1
|
Quaye IK, Aleksenko L, Paganotti GM, Peloewetse E, Haiyambo DH, Ntebela D, Oeuvray C, Greco B. Malaria Elimination in Africa: Rethinking Strategies for Plasmodium vivax and Lessons from Botswana. Trop Med Infect Dis 2023; 8:392. [PMID: 37624330 PMCID: PMC10458071 DOI: 10.3390/tropicalmed8080392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
The global malaria community has picked up the theme of malaria elimination in more than 90% of the world's population in the next decade. Recent reports of Plasmodium vivax (P. vivax) in sub-Saharan Africa, including in Duffy-negative individuals, threaten the efforts aimed at achieving elimination. This is not only in view of strategies that are tailored only to P. falciparum elimination but also due to currently revealed biological characteristics of P. vivax concerning the relapse patterns of hypnozoites and conservation of large biomasses in cryptic sites in the bone marrow and spleen. A typical scenario was observed in Botswana between 2008 and 2018, which palpably projects how P. vivax could endanger malaria elimination efforts where the two parasites co-exist. The need for the global malaria community, national malaria programs (NMPs), funding agencies and relevant stakeholders to engage in a forum to discuss and recommend clear pathways for elimination of malaria, including P. vivax, in sub-Saharan Africa is warranted.
Collapse
Affiliation(s)
- Isaac K. Quaye
- Pan African Vivax and Ovale Network, Faculty of Engineering Computer and Allied Sciences, Regent University College of Science and Technology, #1 Regent Ave, McCarthy Hill, Mendskrom, Dansoman, Accra P.O. Box DS1636, Ghana
| | - Larysa Aleksenko
- Department of Health Sciences, School of Public Health, College of Health, Medicine and Life Sciences, Brunel University, Kingston Lane, Uxbridge, Middlesex, London UB8 3PH, UK;
| | - Giacomo M. Paganotti
- Botswana-University of Pennsylvania Partnership, Riverwalk, Gaborone P.O. Box 45498, Botswana;
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elias Peloewetse
- Department of Biological Sciences, Faculty of Sciences, University of Botswana, Gaborone Private Bag 00704, Botswana;
| | - Daniel H. Haiyambo
- Department of Human, Biological and Translational Medical Sciences, Faculty of Health Sciences and Veterinary Medicine, University of Namibia School of Medicine, Hage Geingob Campus, Windhoek Private Bag 13301, Namibia;
| | - Davies Ntebela
- National Malaria Program, Ministry of Health, Gaborone Private Bag 0038, Botswana;
| | - Claude Oeuvray
- Global Health Institute of Merck, Terre Bonne Building Z0, Route de Crassier 1, Eysin, 1266 Geneva, Switzerland; (C.O.); (B.G.)
| | - Beatrice Greco
- Global Health Institute of Merck, Terre Bonne Building Z0, Route de Crassier 1, Eysin, 1266 Geneva, Switzerland; (C.O.); (B.G.)
| | - the PAVON Consortium
- PAVON, Regent University College of Science and Technology, #1 Regent Avenue, McCarthy Hiil, Mendskrom, Dansoman, Accra P.O. Box DS1636, Ghana
| |
Collapse
|
2
|
Araujo Flores GV, Sandoval Pacheco CM, Ferreira AF, Tomokane TY, Nunes JB, Colombo FA, Sosa-Ochoa WH, Zúniga C, Silveira FT, Corbett CEP, Laurenti MD. Leishmania (L.) infantum chagasi isolated from skin lesions of patients affected by non-ulcerated cutaneous leishmaniasis lead to visceral lesion in hamsters. Parasitol Int 2023; 93:102723. [PMID: 36566911 DOI: 10.1016/j.parint.2022.102723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
In Central America, Leishmania (L.) infantum chagasi infection causes visceral leishmaniasis (VL) and non-ulcerated cutaneous leishmaniasis (NUCL). The aim of the present study was to evaluate the course of an experimental infection in hamsters caused by L. (L.) infantum chagasi isolated from patients affected by NUCL compared with a strain isolated from a patient with VL. Stationary phase parasites in culture were inoculated through subcutaneous and intraperitoneal routes in hamsters. Following the post-infection times, a histopathological study, parasite load and cytokine determination in skin from the cutaneous inoculation site and viscera were performed. Animals subcutaneously infected with the different strains did not develop macroscopic lesions at the inoculation site, and the histopathological changes in the dermis were very slight. Regarding the histopathological study of the viscera, we observed the portal mononuclear inflammatory infiltrate, the presence of nodules in the hepatic parenchyma and the proliferation of macrophages in the spleen, which increased over the infection course. Overall, the parasite load in the liver and spleen and in the total IgG titres in the sera of infected hamster showed an increase with the time of infection, regardless of the route of inoculation. Regarding cellular immunity, we did not observe an increase or decrease in pro- and anti-inflammatory cytokines compared to the healthy control, except for IL-10, which was evident in the infected animals. The data showed that strains isolated from NUCL cause visceral lesions in the hamsters regardless of the route of inoculation, and they were similar to parasites isolated from VL humans.
Collapse
Affiliation(s)
- Gabriela V Araujo Flores
- Laboratório de Patologia de Moléstias Infecciosas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carmen M Sandoval Pacheco
- Laboratório de Patologia de Moléstias Infecciosas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Aurea F Ferreira
- Laboratório de Investigação Médica, LIM50, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, HCFMUSP, SP, Brazil
| | - Thaise Yumie Tomokane
- Laboratório de Patologia de Moléstias Infecciosas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | - Wilfredo H Sosa-Ochoa
- Laboratório de Patologia de Moléstias Infecciosas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil; Instituto de Investigaciones en Microbiologia, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Concepción Zúniga
- Departamento de Vigilancia de la Salud, Hospital Escuela, Tegucigalpa, Honduras
| | - Fernando T Silveira
- Instituto Evandro Chagas, Belém, PA, Brazil; Universidade Federal do Pará, Belém, PA, Brazil
| | - Carlos E P Corbett
- Laboratório de Patologia de Moléstias Infecciosas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Márcia D Laurenti
- Laboratório de Patologia de Moléstias Infecciosas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Março KS, da Silva Borégio J, Jussiani GG, de Souza Ferreira LFE, Flores GVA, Pacheco CMS, Laurenti MD, Machado GF. Thymic alterations resulting from experimental visceral leishmaniasis in a Syrian hamster (Mesocricetus auratus). Vet Immunol Immunopathol 2023; 257:110558. [PMID: 36758455 DOI: 10.1016/j.vetimm.2023.110558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND The thymus is a lymphoid organ responsible for the development and maturation of T cells, which are part of the Th1, Th2, Th17, and Treg immune responses triggered by visceral leishmaniasis. The maturation and immunological development of T lymphocytes require a bidirectional interaction between the thymic microenvironment of epithelial cells, dendritic cells, and macrophages and the extracellular matrix with differentiating lymphocytes. OBJECTIVES We evaluated the morphological characteristics and tissue distribution of hematopoietic and stromal cells in the thymuses of hamsters experimentally infected with Leishmania infantum, aiming to gain an insight into the pathophysiology of the disease. METHODS Fifteen hamsters were subjected to intraperitoneal experimental infection with 107L. infantum promastigotes (MHOM/BR/1972/BH46). The animals were divided into three groups, each comprising five infected hamsters, and were then euthanized 15, 60, and 120 days postinfection. The control groups consisted of three groups of five healthy hamsters euthanized simultaneously with the infected ones. Thymic morphology was evaluated through histopathology and the cell composition through immunohistochemistry. We used antibodies to mark mesenchymal cells (anti-vimentin), epithelial cells (anti-cytokeratin), macrophages (anti-MAC387), B lymphocytes (anti-CD79a), and T lymphocytes (anti-CD3). Immunohistochemistry was also used to mark the parasite in the thymus. RESULTS Infected and control hamsters showed no difference in thymic morphology and degree of atrophy. After 15 days of infection, CD3 + T lymphocytes in the thymus showed an increase that stabilized over time. At 120 days of infection, we detected a significant decrease in CD79a+ B lymphocytes. The parasite was present in the medullary and corticomedullary regions of 9 out of 15 hamsters. These findings confirm that the presence of a parasite can cause changes in a thymus cell population. However, further studies are needed to evaluate these changes' effects on the immune response of infected animals.
Collapse
Affiliation(s)
- Karen Santos Março
- Laboratory of Applied Pathology (LAPAP), Department of Animal Clinical, Surgical and Reproductive Medicine, Faculty of Veterinary Medicine, São Paulo State University - UNESP, Araçatuba, SP, Brazil
| | - Jaqueline da Silva Borégio
- Laboratory of Applied Pathology (LAPAP), Department of Animal Clinical, Surgical and Reproductive Medicine, Faculty of Veterinary Medicine, São Paulo State University - UNESP, Araçatuba, SP, Brazil
| | - Giulia Gonçalves Jussiani
- Laboratory of Applied Pathology (LAPAP), Department of Animal Clinical, Surgical and Reproductive Medicine, Faculty of Veterinary Medicine, São Paulo State University - UNESP, Araçatuba, SP, Brazil
| | - Laura Flávia Esperança de Souza Ferreira
- Laboratory of Applied Pathology (LAPAP), Department of Animal Clinical, Surgical and Reproductive Medicine, Faculty of Veterinary Medicine, São Paulo State University - UNESP, Araçatuba, SP, Brazil
| | - Gabriela Venicia Araujo Flores
- Laboratory of Infectious Disease Pathology (LIM/50), Department of Pathology, Faculty of Medicine, University of São Paulo - USP, São Paulo, SP, Brazil
| | - Carmen Maria Sandoval Pacheco
- Laboratory of Infectious Disease Pathology (LIM/50), Department of Pathology, Faculty of Medicine, University of São Paulo - USP, São Paulo, SP, Brazil
| | - Marcia Dalastra Laurenti
- Laboratory of Infectious Disease Pathology (LIM/50), Department of Pathology, Faculty of Medicine, University of São Paulo - USP, São Paulo, SP, Brazil
| | - Gisele Fabrino Machado
- Laboratory of Applied Pathology (LAPAP), Department of Animal Clinical, Surgical and Reproductive Medicine, Faculty of Veterinary Medicine, São Paulo State University - UNESP, Araçatuba, SP, Brazil.
| |
Collapse
|
4
|
Olías-Molero AI, Botías P, Cuquerella M, García-Cantalejo J, Barcia E, Torrado S, Torrado JJ, Alunda JM. Leishmania infantum infection does not affect the main composition of the intestinal microbiome of the Syrian hamster. Parasit Vectors 2022; 15:468. [PMID: 36522762 PMCID: PMC9753363 DOI: 10.1186/s13071-022-05576-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/03/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL) is the most severe form of all leishmanial infections and is caused by infection with protozoa of Leishmania donovani and Leishmania infantum. This parasitic disease occurs in over 80 countries and its geographic distribution is on the rise. Although the interaction between the intestinal microbiome and the immune response has been established in several pathologies, it has not been widely studied in leishmaniasis. The Syrian hamster is the most advanced laboratory model for developing vaccines and new drugs against VL. In the study reported here, we explored the relationship between the intestinal microbiome and infection with L. infantum in this surrogate host. METHODS Male Syrian hamsters (120-140 g) were inoculated with 108 promastigotes of a canine-derived L. infantum strain or left as uninfected control animals. Infection was maintained for 19 weeks (endpoint) and monitored by an immunoglobulin G (IgG) enyzme-linked immunosorbent assay throughout the experiment. Individual faecal samples, obtained at weeks 16, 18 and 19 post-inoculation, were analysed to determine the 16S metagenomic composition (the operational taxonomic units [OTUs] of the intestinal microbiome and the comparison between groups were FDR (false discovery rate)-adjusted). RESULTS Leishmania infantum infection elicited moderate clinical signs and lesions and a steady increase in specific anti-Leishmania serum IgG. The predominant phyla (Firmicutes + Bacteriodetes: > 90%), families (Muribaculaceae + Lachnospiraceae + Ruminococcaceae: 70-80%) and genera found in the uninfected hamsters showed no significant variations throughout the experiment. Leishmania infantum infection provoked a slightly higher-albeit non-significant-value for the Firmicutes/Bacteriodetes ratio but no notable differences were found in the relative abundance or diversity of phyla and families. The microbiome of the infected hamsters was enriched in CAG-352, whereas Lachnospiraceae UCG-004, the [Eubacterium] ventriosum group and Allobaculum were less abundant. CONCLUSIONS The lack of extensive significant differences between hamsters infected and uninfected with L. infantum in the higher taxa (phyla, families) and the scarce variation found, which was restricted to genera with a low relative abundance, suggest that there is no clear VL infection-intestinal microbiome axis in hamsters. Further studies are needed (chronic infections, co-abundance analyses, intestinal sampling, functional analysis) to confirm these findings and to determine more precisely the possible relationship between microbiome composition and VL infection.
