1
|
Saejung W, Khumtong K, Rapichai W, Ratanabunyong S, Rattanasrisomporn A, Choowongkomon K, Rungsuriyawiboon O, Rattanasrisomporn J. Detection of feline immunodeficiency virus by neutral red-based loop-mediated isothermal amplification assay. Vet World 2024; 17:72-81. [PMID: 38406374 PMCID: PMC10884571 DOI: 10.14202/vetworld.2024.72-81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/13/2023] [Indexed: 02/27/2024] Open
Abstract
Background and Aim Feline immunodeficiency virus (FIV) is a retroviral pathogen globally responsible for immunodeficiency disease in cats. However, the current diagnosis based on antibody detection has limitations and can also produce false-positive results. This study aimed to develop a one-pot loop-mediated isothermal amplification (LAMP) process integrated with neutral red (NR-LAMP) assay for detection of FIV proviral DNA. Materials and Methods We developed a one-pot, gag gene-based NR-LAMP for convenient, rapid, specific, and sensitive colorimetric inspection of FIV proviral DNA. Results The developed NR-LAMP was capable of amplifying at an optimum temperature of 65°C for 40 min. No cross-amplification was detected between FIV and other feline viruses tested, indicating the high specificity (98.44%) of the novel FIV-LAMP primer. Our NR-LAMP assay has a detection limit of 4.2 × 101 copies/μL. A total of 80 clinical samples with a background of FIV infection were collected and tested using the proposed method. The NR-LAMP assay showed a high sensitivity of 100% compared to conventional polymerase chain reaction assay. Conclusion These results support the suitability of NR-LAMP as a potential future alternative clinical molecular approach for further use in the diagnosis of FIV-infected cats.
Collapse
Affiliation(s)
- Wichayet Saejung
- Graduate Program in Animal Health and Biomedical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Kotchaporn Khumtong
- Graduate Program in Animal Health and Biomedical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Witsanu Rapichai
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Siriluk Ratanabunyong
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Amonpun Rattanasrisomporn
- Interdisciplinary of Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand
| | | | - Oumaporn Rungsuriyawiboon
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Jatuporn Rattanasrisomporn
- Graduate Program in Animal Health and Biomedical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
2
|
Rattanabunyong S, Choengpanya K, Suwattanasophon C, Kiriwan D, Wolschann P, Lamtha T, Shaikh AR, Rattanasrisomporn J, Choowongkomon K. Biochemical and structural comparisons of non-nucleoside reverse transcriptase inhibitors against feline and human immunodeficiency viruses. J Vet Sci 2023; 24:e67. [PMID: 38031646 PMCID: PMC10556290 DOI: 10.4142/jvs.22326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Feline immunodeficiency virus (FIV) causes an acquired immunodeficiency-like syndrome in cats. FIV is latent. No effective treatment has been developed for treatment the infected cats. The first and second generations non-nucleoside reverse transcriptase inhibitors (NNRTIs) for HIV treatment, nevirapine (NVP) and efavirenz (EFV), and rilpivirine (RPV), were used to investigate the potential of NNRTIs for treatment of FIV infection. OBJECTIVE This study aims to use experimental and in silico approaches to investigate the potential of NNRTIs, NVP, EFV, and RPV, for inhibition of FIV reverse transcriptase (FIV-RT). METHODS The FIV-RT and human immunodeficiency virus reverse transcriptase (HIV-RT) were expressed and purified using chromatography approaches. The purified proteins were used to determine the IC50 values with NVP, EFV, and RPV. Surface plasmon resonance (SPR) analysis was used to calculate the binding affinities of NNRTIs to HIV-RT and FIV-RT. The molecular docking and molecular dynamic simulations were used to demonstrate the mechanism of FIV-RT and HIV-RT with first and second generation NNRTI complexes. RESULTS The IC50 values of NNRTIs NVP, EFV, and RPV against FIV-RT were in comparable ranges to HIV-RT. The SPR analysis showed that NVP, EFV, and RPV could bind to both enzymes. Computational calculation also supports that these NNRTIs can bind with both FIV-RT and HIV-RT. CONCLUSIONS Our results suggest the first and second generation NNRTIs (NVP, EFV, and RPV) could inhibit both FIV-RT and HIV-RT.
Collapse
Affiliation(s)
- Siriluk Rattanabunyong
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | | | - Chonticha Suwattanasophon
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Duangnapa Kiriwan
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok 10900, Thailand
| | - Peter Wolschann
- Institute for Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Thomanai Lamtha
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- National Electronics and Computer Technology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Abdul Rajjak Shaikh
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad 121002, India
| | - Jatuporn Rattanasrisomporn
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
3
|
Zhang B, Mao H, Zhu H, Guo J, Zhou P, Ma Z. Response to HIV-1 gp160-carrying recombinant virus HSV-1 and HIV-1 VLP combined vaccine in BALB/c mice. Front Microbiol 2023; 14:1136664. [PMID: 37007461 PMCID: PMC10063819 DOI: 10.3389/fmicb.2023.1136664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Human immunodeficiency virus (HIV) induced AIDS causes a large number of infections and deaths worldwide every year, still no vaccines are available to prevent infection. Recombinant herpes simplex virus type 1 (HSV-1) vector-based vaccines coding the target proteins of other pathogens have been widely used for disease control. Here, a recombinant virus with HIV-1 gp160 gene integration into the internal reverse (IR) region-deleted HSV-1 vector (HSV-BAC), was obtained by bacterial artificial chromosome (BAC) technology, and its immunogenicity investigated in BALB/c mice. The result showed similar replication ability of the HSV-BAC-based recombinant virus and wild type. Furthermore, humoral and cellular immune response showed superiority of intraperitoneal (IP) administration, compared to intranasally (IN), subcutaneous (SC) and intramuscularly (IM), that evidenced by production of significant antibody and T cell responses. More importantly, in a prime-boost combination study murine model, the recombinant viruses prime followed by HIV-1 VLP boost induced stronger and broader immune responses than single virus or protein vaccination in a similar vaccination regimen. Antibody production was sufficient with huge potential for viral clearance, along with efficient T-cell activation, which were evaluated by the enzyme-linked immunosorbent assay (ELISA) and flow cytometry (FC). Overall, these findings expose the value of combining different vaccine vectors and modalities to improve immunogenicity and breadth against different HIV-1 antigens.
Collapse
Affiliation(s)
- Beibei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
| | - Hongyan Mao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
| | - Hongjuan Zhu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
| | - Jingxia Guo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
| | - Paul Zhou
- Unit of Antiviral Immunity and Genetic Therapy, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
- *Correspondence: Zhenghai Ma,
| |
Collapse
|
4
|
Cheang A, Westman ME, Green J. Evaluation of a Point-of-Care Feline Immunodeficiency Virus (FIV) Test Kit (RapidSTATUS™ FIV) to Determine the FIV Status of FIV-Vaccinated and FIV-Unvaccinated Pet Cats in Australia. Vet Sci 2022; 9:vetsci9110618. [PMID: 36356095 PMCID: PMC9695518 DOI: 10.3390/vetsci9110618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022] Open
Abstract
Simple Summary This study evaluated a commercial point-of-care (PoC) feline immunodeficiency virus (FIV) test kit (RapidSTATUS™ FIV) for its accuracy in determining the FIV status of FIV-vaccinated and FIV-unvaccinated pet cats in Australia. In countries where FIV vaccination is used, veterinarians need a PoC kit that will produce a negative result for a FIV-uninfected cat, even if the cat is FIV-vaccinated or the FIV vaccination history is unknown, since incorrect diagnoses can impact negatively on the welfare of cats. FIV PoC kits also need to produce positive results in FIV-infected cats to help with appropriate management and to enable strategies to be implemented to prevent other cats from becoming FIV-infected. Results presented here show RapidSTATUS™ FIV to be highly accurate (98.8−100%) in a range of FIV-vaccinated and FIV-unvaccinated scenarios. Therefore, Australian veterinarians can reliably use RapidSTATUS™ FIV to rapidly and accurately determine the FIV status of all cats. Abstract Feline immunodeficiency virus (FIV) is a retrovirus that can cause immunosuppression, co-morbidities, and neoplasia in infected cats, and is commonly tested for in veterinary clinics and animal shelters in Australia. FIV diagnosis using point-of-care (PoC) kits to detect FIV antibodies in Australia is complicated by the commercial availability of an inactivated whole-FIV vaccine. The aim of this study was to determine the accuracy of the RapidSTATUS™ FIV antibody test kit in FIV-vaccinated and FIV-unvaccinated cats in Australia. Plasma from pet cats of known FIV vaccination and FIV infection statuses (n = 361), comprised of 57 FIV-uninfected cats annually vaccinated against FIV, 10 FIV-uninfected cats with lapsed FIV vaccination histories, 259 FIV-unvaccinated/FIV-uninfected cats, and 35 FIV-infected cats, was tested. RapidSTATUS™ FIV testing had sensitivity of 97.1% (34/35) and specificity of 100% (326/326), with an overall accuracy of 99.7% (360/361). Additional testing was undertaken using plasma from FIV-uninfected cats recently administered a primary FIV vaccination course (n = 12) or an annual booster FIV vaccination (n = 10). RapidSTATUS™ FIV was 98.8% (81/82) accurate and 100% (32/32) accurate in cats recently administered primary or annual FIV vaccinations, respectively. The high level of accuracy of RapidSTATUS™ FIV (98.8–100%) therefore establishes this PoC kit as a DIVA (differentiating infected from vaccinated animals) test. RapidSTATUS™ FIV is recommended to aid animal shelters, veterinarians, and researchers in Australia to accurately determine FIV infection status, irrespective of FIV vaccination history.
