracellular recordings were made of neurons in the myenteric plexus of the guinea-pig distal ileum. Slow excitatory postsynaptic potentials (sEPSPs) were evoked by electrical stimulation of an interganglionic fibre tract. The effect of cholecystokinin (CCK) receptor antagonists on the sEPSPs was investigated in 11 neurons. Application of the CCK receptor antagonists L-364,718 and L-365,260 (each 250 nM) markedly attenuated the sEPSPs in five of 11 neurons. The amplitude of the sEPSP reduced from 15 +/- 3 to 7 +/- 2 mV and the change in membrane resistance during the sEPSP was reduced from 28 +/- 9 to 11 +/- 8 MS. In six of 11 neurons the CCK antagonists had no effect on the sEPSPs. The results provide evidence that neurally released CCK is involved in the mediation of sEPSPs in some enteric neurons.
Collapse
Affiliation(s)
- I W Schutte
- Department of Human and Animal Physiology, Wageningen Agricultural University, The Netherlands
| | | | | | | |
Collapse
|