Collapse
Affiliation(s)
- Ana Isabel Olías-Molero
- ICPVet, Department of Animal Health, School of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Pedro Botías
- Unidad de Genómica, Centro de Asistencia a la Investigación de Técnicas Biológicas, Complutense University of Madrid, Madrid, Spain
| | - Montserrat Cuquerella
- ICPVet, Department of Animal Health, School of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Jesús García-Cantalejo
- Unidad de Genómica, Centro de Asistencia a la Investigación de Técnicas Biológicas, Complutense University of Madrid, Madrid, Spain
| | - Emilia Barcia
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Institute of Industrial Pharmacy UCM, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Susana Torrado
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Institute of Industrial Pharmacy UCM, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Juan José Torrado
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Institute of Industrial Pharmacy UCM, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - José María Alunda
- ICPVet, Department of Animal Health, School of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
- Institute of Industrial Pharmacy UCM, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
5
|
A new immunochemotherapy schedule for visceral leishmaniasis in a hamster model. Parasitol Res 2022; 121:2849-2860. [PMID: 35997843 DOI: 10.1007/s00436-022-07628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
The purpose of the present study was to evaluate the efficacy of the treatment with a recombinant cysteine proteinase from Leishmania, rldccys1, associated with allopurinol or miltefosine on Leishmania (Leishmania) infantum chagasi-infected hamsters. Golden Syrian hamsters infected with L. (L.) infantum chagasi were treated with either miltefosine (46 mg/kg) or allopurinol (460 mg/kg) alone by oral route or associated with rldccys1 (150 µg/hamster) by subcutaneous route for 30 days. Infected hamsters were also treated with miltefosine (46 mg/kg) plus rldccys1 (150 µg/hamster) for 30 days (phase 1) followed by two additional doses of rldccys1 (250 µg/hamster) (phase 2). After the end of treatment, the animals were analyzed for parasite load, body weight, serum levels of immunoglobulins, cytokine expression, and drug toxicity. The data showed a significant decrease of parasite load in infected hamsters treated with allopurinol or miltefosine alone or associated with rldccys1, as well as in those treated with rldccys1 alone. Significantly lower levels of serum IgG were detected in hamsters treated with allopurinol plus rldccys1. The treatment with miltefosine associated with rldccys1 prevented relapse observed in animals treated with miltefosine alone. A significant loss of body weight was detected only in some hamsters treated with miltefosine for 1 month and deprived of this treatment for 15 days. There were no significant differences in transcript expression of IFN-γ and IL-10 in any of treated groups. Neither hepatotoxicity nor nephrotoxicity was observed among controls and treated groups. These findings open perspectives to further explore this immunochemotherapeutic schedule as an alternative for treatment of visceral leishmaniasis.
Collapse
|
6
|
Immunoprophylaxis using polypeptide chimera vaccines plus adjuvant system promote Th1 response controlling the spleen parasitism in hamster model of visceral leishmaniasis. Vaccine 2022; 40:5494-5503. [PMID: 35963820 DOI: 10.1016/j.vaccine.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/20/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022]
Abstract
In recent years, several advances have been observed in vaccinology especially for neglected tropical diseases (NTDs). One of the tools employed is epitope prediction by immunoinformatic approaches that reduce the time and cost to develop a vaccine. In this scenario, immunoinformatics is being more often used to develop vaccines for NTDs, in particular visceral leishmaniasis (VL) which is proven not to have an effective vaccine yet. Based on that, in a previous study, two predicted T-cell multi-epitope chimera vaccines were experimentally validated in BALB/c mice to evaluate the immunogenicity, central and effector memory and protection against VL. Considering the results obtained in the mouse model, we assessed the immune response of these chimeras inMesocricetus auratushamster, which displays, experimentally, similar pathological status to human and dog VL disease. Our findings indicate that both chimeras lead to a dominant Th1 response profile, inducing a strong cellular response by increasing the production of IFN-γ and TNF-α cytokines associated with a decrease in IL-10. Also, the chimeras reduced the spleen parasite load and the weight a correlation between protector immunological mechanisms and consistent reduction of the parasitic load was observed. Our results demonstrate that both chimeras were immunogenic and corroborate with findings in the mouse model. Therefore, we reinforce the use of the hamster as a pre-clinical model in vaccination trials for canine and human VL and the importance of immunoinformatic to identify epitopes to design vaccines for this important neglected disease.
Collapse
|
7
|
Oral and Intragastric: New Routes of Infection by Leishmania braziliensis and Leishmania infantum? Pathogens 2022; 11:pathogens11060688. [PMID: 35745542 PMCID: PMC9228391 DOI: 10.3390/pathogens11060688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Although Leishmania transmission in nature is associated with the bite of an infected sandfly vector, other possible transmission routes are speculated to occur, such as the oral route. We evaluated the possibility of infection by this route in golden hamsters (Mesocricetus auratus) using Leishmania braziliensis (Lb) and Leishmania infantum (Li). Hamsters were exposed to experimental oral or intragastrical infection with axenic promastigotes, besides oral ingestion of a suspension of cultivated macrophages infected with amastigotes, lesion-fed Lutzomyia longipalpis, skin lesion or infective spleen fragment. The parasite's isolation, besides a positive PCR and IFAT, confirmed the intragastric infection by promastigote parasites. The oral ingestion of macrophages infected with L. braziliensis amastigotes was also infective. These results confirmed that Leishmania parasites could infect mammals by the intragastric route through the ingestion of promastigote forms (what can happen after a sandfly ingestion) and by the oral ingestion of infected macrophages (what can happen in nature in a predator-prey interaction). The better understanding of these alternative routes is essential to understand their transmission dynamics in nature. As far as we know, this is the first time that oral and intragastric Leishmania transmission has been experimentally demonstrated, constituting new infection routes, at least for L. infantum and L. braziliensis.
Collapse
|
8
|
Larraga J, Alcolea PJ, Alonso AM, Martins LTC, Moreno I, Domínguez M, Larraga V. Leishmania infantum UBC1 in Metacyclic Promastigotes from Phlebotomus perniciosus, a Vaccine Candidate for Zoonotic Visceral Leishmaniasis. Vaccines (Basel) 2022; 10:vaccines10020231. [PMID: 35214689 PMCID: PMC8877641 DOI: 10.3390/vaccines10020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 11/16/2022] Open
Abstract
Leishmania parasites cause outstanding levels of morbidity and mortality in many developing countries in tropical and subtropical regions. Numerous gene expression profiling studies have been performed comparing different Leishmania species’ life-cycles and stage forms in regard to their distinct infective ability. Based on expression patterns, homology to human orthologues, in silico HLA-binding predictions, and annotated functions, we were able to select several vaccine candidates which are currently under study. One of these candidates is the Leishmania infantum ubiquitin-conjugating enzyme E2 (LiUBC1), whose relative levels, subcellular location, in vitro infectivity in the U937 myeloid human cell model, and protection levels in Syrian hamsters against L. infantum infection were studied herein. LiUBC1 displays a low level of similarity with the mammalian orthologs and relevant structure differences, such as the C-terminal domain, which is absent in the human ortholog. LiUBC1 is present in highly infective promastigotes. Knock-in parasites overexpressing the enzyme increased their infectivity, according to in vitro experiments. Syrian hamsters immunized with the recombinant LiUBC1 protein did not show any parasite burden in the spleen, unlike the infection control group. The IFN-γ transcript levels in splenocytes were significantly higher in the LiUBC1 immunized group. Therefore, LiUBC1 induced partial protection against L. infantum in the Syrian hamster model.
Collapse
Affiliation(s)
- Jaime Larraga
- Departamento de Biología Molecular y Celular, Centro de Investigaciones Biológicas Margarita Salas (Consejo Superior de Investigaciones Científicas), 28040 Madrid, Spain; (J.L.); (P.J.A.); (A.M.A.); (L.T.C.M.)
| | - Pedro J. Alcolea
- Departamento de Biología Molecular y Celular, Centro de Investigaciones Biológicas Margarita Salas (Consejo Superior de Investigaciones Científicas), 28040 Madrid, Spain; (J.L.); (P.J.A.); (A.M.A.); (L.T.C.M.)
| | - Ana M. Alonso
- Departamento de Biología Molecular y Celular, Centro de Investigaciones Biológicas Margarita Salas (Consejo Superior de Investigaciones Científicas), 28040 Madrid, Spain; (J.L.); (P.J.A.); (A.M.A.); (L.T.C.M.)
| | - Luis T. C. Martins
- Departamento de Biología Molecular y Celular, Centro de Investigaciones Biológicas Margarita Salas (Consejo Superior de Investigaciones Científicas), 28040 Madrid, Spain; (J.L.); (P.J.A.); (A.M.A.); (L.T.C.M.)
| | - Inmaculada Moreno
- Unidad de Inmunología, Centro Nacional de Microbiología, Virología e Inmunología Sanitarias (Instituto de Salud Carlos III), 28220 Majadahonda, Spain; (I.M.); (M.D.)
| | - Mercedes Domínguez
- Unidad de Inmunología, Centro Nacional de Microbiología, Virología e Inmunología Sanitarias (Instituto de Salud Carlos III), 28220 Majadahonda, Spain; (I.M.); (M.D.)
| | - Vicente Larraga
- Departamento de Biología Molecular y Celular, Centro de Investigaciones Biológicas Margarita Salas (Consejo Superior de Investigaciones Científicas), 28040 Madrid, Spain; (J.L.); (P.J.A.); (A.M.A.); (L.T.C.M.)
- Correspondence:
| |
Collapse
|
9
|
Barros-Gonçalves TDD, Saavedra AF, da Silva-Couto L, Ribeiro-Romão RP, Bezerra-Paiva M, Gomes-Silva A, Carvalho VF, Da-Cruz AM, Pinto EF. Increased levels of cortisol are associated with the severity of experimental visceral leishmaniasis in a Leishmania (L.) infantum-hamster model. PLoS Negl Trop Dis 2021; 15:e0009987. [PMID: 34813597 PMCID: PMC8651114 DOI: 10.1371/journal.pntd.0009987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 12/07/2021] [Accepted: 11/08/2021] [Indexed: 12/03/2022] Open
Abstract
Background Several infectious diseases are associated with hypothalamic-pituitary-adrenal (HPA) axis disorders by elevating circulating glucocorticoids (GCs), which are known to have an immunosuppressive potential. We conducted this study in golden hamsters, a suitable model for human visceral leishmaniasis (VL), to investigate the relationship of Leishmania (L.) infantum infection on cortisol production and VL severity. Methods L. infantum-infected (n = 42) and uninfected hamsters (n = 30) were followed-up at 30, 120, and 180 days post-infection (dpi). Plasma cortisol was analyzed by radioimmunoassay and cytokines, inducible nitric oxide synthase (iNOS), and arginase by RT-qPCR. Results All hamsters showed splenomegaly at 180 dpi. Increased parasite burden was associated with higher arginase expression and lower iNOS induction. Cortisol levels were elevated in infected animals in all-time points evaluated. Except for monocytes, all other leucocytes showed a strong negative correlation with cortisol, while transaminases were positively correlated. Immunological markers as interleukin (IL)-6, IL-1β, IL-10, and transforming growth-factor-β (TGF-β) were positively correlated to cortisol production, while interferon-γ (IFN-γ) presented a negative correlation. A network analysis showed cortisol as an important knot linking clinical status and immunological parameters. Conclusions These results suggest that L. infantum increases the systemic levels of cortisol, which showed to be associated with hematological, biochemical, and immunological parameters associated to VL severity. Visceral leishmaniasis (VL) is an infectious disease that is common in most tropical countries. VL has high morbidity and leads to death if not properly treated. In Brazil, Leishmania (Leishmania) infantum is the main causative agent of VL. Golden hamsters have proven to be a suitable model for VL. Despite the importance of hypothalamic-pituitary-adrenal (HPA) axis disturbances in infectious disease, few studies have addressed this issue in VL. In this study, we showed that L. infantum-infected hamsters present augmented levels of plasmatic cortisol in association with increased spleen parasite burden. Indeed, a strong positive correlation was observed between cortisol and biochemical parameters (AST/ALT/ALP) related to liver damage, as well as pro-inflammatory cytokines (IL-6 and IL-1β), anti-inflammatory cytokines (IL-10 and TGF-β), and the arginase enzyme that may favor the progression of infection. On the other side, cortisol was negatively correlated with leucocytes, except monocytes, and with IFN-γ and iNOS, which are involved in parasite-killing macrophage function. These results shed light on an unexplored aspect of VL pathogenesis, which is the importance of cortisol production in the disease-associated immune dysfunction.