Collapse
|
5
|
Carlton C, Norris JM, Hall E, Ward MP, Blank S, Gilmore S, Dabydeen A, Tran V, Westman ME. Clinicopathological and Epidemiological Findings in Pet Cats Naturally Infected with Feline Immunodeficiency Virus (FIV) in Australia. Viruses 2022; 14:2177. [PMID: 36298731 PMCID: PMC9608632 DOI: 10.3390/v14102177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Feline immunodeficiency virus (FIV) infection in experimentally infected domestic cats produces characteristic clinical manifestations including hematological changes, neurological disease, neoplasia (most notably lymphoma) and lymphopenia-mediated immunodeficiency predisposing cats to a range of secondary infections. Conflicting reports exist, however, with regard to disease associations and survival time in naturally FIV-infected cats. The purpose of this retrospective case−control study was to investigate the effect of natural FIV infection on hematological, blood biochemical and urinalysis parameters and survival time in three cohorts of pet cats in Australia. Cohorts 1 and 2 were recruited from a large veterinary hospital in Melbourne, Victoria (n = 525 and 282), while a third cohort consisted of cats recruited from around Australia as part of a FIV field vaccine efficacy trial (n = 425). FIV-infected cats in cohorts 1, 2 and 3 were found to have 15/37 (41%), 13/39 (33%) and 2/13 (15%) clinicopathological parameters significantly different to FIV-uninfected cats, respectively. Two changes in FIV-infected cats in cohort 1, hypochromia (low hemoglobin) and hyperglobulinemia, were outside the supplied reference intervals and should serve as diagnostic triggers for FIV testing. Kaplan−Meier survival analysis of cats in cohorts 1 and 2 combined did not find any difference between FIV-infected and FIV-uninfected cats, however a confounding factor was a large euthanasia rate within the first 12 months in both groups. Three significant (p < 0.05) spatial clusters of FIV infection were identified in Melbourne. A possible relationship between FIV infection status and socioeconomic disadvantage was discovered, based on three government indices of socioeconomic status (p < 0.001). Until longitudinal field studies are performed in Australia to further investigate the long-term effects of natural FIV infection, Australian veterinarians should consider FIV to be an important infection of pet cats, and recommend measures to prevent FIV infection.
Collapse
Affiliation(s)
- Caroline Carlton
- Lort Smith Anim al Hospital, 24 Villiers Street, North Melbourne, VIC 3051, Australia
| | - Jacqueline M. Norris
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
- The Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2006, Australia
| | - Evelyn Hall
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael P. Ward
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stephanie Blank
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shelby Gilmore
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Anjuli Dabydeen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Vivian Tran
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mark E. Westman
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Moskaluk A, Nehring M, VandeWoude S. Serum Samples from Co-Infected and Domestic Cat Field Isolates Nonspecifically Bind FIV and Other Antigens in Enzyme-Linked Immunosorbent Assays. Pathogens 2021; 10:665. [PMID: 34071706 PMCID: PMC8226436 DOI: 10.3390/pathogens10060665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/05/2022] Open
Abstract
We evaluated enzyme-linked immunosorbent assay (ELISA) specificity for measuring seroantibody responses to two types of retroviral infections in domestic cats: feline immunodeficiency virus (FIV) and feline foamy virus (FFV). We compared the seroreactivity of specific pathogen-free (SPF) cat sera, sera from SPF cats inoculated with either FIV or FFV, and field isolates (e.g., shelter or privately owned cats). Sera from SPF cats experimentally infected with the cognate virus had significantly lower background in both FIV and FFV ELISAs compared to sera from negative field isolates. ELISA values for SPF cats exposed to either FIV or FFV tended to have higher OD values on the opposite ELISA antigen plate. FIV nonspecific background absorbance was greater than that of FFV, and 10 of 15 sera samples from FIV seronegative field samples were measured in the indeterminant range. These findings highlight that exposure to off-target pathogens elicit antibodies that may nonspecifically bind to antigens used in binding assays; therefore, validation using sera from SPF animals exposed during controlled infection results in the setting of a cutoff value that may be inappropriately low when applied to field samples. Our work also suggests that infection of domestic cats with pathogens other than FIV results in antibodies that cross-react with the FIV Gag antigen.
Collapse
Affiliation(s)
| | | | - Sue VandeWoude
- Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (A.M.); (M.N.)
| |
Collapse
|
7
|
Westman M, Yang D, Green J, Norris J, Malik R, Parr YA, McDonald M, Hosie MJ, VandeWoude S, Miller C. Antibody Responses in Cats Following Primary and Annual Vaccination against Feline Immunodeficiency Virus (FIV) with an Inactivated Whole-Virus Vaccine (Fel-O-Vax ® FIV). Viruses 2021; 13:470. [PMID: 33809232 PMCID: PMC7998844 DOI: 10.3390/v13030470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/17/2022] Open
Abstract
Although the antibody response induced by primary vaccination with Fel-O-Vax® FIV (three doses, 2-4 weeks apart) is well described, the antibody response induced by annual vaccination with Fel-O-Vax® FIV (single dose every 12 months after primary vaccination) and how it compares to the primary antibody response has not been studied. Residual blood samples from a primary FIV vaccination study (n = 11), and blood samples from cats given an annual FIV vaccination (n = 10), were utilized. Samples from all 21 cats were tested with a commercially available PCR assay (FIV RealPCRTM), an anti-p24 microsphere immunoassay (MIA), an anti-FIV transmembrane (TM; gp40) peptide ELISA, and a range of commercially available point-of-care (PoC) FIV antibody kits. PCR testing confirmed all 21 cats to be FIV-uninfected for the duration of this study. Results from MIA and ELISA testing showed that both vaccination regimes induced significant antibody responses against p24 and gp40, and both anti-p24 and anti-gp40 antibodies were variably present 12 months after FIV vaccination. The magnitude of the antibody response against both p24 and gp40 was significantly higher in the primary FIV vaccination group than in the annual FIV vaccination group. The differences in prime versus recall post-vaccinal antibody levels correlated with FIV PoC kit performance. Two FIV PoC kits that detect antibodies against gp40, namely Witness® and Anigen Rapid®, showed 100% specificity in cats recently administered an annual FIV vaccination, demonstrating that they can be used to accurately distinguish vaccination and infection in annually vaccinated cats. A third FIV PoC kit, SNAP® Combo, had 0% specificity in annually FIV-vaccinated cats, and should not be used in any cat with a possible history of FIV vaccination. This study outlines the antibody response to inactivated Fel-O-Vax® FIV whole-virus vaccine, and demonstrates how best to diagnose FIV infection in jurisdictions where FIV vaccination is practiced.
Collapse
Affiliation(s)
- Mark Westman
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (D.Y.); (J.G.); (J.N.)
| | - Dennis Yang
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (D.Y.); (J.G.); (J.N.)
| | - Jennifer Green
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (D.Y.); (J.G.); (J.N.)
| | - Jacqueline Norris
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (D.Y.); (J.G.); (J.N.)
| | - Richard Malik
- Centre for Veterinary Education, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Yasmin A. Parr
- MRC, University of Glasgow Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, UK; (Y.A.P.); (M.J.H.)
| | - Mike McDonald
- Veterinary Diagnostic Services, The University of Glasgow, Glasgow G61 1QH, UK;
| | - Margaret J. Hosie
- MRC, University of Glasgow Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, UK; (Y.A.P.); (M.J.H.)
| | - Sue VandeWoude
- 1619 Campus Delivery, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - Craig Miller
- College of Veterinary Medicine, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078, USA;
| |
Collapse
|
8
|
TANABE T, FUKUDA Y, KAWASHIMA K, YAMAMOTO S, KASHIMOTO T, SATO H. Transcriptional inhibition of feline immunodeficiency virus by alpha-amanitin. J Vet Med Sci 2021; 83:158-161. [PMID: 33250482 PMCID: PMC7870409 DOI: 10.1292/jvms.20-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 11/15/2020] [Indexed: 11/22/2022] Open
Abstract
Alpha-amanitin, one of the amatoxins in egg amanita, has a cyclic peptide structure, and was reported as having antiviral activity against several viruses. We investigated whether α-amanitin has antiviral activity against feline immunodeficiency virus (FIV). FL-4 cells persistently infected with FIV Petaluma were cultured with α-amanitin. Reverse transcriptase (RT) activity in the supernatant of FL-4 cells was significantly inhibited by α-amanitin. In addition, the production of FIV core protein in FL-4 cells was inhibited by α-amanitin when analyzed by western blotting. Furthermore, α-amanitin inhibited the transcription of FIV in real-time RT-PCR. These data suggested that α-amanitin showed anti-FIV activity by inhibiting the RNA transcription level.
Collapse
Affiliation(s)
- Taishi TANABE
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Yurina FUKUDA
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | | | - Satomi YAMAMOTO
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Takashige KASHIMOTO
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Hisaaki SATO
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| |
Collapse
|
9
|
Stone AES, Brummet GO, Carozza EM, Kass PH, Petersen EP, Sykes J, Westman ME. 2020 AAHA/AAFP Feline Vaccination Guidelines. J Feline Med Surg 2020; 22:813-830. [PMID: 32845224 PMCID: PMC11135662 DOI: 10.1177/1098612x20941784] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The guidelines are a consensus report on current recommendations for vaccination of cats of any origin, authored by a Task Force of experts. The guidelines are published simultaneously in the Journal of Feline Medicine and Surgery (volume 22, issue 9, pages 813-830, DOI: 10.1177/1098612X20941784) and the Journal of the American Animal Hospital Association (volume 56, issue 4, pages 249-265, DOI: 10.5326/JAAHA-MS-7123). The guidelines assign approved feline vaccines to core (recommended for all cats) and non-core (recommended based on an individualized risk-benefit assessment) categories. Practitioners can develop individualized vaccination protocols consisting of core vaccines and non-core vaccines based on exposure and susceptibility risk as defined by the patient's life stage, lifestyle, and place of origin and by environmental and epidemiologic factors. An update on feline injection-site sarcomas indicates that occurrence of this sequela remains infrequent and idiosyncratic. Staff education initiatives should enable the veterinary practice team to be proficient in advising clients on proper vaccination practices and compliance. Vaccination is a component of a preventive healthcare plan. The vaccination visit should always include a thorough physical exam and client education dialog that gives the pet owner an understanding of how clinical staff assess disease risk and propose recommendations that help ensure an enduring owner-pet relationship.
Collapse
Affiliation(s)
- Amy ES Stone
- Chair of 2020 AAHA/AAFP Feline Vaccination
Guidelines Task Force
- Department of Small Animal Clinical Sciences,
University of Florida, Gainesville, Florida, USA
| | - Gary O Brummet
- DVM Veterinary Teaching Hospital, College of
Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana,
Illinois, USA
| | | | - Philip H Kass
- DVM, MPVM, MS, PhD, DACVPM (Specialty in
Epidemiology) Department of Population Health and Reproduction, School of
Veterinary Medicine, University of California, Davis, Davis, California,
USA
| | - Ernest P Petersen
- DVM, PhD, DABVP (Feline) Animal Hospital of
Parkland, Tacoma, Washington, USA
| | - Jane Sykes
- BVSc (Hons), PhD, DACVIM, MBA University of
California, Davis, Davis, California, USA
| | - Mark E Westman
- BVSc (Hons), PhD, MANZCVS (Animal Welfare),
GradCert Ed Stud (Higher Ed)) Sydney School of Veterinary Science,
University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Stone AES, Brummet GO, Carozza EM, Kass PH, Petersen EP, Sykes J, Westman ME. 2020 AAHA/AAFP Feline Vaccination Guidelines*. J Am Anim Hosp Assoc 2020. [DOI: 10.5326/jaaha-ms-7123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ABSTRACT
The guidelines are a consensus report on current recommendations for vaccination of cats of any origin, authored by a Task Force of experts. The guidelines are published simultaneously in the Journal of Feline Medicine and Surgery (volume 22, issue 9, pages 813–830, DOI: 10.1177/1098612X20941784) and the Journal of the American Animal Hospital Association (volume 56, issue 4, pages 249–265, DOI: 10.5326/JAAHA-MS-7123). The guidelines assign approved feline vaccines to core (recommended for all cats) and non-core (recommended based on an individualized risk-benefit assessment) categories. Practitioners can develop individualized vaccination protocols consisting of core vaccines and non-core vaccines based on exposure and susceptibility risk as defined by the patient’s life stage, lifestyle, and place of origin and by environmental and epidemiologic factors. An update on feline injection-site sarcomas indicates that occurrence of this sequela remains infrequent and idiosyncratic. Staff education initiatives should enable the veterinary practice team to be proficient in advising clients on proper vaccination practices and compliance. Vaccination is a component of a preventive healthcare plan. The vaccination visit should always include a thorough physical exam and client education dialog that gives the pet owner an understanding of how clinical staff assess disease risk and propose recommendations that help ensure an enduring owner-pet relationship.