Collapse
Affiliation(s)
| | - Andrea F. Saavedra
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Luzinei da Silva-Couto
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Raquel P. Ribeiro-Romão
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Milla Bezerra-Paiva
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Adriano Gomes-Silva
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Vinicius F. Carvalho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT-NIM), CNPq, Rio de Janeiro, Brazil
| | - Alda Maria Da-Cruz
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT-NIM), CNPq, Rio de Janeiro, Brazil
- Disciplina de Parasitologia-DMIP, Faculdade de Ciências Médicas, UERJ, Rio de Janeiro, Brazil
- Rede de Pesquisas em Saúde do Estado do Rio de Janeiro/FAPERJ, Rio de Janeiro, Brazil
| | - Eduardo F. Pinto
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Rede de Pesquisas em Saúde do Estado do Rio de Janeiro/FAPERJ, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
10
|
Protective Efficacy in a Hamster Model of a Multivalent Vaccine for Human Visceral Leishmaniasis (MuLeVaClin) Consisting of the KMP11, LEISH-F3+, and LJL143 Antigens in Virosomes, Plus GLA-SE Adjuvant. Microorganisms 2021; 9:microorganisms9112253. [PMID: 34835379 PMCID: PMC8618729 DOI: 10.3390/microorganisms9112253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
Visceral leishmaniasis (VL) is the most severe clinical form of leishmaniasis, fatal if untreated. Vaccination is the most cost-effective approach to disease control; however, to date, no vaccines against human VL have been made available. This work examines the efficacy of a novel vaccine consisting of the Leishmania membrane protein KMP11, LEISH-F3+ (a recombinant fusion protein, composed of epitopes of the parasite proteins nucleoside hydrolase, sterol-24-c-methyltransferase, and cysteine protease B), and the sand fly salivary protein LJL143, in two dose ratios. The inclusion of the TLR4 agonist GLA-SE as an adjuvant, and the use of virosomes (VS) as a delivery system, are also examined. In a hamster model of VL, the vaccine elicited antigen-specific immune responses prior to infection with Leishmania infantum. Of note, the responses were greater when higher doses of KMP11 and LEISH-F3+ proteins were administered along with the GLA-SE adjuvant and/or when delivered within VS. Remarkably, hamsters immunized with the complete combination (i.e., all antigens in VS + GLA-SE) showed significantly lower parasite burdens in the spleen compared to those in control animals. This protection was underpinned by a more intense, specific humoral response against the KMP11, LEISH-F3+, and LJL143 antigens in vaccinated animals, but a significantly less intense antibody response to the pool of soluble Leishmania antigens (SLA). Overall, these results indicate that this innovative vaccine formulation confers protection against L. infantum infection, supporting the advancement of the vaccine formulation into process development and manufacturing and the conduction of toxicity studies towards future phase I human clinical trials.
Collapse
|
11
|
Cacheiro-Llaguno C, Parody N, Escutia MR, Carnés J. Role of Circulating Immune Complexes in the Pathogenesis of Canine Leishmaniasis: New Players in Vaccine Development. Microorganisms 2021; 9:712. [PMID: 33808383 PMCID: PMC8066116 DOI: 10.3390/microorganisms9040712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 01/15/2023] Open
Abstract
During canine visceral leishmaniasis (CanL), due to Leishmania infantum (L. infantum), uncontrolled infection leads to a strong humoral immune response. As a consequence of the production of high antibody levels and the prolonged presence of parasite antigens, circulating immune complexes (CIC) are formed, which can be deposited in certain organs and tissues, inducing vasculitis, uveitis, dermatitis and especially glomerulonephritis and renal failure. A method to detect CIC and quantify their levels in serum samples from dogs infected with L. infantum has been recently described. It allowed demonstration of a correlation between CIC levels and disease severity. Thus, CIC measurement may be useful for diagnosis, assessment of disease progression and monitoring response to treatment. This is an interesting finding, considering that there remains an urgent need for identification of novel biomarkers to achieve a correct diagnosis and for optimal disease staging of dogs suffering from Leishmania infection. The objective of the present review is to shed light on the role of CIC in CanL, as well as to highlight their potential use not only as diagnostic and prognostic biomarkers but also as a valuable tool in vaccine development and new immunotherapy strategies to prevent or control disease outcome.
Collapse
Affiliation(s)
| | | | | | - Jerónimo Carnés
- R&D Unit Allergy & Immunology, LETI Pharma, S.L.U., Tres Cantos, 28760 Madrid, Spain; (C.C.-L.); (N.P.); (M.R.E.)
| |
Collapse
|
12
|
Vasconcelos Gomes de Oliveira V, Angela Aranda de Souza M, Ramos Mororó Cavalcanti R, Veríssimo de Oliveira Cardoso M, Lima Leite AC, de Figueiredo RCBQ, Rogério de Freitas Silva S, Câmara Alves L, Amaro da Silva Junior V. Study of acute oral toxicity of the thiazole derivative N-(1-methyl-2-methyl-pyridine)-N-(p-bromophenylthiazol-2-yl)-hydrazine in a Syrian hamster. Toxicol Mech Methods 2021; 31:197-204. [PMID: 33349088 DOI: 10.1080/15376516.2020.1867681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The thiazole derivative N-1-methyl-2-methyl-pyridine)-N-(p-bromophenylthiazol-2-yl)-hydrazine was used to evaluate the acute oral toxicity in Syrian hamsters. The concentration of the doses (300 mg/kg and 2000 mg/kg) were based on the "Class Acute Toxicity Method" displayed in the OECD-423 guide. In addition, renal and liver biochemical tests were performed, as well as histopathological analysis. Our results showed that the compound's lethal dose (LD50) was 1000 mg/kg and classified as category 4 according to the criteria adopted in the experiment's protocol. Biochemical analysis of the liver function's parameters showed that the LD50 values in all animals were higher than the reference values. However, the analyze of the kidney injury parameters showed an increase in the urea's dosage but a decrease in the albumin's dosage in all animals when compared to the reference values. Kidney biochemical analysis also showed that creatinine's level was only higher than the reference values in one animal. Massive damages in the liver were observed, such as hypertrophy and hyperplasia of the hepatocyte, coagulation necrosis, the presence of mononuclear cells in the sinusoidal capillaries, steatosis, cholestasis, and congestion of sinusoidal capillaries and central-lobular veins. The animals presented renal injuries related to congestion of glomerular and interstitial capillaries, nephrosis of contorted proximal and distal tubules and congestion in the medullary region. In conclusion, the thiazole derivative was well tolerated although it caused acute liver and kidney damages. Therefore, these results showed the need of further investigation of this compound in vivo to evaluate the potential therapeutic effects with chronic models.
Collapse
Affiliation(s)
- Vinícius Vasconcelos Gomes de Oliveira
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brasil.,Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brasil
| | | | | | | | | | | | | | - Leucio Câmara Alves
- Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Recife, Brasil
| | | |
Collapse
|
13
|
Passos FC, Gois MB, Sousa AD, de Marinho AIL, Corvo L, Soto M, Barral-Netto M, Barral A, Baccan GC. Investigating associations between intestinal alterations and parasite load according to Bifidobacterium spp. and Lactobacillus spp. abundance in the gut microbiota of hamsters infected by Leishmania infantum. Mem Inst Oswaldo Cruz 2020; 115:e200377. [PMID: 33263602 PMCID: PMC7703327 DOI: 10.1590/0074-02760200377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL) is a tropical neglected disease with high associated rates of mortality. Several studies have highlighted the importance of the intestinal tract (IT) and gut microbiota (GM) in the host immunological defense. Data in the literature on parasite life cycle and host immune defense against VL are scarce regarding the effects of infection on the IT and GM. OBJECTIVES This study aimed to investigate changes observed in the colon of Leishmania infantum-infected hamsters, including alterations in the enteric nervous system (ENS) and GM (specifically, levels of bifidobacteria and lactobacilli). METHODS Male hamsters were inoculated with L. infantum and euthanised at four or eight months post-infection. Intestines were processed for histological analysis and GM analysis. Quantitative polymerase chain reaction (qPCR) was performed to quantify each group of bacteria: Bifidobacterium spp. (Bf) and Lactobacillus spp (LacB). FINDINGS Infected hamsters showed histoarchitectural loss in the colon wall, with increased thickness in the submucosa and the mucosa layer, as well as greater numbers of intraepithelial lymphocytes. Forms suggestive of amastigotes were seen inside mononuclear cells. L. infantum infection induced changes in ENS, as evidenced by increases in the area of colonic enteric ganglia. Despite the absence of changes in the levels of Bf and LacB during the course of infection, the relative abundance of these bacteria was associated with parasite load and histological alterations. MAIN CONCLUSIONS Our results indicate that L. infantum infection leads to important changes in the colon and suggest that bacteria in the GM play a protective role.
Collapse
Affiliation(s)
- Fabine Correia Passos
- Universidade Federal da Bahia, Instituto de Ciências da Saúde, Departamento de Bioquímica e Biofísica, Salvador, BA, Brasil
| | - Marcelo Biondaro Gois
- Universidade Federal do Recôncavo da Bahia, Centro de Ciências da Saúde, Santo Antônio de Jesus, BA, Brasil
| | - Adenilma Duranes Sousa
- Universidade Federal da Bahia, Instituto de Ciências da Saúde, Departamento de Bioquímica e Biofísica, Salvador, BA, Brasil
| | - Ananda Isis Lima de Marinho
- Universidade Federal da Bahia, Instituto de Ciências da Saúde, Departamento de Bioquímica e Biofísica, Salvador, BA, Brasil
| | - Laura Corvo
- Universidad Autónoma de Madrid, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular, Madrid, Spain
| | - Manoel Soto
- Universidad Autónoma de Madrid, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular, Madrid, Spain
| | - Manoel Barral-Netto
- Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisas Gonçalo Muniz, Salvador, BA, Brasil
| | - Aldina Barral
- Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisas Gonçalo Muniz, Salvador, BA, Brasil
| | - Gyselle Chrystina Baccan
- Universidade Federal da Bahia, Instituto de Ciências da Saúde, Departamento de Bioquímica e Biofísica, Salvador, BA, Brasil
| |
Collapse
|
14
|
Jiménez-Antón MD, Grau M, Corral MJ, Olías-Molero AI, Alunda JM. Efficient infection of hamster with Leishmania donovani by retro-orbital inoculation. Virulence 2020; 10:711-718. [PMID: 31389288 PMCID: PMC8647847 DOI: 10.1080/21505594.2019.1649587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- M D Jiménez-Antón
- a Departamento de Sanidad Animal, Research group ICPVet, Facultad de Veterinaria, Universidad Complutense de Madrid , Spain.,b Instituto de Investigación Hospital 12 de Octubre , Madrid , Spain
| | - M Grau
- a Departamento de Sanidad Animal, Research group ICPVet, Facultad de Veterinaria, Universidad Complutense de Madrid , Spain.,b Instituto de Investigación Hospital 12 de Octubre , Madrid , Spain
| | - M J Corral
- a Departamento de Sanidad Animal, Research group ICPVet, Facultad de Veterinaria, Universidad Complutense de Madrid , Spain.,b Instituto de Investigación Hospital 12 de Octubre , Madrid , Spain
| | - A I Olías-Molero
- a Departamento de Sanidad Animal, Research group ICPVet, Facultad de Veterinaria, Universidad Complutense de Madrid , Spain.,b Instituto de Investigación Hospital 12 de Octubre , Madrid , Spain
| | - J M Alunda
- a Departamento de Sanidad Animal, Research group ICPVet, Facultad de Veterinaria, Universidad Complutense de Madrid , Spain.,b Instituto de Investigación Hospital 12 de Octubre , Madrid , Spain
| |
Collapse
|
15
|
Saini S, Rai AK. Hamster, a close model for visceral leishmaniasis: Opportunities and challenges. Parasite Immunol 2020; 42:e12768. [DOI: 10.1111/pim.12768] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Sheetal Saini
- Department of Biotechnology Motilal Nehru National Institute of Technology Allahabad Praygraj India
| | - Ambak K. Rai
- Department of Biotechnology Motilal Nehru National Institute of Technology Allahabad Praygraj India
| |
Collapse
|
16
|
Borsari C, Jiménez-Antón MD, Eick J, Bifeld E, Torrado JJ, Olías-Molero AI, Corral MJ, Santarem N, Baptista C, Severi L, Gul S, Wolf M, Kuzikov M, Ellinger B, Reinshagen J, Witt G, Linciano P, Tait A, Costantino L, Luciani R, Tejera Nevado P, Zander-Dinse D, Franco CH, Ferrari S, Moraes CB, Cordeiro-da-Silva A, Ponterini G, Clos J, Alunda JM, Costi MP. Discovery of a benzothiophene-flavonol halting miltefosine and antimonial drug resistance in Leishmania parasites through the application of medicinal chemistry, screening and genomics. Eur J Med Chem 2019; 183:111676. [DOI: 10.1016/j.ejmech.2019.111676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/01/2019] [Accepted: 09/02/2019] [Indexed: 01/24/2023]
|
17
|
Miao J, Chard LS, Wang Z, Wang Y. Syrian Hamster as an Animal Model for the Study on Infectious Diseases. Front Immunol 2019; 10:2329. [PMID: 31632404 PMCID: PMC6781508 DOI: 10.3389/fimmu.2019.02329] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/16/2019] [Indexed: 11/13/2022] Open
Abstract
Infectious diseases still remain one of the biggest challenges for human health. In order to gain a better understanding of the pathogenesis of infectious diseases and develop effective diagnostic tools, therapeutic agents, and preventive vaccines, a suitable animal model which can represent the characteristics of infectious is required. The Syrian hamster immune responses to infectious pathogens are similar to humans and as such, this model is advantageous for studying pathogenesis of infection including post-bacterial, viral and parasitic pathogens, along with assessing the efficacy and interactions of medications and vaccines for those pathogens. This review summarizes the current status of Syrian hamster models and their use for understanding the underlying mechanisms of pathogen infection, in addition to their use as a drug discovery platform and provides a strong rationale for the selection of Syrian hamster as animal models in biomedical research. The challenges of using Syrian hamster as an alternative animal model for the research of infectious diseases are also addressed.
Collapse
Affiliation(s)
- Jinxin Miao
- Department of Science and Technology, Henan University of Chinese Medicine, Zhengzhou, China
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa S. Chard
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Zhimin Wang
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
18
|
Parody N, Cacheiro-Llaguno C, Osuna C, Renshaw-Calderón A, Alonso C, Carnés J. Circulating immune complexes levels correlate with the progression of canine leishmaniosis in naturally infected dogs. Vet Parasitol 2019; 274:108921. [PMID: 31536867 DOI: 10.1016/j.vetpar.2019.108921] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 12/17/2022]
Abstract
Dogs are the main domestic reservoir of Leishmania infantum, and in cases of uncontrolled infection, a strong humoral immune response is elicited, which is inefficient against the parasites. Previous studies have suggested that an adequate antigen/antibody ratio, with a moderate prevalence of antigens with respect to the antibodies, could result in the formation of circulating immune complexes (CIC) in canine leishmaniosis (CanL). Deposition of these complexes in tissues has been associated with vasculitis, uveitis, arthritis, dermatitis and especially glomerulonephritis and renal failure. However, little is known about the relationship between the presence of CIC and disease progression. The aim of this study was to evaluate serum CIC level and its correlation with disease severity in infected dogs with different stages of disease and non-infected animals as a control. A total of 60 dogs were included in the study, classified according to the proposed LeishVet classification criteria: healthy non-infected (n = 13); healthy infected (n = 12); sick stage I (n = 9); sick stage II (n = 17); sick stage III (n = 8); and sick stage IV (n = 1). CIC were isolated from serum samples using a modified polyethylene glycol precipitation method, and their levels measured by ELISA and bicinchoninic acid protein assay. A nanoparticle tracking analysis was performed to investigate the relationship between the molecular size distribution of the CIC and disease progression. In conclusion, the results confirmed a positive association between CIC levels, their molecular size and disease progression that suggests a potential use of CIC as biomarkers of CanL.
Collapse
Affiliation(s)
- Nuria Parody
- R&D Department, Laboratorios LETI S.L., Tres Cantos, Madrid, Spain
| | | | - Cristina Osuna
- R&D Department, Laboratorios LETI S.L., Tres Cantos, Madrid, Spain
| | - Ana Renshaw-Calderón
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Carlos Alonso
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Jerónimo Carnés
- R&D Department, Laboratorios LETI S.L., Tres Cantos, Madrid, Spain.
| |
Collapse
|
19
|
Garde E, Ramírez L, Corvo L, Solana JC, Martín ME, González VM, Gómez-Nieto C, Barral A, Barral-Netto M, Requena JM, Iborra S, Soto M. Analysis of the Antigenic and Prophylactic Properties of the Leishmania Translation Initiation Factors eIF2 and eIF2B in Natural and Experimental Leishmaniasis. Front Cell Infect Microbiol 2018; 8:112. [PMID: 29675401 PMCID: PMC5895769 DOI: 10.3389/fcimb.2018.00112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/21/2018] [Indexed: 02/05/2023] Open
Abstract
Different members of intracellular protein families are recognized by the immune system of the vertebrate host infected by parasites of the genus Leishmania. Here, we have analyzed the antigenic and immunogenic properties of the Leishmania eIF2 and eIF2B translation initiation factors. An in silico search in Leishmania infantum sequence databases allowed the identification of the genes encoding the α, β, and γ subunits and the α, β, and δ subunits of the putative Leishmania orthologs of the eukaryotic initiation factors F2 (LieIF2) or F2B (LieIF2B), respectively. The antigenicity of these factors was analyzed by ELISA using recombinant versions of the different subunits. Antibodies against the different LieIF2 and LieIF2B subunits were found in the sera from human and canine visceral leishmaniasis patients, and also in the sera from hamsters experimentally infected with L. infantum. In L. infantum (BALB/c) and Leishmania major (BALB/c or C57BL/6) challenged mice, a moderate humoral response against these protein factors was detected. Remarkably, these proteins elicited an IL-10 production by splenocytes derived from infected mice independently of the Leishmania species employed for experimental challenge. When DNA vaccines based on the expression of the LieIF2 or LieIF2B subunit encoding genes were administered in mice, an antigen-specific secretion of IFN-γ and IL-10 cytokines was observed. Furthermore, a partial protection against murine CL development due to L. major infection was generated in the vaccinated mice. Also, in this work we show that the LieIF2α subunit and the LieIF2Bβ and δ subunits have the capacity to stimulate IL-10 secretion by spleen cells from naïve mice. B-lymphocytes were identified as the major producers of this anti-inflammatory cytokine. Taking into account the data found in this study, it may be hypothesized that these proteins act as virulence factors implicated in the induction of humoral responses as well as in the production of the down-regulatory IL-10 cytokine, favoring a pathological outcome. Therefore, these proteins might be considered markers of disease.
Collapse
Affiliation(s)
- Esther Garde
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Laura Ramírez
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Laura Corvo
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - José C. Solana
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - M. Elena Martín
- Departamento de Bioquímica-Investigación, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Víctor M. González
- Departamento de Bioquímica-Investigación, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carlos Gómez-Nieto
- Parasitology Unit, LeishmanCeres Laboratory, Veterinary Faculty, University of Extremadura, Cáceres, Spain
| | - Aldina Barral
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz-FIOCRUZ, Salvador, Brazil
| | - Manoel Barral-Netto
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz-FIOCRUZ, Salvador, Brazil
| | - José M. Requena
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Salvador Iborra
- Immunobiology of Inflammation Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Health Research Institute (imas12), Ciudad Universitaria, Madrid, Spain
- *Correspondence: Salvador Iborra
| | - Manuel Soto
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Manuel Soto
| |
Collapse
|
20
|
Experimental mixed infection of Leishmania (Leishmania) amazonensis and Leishmania (L.) infantum in hamsters (Mesocricetus auratus). Parasitology 2017; 144:1191-1202. [PMID: 28487000 DOI: 10.1017/s0031182017000464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In South America, visceral leishmaniasis is frequently caused by Leishmania infantum and, at an unknown frequency, by Leishmania amazonensis. Therefore, mixed infections with these organisms are possible. Mixed infections might affect the clinical course, immune response, diagnosis, treatment and epidemiology of the disease. Here we describe the clinical course of mixed infections with L. amazonensis and L. infantum in a hamster model. We show that mixed infections are associated with more severe clinical disease than infection with L. amazonensis or L. infantum alone. In spleens with mixed infections, L. infantum outcompeted L. amazonensis in the tissue, but not in culture from tissue. We found increased levels of IgG in animals infected with L. infantum. Although more than 30 bands were revealed in a Western blot, the highest immunogenicity was observed with proteins having molecular masses of 95 and 90 kDa, whereas proteins with molecular masses of lower than 50 kDa were reactive frequently with serum from hamsters infected with L. amazonensis, and proteins with molecular masses of 80 and 70 kDa were reactive only with serum from hamsters infected with L. infantum. This finding has important implications regarding the biology of Leishmania and humoral immune responses to infections with these organisms.
Collapse
|
21
|
Eberhardt E, Mondelaers A, Hendrickx S, Van den Kerkhof M, Maes L, Caljon G. Molecular detection of infection homogeneity and impact of miltefosine treatment in a Syrian golden hamster model of Leishmania donovani and L. infantum visceral leishmaniasis. Parasitol Res 2016; 115:4061-70. [PMID: 27412759 DOI: 10.1007/s00436-016-5179-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/20/2016] [Indexed: 02/07/2023]
Abstract
Control of visceral leishmaniasis caused by Leishmania infantum and Leishmania donovani primarily relies on chemotherapy using an increasingly compromised repertoire of antileishmanial compounds. For evaluation of novel drugs, the Syrian golden hamster is considered as a clinically relevant laboratory model. In this study, two molecular parasite detection assays were developed targeting cathepsin-like cysteine protease B (CPB) DNA and 18S rRNA to achieve absolute amastigote quantification in the major target organs liver and spleen. Both quantitative PCR (qPCR) techniques showed excellent agreement with a strong correlation with the conventional microscopic reading of Giemsa-stained tissue smears. Using multiple single tissue pieces and all three detection methods, we confirmed homogeneity of infection in liver and spleen and the robustness of extrapolating whole organ burdens from a small single tissue piece. Comparison of pre- and post-treatment burdens in infected hamsters using the three detection methods consistently revealed a stronger parasite reduction in the spleen compared to the liver, indicating an organ-dependent clearance efficacy for miltefosine. In conclusion, this study in the hamster demonstrated high homogeneity of infection in liver and spleen and advocates the use of molecular detection methods for assessment of low (post-treatment) tissue burdens.
Collapse
Affiliation(s)
- Eline Eberhardt
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Room S7.24, Campus Drie Eiken, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Annelies Mondelaers
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Room S7.24, Campus Drie Eiken, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Room S7.24, Campus Drie Eiken, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Magali Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Room S7.24, Campus Drie Eiken, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Room S7.24, Campus Drie Eiken, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Room S7.24, Campus Drie Eiken, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| |
Collapse
|
22
|
Moreira NDD, Vitoriano-Souza J, Roatt BM, Vieira PMDA, Coura-Vital W, Cardoso JMDO, Rezende MT, Ker HG, Giunchetti RC, Carneiro CM, Reis AB. Clinical, hematological and biochemical alterations in hamster (Mesocricetus auratus) experimentally infected with Leishmania infantum through different routes of inoculation. Parasit Vectors 2016; 9:181. [PMID: 27030128 PMCID: PMC4815141 DOI: 10.1186/s13071-016-1464-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/21/2016] [Indexed: 11/25/2022] Open
Abstract
Background Leishmaniasis remains among the most important parasitic diseases in the developing world and visceral leishmaniasis (VL) is the most fatal. The hamster Mesocricetus auratus is a susceptible model for the characterization of the disease, since infection of hamsters with L. infantum reproduces the clinical and pathological features of human VL. In this context, it provides a unique opportunity to study VL in its active form. The main goal of this study was to evaluate the clinical, biochemical, and hematological changes in male hamsters infected through different routes and strains of L. infantum. Methods In the current study, hamsters (Mesocricetus auratus) were infected with the L. infantum strains (WHO/MHOM/BR/74/PP75 and MCAN/BR/2008/OP46) by intradermal, intraperitoneal and intracardiac routes. The animals were monitored for a nine month follow-up period. Results The hamsters showed clinical signs similar to those observed in classical canine and human symptomatic VL, including splenomegaly, severe weight loss, anemia, and leucopenia. Therefore the OP46 strain was more infective, clinical signs were more frequent and more exacerbated in IC group with 80 to 100 % of the animals showing splenomegaly, in the last month infection. Additionally, desquamation, hair loss and external mucocutaneous lesions and ulcers localized in the snout, accompanied by swelling of the paws in all animals, were observed. Consequently, the animals presented severe weight loss/cachexia, hunched posture, an inability to eat or drink, and non-responsiveness to external stimuli. Furthermore, regardless of strain, route of inoculum and time assessed, the animals showed renal and hepatic alterations, with increased serum levels of urea and creatinine as well as elevated serum levels of aspartate aminotransferase and alanine aminotransferase. Conclusions These results strongly suggest that the inoculation through the intracardiac route resulted in a higher severity among infections, especially in the sixth and ninth month after infection via intracardiac, exhibited clinical manifestations and biochemical/hematological findings similar to human visceral leishmaniasis. Therefore, we suggest that this route must be preferentially used in experimental infections for pathogenesis studies of VL in the hamster model.