Collapse
Affiliation(s)
- Amy E. S. Stone
- From the Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida, USA (A.E.S.S.); Veterinary Teaching Hospital, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA (G.O.B.); Nova Cat Clinic, Arlington, Virginia, USA (E.M.C.); Department of Population Health and Reproduction, School of Veterinary Medicine, University o
| | - Gary O. Brummet
- From the Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida, USA (A.E.S.S.); Veterinary Teaching Hospital, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA (G.O.B.); Nova Cat Clinic, Arlington, Virginia, USA (E.M.C.); Department of Population Health and Reproduction, School of Veterinary Medicine, University o
| | - Ellen M. Carozza
- From the Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida, USA (A.E.S.S.); Veterinary Teaching Hospital, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA (G.O.B.); Nova Cat Clinic, Arlington, Virginia, USA (E.M.C.); Department of Population Health and Reproduction, School of Veterinary Medicine, University o
| | - Philip H. Kass
- From the Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida, USA (A.E.S.S.); Veterinary Teaching Hospital, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA (G.O.B.); Nova Cat Clinic, Arlington, Virginia, USA (E.M.C.); Department of Population Health and Reproduction, School of Veterinary Medicine, University o
| | - Ernest P. Petersen
- From the Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida, USA (A.E.S.S.); Veterinary Teaching Hospital, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA (G.O.B.); Nova Cat Clinic, Arlington, Virginia, USA (E.M.C.); Department of Population Health and Reproduction, School of Veterinary Medicine, University o
| | - Jane Sykes
- From the Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida, USA (A.E.S.S.); Veterinary Teaching Hospital, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA (G.O.B.); Nova Cat Clinic, Arlington, Virginia, USA (E.M.C.); Department of Population Health and Reproduction, School of Veterinary Medicine, University o
| | - Mark E. Westman
- From the Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida, USA (A.E.S.S.); Veterinary Teaching Hospital, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA (G.O.B.); Nova Cat Clinic, Arlington, Virginia, USA (E.M.C.); Department of Population Health and Reproduction, School of Veterinary Medicine, University o
| |
Collapse
|
11
|
Decreased Sensitivity of the Serological Detection of Feline Immunodeficiency Virus Infection Potentially Due to Imported Genetic Variants. Viruses 2019; 11:v11080697. [PMID: 31370217 PMCID: PMC6722909 DOI: 10.3390/v11080697] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 01/02/2023] Open
Abstract
Feline immunodeficiency virus (FIV) is a lentivirus of domestic cats worldwide. Diagnosis usually relies on antibody screening by point-of-care tests (POCT), e.g., by enzyme-linked immunosorbent assays (ELISA), and confirmation using Western blot (WB). We increasingly observed ELISA-negative, WB-positive samples and aimed to substantiate these observations using 1194 serum/plasma samples collected from 1998 to 2019 primarily from FIV-suspect cats. While 441 samples tested positive and 375 tested negative by ELISA and WB, 81 samples had discordant results: 70 were false ELISA-negative (WB-positive) and 11 were false ELISA-positive (WB-negative); 297 ambiguous results were not analyzed further. The diagnostic sensitivity and specificity of the ELISA (82% and 91%, respectively) were lower than those reported in 1995 (98% and 97%, respectively). The diagnostic efficiency was reduced from 97% to 86%. False ELISA-negative samples originated mainly (54%) from Switzerland (1995: 0%). Sixty-four false ELISA-negative samples were available for POCT (SNAPTM/WITNESSR): five were POCT-positive. FIV RT-PCR was positive for two of these samples and was weakly positive for two ELISA- and POCT-negative samples. Low viral loads prohibited sequencing. Our results suggest that FIV diagnosis has become more challenging, probably due to increasing travel by cats and the introduction of new FIV isolates not recognized by screening assays.
Collapse
|
12
|
Westman ME, Malik R, Norris JM. Diagnosing feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV) infection: an update for clinicians. Aust Vet J 2019; 97:47-55. [DOI: 10.1111/avj.12781] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 11/29/2022]
Affiliation(s)
- ME Westman
- Sydney School of Veterinary Science; The University of Sydney; NSW Australia
| | - R Malik
- Centre for Veterinary Education; The University of Sydney; NSW Australia
| | - JM Norris
- Sydney School of Veterinary Science; The University of Sydney; NSW Australia
| |
Collapse
|
13
|
Immunogenicity and Efficacy of a Novel Multi-Antigenic Peptide Vaccine Based on Cross-Reactivity between Feline and Human Immunodeficiency Viruses. Viruses 2019; 11:v11020136. [PMID: 30717485 PMCID: PMC6409633 DOI: 10.3390/v11020136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
For the development of an effective HIV-1 vaccine, evolutionarily conserved epitopes between feline and human immunodeficiency viruses (FIV and HIV-1) were determined by analyzing overlapping peptides from retroviral genomes that induced both anti-FIV/HIV T cell-immunity in the peripheral blood mononuclear cells from the FIV-vaccinated cats and the HIV-infected humans. The conserved T-cell epitopes on p24 and reverse transcriptase were selected based on their robust FIV/HIV-specific CD8⁺ cytotoxic T lymphocyte (CTL), CD4⁺ CTL, and polyfunctional T-cell activities. Four such evolutionarily conserved epitopes were formulated into four multiple antigen peptides (MAPs), mixed with an adjuvant, to be tested as FIV vaccine in cats. The immunogenicity and protective efficacy were evaluated against a pathogenic FIV. More MAP/peptide-specific CD4⁺ than CD8⁺ T-cell responses were initially observed. By post-third vaccination, half of the MAP/peptide-specific CD8⁺ T-cell responses were higher or equivalent to those of CD4⁺ T-cell responses. Upon challenge, 15/19 (78.9%) vaccinated cats were protected, whereas 6/16 (37.5%) control cats remained uninfected, resulting in a protection rate of 66.3% preventable fraction (p = 0.0180). Thus, the selection method used to identify the protective FIV peptides should be useful in identifying protective HIV-1 peptides needed for a highly protective HIV-1 vaccine in humans.
Collapse
|
14
|
Sahay B, Yamamoto JK. Lessons Learned in Developing a Commercial FIV Vaccine: The Immunity Required for an Effective HIV-1 Vaccine. Viruses 2018; 10:v10050277. [PMID: 29789450 PMCID: PMC5977270 DOI: 10.3390/v10050277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/08/2018] [Accepted: 05/20/2018] [Indexed: 11/16/2022] Open
Abstract
The feline immunodeficiency virus (FIV) vaccine called Fel-O-Vax® FIV is the first commercial FIV vaccine released worldwide for the use in domestic cats against global FIV subtypes (A⁻E). This vaccine consists of inactivated dual-subtype (A plus D) FIV-infected cells, whereas its prototype vaccine consists of inactivated dual-subtype whole viruses. Both vaccines in experimental trials conferred moderate-to-substantial protection against heterologous strains from homologous and heterologous subtypes. Importantly, a recent case-control field study of Fel-O-Vax-vaccinated cats with outdoor access and ≥3 years of annual vaccine boost, resulted in a vaccine efficacy of 56% in Australia where subtype-A viruses prevail. Remarkably, this protection rate is far better than the protection rate of 31.2% observed in the best HIV-1 vaccine (RV144) trial. Current review describes the findings from the commercial and prototype vaccine trials and compares their immune correlates of protection. The studies described in this review demonstrate the overarching importance of ant-FIV T-cell immunity more than anti-FIV antibody immunity in affording protection. Thus, future efforts in developing the next generation FIV vaccine and the first effective HIV-1 vaccine should consider incorporating highly conserved protective T-cell epitopes together with the conserved protective B-cell epitopes, but without inducing adverse factors that eliminate efficacy.
Collapse
Affiliation(s)
- Bikash Sahay
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA.
| | - Janet K Yamamoto
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA.
| |
Collapse
|
15
|
FIV vaccine with receptor epitopes results in neutralizing antibodies but does not confer resistance to challenge. NPJ Vaccines 2018; 3:16. [PMID: 29736270 PMCID: PMC5928050 DOI: 10.1038/s41541-018-0051-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 11/09/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is the feline analogue to human immunodeficiency virus (HIV) and utilizes parallel modes of receptor-mediated entry. The FIV surface glycoprotein (SU) is an important target for induction of neutralizing antibodies, and autoantibodies to the FIV binding receptor (CD134) block infection ex vivo; thus highlighting the potential for immunotherapies which utilize anti-receptor antibodies to block viral infection. To determine whether vaccination with CD134-SU complexes could induce protection against FIV infection, cats (n = 5 per group) were immunized with soluble CD134, recombinant FIV-SU protein, and/or CD134+SU complexes. Two trials were performed with different antigen combinations and vaccination schedules. In vivo generation of anti-CD134 and anti-SU IgG antibodies was measured, and in vitro neutralization assays were conducted. Immunization induced production of anti-CD134 and anti-SU antibodies that significantly inhibited FIV infection in vitro. However, no vaccine combination protected cats from FIV infection, and neat serum from vaccinated cats enhanced FIV growth in vitro. CD134+SU vaccinated cats exhibited increased CD4:CD8 ratio immediately prior to challenge, and antibodies were much more efficiently generated against vaccine by-products versus target antigens. Results suggest vaccination against viral and cryptic receptor epitopes yields neutralizing antibodies that synergistically inhibit FIV infection in vitro. Factors contributing to vaccine failure may include: (1) Heat-labile serum factors that enhance viral replication, (2) changes in circulating target cell populations induced by vaccination, and (3) weak immunogenicity of neutralizing epitopes compared to off-target vaccine components. Results reinforce the need to monitor vaccine preparation components and avoid non-specific immune stimulation during vaccination. A vaccine candidate for feline immunodeficiency virus elicits strong immunological reaction in vitro, but no protection to live cats. The feline analog to human immunodeficiency virus, FIV shares a similar infection paradigm and has only one partially effective vaccine. A US team, led by Colorado State University’s Susan VandeWoude, immunized cats using a complex of an FIV surface protein and a feline cell-surface protein known to facilitate FIV’s entry into immune cells. Tissue culture assays yielded promising results; however, this did not translate to live-animal protection. The researchers highlighted multiple factors that could explain the lack of success, including circulatory pro-infection factors, and immune responses generated against vaccine by-products rather than intended targets. While the vaccine candidate failed, the research provides invaluable guidance for future efforts into FIV vaccination with implications for HIV vaccine trials.