Collapse
Affiliation(s)
- Nádia das Dores Moreira
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil.,Laboratório de Pesquisas Clínicas, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Juliana Vitoriano-Souza
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Bruno Mendes Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Paula Melo de Abreu Vieira
- Laboratório de Morfopatologia, Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Wendel Coura-Vital
- Laboratório de Pesquisas Clínicas, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Jamille Mirelle de Oliveira Cardoso
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Mariana Trevisan Rezende
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Henrique Gama Ker
- Laboratório de Pesquisas Clínicas, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Claudia Martins Carneiro
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil.,Laboratório de Pesquisas Clínicas, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Alexandre Barbosa Reis
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil. .,Laboratório de Pesquisas Clínicas, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil.
| |
Collapse
|
23
|
Martín-Martín I, Jiménez M, González E, Eguiluz C, Molina R. Natural transmission of Leishmania infantum through experimentally infected Phlebotomus perniciosus highlights the virulence of Leishmania parasites circulating in the human visceral leishmaniasis outbreak in Madrid, Spain. Vet Res 2015; 46:138. [PMID: 26645907 PMCID: PMC4673772 DOI: 10.1186/s13567-015-0281-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 10/05/2015] [Indexed: 12/19/2022] Open
Abstract
A human leishmaniasis outbreak is occurring in the Madrid region, Spain, with the parasite and vector involved being Leishmania infantum and Phlebotomus perniciosus respectively. The aim of this study was to investigate the virulence of L. infantum isolates from the focus using a natural transmission model. Hamsters were infected by intraperitoneal inoculation (IP) or by bites of sand flies experimentally infected with L. infantum isolates obtained from P. perniciosus collected in the outbreak area (IPER/ES/2012/BOS1FL1 and IPER/ES/2012/POL2FL6) and a well characterized L. infantum strain JPCM5 (MCAN/ES/98/LLM-877). Hamster infections were monitored by clinical examination, serology, culture, parasite burden, Giemsa-stained imprints, PCR, histopathology and xenodiagnostic studies. Establishment of infection of L. infantum was achieved with the JPCM5 strain and outbreak isolates by both P. perniciosus infective bites or IP route. However, high virulence of BOS1FL1 and POL2FL6 isolates was highlighted by the clinical outcome of disease, high parasite detection in spleen and liver, high parasitic loads and positivity of Leishmania serology. Transmission by bite of POL2FL6 infected flies generated a slower progression of clinical disease than IP infection, but both groups were infective to P. perniciosus by xenodiagnosis at 2 months post-infection. Conversely, hamsters inoculated with JPCM5 were not infective to sand flies. Histopathology studies confirmed the wide spread of POL2FL6 parasites to several organs. A visceral leishmaniasis model that mimics the natural transmission in nature allowed us to highlight the high virulence of isolates that are circulating in the focus. These findings contribute to a better understanding of the outbreak epidemiology.
Collapse
Affiliation(s)
- Inés Martín-Martín
- Unidad de Entomología Médica, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo s/n, Majadahonda, 28220, Madrid, Spain.
| | - Maribel Jiménez
- Unidad de Entomología Médica, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo s/n, Majadahonda, 28220, Madrid, Spain.
| | - Estela González
- Unidad de Entomología Médica, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo s/n, Majadahonda, 28220, Madrid, Spain.
| | - César Eguiluz
- Unidad de Veterinaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo s/n, Majadahonda, 28220, Madrid, Spain.
| | - Ricardo Molina
- Unidad de Entomología Médica, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo s/n, Majadahonda, 28220, Madrid, Spain.
| |
Collapse
|
24
|
Soto M, Corvo L, Garde E, Ramírez L, Iniesta V, Bonay P, Gómez-Nieto C, González VM, Martín ME, Alonso C, Coelho EAF, Barral A, Barral-Netto M, Iborra S. Coadministration of the Three Antigenic Leishmania infantum Poly (A) Binding Proteins as a DNA Vaccine Induces Protection against Leishmania major Infection in BALB/c Mice. PLoS Negl Trop Dis 2015; 9:e0003751. [PMID: 25955652 PMCID: PMC4425485 DOI: 10.1371/journal.pntd.0003751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/11/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Highly conserved intracellular proteins from Leishmania have been described as antigens in natural and experimental infected mammals. The present study aimed to evaluate the antigenicity and prophylactic properties of the Leishmania infantum Poly (A) binding proteins (LiPABPs). METHODOLOGY/PRINCIPAL FINDINGS Three different members of the LiPABP family have been described. Recombinant tools based on these proteins were constructed: recombinant proteins and DNA vaccines. The three recombinant proteins were employed for coating ELISA plates. Sera from human and canine patients of visceral leishmaniasis and human patients of mucosal leishmaniasis recognized the three LiPABPs. In addition, the protective efficacy of a DNA vaccine based on the combination of the three Leishmania PABPs has been tested in a model of progressive murine leishmaniasis: BALB/c mice infected with Leishmania major. The induction of a Th1-like response against the LiPABP family by genetic vaccination was able to down-regulate the IL-10 predominant responses elicited by parasite LiPABPs after infection in this murine model. This modulation resulted in a partial protection against L. major infection. LiPABP vaccinated mice showed a reduction on the pathology that was accompanied by a decrease in parasite burdens, in antibody titers against Leishmania antigens and in the IL-4 and IL-10 parasite-specific mediated responses in comparison to control mice groups immunized with saline or with the non-recombinant plasmid. CONCLUSION/SIGNIFICANCE The results presented here demonstrate for the first time the prophylactic properties of a new family of Leishmania antigenic intracellular proteins, the LiPABPs. The redirection of the immune response elicited against the LiPABP family (from IL-10 towards IFN-γ mediated responses) by genetic vaccination was able to induce a partial protection against the development of the disease in a highly susceptible murine model of leishmaniasis.
Collapse
Affiliation(s)
- Manuel Soto
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail: (MS); (SI)
| | - Laura Corvo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Esther Garde
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Ramírez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Virginia Iniesta
- LeishmanCeres Laboratory (GLP Compliance Certified), Parasitology Unit. Veterinary Faculty, University of Extremadura, Cáceres, Spain
| | - Pedro Bonay
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos Gómez-Nieto
- LeishmanCeres Laboratory (GLP Compliance Certified), Parasitology Unit. Veterinary Faculty, University of Extremadura, Cáceres, Spain
| | - Víctor M. González
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, Spain
| | - M. Elena Martín
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, Spain
| | - Carlos Alonso
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Eduardo A. F. Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aldina Barral
- Centro de Pesquisas Gonçalo Moniz (Fundação Oswaldo Cruz-FIOCRUZ), Salvador, Bahia, Brazil
| | - Manoel Barral-Netto
- Centro de Pesquisas Gonçalo Moniz (Fundação Oswaldo Cruz-FIOCRUZ), Salvador, Bahia, Brazil
| | - Salvador Iborra
- Immunobiology of Inflammation Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- * E-mail: (MS); (SI)
| |
Collapse
|
25
|
Intranasal vaccination with leishmanial antigens protects golden hamsters (Mesocricetus auratus) against Leishmania (Viannia) Braziliensis infection. PLoS Negl Trop Dis 2015; 9:e3439. [PMID: 25569338 PMCID: PMC4287559 DOI: 10.1371/journal.pntd.0003439] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/24/2014] [Indexed: 11/19/2022] Open
Abstract
Background Previous results have shown that oral and intranasal administration of particulate Leishmania (Leishmania) amazonensis antigens (LaAg) partially protects mice against L. amazonensis infection. However, vaccination studies on species of the subgenus Viannia, the main causative agent of cutaneous and mucosal leishmaniasis in the Americas, have been hampered by the lack of easy-to-handle bio-models that accurately mimic the human disease. Recently, we demonstrated that the golden hamster is an appropriate model for studying the immunopathogenesis of cutaneous leishmaniasis caused by L. (Viannia) braziliensis. Using the golden hamster model, our current study investigated whether the protective effect of intranasal immunisation with LaAg can be extended to L. braziliensis infection. Methodology/Principal Findings Golden hamsters vaccinated with either two intranasal (IN) doses of LaAg (10 µg) or two intramuscular doses of LaAg (20 µg) were challenged 2 weeks post-vaccination with L. braziliensis. The results showed that IN immunisation with LaAg significantly reduced lesion growth and parasitic load as well as serum IgG and IgG2 levels. At the experimental endpoint on day 114 post-infection, IN-immunised hamsters that were considered protected expressed IFN-γ and IL10 mRNA levels that returned to uninfected skin levels. In contrast to the nasal route, intramuscular (IM) immunisation failed to provide protection. Conclusions/Significance These results demonstrate for the first time that the nasal route of immunisation can induce cross protection against L. braziliensis infection. Leishmaniasis is a disease that is common in most tropical countries. In Brazil, the cutaneous form of the disease is highly prevalent, with approximately 28,000 new cases reported annually. L. (Viannia) braziliensis is the main causative agent of cutaneous leishmaniasis; however, vaccine studies against protozoans of the subgenus Viannia have been largely neglected, mainly due to the high resistance of most mouse strains to the infection. Here, the authors used the golden hamster, which is highly susceptible to dermotropic Leishmania spp infection. It was previously shown that oral and intranasal vaccination with whole L. (Leishmania) amazonensis antigens (LaAg) protected mice against L. amazonensis infection. In the present study, the authors investigated whether the protective effect of intranasal immunisation with LaAg can be extended to L. braziliensis infection using the golden hamster model. The results showed that intranasal immunisation with LaAg significantly reduced lesion growth and parasitic load as well as IgG and IgG2 serum levels. At the endpoint of the experiment, intranasally immunised hamsters that were considered protected expressed IFN-γ and IL10 mRNA at levels similar to those in uninfected skin. These data show that the use of a proper animal model and/or different vaccination strategies may facilitate the development of an effective vaccine against L. braziliensis.
Collapse
|
26
|
Espitia CM, Saldarriaga OA, Travi BL, Osorio EY, Hernandez A, Band M, Patel MJ, Medina AA, Cappello M, Pekosz A, Melby PC. Transcriptional profiling of the spleen in progressive visceral leishmaniasis reveals mixed expression of type 1 and type 2 cytokine-responsive genes. BMC Immunol 2014; 15:38. [PMID: 25424735 PMCID: PMC4253007 DOI: 10.1186/s12865-014-0038-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/15/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The Syrian golden hamster (Mesocricetus aureus) has been used as a model to study infections caused by a number of human pathogens. Studies of immunopathogenesis in hamster infection models are challenging because of the limited availability of reagents needed to define cellular and molecular determinants. RESULTS We sequenced a hamster cDNA library and developed a first-generation custom cDNA microarray that included 5131 unique cDNAs enriched for immune response genes. We used this microarray to interrogate the hamster spleen response to Leishmania donovani, an intracellular protozoan that causes visceral leishmaniasis. The hamster model of visceral leishmaniasis is of particular interest because it recapitulates clinical and immunopathological features of human disease, including cachexia, massive splenomegaly, pancytopenia, immunosuppression, and ultimately death. In the microarray a differentially expressed transcript was identified as having at least a 2-fold change in expression between uninfected and infected groups and a False Discovery Rate of <5%. Following a relatively silent early phase of infection (at 7 and 14 days post-infection only 8 and 24 genes, respectively, were differentially expressed), there was dramatic upregulation of inflammatory and immune-related genes in the spleen (708 differentially expressed genes were evident at 28 days post-infection). The differentially expressed transcripts included genes involved in inflammation, immunity, and immune cell trafficking. Of particular interest there was concomitant upregulation of the IFN-γ and interleukin (IL)-4 signaling pathways, with increased expression of a battery of IFN-γ- and IL-4-responsive genes. The latter included genes characteristic of alternatively activated macrophages. CONCLUSIONS Transcriptional profiling was accomplished in the Syrian golden hamster, for which a fully annotated genome is not available. In the hamster model of visceral leishmaniasis, a robust and functional IFN-γ response did not restrain parasite load and progression of disease. This supports the accumulating evidence that macrophages are ineffectively activated to kill the parasite. The concomitant expression of IL-4/IL-13 and their downstream target genes, some of which were characteristic of alternative macrophage activation, are likely to contribute to this. Further dissection of mechanisms that lead to polarization of macrophages toward a permissive state is needed to fully understand the pathogenesis of visceral leishmaniasis.
Collapse
|
27
|
Abstract
Leishmaniasis is a neglected tropical disease spread by an arthropod vector. It remains a significant health problem with an incidence of 0.2–0.4 million visceral leishmaniasis and 0.7–1.2 million cutaneous leishmaniasis cases each year. There are limitations associated with the current therapeutic regimens for leishmaniasis and the fact that after recovery from infection the host becomes immune to subsequent infection therefore, these factors force the feasibility of a vaccine for leishmaniasis. Publication of the genome sequence of Leishmania has paved a new way to understand the pathogenesis and host immunological status therefore providing a deep insight in the field of vaccine research. This review is an effort to study the antigenic targets in Leishmania to develop an anti-leishmanial vaccine.
Collapse
|
28
|
Comparative evaluation of lesion development, tissue damage, and cytokine expression in golden hamsters (Mesocricetus auratus) infected by inocula with different Leishmania (Viannia) braziliensis concentrations. Infect Immun 2014; 82:5203-13. [PMID: 25287925 DOI: 10.1128/iai.02083-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The golden hamster (Mesocricetus auratus) is a susceptible model to Leishmania (Viannia) spp.; however, available studies employ different infection protocols, which account for clinical and pathological presentation differences. Herein, L. (V.) braziliensis preparations were standardized to contain 10(4), 10(5), or 10(6) parasites to determine an optimal inoculum that ensured cutaneous lesions without causing a disseminated infection in hamsters. Lesion development was followed for 105 days by size measurements, and skin, draining lymph node, spleen, and sera were investigated to check parasite load, spleen visceralization, cytokine expression, histopathological changes, and anti-Leishmania IgG levels. The lesion emergence time was inversely proportional to the parasite concentration in the inocula. Animals infected by 10(4) parasites presented nodular lesions, while those infected with 10(6) parasites often exhibited ulcerated lesions. The differences in the final lesion sizes were observed between 10(4) and 10(5) inocula or 10(4) and 10(6) inocula. High IFNG expression, anti-Leishmania IgG levels, and parasite load occurred independently of the inoculum used. A mild inflammatory skin involvement was observed in animals infected with 10(4) parasites, while extensive tissue damage and parasite spleen visceralization occurred with 10(5) and 10(6) parasites. These results indicate that inocula with different concentrations of parasites generate differences in the time of lesion emergence, clinical presentation, and systemic commitment, despite high and similar IFNG expression and parasite load. This suggests that a modulation in the immune response to different parasite numbers occurs in an early phase of the infection, which could dictate the establishment and magnitude of the chronic phase of the disease.