Collapse
|
16
|
Applications of the FIV Model to Study HIV Pathogenesis. Viruses 2018; 10:v10040206. [PMID: 29677122 PMCID: PMC5923500 DOI: 10.3390/v10040206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 12/15/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is a naturally-occurring retrovirus that infects domestic and non-domestic feline species, producing progressive immune depletion that results in an acquired immunodeficiency syndrome (AIDS). Much has been learned about FIV since it was first described in 1987, particularly in regard to its application as a model to study the closely related lentivirus, human immunodeficiency virus (HIV). In particular, FIV and HIV share remarkable structure and sequence organization, utilize parallel modes of receptor-mediated entry, and result in a similar spectrum of immunodeficiency-related diseases due to analogous modes of immune dysfunction. This review summarizes current knowledge of FIV infection kinetics and the mechanisms of immune dysfunction in relation to opportunistic disease, specifically in regard to studying HIV pathogenesis. Furthermore, we present data that highlight changes in the oral microbiota and oral immune system during FIV infection, and outline the potential for the feline model of oral AIDS manifestations to elucidate pathogenic mechanisms of HIV-induced oral disease. Finally, we discuss advances in molecular biology, vaccine development, neurologic dysfunction, and the ability to apply pharmacologic interventions and sophisticated imaging technologies to study experimental and naturally occurring FIV, which provide an excellent, but often overlooked, resource for advancing therapies and the management of HIV/AIDS.
Collapse
|
17
|
Sahay B, Aranyos AM, McAvoy A, Yamamoto JK. Utilization of Feline ELISpot to Evaluate the Immunogenicity of a T Cell-Based FIV MAP Vaccine. Methods Mol Biol 2018; 1808:197-219. [PMID: 29956186 DOI: 10.1007/978-1-4939-8567-8_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The prototype and the commercial dual-subtype feline immunodeficiency virus (FIV) vaccines conferred protection against homologous FIV strains as well as heterologous FIV strains from the vaccine subtypes with closely related envelope (Env) sequences. Such protection was mediated by the FIV neutralizing antibodies (NAbs) induced by the vaccines. Remarkably, both prototype and commercial FIV vaccines also conferred protection against heterologous FIV subtypes with highly divergent Env sequences from the vaccine strains. Such protection was not mediated by the vaccine-induced NAbs but was mediated by a potent FIV-specific T-cell immunity generated by the vaccines (Aranyos et al., Vaccine 34: 1480-1488, 2016). The protective epitopes on the FIV vaccine antigen were identified using feline interleukin-2 (IL-2) and interferon-γ (IFNγ) ELISpot assays with overlapping FIV peptide stimulation of the peripheral blood mononuclear cells (PBMC) from cats immunized with prototype FIV vaccine. Two of the protective FIV peptide epitopes were identified on FIV p24 protein and another two protective peptide epitopes were found on FIV reverse transcriptase. In the current study, the multiple antigenic peptides (MAPs) of the four protective FIV peptides were combined with an adjuvant as the FIV MAP vaccine. The laboratory cats were immunized with the MAP vaccine to evaluate whether significant levels of vaccine-specific cytokine responses can be generated to the FIV MAPs and their peptides at post-second and post-third vaccinations. The PBMC from vaccinated cats and non-vaccinated control cats were tested for IL-2, IFNγ, and IL-10 ELISpot responses to the FIV MAPs and peptides. These results were compared to the results from CD4+ and CD8+ T-cell proliferation to the FIV MAPs and peptides. Current study demonstrates that IL-2 and IFNγ ELISpot responses can be used to detect memory responses of the T cells from vaccinated cats after the second and third vaccinations.
Collapse
Affiliation(s)
- Bikash Sahay
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Alek M Aranyos
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Andrew McAvoy
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Janet K Yamamoto
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
18
|
Westman ME, Malik R, Hall E, Harris M, Hosie MJ, Norris JM. Duration of antibody response following vaccination against feline immunodeficiency virus. J Feline Med Surg 2017; 19:1055-1064. [PMID: 27770018 PMCID: PMC11110993 DOI: 10.1177/1098612x16673292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Objectives Recently, two point-of-care (PoC) feline immunodeficiency virus (FIV) antibody test kits (Witness and Anigen Rapid) were reported as being able to differentiate FIV-vaccinated from FIV-infected cats at a single time point, irrespective of the gap between testing and last vaccination (0-7 years). The aim of the current study was to investigate systematically anti-FIV antibody production over time in response to the recommended primary FIV vaccination series. Methods First, residual plasma from the original study was tested using a laboratory-based ELISA to determine whether negative results with PoC testing were due to reduced as opposed to absent antibodies to gp40. Second, a prospective study was performed using immunologically naive client-owned kittens and cats given a primary FIV vaccination series using a commercially available inactivated whole cell/inactivated whole virus vaccine (Fel-O-Vax FIV, three subcutaneous injections at 4 week intervals) and tested systematically (up to 11 times) over 6 months, using four commercially available PoC FIV antibody kits (SNAP FIV/FeLV Combo [detects antibodies to p15/p24], Witness FeLV/FIV [gp40], Anigen Rapid FIV/FeLV [p24/gp40] and VetScan FeLV/FIV Rapid [p24]). Results The laboratory-based ELISA showed cats from the original study vaccinated within the previous 0-15 months had detectable levels of antibodies to gp40, despite testing negative with two kits that use gp40 as a capture antigen (Witness and Anigen Rapid kits). The prospective study showed that antibody testing with SNAP Combo and VetScan Rapid was positive in all cats 2 weeks after the second primary FIV vaccination, and remained positive for the duration of the study (12/12 and 10/12 cats positive, respectively). Antibody testing with Witness and Anigen Rapid was also positive in a high proportion of cats 2 weeks after the second primary FIV vaccination (8/12 and 7/12, respectively), but antibody levels declined below the level of detection in most cats (10/12) by 1 month after the third (final) primary FIV vaccination. All cats tested negative using Witness and Anigen Rapid 6 months after the third primary FIV vaccination. Conclusions and relevance This study has shown that a primary course of FIV vaccination does not interfere with FIV antibody testing in cats using Witness and Anigen Rapid, provided primary vaccination has not occurred within the previous 6 months. Consequently, Witness and Anigen Rapid antibody test kits can be used reliably to determine FIV infection status at the time of annual booster FIV vaccination to help detect 'vaccine breakthroughs' and in cats that have not received a primary course of FIV vaccination within the preceding 6 months. The duration of antibody response following annual booster FIV vaccination and the resulting effect on antibody testing using PoC kits needs to be determined by further research. The mechanism(s) for the variation in FIV antibody test kit performance remains unclear.
Collapse
Affiliation(s)
- Mark E Westman
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Richard Malik
- Centre for Continuing Veterinary Education, The University of Sydney, Sydney, NSW, Australia
| | - Evelyn Hall
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Matthew Harris
- Centre for Virus Research, The University of Glasgow, Glasgow, UK
| | - Margaret J Hosie
- Centre for Virus Research, The University of Glasgow, Glasgow, UK
| | - Jacqueline M Norris
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
19
|
Luckman C, Gates MC. Epidemiology and clinical outcomes of feline immunodeficiency virus and feline leukaemia virus in client-owned cats in New Zealand. JFMS Open Rep 2017; 3:2055116917729311. [PMID: 30202540 PMCID: PMC6125856 DOI: 10.1177/2055116917729311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objectives The objectives were to collect baseline data on the occurrence, testing and vaccination practices, and clinical outcomes of feline leukaemia virus (FeLV) and feline immunodeficiency virus (FIV) in New Zealand Methods A cross-sectional survey of 423 veterinary practices in New Zealand was performed to collect data on FeLV and FIV testing and vaccination during the 2015 calendar year. Clinical records from 572 cats tested using a point-of-care ELISA at a first-opinion veterinary practice between 7 April 2010 and 23 June 2016 were also obtained and multivariable logistic regression models were constructed to identify risk factors for test positivity. Survival times were estimated using Kaplan–Meier methods. Results The survey was completed by 112 clinics (26.4%) of which 72 performed in-house testing. Of the 2125 tests performed, 56 (2.6%) were positive for FeLV and 393 (18.5%) were positive for FIV. Fewer than 1% of cats were vaccinated for FeLV, with veterinarians citing low perceived prevalence as the primary reason for not vaccinating. Being male compared with being female and having clinical evidence of immunosuppression were significant risk factors for both FeLV and FIV test positivity. The median survival times of FeLV and FIV test-positive cats were 10 days (95% confidence interval [CI] 0–16) and 650 days (95% CI 431–993), respectively. Conclusions and relevance Testing and vaccination for FeLV and FIV in New Zealand appears targeted towards high-risk animals, which may bias prevalence estimates. Baseline data should be monitored for changes in FeLV epidemiology now commercial vaccines are no longer available.