Collapse
|
29
|
Corral MJ, Serrano DR, Moreno I, Torrado JJ, Domínguez M, Alunda JM. Efficacy of low doses of amphotericin B plus allicin against experimental visceral leishmaniasis. J Antimicrob Chemother 2014; 69:3268-74. [PMID: 25096077 DOI: 10.1093/jac/dku290] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To evaluate the efficacy of the combination of allicin and amphotericin deoxycholate (AmB) in the chemotherapy of Leishmania infantum infection with the final aim of reducing the dose of AmB in the chemotherapy of visceral leishmaniasis. METHODS Hamsters were intraperitoneally (ip) infected with L. infantum (10(7) stationary phase promastigotes). On day 45 post-infection animals were treated ip with AmB (1 or 5 mg/kg/day), allicin (5 mg/kg/day) or a combination of AmB (1 mg/kg/day) + allicin (5 mg/kg/day) for 5 days. Animals were clinically and biopathologically monitored and the antibody response (IgG, IgG1, IgG2) was determined. Parasite burdens were estimated by limiting dilution and AmB biodistribution was determined by HPLC in plasma, kidney, spleen and liver. RESULTS No clinical signs or liver and kidney alterations were observed. AmB (1 mg/kg/day) did not clear the Leishmania infection and no parasites were detected in two animals treated with 5 mg/kg/day allicin. Combination therapy (5 mg/kg allicin + 1 mg/kg AmB) reduced the L. infantum burden by >95%. Antileishmanial activity of the combination was comparable (P < 0.05) to the standard AmB treatment (5 mg/kg). CONCLUSIONS Allicin alone (5 mg/kg/day for 5 days) significantly reduced the Leishmania burden in spleen and liver of infected hamsters. Co-administration of allicin (5 mg/kg/day for 5 days) and AmB (1 mg/kg/day for 5 days) showed a partial additive effect on the reduction of leishmanial burden in both target organs.
Collapse
Affiliation(s)
- M Jesús Corral
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Dolores R Serrano
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Inmaculada Moreno
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - J J Torrado
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Mercedes Domínguez
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - José M Alunda
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
30
|
Braga MS, Neves LX, Campos JM, Roatt BM, de Oliveira Aguiar Soares RD, Braga SL, de Melo Resende D, Reis AB, Castro-Borges W. Shotgun proteomics to unravel the complexity of the Leishmania infantum exoproteome and the relative abundance of its constituents. Mol Biochem Parasitol 2014; 195:43-53. [PMID: 25017697 DOI: 10.1016/j.molbiopara.2014.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 01/27/2023]
Abstract
The exoproteome of some Leishmania species has revealed important insights into host-parasite interaction, paving the way for the proposal of novel disease-oriented interventions. The focus of the present investigation constituted the molecular profile of the L. infantum exoproteome revealed by a shotgun proteomic approach. Promastigotes under logarithmic phase of growth were obtained and harvested by centrifugation at different time points. Cell integrity was evaluated through the counting of viable parasites using propidium iodide labeling, followed by flow cytometry analysis. The 6h culture supernatant, operationally defined here as exoproteome, was then conditioned to in solution digestion and the resulting peptides submitted to mass spectrometry. A total of 102 proteins were identified and categorized according to their cellular function. Their relative abundance index (emPAI) allowed inference that the L. infantum exoproteome is a complex mixture dominated by molecules particularly involved in nucleotide metabolism and antioxidant activity. Bioinformatic analyses support that approximately 60% of the identified proteins are secreted, of which, 85% possibly reach the extracellular milieu by means of non-classic pathways. At last, sera from naturally infected animals, carriers of differing clinical forms of Canine Visceral Leishmaniasis (CVL), were used to test the immunogenicity associated to the L. infantum exoproteome. Western blotting experiments revealed that this sub-proteome was useful at discriminating symptomatic animals from those exhibiting other clinical forms of the disease. Collectively, the molecular characterization of the L. infantum exoproteome and the preliminary immunoproteomic assays opened up new research avenues related to treatment, prognosis and diagnosis of CVL.
Collapse
Affiliation(s)
- Micheline Soares Braga
- Laboratório de Enzimologia e Proteômica, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Leandro Xavier Neves
- Laboratório de Enzimologia e Proteômica, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Jonatan Marques Campos
- Laboratório de Enzimologia e Proteômica, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Bruno Mendes Roatt
- Laboratório de Imunopatologia, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | | - Samuel Leôncio Braga
- Laboratório de Imunopatologia, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Daniela de Melo Resende
- Laboratório de Pesquisas Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Grupo Informática de Biossistemas, Centro de Pesquisas René Rachou - Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Alexandre Barbosa Reis
- Laboratório de Imunopatologia, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Laboratório de Pesquisas Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - William Castro-Borges
- Laboratório de Enzimologia e Proteômica, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
31
|
Carrillo E, Jimenez MA, Sanchez C, Cunha J, Martins CM, da Paixão Sevá A, Moreno J. Protein malnutrition impairs the immune response and influences the severity of infection in a hamster model of chronic visceral leishmaniasis. PLoS One 2014; 9:e89412. [PMID: 24586759 PMCID: PMC3934886 DOI: 10.1371/journal.pone.0089412] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 01/20/2014] [Indexed: 12/20/2022] Open
Abstract
Leishmaniasis remains one of the world's most devastating neglected tropical diseases. It mainly affects developing countries, where it often co-exists with chronic malnutrition, one of the main risk factors for developing the disease. Few studies have been published, however, on the relationship between leishmaniasis progression and malnutrition. The present paper reports the influence of protein malnutrition on the immune response and visceral disease development in adult hamsters infected with Leishmania infantum fed either standard or low protein diets. The low protein diet induced severe malnutrition in these animals, and upon infection with L. infantum 33% had severe visceral leishmaniasis compared to only 8% of animals fed the standard diet. The infected, malnourished animals showed notable leukocyte depletion, mild specific antibody responses, impairment of lymphoproliferation, presence of parasites in blood (16.67% of the hamsters) and significant increase of the splenic parasite burden. Animals fed standard diet suffered agranulocytosis and monocytopenia, but showed stronger specific immune responses and had lower parasite loads than their malnourished counterparts. The present results show that protein malnutrition promotes visceral leishmaniasis and provide clues regarding the mechanisms underlying the impairment of the immune system.
Collapse
Affiliation(s)
- Eugenia Carrillo
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| | - Mª Angeles Jimenez
- Departamento Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Carmen Sanchez
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Joana Cunha
- Instituto de Biología Molecular e Celular, Instituto de Ciências Biomédicas Abel Salazar e Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Camila Marinelli Martins
- Departamento Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo, São Paulo, Brazil
| | - Anaiá da Paixão Sevá
- Departamento Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo, São Paulo, Brazil
| | - Javier Moreno
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
32
|
Johnson KC, Yongky A, Vishwanathan N, Jacob NM, Jayapal KP, Goudar CT, Karypis G, Hu WS. Exploring the transcriptome space of a recombinant BHK cell line through next generation sequencing. Biotechnol Bioeng 2013; 111:770-81. [DOI: 10.1002/bit.25135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/05/2013] [Accepted: 10/07/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Kathryn C. Johnson
- Department of Chemical Engineering and Materials Science; University of Minnesota; 421 Washington Avenue SE Minneapolis Minnesota
| | - Andrew Yongky
- Department of Chemical Engineering and Materials Science; University of Minnesota; 421 Washington Avenue SE Minneapolis Minnesota
| | - Nandita Vishwanathan
- Department of Chemical Engineering and Materials Science; University of Minnesota; 421 Washington Avenue SE Minneapolis Minnesota
| | - Nitya M. Jacob
- Department of Chemical Engineering and Materials Science; University of Minnesota; 421 Washington Avenue SE Minneapolis Minnesota
| | | | - Chetan T. Goudar
- Global Biologic Development; Bayer HealthCare; Berkeley California
| | - George Karypis
- Department of Computer Science and Engineering; University of Minnesota; Minneapolis Minnesota
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science; University of Minnesota; 421 Washington Avenue SE Minneapolis Minnesota
| |
Collapse
|
33
|
Gómez-Galindo AM, Delgado-Murcia LG. Body weight as a determinant of clinical evolution in hamsters (Mesocricetus auratus) infected with Leishmania (Viannia) panamensis. Rev Inst Med Trop Sao Paulo 2013; 55:357-61. [PMID: 24037292 PMCID: PMC4105075 DOI: 10.1590/s0036-46652013000500011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/21/2013] [Indexed: 11/22/2022] Open
Abstract
The clinical outcome of infection with Leishmania species of the subgenus Viannia in hamster model (Mesocricetus auratus) has shown to be different depending on experimental protocol. Body weight has been a relevant determinant of the clinical outcome of the infection in hamsters with visceral leishmaniasis but its importance as a clinical parameter in hamsters with cutaneous leishmaniasis is not known. In this study, the clinical evolution of infection with L. (V) panamensis was evaluated in juvenile and adult male hamsters during 11 weeks by comparing clinical parameters such as attitude, temperature, respiratory rate, appearance of the stool, and body weight between infected and non-infected groups. Results showed that body weight decreased in adult hamsters after infection by L. (V) panamensis; this observation supports the use of body weight as an additional parameter to define the management or treatment of cutaneous leishmaniasis in infected adult hamsters used as an animal experimental model for leishmaniasis.
Collapse
|
34
|
Lafuse WP, Story R, Mahylis J, Gupta G, Varikuti S, Steinkamp H, Oghumu S, Satoskar AR. Leishmania donovani infection induces anemia in hamsters by differentially altering erythropoiesis in bone marrow and spleen. PLoS One 2013; 8:e59509. [PMID: 23533629 PMCID: PMC3606219 DOI: 10.1371/journal.pone.0059509] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/15/2013] [Indexed: 11/18/2022] Open
Abstract
Leishmania donovani is a parasite that causes visceral leishmaniasis by infecting and replicating in macrophages of the bone marrow, spleen, and liver. Severe anemia and leucopenia is associated with the disease. Although immune defense mechanisms against the parasite have been studied, we have a limited understanding of how L. donovani alters hematopoiesis. In this study, we used Syrian golden hamsters to investigate effects of L. donovani infection on erythropoiesis. Infection resulted in severe anemia and leucopenia by 8 weeks post-infection. Anemia was associated with increased levels of serum erythropoietin, which indicates the hamsters respond to the anemia by producing erythropoietin. We found that infection also increased numbers of BFU-E and CFU-E progenitor populations in the spleen and bone marrow and differentially altered erythroid gene expression in these organs. In the bone marrow, the mRNA expression of erythroid differentiation genes (α-globin, β-globin, ALAS2) were inhibited by 50%, but mRNA levels of erythroid receptor (c-kit, EpoR) and transcription factors (GATA1, GATA2, FOG1) were not affected by the infection. This suggests that infection has a negative effect on differentiation of erythroblasts. In the spleen, erythroid gene expression was enhanced by infection, indicating that the anemia activates a stress erythropoiesis response in the spleen. Analysis of cytokine mRNA levels in spleen and bone marrow found that IFN-γ mRNA is highly increased by L. donovani infection. Expression of the IFN-γ inducible cytokine, TNF-related apoptosis-inducing ligand (TRAIL), was also up-regulated. Since TRAIL induces erythroblasts apoptosis, apoptosis of bone marrow erythroblasts from infected hamsters was examined by flow cytometry. Percentage of erythroblasts that were apoptotic was significantly increased by L. donovani infection. Together, our results suggest that L. donovani infection inhibits erythropoiesis in the bone marrow by cytokine-mediated apoptosis of erythroblasts.