Collapse
Affiliation(s)
| | - M Carolyn Gates
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
20
|
Gates MC, Vigeant S, Dale A. Prevalence and risk factors for cats testing positive for feline immunodeficiency virus and feline leukaemia virus infection in cats entering an animal shelter in New Zealand. N Z Vet J 2017; 65:285-291. [PMID: 28659065 DOI: 10.1080/00480169.2017.1348266] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AIMS To estimate the prevalence of cats testing positive for antibodies to feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV) antigens in domestic cats entering a New Zealand animal shelter, based on a commercial point-of-care ELISA, to identify risk factors associated with cats testing positive, and to compare the results obtained from the ELISA with those obtained using PCR-based testing. METHOD A cross-sectional study was performed on 388 cats entering the Royal New Zealand Society for the Prevention of Cruelty to Animals animal shelter in Auckland, New Zealand between 7 February 2014 and 30 May 2014. Whole blood samples were collected from each cat and tested for FIV antibody and FeLV antigen using a commercial point-of-care ELISA. Information on the signalment and health status of the cat at the time of entry was also recorded. Blood and saliva samples from a subset of cats were tested for FIV and FeLV proviral DNA using a real-time PCR assay. RESULTS Of the 388 cats in the study sample, 146 (37.6%) had been relinquished by owners, 237 (62.4%) were strays, and 5 (1.3%) were of unknown origin. Overall, 53/388 (13.7%) cats tested positive for FIV antibodies and 4/388 (1.0%) were positive for FeLV antigen. Stray cats had a higher FIV seroprevalence than relinquished cats (42/237 (17.8%) vs. 11/146 (7.5%); p=0.008). Of 53 cats that were FIV-seropositive, 51 (96%) tested positive for FIV proviral DNA using PCR testing of blood. Of these 51 cats, 28 (55%) were positive by PCR testing of saliva. Of the four cats that were FeLV antigen-positive by ELISA, two (50%) were positive for FeLV proviral DNA by PCR testing of blood. The odds of a cat being seropositive for FIV were greater for intact compared to desexed cats (OR=3.3; 95% CI=1.6-7.4) and for male compared to female cats (OR=6.5; 95% CI=3.2-14.0). CONCLUSIONS AND CLINICAL RELEVANCE The seroprevalence for FIV was 14% among cats entering an animal shelter in Auckland, whereas the prevalence of FeLV antigen-positive cats was only 1%. These findings suggest differences in the transmission dynamics of each virus in free-roaming cat populations in New Zealand. Our study also highlights the potential role of desexing cats in reducing transmission of FIV. However, further data from first-opinion veterinary practices are required to confirm that these findings may be generalised to the wider domestic cat population in New Zealand.
Collapse
Affiliation(s)
- M C Gates
- a Institute of Veterinary, Animal and Biomedical Sciences , Massey University , Private Bag 11-222, Palmerston North , 4442 , New Zealand
| | - S Vigeant
- b RNZSPCA , PO Box 15-309, New Lynn, Auckland , 0640 , New Zealand
| | - A Dale
- b RNZSPCA , PO Box 15-309, New Lynn, Auckland , 0640 , New Zealand
| |
Collapse
|
21
|
The Comparative Value of Feline Virology Research: Can Findings from the Feline Lentiviral Vaccine Be Translated to Humans? Vet Sci 2017; 4:vetsci4010007. [PMID: 29056666 PMCID: PMC5606627 DOI: 10.3390/vetsci4010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 12/30/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is a lentivirus of domestic cats that shares several similarities with its human counterpart, human immunodeficiency virus (HIV). Their analogies include genomic organization, lymphocyte tropism, viral persistence and induction of immunodeficiency. FIV is the only lentivirus for which a commercial vaccine is registered for prevention in either human or veterinary medicine. This provides a unique opportunity to investigate the mechanisms of protection induced by lentivirus vaccines at the population level and might contribute to the development of efficacious HIV vaccines. As well as having comparative value for vaccine studies, FIV research has shed some light on the relationship between lentiviral tropism and pathogenesis. Recent studies in our laboratory demonstrated that the interaction between FIV and its primary receptor changes as disease progresses, reminiscent of the receptor switch observed as disease progresses in HIV infected individuals. Here we summarise findings illustrating that, in addition to its veterinary significance, FIV has comparative value, providing a useful model to explore lentivirus–host interactions and to examine potential immune correlates of protection against HIV infection.
Collapse
|
22
|
Westman M, Malik R, Hall E, Harris M, Norris J. The protective rate of the feline immunodeficiency virus vaccine: An Australian field study. Vaccine 2016; 34:4752-4758. [DOI: 10.1016/j.vaccine.2016.06.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/15/2016] [Accepted: 06/18/2016] [Indexed: 10/21/2022]
|
23
|
Diagnosing feline immunodeficiency virus (FIV) infection in FIV-vaccinated and FIV-unvaccinated cats using saliva. Comp Immunol Microbiol Infect Dis 2016; 46:66-72. [DOI: 10.1016/j.cimid.2016.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/27/2016] [Accepted: 03/30/2016] [Indexed: 11/23/2022]
|
24
|
Roff SR, Sanou MP, Rathore MH, Levy JA, Yamamoto JK. Conserved epitopes on HIV-1, FIV and SIV p24 proteins are recognized by HIV-1 infected subjects. Hum Vaccin Immunother 2016; 11:1540-56. [PMID: 25844718 DOI: 10.1080/21645515.2015.1026500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cross-reactive peptides on HIV-1 and FIV p24 protein sequences were studied using peripheral blood mononuclear cells (PBMC) from untreated HIV-1-infected long-term survivors (LTS; >10 y of infection without antiretroviral therapy, ART), short-term HIV-1 infected subjects not on ART, and ART-treated HIV-1 infected subjects. IFNγ-ELISpot and CFSE-proliferation analyses were performed with PBMC using overlapping HIV-1 and FIV p24 peptides. Over half of the HIV-1 infected subjects tested (22/31 or 71%) responded to one or more FIV p24 peptide pools by either IFNγ or T-cell proliferation analysis. PBMC and T cells from infected subjects in all 3 HIV(+) groups predominantly recognized one FIV p24 peptide pool (Fp14) by IFNγ production and one additional FIV p24 peptide pool (Fp9) by T-cell proliferation analysis. Furthermore, evaluation of overlapping SIV p24 peptide sequences identified conserved epitope(s) on the Fp14/Hp15-counterpart of SIV, Sp14, but none on Fp9-counterpart of SIV, Sp9. The responses to these FIV peptide pools were highly reproducible and persisted throughout 2-4 y of monitoring. Intracellular staining analysis for cytotoxins and phenotyping for CD107a determined that peptide epitopes from Fp9 and Fp14 pools induced cytotoxic T lymphocyte-associated molecules including perforin, granzyme B, granzyme A, and/or expression of CD107a. Selected FIV and corresponding SIV epitopes recognized by HIV-1 infected patients indicate that these protein sequences are evolutionarily conserved on both SIV and HIV-1 (e.g., Hp15:Fp14:Sp14). These studies demonstrate that comparative immunogenicity analysis of HIV-1, FIV, and SIV can identify evolutionarily-conserved T cell-associated lentiviral epitopes, which could be used as a vaccine for prophylaxis or immunotherapy.
Collapse
Key Words
- AIDS, acquired immune deficiency syndrome
- ART, anti-retroviral therapy
- CFSE, Carboxyfluorescein succinimidyl ester
- CMI, cell mediated immunity
- CTL epitopes
- CTL, cytotoxic T cell
- FIV p24
- FIV, feline immunodeficiency virus
- GrzA, granzyme A
- GrzB, granzyme B
- HERV, human endogenous retrovirus
- HIV p24
- HIV, human immunodeficiency virus
- HLA, human leukocyte antigen
- ICS, intracellular staining
- LANL, Los Alamos National Laboratory
- LTS, Long term survivors
- Nab, broadly neutralizing antibody
- PHA, phytohaemagglutinin
- SFU, spot forming units
- SIV p24
- SIV, simian immunodeficiency virus
- ST, short term survivors
- aa, amino acid
- feline immunodeficiency virus
- vaccine epitopes
Collapse
Affiliation(s)
- Shannon R Roff
- a Department of Infectious Diseases and Pathology; College of Veterinary Medicine; University of Florida ; Gainesville , FL , USA
| | | | | | | | | |
Collapse
|
25
|
Westman ME, Paul A, Malik R, McDonagh P, Ward MP, Hall E, Norris JM. Seroprevalence of feline immunodeficiency virus and feline leukaemia virus in Australia: risk factors for infection and geographical influences (2011-2013). JFMS Open Rep 2016; 2:2055116916646388. [PMID: 28491420 PMCID: PMC5362860 DOI: 10.1177/2055116916646388] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2016] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Our aim was to: (i) determine the current seroprevalence of feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV) in three large cohorts of cats from Australia; and (ii) investigate potential risk factors for retroviral infection. METHODS Cohort 1 (n = 2151 for FIV, n = 2241 for FeLV) consisted of cats surrendered to a shelter on the west coast of Australia (Perth, Western Australia [WA]). Cohort 2 (n = 2083 for FIV, n = 2032 for FeLV) consisted of client-owned cats with outdoor access recruited from around Australia through participating veterinary clinics. Cohort 3 (n = 169 for FIV, n = 166 for FeLV) consisted of cats presenting to Murdoch University Veterinary Hospital for a variety of reasons. Fresh whole blood was collected and tested using a commercially available point-of-care lateral flow ELISA kit that detects p27 FeLV antigen and antibodies to FIV antigens (p15 and p24) (cohorts 1 and 2), or one of two lateral flow immunochromatography kits that detect p27 antigen and antibodies to FIV antigen (p24 and/or gp40) (cohort 3). Data recorded for cats in cohort 2 included signalment, presenting complaint and postcode, allowing investigation of risk factors for FIV or FeLV infection, as well as potential geographical 'hot spots' for infection. RESULTS The seroprevalence of FIV was 6% (cohort 1), 15% (cohort 2) and 14% (cohort 3), while the seroprevalence of FeLV was 1%, 2% and 4% in the same respective cohorts. Risk factors for FIV infection among cats in cohort 2 included age (>3 years), sex (male), neutering status (entire males) and location (WA had a significantly higher FIV seroprevalence compared with the Australian Capital Territory, New South Wales and Victoria). Risk factors for FeLV infection among cats in cohort 2 included health status ('sick') and location (WA cats were approximately three times more likely to be FeLV-infected compared with the rest of Australia). No geographical hot spots of FIV infection were identified. CONCLUSIONS AND RELEVANCE Both FIV and FeLV remain important infections among Australian cats. WA has a higher seroprevalence of both feline retroviruses compared with the rest of Australia, which has been noted in previous studies. A lower neutering rate for client-owned male cats is likely responsible for the higher seroprevalence of FIV infection in WA cats, while the reason for the higher seroprevalence of FeLV in WA cats is currently unknown.