Collapse
Affiliation(s)
- William P. Lafuse
- Department of Microbial Infection and Immunity, Wexner Medical Center at the Ohio State University, Columbus, Ohio, United States of America
- Center for Microbial Interface Biology, Wexner Medical Center at the Ohio State University, Columbus, Ohio, United States of America
| | - Ryan Story
- Medical School, Wexner Medical Center at the Ohio State University, Columbus, Ohio, United States of America
| | - Jocelyn Mahylis
- Medical School, Wexner Medical Center at the Ohio State University, Columbus, Ohio, United States of America
| | - Gaurav Gupta
- Department of Pathology, Wexner Medical Center at the Ohio State University, Columbus, Ohio, United States of America
| | - Sanjay Varikuti
- Department of Pathology, Wexner Medical Center at the Ohio State University, Columbus, Ohio, United States of America
| | - Heidi Steinkamp
- Department of Pathology, Wexner Medical Center at the Ohio State University, Columbus, Ohio, United States of America
| | - Steve Oghumu
- Department of Pathology, Wexner Medical Center at the Ohio State University, Columbus, Ohio, United States of America
| | - Abhay R. Satoskar
- Center for Microbial Interface Biology, Wexner Medical Center at the Ohio State University, Columbus, Ohio, United States of America
- Department of Pathology, Wexner Medical Center at the Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
35
|
Srivastava A, Sweat JM, Azizan A, Vesely B, Kyle DE. Real-Time PCR to QuantifyLeishmania donovaniin Hamsters. J Parasitol 2013; 99:145-50. [DOI: 10.1645/ge-3221.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
36
|
A survey on intestinal parasites of golden hamster (Mesocricetus auratus) in the northeast of Iran. J Parasit Dis 2013; 38:265-8. [PMID: 25035582 DOI: 10.1007/s12639-013-0238-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/01/2013] [Indexed: 10/27/2022] Open
Abstract
The aims of this study were to provide baseline knowledge about gastrointestinal parasites in golden hamster (Mesocricetus auratus) that inhabit the Mashhad area, and to analyze possible independent variable from October 2011-August 2012. To determine the prevalence of intestinal parasites in golden hamster, faecal samples were tested specifically for nematode eggs, protozoan oocysts and sporocysts utilizing a combined sedimentation-flotation technique. In addition, all fecal samples were examined to detect oocysts of Cryptosporidium spp. using modified Ziehl-Neelsen staining. Of 100 golden hamsters, 52 % were females and 48 % males. Of all examined fecal samples of golden hamsters, 44 % (95 % CI: 34.3-53.7 %) were found to harbor at least one parasite species. The following parasites were detected (with their respective prevalence): undetermined Trichurata (42 %, 95 % CI: 29.5-48.5 %), Syphacia spp. (4.3 %, 95 % CI: 1-7.3 %). Cryptosporidium and protozoan oocysts were not found in these animals. There was no significant difference (p > 0.05) between age, sex, litter, breeding place, breeding style and anthelminthic treatment with individual helminth infection in faecal examination. This is the first record of the gastrointestinal parasites of golden hamster in Iran. Considering that hamster and other rodents are pets in many homes, the likelihood of cross-infections, particularly involving children and mainly due to unhygienic habits, should be determined.
Collapse
|
37
|
Todolí F, Rodríguez-Cortés A, Núñez MDC, Laurenti MD, Gómez-Sebastián S, Rodríguez F, Pérez-Martín E, Escribano JM, Alberola J. Head-to-head comparison of three vaccination strategies based on DNA and raw insect-derived recombinant proteins against Leishmania. PLoS One 2012; 7:e51181. [PMID: 23236448 PMCID: PMC3517401 DOI: 10.1371/journal.pone.0051181] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/30/2012] [Indexed: 12/14/2022] Open
Abstract
Parasitic diseases plague billions of people among the poorest, killing millions annually, and causing additional millions of disability-adjusted life years lost. Leishmaniases affect more than 12 million people, with over 350 million people at risk. There is an urgent need for efficacious and cheap vaccines and treatments against visceral leishmaniasis (VL), its most severe form. Several vaccination strategies have been proposed but to date no head-to-head comparison was undertaken to assess which is the best in a clinical model of the disease. We simultaneously assayed three vaccination strategies against VL in the hamster model, using KMPII, TRYP, LACK, and PAPLE22 vaccine candidate antigens. Four groups of hamsters were immunized using the following approaches: 1) raw extracts of baculovirus-infected Trichoplusia ni larvae expressing individually one of the four recombinant proteins (PROT); 2) naked pVAX1 plasmids carrying the four genes individually (DNA); 3) a heterologous prime-boost (HPB) strategy involving DNA followed by PROT (DNA-PROT); and 4) a Control including empty pVAX1 plasmid followed by raw extract of wild-type baculovirus-infected T. ni larvae. Hamsters were challenged with L. infantum promastigotes and maintained for 20 weeks. While PROT vaccine was not protective, DNA vaccination achieved protection in spleen. Only DNA-PROT vaccination induced significant NO production by macrophages, accompanied by a significant parasitological protection in spleen and blood. Thus, the DNA-PROT strategy elicits strong immune responses and high parasitological protection in the clinical model of VL, better than its corresponding naked DNA or protein versions. Furthermore, we show that naked DNA coupled with raw recombinant proteins produced in insect larvae biofactories -the cheapest way of producing DNA-PROT vaccines- is a practical and cost-effective way for potential "off the shelf" supplying vaccines at very low prices for the protection against leishmaniases, and possibly against other parasitic diseases affecting the poorest of the poor.
Collapse
Affiliation(s)
- Felicitat Todolí
- LeishLAB–Servei d’Anàlisi de Fàrmacs, Departament de Farmacologia, de Terapèutica i de Toxicologia, Edifici V, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Alhelí Rodríguez-Cortés
- LeishLAB–Servei d’Anàlisi de Fàrmacs, Departament de Farmacologia, de Terapèutica i de Toxicologia, Edifici V, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - María del Carmen Núñez
- Alternative Gene Expression S.L., Centro Empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Márcia D. Laurenti
- Laboratorio Patologia de Moléstias Infecciosas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Silvia Gómez-Sebastián
- Alternative Gene Expression S.L., Centro Empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Fernando Rodríguez
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la UAB, Bellaterra, Barcelona, Spain
| | - Eva Pérez-Martín
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la UAB, Bellaterra, Barcelona, Spain
| | - José M. Escribano
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Jordi Alberola
- LeishLAB–Servei d’Anàlisi de Fàrmacs, Departament de Farmacologia, de Terapèutica i de Toxicologia, Edifici V, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
38
|
Moreira NDD, Vitoriano-Souza J, Roatt BM, Vieira PMDA, Ker HG, de Oliveira Cardoso JM, Giunchetti RC, Carneiro CM, de Lana M, Reis AB. Parasite burden in hamsters infected with two different strains of leishmania (Leishmania) infantum: "Leishman Donovan units" versus real-time PCR. PLoS One 2012; 7:e47907. [PMID: 23112869 PMCID: PMC3480442 DOI: 10.1371/journal.pone.0047907] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/17/2012] [Indexed: 12/04/2022] Open
Abstract
To develop and test new therapeutics and immune prophylaxis strategies for visceral leishmaniasis (VL), understanding tissue parasitism evolution after experimental infection with Leishmania infantum is important. Experimental infection in a hamster model (Mesocricetus auratus) reproduces several typical aspects of canine and human VL that are closely related to the inoculum’s route. We quantified the parasitism in the liver and spleen of hamsters experimentally infected by various routes (intradermal, intraperitoneal, and intracardiac [IC]) and different strains of L. infantum (MHOM/BR/74/PP75 and Wild) and compared two different methodologies to evaluate tissue parasitism (Leishman Donovan units [LDU] and real-time qPCR). In addition, the quantification of specific total-IgG in the serum of uninfected and infected hamsters was determined by ELISA. The animals were followed for 1, 3, 6 and 9 months post-infection for survival analysis. We found that infection with the Wild strain by the IC route resulted in higher mortality. Positive antibody (IgG) responses were detected with higher peaks at 6 and 9 months in the IC group inoculated with PP75 strain. However, in animals infected with the Wild strain the IgG levels were elevated in all infected groups during all the time evaluated. We also observed by LDU analysis that the IC route lead to higher parasitism in the liver and spleen with both strains. Furthermore, qPCR showed higher sensitivity for identifying animals with low parasitic burden. In conclusion, qPCR can be useful for assessing parasitism in the spleen and liver of a hamster model infected with L. infantum independent of the route of infection, and this technique may become an essential tool for assessing parasite density in the hamster model after experimental treatment or immunization with potential vaccine candidates.
Collapse
Affiliation(s)
- Nádia das Dores Moreira
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Juliana Vitoriano-Souza
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Bruno Mendes Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Paula Melo de Abreu Vieira
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Henrique Gama Ker
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Jamille Mirelle de Oliveira Cardoso
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Rodolfo Cordeiro Giunchetti
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Cláudia Martins Carneiro
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
- Laboratório de Pesquisas Clínicas, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Marta de Lana
- Laboratório de Pesquisas Clínicas, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
- Laboratório de Doença de Chagas, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Alexandre Barbosa Reis
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
- Laboratório de Pesquisas Clínicas, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
- * E-mail:
| |
Collapse
|
39
|
Abstract
Visceral leishmaniasis (VL), commonly known as kala-azar, is caused by Leishmania donovani and Leishmania infantum (Leishmania chagasi in the Americas). These Leishmania species infect macrophages throughout the viscera, and parasites are typically found in the spleen, liver, and bone marrow. Patients with active disease typically exhibit marked immunosuppression, lack reactivity to the Leishmania skin test (LST), a delayed type hypersensitivity test, and their peripheral blood mononuclear cells (PBMC) fail to respond when stimulated with leishmanial antigens in vitro. However, most people infected with visceralizing species of Leishmania never develop disease. Understanding immune failure and the underlying immune mechanism that lead to disease as well as control of infection are key questions for research in this field. In this review, we discuss immunological events described in human and experimental VL and how these can affect the outcome of infection.
Collapse
Affiliation(s)
- Rajiv Kumar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University Varanasi, India
| | | |
Collapse
|
40
|
Länger BM, Pou-Barreto C, González-Alcón C, Valladares B, Wimmer B, Torres NV. Modeling of leishmaniasis infection dynamics: novel application to the design of effective therapies. BMC SYSTEMS BIOLOGY 2012; 6:1. [PMID: 22222070 PMCID: PMC3293051 DOI: 10.1186/1752-0509-6-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 01/05/2012] [Indexed: 11/16/2022]
Abstract
Background The WHO considers leishmaniasis as one of the six most important tropical diseases worldwide. It is caused by parasites of the genus Leishmania that are passed on to humans and animals by the phlebotomine sandfly. Despite all of the research, there is still a lack of understanding on the metabolism of the parasite and the progression of the disease. In this study, a mathematical model of disease progression was developed based on experimental data of clinical symptoms, immunological responses, and parasite load for Leishmania amazonensis in BALB/c mice. Results Four biologically significant variables were chosen to develop a differential equation model based on the GMA power-law formalism. Parameters were determined to minimize error in the model dynamics and time series experimental data. Subsequently, the model robustness was tested and the model predictions were verified by comparing them with experimental observations made in different experimental conditions. The model obtained helps to quantify relationships between the selected variables, leads to a better understanding of disease progression, and aids in the identification of crucial points for introducing therapeutic methods. Conclusions Our model can be used to identify the biological factors that must be changed to minimize parasite load in the host body, and contributes to the design of effective therapies.
Collapse
Affiliation(s)
- Bettina M Länger
- Grupo de Tecnología Bioquímica, Departamento de Bioquímica y Biología Molecular, Universidad de La Laguna, 38206, San Cristóbal de La Laguna, Tenerife, Spain
| | | | | | | | | | | |
Collapse
|
41
|
Evans KJ, Kedzierski L. Development of Vaccines against Visceral Leishmaniasis. J Trop Med 2011; 2012:892817. [PMID: 21912561 PMCID: PMC3170777 DOI: 10.1155/2012/892817] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/31/2011] [Indexed: 11/18/2022] Open
Abstract
Leishmaniasis is a neglected disease resulting in a global morbidity of 2,090 thousand Disability-Adjusted Life Years and a mortality rate of approximately 60,000 per year. Among the three clinical forms of leishmaniasis (cutaneous, mucosal, and visceral), visceral leishmaniasis (VL) accounts for the majority of mortality, as if left untreated VL is almost always fatal. Caused by infection with Leishmania donovani or L. infantum, VL represents a serious public health problem in endemic regions and is rapidly emerging as an opportunistic infection in HIV patients. To date, no vaccine exists for VL or any other form of leishmaniasis. In endemic areas, the majority of those infected do not develop clinical symptoms and past infection leads to robust immunity against reinfection. Thus the development of vaccine for Leishmania is a realistic public health goal, and this paper summarizes advances in vaccination strategies against VL.
Collapse
Affiliation(s)
- Krystal J. Evans
- The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Lukasz Kedzierski
- The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
42
|
Carrión J, Folgueira C, Soto M, Fresno M, Requena JM. Leishmania infantum HSP70-II null mutant as candidate vaccine against leishmaniasis: a preliminary evaluation. Parasit Vectors 2011; 4:150. [PMID: 21794145 PMCID: PMC3199857 DOI: 10.1186/1756-3305-4-150] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 07/27/2011] [Indexed: 01/28/2023] Open
Abstract
Background Visceral leishmaniasis is the most severe form of leishmaniasis and no effective vaccine exists. The use of live attenuated vaccines is emerging as a promising vaccination strategy. Results In this study, we tested the ability of a Leishmania infantum deletion mutant, lacking both HSP70-II alleles (ΔHSP70-II), to provide protection against Leishmania infection in the L. major-BALB/c infection model. Administration of the mutant line by either intraperitoneal, intravenous or subcutaneous route invariably leads to the production of high levels of NO and the development in mice of type 1 immune responses, as determined by analysis of anti-Leishmania IgG subclasses. In addition, we have shown that ΔHSP70-II would be a safe live vaccine as immunodeficient SCID mice, and hamsters (Mesocricetus auratus), infected with mutant parasites did not develop any sign of pathology. Conclusions The results suggest that the ΔHSP70-II mutant is a promising and safe vaccine, but further studies in more appropriate animal models (hamsters and dogs) are needed to appraise whether this attenuate mutant would be useful as vaccine against visceral leishmaniasis.
Collapse
Affiliation(s)
- Javier Carrión
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|
43
|
Abstract
Leishmaniasis is a disease that ranges in severity from skin lesions to serious disfigurement and fatal systemic infection. WHO has classified the disease as emerging and uncontrolled and estimates that the infection results in two million new cases a year. There are 12 million people currently infected worldwide, and leishmaniasis threatens 350 million people in 88 countries. Current treatment is based on chemotherapy, which relies on a handful of drugs with serious limitations such as high cost, toxicity, difficult route of administration and lack of efficacy in endemic areas. Vaccination remains the best hope for control of all forms of the disease, and the development of a safe, effective and affordable antileishmanial vaccine is a critical global public-health priority. Extensive evidence from studies in animal models indicates that solid protection can be achieved by immunization with defined subunit vaccines or live-attenuated strains of Leishmania. However, to date, no such vaccine is available despite substantial efforts by many laboratories. The major impediment in vaccine design is the translation of data from animal models to human disease, and the transition from the laboratory to the field. Furthermore, a thorough understanding of protective immune responses and generation and maintenance of the immunological memory, the most important and least-studied aspect of antiparasitic vaccine development, during Leishmania infection is needed. This review focuses on recent findings in antileishmania vaccine field and highlights current difficulties facing vaccine development and implementation.
Collapse
Affiliation(s)
- Lukasz Kedzierski
- Infection and Immunity Division, Walter+Eliza Hall Institute of Medical Research, Melbourne, Australia
| |
Collapse
|
44
|
Nieto A, Domínguez-Bernal G, Orden JA, De La Fuente R, Madrid-Elena N, Carrión J. Mechanisms of resistance and susceptibility to experimental visceral leishmaniosis: BALB/c mouse versus Syrian hamster model. Vet Res 2011; 42:39. [PMID: 21345200 PMCID: PMC3052183 DOI: 10.1186/1297-9716-42-39] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 02/23/2011] [Indexed: 11/10/2022] Open
Abstract
Several animal models have been established to study visceral leishmaniosis (VL), a worldwide vector-borne disease affecting humans and domestic animals that constitutes a serious public health problem. BALB/c mice and Syrian hamsters are the most widely used experimental models. In this paper, we summarize the advantages and disadvantages of these two experimental models and discuss the results obtained using these models in different studies of VL. Studies using the BALB/c mouse model have underscored differences between the liver and spleen in the course of VL, indicating that pathological evaluation of the visceral organs is essential for understanding the immune mechanisms induced by Leishmania infantum infection. The main goal of this review is to collate the relevant literature on Leishmania pathogenesis into a sequence of events, providing a schematic view of the main components of adaptive and innate immunity in the liver and spleen after experimental infection with L. infantum or L. donovani. This review also presents several viewpoints and reflections about some controversial aspects of Leishmania research, including the choice of experimental model, route of administration, inoculum size and the relevance of pathology (intimately linked to parasite persistence): a thorough understanding of which is essential for future VL research and the successful development of efficient control strategies for Leishmania spp.
Collapse
Affiliation(s)
- Ana Nieto
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
45
|
Espitia CM, Zhao W, Saldarriaga O, Osorio Y, Harrison LM, Cappello M, Travi BL, Melby PC. Duplex real-time reverse transcriptase PCR to determine cytokine mRNA expression in a hamster model of New World cutaneous leishmaniasis. BMC Immunol 2010; 11:31. [PMID: 20569429 PMCID: PMC2909172 DOI: 10.1186/1471-2172-11-31] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 06/22/2010] [Indexed: 05/09/2023] Open
Abstract
Background The Syrian hamster, Mesocricetus auratus, has distinct immunological features and is uniquely susceptible to intracellular pathogens. Studies in hamsters are limited by the relative unavailability of tools to conduct immunological studies. To address this limitation we developed duplex real-time reverse transcriptase (RT) PCR assays for the relative quantification of the mRNAs of hamster cytokines, chemokines, and related immune response molecules. Results Real-time RT-PCR primers and probes were synthesized for analysis of interleukin (IL)-4, IFN-γ, TNF-α, IL-10, IL-12p40, TGF-β, IL-13, IL-21, chemokine ligand (CCL) 22, CCL17, Chemokine (C-C motif) receptor 4 and FoxP3 expression. Standard curves and validation experiments were performed for each real-time RT-PCR assay, allowing us to use the comparative Ct (2-ΔΔCt) method to calculate changes in gene expression. Application of the real-time RT PCR assays to a biological model was demonstrated by comparing mRNA expression in skin and lymph node tissues between uninfected and Leishmania panamensis infected hamsters. Conclusions The duplex real-time RT PCR assays provide a powerful approach for the quantification of cytokine transcription in hamsters, and their application to a model of cutaneous leishmaniasis suggests that a balanced type 1 and type 2 cytokine response contributes to the chronic, nonprogressive course of disease. These new molecular tools will further facilitate investigation into the mechanisms of disease in the hamster, not only for models of leishmaniasis, but also for other viral, bacterial, fungal, and parasitic infections.
Collapse
Affiliation(s)
- Claudia M Espitia
- Research Service, Department of Veterans Affairs Medical Center, South Texas Veterans Health Care System, 7400 Merton Minter, San Antonio, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Lei SM, Ramer-Tait AE, Dahlin-Laborde RR, Mullin K, Beetham JK. Reduced hamster usage and stress in propagating Leishmania chagasi promastigotes using cryopreservation and saphenous vein inoculation. J Parasitol 2010; 96:103-8. [PMID: 19835434 DOI: 10.1645/ge-2192.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Leishmania chagasi, a causal agent of visceral leishmaniasis, requires passage through lab animals such as hamsters to maintain its virulence. Hamster infection is typically accomplished via cardiac puncture or intraperitoneal injection, procedures accompanied by risks of increased animal stress and death. The use of the hamster model also necessitates a regular supply of infected animals, because L. chagasi parasites newly isolated from an infected hamster can be grown in culture for only several weeks before loss of function/phenotype occurs. In an effort to decrease animal usage and animal stress, experiments were performed to assess a more gentle inoculation procedure (saphenous vein inoculation) and the use of cryopreserved parasite cells for research experiments. Of 81 hamsters inoculated by the saphenous vein, 80 became infected as determined ante mortem, by display of clinical symptoms of leishmaniasis (onset of symptoms at 105 +/- 22 days post-inoculation), and postmortem by the presence of parasites within the spleen. Splenic parasite load calculated for a subset (n = 34) of infected hamsters was 124 to 26,177 Leishmania donovani infection units. Cryopreserved, and never-stored, cells were equivalent in all properties evaluated, including developmental changes in morphology during culture, culture growth rates, parasite resistance to serum-mediated lysis, and expression of developmentally regulated surface proteins major surface protease and promastigote surface antigen.
Collapse
Affiliation(s)
- Soi Meng Lei
- Department of Veterinary Pathology and Entomology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | |
Collapse
|
47
|
Paciello O, Wojcik S, Gradoni L, Oliva G, Trapani F, Iovane V, Politano L, Papparella S. Syrian hamster infected with Leishmania infantum: a new experimental model for inflammatory myopathies. Muscle Nerve 2010; 41:355-61. [PMID: 19813199 DOI: 10.1002/mus.21502] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Idiopathic inflammatory myopathies (IIMs) are inflammatory disorders of unknown origin. On the basis of clinical, histopathological, and immunological features, they can be differentiated into three major and distinct subsets: dermatomyositis; polymyositis; and inclusion-body myositis. Although a few animal models for IIM are currently available, they lack several characteristic aspects of IIMs. The aim of our study was to examine skeletal muscle involvement in an experimental animal model of visceral leishmaniasis, a disseminated infection caused by the protozoan parasite Leishmania infantum, and to compare features of associated inflammation with those of human IIM. Syrian hamsters infected intraperitoneally with amastigotes of L. infantum were killed at 3 or 4 months post-infection, and the skeletal muscles were studied. Focal inflammation was predominantly observed in the endomysium and, to a lesser extent, in perivascular areas. Degenerating muscle fibers were also found, as well as myonecrosis. Immunofluorescence with confocal laser scanning microscopy was used to characterize the phenotype of inflammatory infiltrates and the distribution of MHC class I and II in muscle biopsies. The infiltrating inflammatory cells consisted mainly of T cells, and CD8(+) T cells were found in non-necrotic muscle fibers that expressed MHC class I on the sarcolemma. In addition to T cells, several macrophages were present. The model we are proposing closely resembles polymyositis and may be useful in studying certain aspects of this disease such as the role of T cells in muscle inflammation and myocytotoxicity, while also providing novel therapeutic targets.
Collapse
Affiliation(s)
- Orlando Paciello
- Department of Pathology and Animal Health, University of Naples Federico II, Via Delpino 1, 80137 Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Folgueira C, Martínez-Bonet M, Requena JM. The Leishmania infantum PUF proteins are targets of the humoral response during visceral leishmaniasis. BMC Res Notes 2010; 3:13. [PMID: 20180988 PMCID: PMC2830943 DOI: 10.1186/1756-0500-3-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 01/21/2010] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND RNA-binding proteins of the PUF family share a conserved domain consisting of tandemly repeated 36-40 amino acid motifs (typically eight) known as Puf repeats. Proteins containing tandem repeats are often dominant targets of humoral responses during infectious diseases. Thus, we considered of interest to analyze whether Leishmania PUF proteins result antigenic during visceral leishmaniasis (VL). FINDINGS Here, employing whole-genome databases, we report the composition, and structural features, of the PUF family in Leishmania infantum. Additionally, the 10 genes of the L. infantum PUF family were cloned and used to express the Leishmania PUFs in bacteria as recombinant proteins. Finally, the antigenicity of these PUF proteins was evaluated by determining levels of specific antibodies in sera from experimentally infected hamsters. The Leishmania PUFs were all recognized by the sera, even though with different degree of reactivity and/or frequency of recognition. The reactivity of hamster sera against recombinant LiPUF1 and LiPUF2 was particularly prominent, and these proteins were subsequently assayed against sera from human patients. High antibody responses against rLiPUF1 and rLiPUF2 were found in sera from VL patients, but these proteins resulted also recognized by sera from Chagas' disease patients. CONCLUSION Our results suggest that Leishmania PUFs are targets of the humoral response during L. infantum infection and may represent candidates for serodiagnosis and/or vaccine reagents; however, it should be kept in mind the cross-reactivity of LiPUFs with antibodies induced against other trypanosomatids such as Trypanosoma cruzi.
Collapse
Affiliation(s)
- Cristina Folgueira
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.
| | | | | |
Collapse
|
49
|
Moshfe A, Mohebali M, Edrissian G, Zarei Z, Akhoundi B, Kazemi B, Jamshidi S, Mahmoodi M. Canine visceral leishmaniasis: asymptomatic infected dogs as a source of L. infantum infection. Acta Trop 2009; 112:101-5. [PMID: 19595664 DOI: 10.1016/j.actatropica.2009.07.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 06/20/2009] [Accepted: 07/02/2009] [Indexed: 10/20/2022]
Abstract
Clinically infected dogs have been identified as the main reservoir hosts of visceral leishmaniasis (VL) caused by Leishmania infantum in the Mediterranean region. The objective of this study was to determine the potential of asymptomatic infected dogs compared with symptomatic ones as a source of L. infantum infection to golden hamster. For this purpose, anti-Leishmania antibodies were detected with direct agglutination test (DAT) in 13 symptomatic (7 seropositive =>or=1:320) and 53 asymptomatic (9 seropositive =>or=1:320 and 44 seronegative =<1:320) ownership dogs. DNA of Leishmania sp. was extracted from skin and peripheral blood tissues of each dog and tested by PCR. Sixty-six Syrian golden hamsters (Mesocricetus auratus) were used for the determination of infectivity and pathogenicity of L. infantum, isolated from the dogs. We used the internal transcribed spacer 2 (ITS 2) rDNA sequence analysis. The results showed that 22 and 11 out of 66 inoculated golden hamsters were positive by PCR and parasitological examinations, respectively. From 22 PCR positive hamsters, 17 were related to asymptomatic dogs and 5 were from symptomatic ones. There was no significant difference between symptomatic and asymptomatic dogs in producing Leishmania infection in the susceptible animal model (P=0.66). Smears and cultures of 5 dogs from 13 symptomatic dogs (38.5%) and 6 dogs from 53 asymptomatic ones (11.3%) were found to be positive at parasitological examination. All the L. infantum isolates from symptomatic and asymptomatic dogs were similar in sequencing. In conclusion, asymptomatic infected dogs as well as symptomatic ones can harbor L. infantum in their blood and skins which are virulent and infectious for inoculated golden hamster.
Collapse
|
50
|
Saridomichelakis MN. Advances in the pathogenesis of canine leishmaniosis: epidemiologic and diagnostic implications. Vet Dermatol 2009; 20:471-89. [DOI: 10.1111/j.1365-3164.2009.00823.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|