Collapse
Affiliation(s)
- Mark E Westman
- Faculty of Veterinary Science, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Amanda Paul
- Murdoch University Veterinary Hospital, Murdoch University, WA 6150, Australia
| | - Richard Malik
- Centre for Veterinary Education, The University of Sydney, Camperdown, NSW 2006, Australia
| | | | - Michael P Ward
- Faculty of Veterinary Science, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Evelyn Hall
- Faculty of Veterinary Science, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Jacqueline M Norris
- Faculty of Veterinary Science, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
26
|
Westman ME, Malik R, Hall E, Sheehy PA, Norris JM. Determining the feline immunodeficiency virus (FIV) status of FIV-vaccinated cats using point-of-care antibody kits. Comp Immunol Microbiol Infect Dis 2015; 42:43-52. [PMID: 26459979 DOI: 10.1016/j.cimid.2015.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 11/18/2022]
Abstract
This study challenges the commonly held view that the feline immunodeficiency virus (FIV) infection status of FIV-vaccinated cats cannot be determined using point-of-care antibody test kits due to indistinguishable antibody production in FIV-vaccinated and naturally FIV-infected cats. The performance of three commercially available point-of-care antibody test kits was compared in a mixed population of FIV-vaccinated (n=119) and FIV-unvaccinated (n=239) cats in Australia. FIV infection status was assigned by considering the results of all antibody kits in concert with results from a commercially available PCR assay (FIV RealPCR™). Two lateral flow immunochromatography test kits (Witness FeLV/FIV; Anigen Rapid FIV/FeLV) had excellent overall sensitivity (100%; 100%) and specificity (98%; 100%) and could discern the true FIV infection status of cats, irrespective of FIV vaccination history. The lateral flow ELISA test kit (SNAP FIV/FeLV Combo) could not determine if antibodies detected were due to previous FIV vaccination, natural FIV infection, or both. The sensitivity and specificity of FIV RealPCR™ for detection of viral and proviral nucleic acid was 92% and 99%, respectively. These results will potentially change the way veterinary practitioners screen for FIV in jurisdictions where FIV vaccination is practiced, especially in shelter scenarios where the feasibility of mass screening is impacted by the cost of testing.
Collapse
Affiliation(s)
- Mark E Westman
- Faculty of Veterinary Science, The University of Sydney, NSW 2006, Australia.
| | - Richard Malik
- Centre for Veterinary Education, The University of Sydney, NSW 2006, Australia
| | - Evelyn Hall
- Faculty of Veterinary Science, The University of Sydney, NSW 2006, Australia
| | - Paul A Sheehy
- Faculty of Veterinary Science, The University of Sydney, NSW 2006, Australia
| | - Jacqueline M Norris
- Faculty of Veterinary Science, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
27
|
Bęczkowski PM, Harris M, Techakriengkrai N, Beatty JA, Willett BJ, Hosie MJ. Neutralising antibody response in domestic cats immunised with a commercial feline immunodeficiency virus (FIV) vaccine. Vaccine 2015; 33:977-84. [PMID: 25613718 PMCID: PMC4327927 DOI: 10.1016/j.vaccine.2015.01.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/31/2014] [Accepted: 01/09/2015] [Indexed: 11/16/2022]
Abstract
FIV vaccinated cats screened for neutralising antibodies Homologous neutralisation in 50% of cats tested No heterologous neutralisation
Across human and veterinary medicine, vaccines against only two retroviral infections have been brought to market successfully, the vaccines against feline leukaemia virus (FeLV) and feline immunodeficiency virus (FIV). FeLV vaccines have been a global success story, reducing virus prevalence in countries where uptake is high. In contrast, the more recent FIV vaccine was introduced in 2002 and the degree of protection afforded in the field remains to be established. However, given the similarities between FIV and HIV, field studies of FIV vaccine efficacy are likely to advise and inform the development of future approaches to HIV vaccination. Here we assessed the neutralising antibody response induced by FIV vaccination against a panel of FIV isolates, by testing blood samples collected from client-owned vaccinated Australian cats. We examined the molecular and phenotypic properties of 24 envs isolated from one vaccinated cat that we speculated might have become infected following natural exposure to FIV. Cats vaccinated against FIV did not display broadly neutralising antibodies, suggesting that protection may not extend to some virulent recombinant strains of FIV circulating in Australia.
Collapse
Affiliation(s)
- Paweł M Bęczkowski
- Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom; Small Animal Hospital, University of Glasgow, Glasgow, United Kingdom.
| | - Matthew Harris
- Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom.
| | | | - Julia A Beatty
- Valentine Charlton Cat Centre, University of Sydney, Sydney, NSW, Australia.
| | - Brian J Willett
- Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom.
| | - Margaret J Hosie
- Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
28
|
Craigo JK, Ezzelarab C, Cook SJ, Liu C, Horohov D, Issel CJ, Montelaro RC. Protective efficacy of centralized and polyvalent envelope immunogens in an attenuated equine lentivirus vaccine. PLoS Pathog 2015; 11:e1004610. [PMID: 25569288 PMCID: PMC4287611 DOI: 10.1371/journal.ppat.1004610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/07/2014] [Indexed: 11/18/2022] Open
Abstract
Lentiviral Envelope (Env) antigenic variation and related immune evasion present major hurdles to effective vaccine development. Centralized Env immunogens that minimize the genetic distance between vaccine proteins and circulating viral isolates are an area of increasing study in HIV vaccinology. To date, the efficacy of centralized immunogens has not been evaluated in the context of an animal model that could provide both immunogenicity and protective efficacy data. We previously reported on a live-attenuated (attenuated) equine infectious anemia (EIAV) virus vaccine, which provides 100% protection from disease after virulent, homologous, virus challenge. Further, protective efficacy demonstrated a significant, inverse, linear relationship between EIAV Env divergence and protection from disease when vaccinates were challenged with viral strains of increasing Env divergence from the vaccine strain Env. Here, we sought to comprehensively examine the protective efficacy of centralized immunogens in our attenuated vaccine platform. We developed, constructed, and extensively tested a consensus Env, which in a virulent proviral backbone generated a fully replication-competent pathogenic virus, and compared this consensus Env to an ancestral Env in our attenuated proviral backbone. A polyvalent attenuated vaccine was established for comparison to the centralized vaccines. Additionally, an engineered quasispecies challenge model was created for rigorous assessment of protective efficacy. Twenty-four EIAV-naïve animals were vaccinated and challenged along with six-control animals six months post-second inoculation. Pre-challenge data indicated the consensus Env was more broadly immunogenic than the Env of the other attenuated vaccines. However, challenge data demonstrated a significant increase in protective efficacy of the polyvalent vaccine. These findings reveal, for the first time, a consensus Env immunogen that generated a fully-functional, replication-competent lentivirus, which when experimentally evaluated, demonstrated broader immunogenicity that does not equate to higher protective efficacy.
Collapse
Affiliation(s)
- Jodi K. Craigo
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Corin Ezzelarab
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sheila J. Cook
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Chong Liu
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - David Horohov
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Charles J. Issel
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ronald C. Montelaro
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
29
|
|
30
|
Structural and biochemical insights into the V/I505T mutation found in the EIAV gp45 vaccine strain. Retrovirology 2014; 11:26. [PMID: 24656154 PMCID: PMC3997929 DOI: 10.1186/1742-4690-11-26] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 03/10/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The equine infectious anemia virus (EIAV) is a lentivirus of the Retrovirus family, which causes persistent infection in horses often characterized by recurrent episodes of high fever. It has a similar morphology and life cycle to the human immunodeficiency virus (HIV). Its transmembrane glycoprotein, gp45 (analogous to gp41 in HIV), mediates membrane fusion during the infection. However, the post-fusion conformation of EIAV gp45 has not yet been determined. EIAV is the first member of the lentiviruses for which an effective vaccine has been successfully developed. The attenuated vaccine strain, FDDV, has been produced from a pathogenic strain by a series of passages in donkey dermal cells. We have previously reported that a V/I505T mutation in gp45, in combination with other mutations in gp90, may potentially contribute to the success of the vaccine strain. To this end, we now report on our structural and biochemical studies of the gp45 protein from both wide type and vaccine strain, providing a valuable structural model for the advancement of the EIAV vaccine. RESULTS We resolved crystal structures of the ecto-domain of gp45 from both the wild-type EIAV and the vaccine strain FDDV. We found that the V/I505T mutation in gp45 was located in a highly conserved d position within the heptad repeat, which protruded into a 3-fold symmetry axis within the six-helix bundle. Our crystal structure analyses revealed a shift of a hydrophobic to hydrophilic interaction due to this specific mutation, and further biochemical and virological studies confirmed that the mutation reduced the overall stability of the six-helix bundle in post-fusion conformation. Moreover, we found that altering the temperatures drastically affected the viral infectivity. CONCLUSIONS Our high-resolution crystal structures of gp45 exhibited high conservation between the gp45/gp41 structures of lentiviruses. In addition, a hydrophobic to hydrophilic interaction change in the EIAV vaccine strain was found to modulate the stability and thermal-sensitivity of the overall gp45 structure. Our observations suggest that lowering the stability of the six-helix bundle (post-fusion), which may stabilizes the pre-fusion conformation, might be one of the reasons of acquired dominance for FDDV in viral attenuation.
Collapse
|
31
|
Stickney AL, Dunowska M, Cave NJ. Sequence variation of the feline immunodeficiency virus genome and its clinical relevance. Vet Rec 2013; 172:607-14. [PMID: 23749359 DOI: 10.1136/vr.f101460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ongoing evolution of feline immunodeficiency virus (FIV) has resulted in the existence of a diverse continuum of viruses. FIV isolates differ with regards to their mutation and replication rates, plasma viral loads, cell tropism and the ability to induce apoptosis. Clinical disease in FIV-infected cats is also inconsistent. Genomic sequence variation of FIV is likely to be responsible for some of the variation in viral behaviour. The specific genetic sequences that influence these key viral properties remain to be determined. With knowledge of the specific key determinants of pathogenicity, there is the potential for veterinarians in the future to apply this information for prognostic purposes. Genomic sequence variation of FIV also presents an obstacle to effective vaccine development. Most challenge studies demonstrate acceptable efficacy of a dual-subtype FIV vaccine (Fel-O-Vax FIV) against FIV infection under experimental settings; however, vaccine efficacy in the field still remains to be proven. It is important that we discover the key determinants of immunity induced by this vaccine; such data would compliment vaccine field efficacy studies and provide the basis to make informed recommendations on its use.
Collapse
Affiliation(s)
- A L Stickney
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand.
| | | | | |
Collapse
|
32
|
Ammersbach M, Little S, Bienzle D. Preliminary evaluation of a quantitative polymerase chain reaction assay for diagnosis of feline immunodeficiency virus infection. J Feline Med Surg 2013; 15:725-9. [PMID: 23362341 PMCID: PMC11191716 DOI: 10.1177/1098612x13475465] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Enzyme-linked immunosorbent assay (ELISA) has high sensitivity and specificity for detection of feline immunodeficiency virus (FIV) antibodies, but does not distinguish between infection and vaccination. Real-time quantitative PCR (qPCR) assays may distinguish infected from vaccinated cats. Performance of a commercial qPCR assay was assessed with blood samples from 29 FIV-infected non-vaccinated, 26 FIV-uninfected vaccinated and 35 FIV-uninfected non-vaccinated cats. FIV infection status of cats was assigned based on a combination of vaccination and medical history, prevention of contact with potentially infected cats and two FIV antibody ELISA results. Test sensitivity and specificity were determined against this gold standard. The qPCR test yielded positive results in samples from 23/29 FIV-infected non-vaccinated, 2/26 FIV-uninfected vaccinated and 0/35 FIV-uninfected non-vaccinated cats. It was concluded that the qPCR test was moderately sensitive and highly specific for the diagnosis of FIV infection, and that it may be suitable for ruling out FIV infection in cats with a positive antibody ELISA result and unknown vaccination history.
Collapse
Affiliation(s)
| | | | - Dorothee Bienzle
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
33
|
Feline immunodeficiency virus (FIV) vaccine efficacy and FIV neutralizing antibodies. Vaccine 2013; 32:746-54. [PMID: 23800540 DOI: 10.1016/j.vaccine.2013.05.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/12/2013] [Accepted: 05/08/2013] [Indexed: 11/24/2022]
Abstract
A HIV-1 tier system has been developed to categorize the various subtype viruses based on their sensitivity to vaccine-induced neutralizing antibodies (NAbs): tier 1 with greatest sensitivity, tier 2 being moderately sensitive, and tier 3 being the least sensitive to NAbs (Mascola et al., J Virol 2005; 79:10103-7). Here, we define an FIV tier system using two related FIV dual-subtype (A+D) vaccines: the commercially available inactivated infected-cell vaccine (Fel-O-Vax(®) FIV) and its prototype vaccine solely composed of inactivated whole viruses. Both vaccines afforded combined protection rates of 100% against subtype-A tier-1 FIVPet, 89% against subtype-B tier-3 FIVFC1, 61% against recombinant subtype-A/B tier-2 FIVBang, 62% against recombinant subtype-F'/C tier-3 FIVNZ1, and 40% against subtype-A tier-2 FIVUK8 in short-duration (37-41 weeks) studies. In long-duration (76-80 weeks) studies, the commercial vaccine afforded a combined protection rate of at least 46% against the tier-2 and tier-3 viruses. Notably, protection rates observed here are far better than recently reported HIV-1 vaccine trials (Sanou et al., The Open AIDS J 2012; 6:246-60). Prototype vaccine protection against two tier-3 and one tier-2 viruses was more effective than commercial vaccine. Such protection did not correlate with the presence of vaccine-induced NAbs to challenge viruses. This is the first large-scale (228 laboratory cats) study characterizing short- and long-duration efficacies of dual-subtype FIV vaccines against heterologous subtype and recombinant viruses, as well as FIV tiers based on in vitro NAb analysis and in vivo passive-transfer studies. These studies demonstrate that not all vaccine protection is mediated by vaccine-induced NAbs.
Collapse
|
34
|
Abstract
A commercial feline immunodeficiency virus (FIV) vaccine consisting of inactivated dual-subtype viruses was released in the USA in 2002 and released subsequently over the next 6 years in Canada, Australia, New Zealand, and Japan. Based on the genetic, morphologic, and biochemical similarities between FIV and human immunodeficiency virus-1 (HIV-1), FIV infection of domestic cats is being used as a small animal model of HIV/AIDS vaccine. Studies on prototype and commercial FIV vaccines provide new insights to the types of immunity and the vaccine epitopes required for an effective human HIV-1 vaccine. ELISPOT assays to detect cytokines, chemokines, and cytolytic mediators are widely used to measure the magnitude and the types of cellular immunity produced by vaccination. Moreover, such approach has identified regions on both HIV-1 and FIV proteins that induce robust antiviral cellular immunity in infected hosts. Using the same strategy, cats immunized with prototype and commercial FIV vaccines are being analyzed by feline interferon-γ and IL-2 ELISPOT systems to identify the vaccine epitope repertoire for prophylaxis.
Collapse
|
35
|
Blacklaws BA. Small ruminant lentiviruses: immunopathogenesis of visna-maedi and caprine arthritis and encephalitis virus. Comp Immunol Microbiol Infect Dis 2012; 35:259-69. [PMID: 22237012 DOI: 10.1016/j.cimid.2011.12.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 10/14/2022]
Abstract
The small ruminant lentiviruses include the prototype for the genus, visna-maedi virus (VMV) as well as caprine arthritis encephalitis virus (CAEV). Infection of sheep or goats with these viruses causes slow, progressive, inflammatory pathology in many tissues, but the most common clinical signs result from pathology in the lung, mammary gland, central nervous system and joints. This review examines replication, immunity to and pathogenesis of these viruses and highlights major differences from and similarities to some of the other lentiviruses.
Collapse
Affiliation(s)
- Barbara A Blacklaws
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK.
| |
Collapse
|
36
|
Doornenbal E, Ingwersen W, Cloutier G. Feline leukemia and feline immunodeficiency virus in Canada - A comment. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2012; 53:9-10. [PMID: 22753957 PMCID: PMC3239163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
37
|
Morton JM, McCoy RJ, Kann RKC, Gardner IA, Meers J. Validation of real-time polymerase chain reaction tests for diagnosing feline immunodeficiency virus infection in domestic cats using Bayesian latent class models. Prev Vet Med 2011; 104:136-48. [PMID: 22098681 DOI: 10.1016/j.prevetmed.2011.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 08/12/2011] [Accepted: 10/16/2011] [Indexed: 11/30/2022]
Abstract
The objectives of the current study were to estimate the sensitivity and specificity of three real-time polymerase chain reaction (PCR) tests for diagnosis of feline immunodeficiency virus (FIV) infection in domestic cats, both individually and when interpreted in series with one of two serological tests, separately in populations of cats at low and high risk of being infected with FIV. One PCR test targeted the pol gene and two targeted the gag gene of FIV. For comparison, sensitivities and specificities of the individual serological tests (IDEXX SNAP(®) test and AGEN Simplify(®) test) were also estimated. The study populations consisted of domestic cats thought to be not vaccinated against FIV. Low-risk (males aged 4 years or less and females; n=128) and high-risk (males over 4 years; n=128) cats were selected from those where blood samples were submitted to a commercial clinical pathology service. Bayesian latent class models were used to obtain posterior probability distributions for sensitivity and specificity for each test, based on prior distributions obtained from three experts. Medians of the posterior sensitivity distributions for the PCR tests based on the pol gene and two regions of the gag gene tests ranged from 0.85 to 0.89, compared to 0.89-0.97 for the two serological tests. The medians of posterior specificity distributions for these PCR tests were 0.94-0.96, and 0.95-0.97 for the serological tests. In contrast, the PCR based on one region of the gag gene had lower median sensitivity. Sensitivities of combinations of these serological and PCR tests interpreted in series were low; medians of posterior sensitivity distributions ranged from 0.75 to 0.83. Relative to the low-risk population, median sensitivities in the high-risk population were lower for all tests other than the AGEN Simplify(®) test; specificities were similar in both populations. We conclude that the sensitivities of the two PCR tests based on the pol gene and two regions of the gag gene, respectively, in non-vaccinated cats are probably lower than the sensitivities of the two serological tests we assessed. We do not recommend screening cats whose FIV vaccination status is uncertain with one of these serological tests and then testing positives with one of these PCR tests because in non-vaccinates, the sensitivities of combinations of these serological and PCR tests interpreted in series are low. Assessment of the validity of these PCR assays in FIV-vaccinated cats is required.
Collapse
Affiliation(s)
- John M Morton
- School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia.
| | | | | | | | | |
Collapse
|
38
|
Abbott J, Sanou M, Coleman J, Yamamoto J. Evolutionarily conserved T-cell epitopes on FIV for designing an HIV/AIDS vaccine. Vet Immunol Immunopathol 2011; 143:246-54. [PMID: 21719117 PMCID: PMC4461867 DOI: 10.1016/j.vetimm.2011.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This review will discuss the current state of the human HIV-1 vaccine trials including the safety consideration of vaccine composition and difficulties in determining and defining protective immunity and epitopes to HIV-1. Vaccines in animal models of lentivirus infection are compared. In particular, the findings from the prototype FIV vaccine and the HIV-1 protein immunizations studies in cats are discussed, as well as the resulting research regarding a potential HIV-1 vaccine design based on evolutionarily conserved T-cell epitopes.
Collapse
Affiliation(s)
- J.R. Abbott
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611, USA
| | - M.P. Sanou
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611, USA
| | - J.K. Coleman
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611, USA
| | - J.K. Yamamoto
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611, USA
| |
Collapse
|
39
|
Ishikawa M, Baba K, Shimojima M, Okada M, Shojima T, Miura T, Miyazawa T. Adaptation of feline immunodeficiency virus subtype B strain TM2 to a feline astrocyte cell line (G355-5 cells). Vet Microbiol 2010; 149:307-15. [PMID: 21168982 DOI: 10.1016/j.vetmic.2010.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 10/22/2010] [Accepted: 11/16/2010] [Indexed: 11/30/2022]
Abstract
Based on receptor usage during infection, feline immunodeficiency virus (FIV) isolates can be divided into two groups; those that require feline CD134 (fCD134) as a primary receptor in addition to CXCR4 to enter the cells, and those that require CXCR4 only. Most primary isolates, including strain TM2, belong to the former group and cannot infect a feline astrocyte cell line (G355-5 cells) due to a lack of fCD134 expression. In a previous study, we found that G355-5 cells transduced with fCD134 (termed G355-5/fOX40 cells) were susceptible to strain TM2 and the inoculated cells became persistently infected. In this study, we examined the phenotype of the virus prepared from the persistently infected cells (termed strain TM2PI). Intriguingly, strain TM2PI replicated well in naïve G355-5 cells and the inoculated G355-5 cells (termed G355-5/TM2PI cells) became persistently infected. The infection of TM2PI in G355-5 cells was inhibited by CXCR4 antagonist AMD3100 and TM2PI infected other fCD134-negative, CXCR4-positive cell lines, FeTJ and 3201 cells. Four amino acid substitutions were found in the Env protein of the strain TM2PI when compared with that of the parental strain TM2. Among the substitutions, the Env amino acid position at 407 of TM2PI was substituted to lysine which has been known to be responsible for the FIV tropism for Crandell feline kidney cells. The strain TM2PI will be useful for studying the receptor switching mechanism and FIV pathogenesis in cats.
Collapse
MESH Headings
- Animals
- Astrocytes/virology
- Cats
- Cell Line/virology
- Gene Products, env/genetics
- Gene Products, env/metabolism
- Immunodeficiency Virus, Feline/genetics
- Immunodeficiency Virus, Feline/growth & development
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Receptors, OX40/genetics
- Receptors, OX40/metabolism
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Transfection
- Viral Tropism
Collapse
Affiliation(s)
- Mieko Ishikawa
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaracho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Craigo JK, Barnes S, Cook SJ, Issel CJ, Montelaro RC. Divergence, not diversity of an attenuated equine lentivirus vaccine strain correlates with protection from disease. Vaccine 2010; 28:8095-104. [PMID: 20955830 DOI: 10.1016/j.vaccine.2010.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/17/2010] [Accepted: 10/01/2010] [Indexed: 10/18/2022]
Abstract
We recently reported an attenuated EIAV vaccine study that directly examined the effect of lentiviral envelope sequence variation on vaccine efficacy. The study [1] demonstrated for the first time the failure of an ancestral vaccine to protect and revealed a significant, inverse, linear relationship between envelope divergence and protection from disease. In the current study we examine in detail the evolution of the attenuated vaccine strain utilized in this previous study. We demonstrate here that the attenuated strain progressively evolved during the six-month pre-challenge period and that the observed protection from disease was significantly associated with divergence from the original vaccine strain.
Collapse
Affiliation(s)
- Jodi K Craigo
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
41
|
Nakamura Y, Nakamura Y, Ura A, Hirata M, Sakuma M, Sakata Y, Nishigaki K, Tsujimoto H, Setoguchi A, Endo Y. An updated nation-wide epidemiological survey of feline immunodeficiency virus (FIV) infection in Japan. J Vet Med Sci 2010; 72:1051-6. [PMID: 20224240 DOI: 10.1292/jvms.09-0574] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An updated nation-wide epidemiological survey of feline immunodeficiency virus (FIV) infection was conducted in Japan. Blood samples were collected from 1,770 outdoor accessing cats from March to October 2008. Serologically, 410 cats (23.2%) were positive for anti-FIV antibody. Proviral DNA of the FIV env V3-V5 region isolated from 348 cases could be phylogenetically analyzed. The present study disclosed a geographic distribution of four subtypes (A, B, C and D) of FIV in Japan. Even though an FIV vaccine was introduced in Japan, we do not currently know whether this vaccine is effective against all strains of FIV in Japan or not. Therefore, close attention still has to be paid to epidemic and genotypic trends of FIV.
Collapse
Affiliation(s)
- Yuki Nakamura
- Laboratory of Veterinary Internal Medicine, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Steinrigl A, Ertl R, Langbein I, Klein D. Phylogenetic analysis suggests independent introduction of feline immunodeficiency virus clades A and B to Central Europe and identifies diverse variants of clade B. Vet Immunol Immunopathol 2010; 134:82-9. [DOI: 10.1016/j.vetimm.2009.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Abstract
DNA vaccines represent a new frontier in vaccine technology. One important application of this technology is in the veterinary arena. DNA vaccines have already gained a foothold in certain fields of veterinary medicine. However, several important questions must be addressed when developing DNA vaccines for animals, including whether or not the vaccine is efficacious and cost effective compared with currently available options. Another important question to consider is how to apply this developing technology in a wide range of different situations, from the domestic pet to individual fish in fisheries with several thousand animals, to wildlife programs for disease control. In some cases, DNA vaccines represent an interesting option for vaccination, while in others, currently available options are sufficient. This review will examine a number of diseases of veterinary importance and the progress being made in DNA vaccine technology relevant to these diseases, and we compare these with the conventional treatment options available.
Collapse
Affiliation(s)
- Laurel Redding
- University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, University of Pennsylvania, Philadelphia, PA 19104, USA,
| | - David B Werner
- Department of Pathology and Laboratory Medicine, 422 Curie Boulevard – 505 SCL, University of Pennsylvania, Philadelphia, PA 19104, USA, Tel.: +1 215 349 8365, Fax: +1215 573 9436,
| |
Collapse
|
44
|
|
45
|
Huisman W, Schrauwen EJA, Tijhaar E, Süzer Y, Pas SD, van Amerongen G, Sutter G, Rimmelzwaan GF, Osterhaus ADME. Evaluation of vaccination strategies against infection with feline immunodeficiency virus (FIV) based on recombinant viral vectors expressing FIV Rev and OrfA. Vet Immunol Immunopathol 2008; 126:332-8. [PMID: 18952300 DOI: 10.1016/j.vetimm.2008.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 07/18/2008] [Accepted: 09/12/2008] [Indexed: 11/20/2022]
Abstract
In recent years it has become clear that cell-mediated immunity is playing a role in the control of lentivirus infections. In particular, cytotoxic T lymphocyte responses have been associated with improved outcome of infection, especially those directed against the regulatory proteins like Rev and Tat, which are expressed early after infection. Therefore, there is considerable interest in lentiviral vaccine candidates that can induce these types of immune responses. In the present study, we describe the construction and characterisation of expression vectors based on recombinant Semliki Forest virus system and modified vaccinia virus Ankara for the expression of feline immunodeficiency virus (FIV) accessory proteins Rev and OrfA. These recombinant viral vectors were used to immunize cats using a prime-boost regimen and the protective efficacy of this vaccination strategy was assessed after challenge infection of immunized cats with FIV.
Collapse
Affiliation(s)
- Willem Huisman
- Erasmus MC, Institute of Virology, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Huisman W, Martina BEE, Rimmelzwaan GF, Gruters RA, Osterhaus ADME. Vaccine-induced enhancement of viral infections. Vaccine 2008; 27:505-12. [PMID: 19022319 PMCID: PMC7131326 DOI: 10.1016/j.vaccine.2008.10.087] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 10/29/2008] [Accepted: 10/29/2008] [Indexed: 12/19/2022]
Abstract
Examples of vaccine-induced enhancement of susceptibility to virus infection or of aberrant viral pathogenesis have been documented for infections by members of different virus families. Several mechanisms, many of which still are poorly understood, are at the basis of this phenomenon. Vaccine development for lentivirus infections in general, and for HIV/AIDS in particular, has been little successful. Certain experimental lentiviral vaccines even proved to be counterproductive: they rendered vaccinated subjects more susceptible to infection rather than protecting them. For vaccine-induced enhanced susceptibility to infection with certain viruses like feline coronavirus, Dengue virus, and feline immunodeficiency virus, it has been shown that antibody-dependent enhancement (ADE) plays an important role. Other mechanisms may, either in the absence of or in combination with ADE, be involved. Consequently, vaccine-induced enhancement has been a major stumble block in the development of certain flavi-, corona-, paramyxo-, and lentivirus vaccines. Also recent failures in the development of a vaccine against HIV may at least in part be attributed to induction of enhanced susceptibility to infection. There may well be a delicate balance between the induction of protective immunity on the one hand and the induction of enhanced susceptibility on the other. The present paper reviews the currently known mechanisms of vaccine-induced enhancement of susceptibility to virus infection or of aberrant viral pathogenesis.
Collapse
Affiliation(s)
- W Huisman
- Erasmus MC, Institute of Virology, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
|
48
|
Phylogenetic and genetic analysis of feline immunodeficiency virus gag, pol, and env genes from domestic cats undergoing nucleoside reverse transcriptase inhibitor treatment or treatment-naïve cats in Rio de Janeiro, Brazil. J Virol 2008; 82:7863-74. [PMID: 18550661 DOI: 10.1128/jvi.00310-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is the Lentivirus responsible for an immunodeficiency-like disease in domestic cats (Felis catus). FIV is divided into five phylogenetic subtypes (A, B, C, D, and E), based on genetic diversity. Knowledge of the geographical distribution of subtypes is relevant for understanding different disease progressions and for vaccine development. In this study, viral sequences of 26 infected cats from Rio de Janeiro, 8 undergoing treatment with zidovudine (AZT) for at least 5 years, were successfully amplified from blood specimens. gag capsid (CA), pol reverse transcriptase (RT), and env gp120 (V3-V4) regions were analyzed to determine subtypes and to evaluate potential mutations related to antiretroviral drug resistance among treated cats. Subtyping based on phylogenetic analysis was performed by the neighbor-joining and maximum likelihood methods. All of the sequences clustered with subtype B in the three regions, exhibiting low genetic variability. Additionally, we found evidence that the same virus is circulating in animals in close contact. The analysis of FIV RT sequences identified two new putative mutations related to drug resistance located in the RT "finger" domain, which has 60% identity to human immunodeficiency virus (HIV) sequence. Amino acid change K-->R at codons 64 and 69 was found in 25% and 37.5% of the treated animals, respectively. These signatures were comparable to K65R and K70R thymidine-associated mutations found in the HIV-1 HXB2 counterpart. This finding strongly suggests a position correlation between the mutations found in FIV and the K65R and K70R substitutions from drug-resistant HIV-1 strains.
Collapse
|
49
|
Huisman W, Schrauwen EJA, Pas SD, van Amerongen G, Rimmelzwaan GF, Osterhaus ADME. Evaluation of ISCOM-adjuvanted subunit vaccines containing recombinant feline immunodeficiency virus Rev, OrfA and envelope protein in cats. Vaccine 2008; 26:2553-61. [PMID: 18430494 DOI: 10.1016/j.vaccine.2008.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/05/2008] [Accepted: 03/12/2008] [Indexed: 10/22/2022]
Abstract
For the development of feline immunodeficiency virus (FIV) vaccines mostly structural proteins have been evaluated for their capacity to induce protective immunity. In the present study, subunit vaccines containing recombinant FIV accessory proteins Rev and OrfA were evaluated in cats. Cats were vaccinated repeatedly with these proteins, adjuvanted with immune stimulating complexes (ISCOMs). In addition, cats were vaccinated with bacterially expressed fragments spanning the entire FIV envelope protein, either alone or in combination with the regulatory proteins. Subsequently, the cats were challenged with a homologous FIV strain to assess the level of protective immunity achieved with the respective vaccination regimens. Although the vaccines proved to be immunogenic, vaccinated cats were not protected from infection with FIV.
Collapse
Affiliation(s)
- Willem Huisman
- Erasmus MC, Institute of Virology, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Advances in vaccine technology are occurring in the molecular techniques used to develop vaccines and in the assessment of vaccine efficacy, allowing more complete characterization of vaccine-induced immunity correlating to protection. FIV vaccine development has closely mirrored and occasionally surpassed the development of HIV-1 vaccine, leading to first licensed technology. This review will discuss technological advances in vaccine designs, challenge infection assessment, and characterization of vaccine immunity in the context of the protection detected with prototype and commercial dual-subtype FIV vaccines and in relation to HIV-1.
Collapse
Affiliation(s)
- Elizabeth W Uhl
- Department of Veterinary Pathology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602-7388, USA
| | | | | | | |
Collapse
|