1
|
Glazyrin YE, Veprintsev DV, Timechko EE, Minic Z, Zamay TN, Dmitrenko DV, Berezovski MV, Kichkailo AS. Comparative Proteomic Profiling of Blood Plasma Revealed Marker Proteins Involved in Temporal Lobe Epilepsy. Int J Mol Sci 2024; 25:7935. [PMID: 39063177 PMCID: PMC11276668 DOI: 10.3390/ijms25147935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Temporal lobe epilepsy has various origins, involving or not involving structural changes in brain tissue. The mechanisms of epileptogenesis are associated with cell regulation and signaling disruptions expressed in varied levels of proteins. The blood plasma proteomic profiling of temporal lobe epilepsy patients (including magnetic resonance imaging (MRI)-positive and MRI-negative ones) and healthy volunteers using mass spectrometry and label-free quantification revealed a list of differently expressed proteins. Several apolipoproteins (APOA1, APOD, and APOA4), serpin protease inhibitors (SERPINA3, SERPINF1, etc.), complement components (C9, C8, and C1R), and a total of 42 proteins were found to be significantly upregulated in the temporal lobe epilepsy group. A classification analysis of these proteins according to their biological functions, as well as a review of the published sources, disclosed the predominant involvement of the processes mostly affected during epilepsy such as neuroinflammation, intracellular signaling, lipid metabolism, and oxidative stress. The presence of several proteins related to the corresponding compensatory mechanisms has been noted. After further validation, the newly identified temporal lobe epilepsy biomarker candidates may be used as epilepsy diagnostic tools, in addition to other less specific methods such as electroencephalography or MRI.
Collapse
Affiliation(s)
- Yury E. Glazyrin
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science”, Akademgorodok 50, 660036 Krasnoyarsk, Russia; (D.V.V.); (T.N.Z.); (A.S.K.)
- Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, 660022 Krasnoyarsk, Russia
| | - Dmitry V. Veprintsev
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science”, Akademgorodok 50, 660036 Krasnoyarsk, Russia; (D.V.V.); (T.N.Z.); (A.S.K.)
| | - Elena E. Timechko
- Department of Medical Genetics and Clinical Neurophysiology, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, 660022 Krasnoyarsk, Russia; (E.E.T.); (D.V.D.)
| | - Zoran Minic
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada; (Z.M.); (M.V.B.)
| | - Tatiana N. Zamay
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science”, Akademgorodok 50, 660036 Krasnoyarsk, Russia; (D.V.V.); (T.N.Z.); (A.S.K.)
- Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, 660022 Krasnoyarsk, Russia
| | - Diana V. Dmitrenko
- Department of Medical Genetics and Clinical Neurophysiology, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, 660022 Krasnoyarsk, Russia; (E.E.T.); (D.V.D.)
| | - Maxim V. Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada; (Z.M.); (M.V.B.)
| | - Anna S. Kichkailo
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science”, Akademgorodok 50, 660036 Krasnoyarsk, Russia; (D.V.V.); (T.N.Z.); (A.S.K.)
- Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, 660022 Krasnoyarsk, Russia
| |
Collapse
|
2
|
Wang L, Ding Y, Liu J, Zheng G, Li S, Jiang W, Chen K, Luan X, Chen Y, Wang S, Zhang G. The analysis of serum lipids profile in Guillain-Barre syndrome. Front Immunol 2023; 14:1301577. [PMID: 38143756 PMCID: PMC10739405 DOI: 10.3389/fimmu.2023.1301577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Background Guillain-Barre syndrome (GBS) is an immune-mediated inflammatory peripheral neuropathy. This study aimed to conduct a systematic analysis of the serum lipids profile in GBS. Methods We measured the serum lipids profile in 85 GBS patients and compared it with that of 85 healthy controls matched for age and sex. Additionally, we analyzed the correlation between lipids and the severity, subtypes, precursor infections, clinical outcomes, clinical symptoms, immunotherapy, and other laboratory markers of GBS. Results Compared to the healthy controls, GBS exhibited significantly elevated levels of Apolipoprotein B (APOB), Apolipoprotein C2 (APOC2), Apolipoprotein C3 (APOC3), Apolipoprotein E (APOE), triglycerides (TG), and residual cholesterol (RC). Conversely, Apolipoprotein A1 (APOA1), Apolipoprotein A2 (APOA2), and high-density lipoprotein (HDL) were substantially lower in GBS. Severe GBS displayed noticeably higher levels of APOC3 and total cholesterol (TC) compared to those with mild disease. Regarding different clinical outcomes, readmitted GBS demonstrated higher RC expression than those who were not readmitted. Moreover, GBS who tested positive for neuro-virus antibody IGG in cerebrospinal fluid (CSF) exhibited heightened expression of APOC3 in comparison to those who tested negative. GBS with cranial nerve damage showed significantly reduced expression of HDL and APOA1 than those without such damage. Additionally, GBS experiencing limb pain demonstrated markedly decreased HDL expression. Patients showed a significant reduction in TC after intravenous immunoglobulin therapy. We observed a significant positive correlation between lipids and inflammatory markers, including TNF-α, IL-1β, erythrocyte sedimentation rate (ESR), white blood cells, monocytes, and neutrophils in GBS. Notably, APOA1 exhibited a negative correlation with ESR. Furthermore, our findings suggest a potential association between lipids and the immune status of GBS. Conclusion The research demonstrated a strong connection between lipids and the severity, subtypes, clinical outcomes, precursor infections, clinical symptoms, immunotherapy, inflammation, and immune status of GBS. This implies that a low-fat diet or the use of lipid-lowering medications may potentially serve as an approach for managing GBS, offering a fresh viewpoint for clinical treatment of this condition.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yaowei Ding
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jie Liu
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guanghui Zheng
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Siwen Li
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wencan Jiang
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kelin Chen
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin Luan
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuxin Chen
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Siqi Wang
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guojun Zhang
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
del Valle E, Rubio-Sardón N, Menéndez-Pérez C, Martínez-Pinilla E, Navarro A. Apolipoprotein D as a Potential Biomarker in Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:15631. [PMID: 37958618 PMCID: PMC10650001 DOI: 10.3390/ijms242115631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Neuropsychiatric disorders (NDs) are a diverse group of pathologies, including schizophrenia or bipolar disorders, that directly affect the mental and physical health of those who suffer from them, with an incidence that is increasing worldwide. Most NDs result from a complex interaction of multiple genes and environmental factors such as stress or traumatic events, including the recent Coronavirus Disease (COVID-19) pandemic. In addition to diverse clinical presentations, these diseases are heterogeneous in their pathogenesis, brain regions affected, and clinical symptoms, making diagnosis difficult. Therefore, finding new biomarkers is essential for the detection, prognosis, response prediction, and development of new treatments for NDs. Among the most promising candidates is the apolipoprotein D (Apo D), a component of lipoproteins implicated in lipid metabolism. Evidence suggests an increase in Apo D expression in association with aging and in the presence of neuropathological processes. As a part of the cellular neuroprotective defense machinery against oxidative stress and inflammation, changes in Apo D levels have been demonstrated in neuropsychiatric conditions like schizophrenia (SZ) or bipolar disorders (BPD), not only in some brain areas but in corporal fluids, i.e., blood or serum of patients. What is not clear is whether variation in Apo D quantity could be used as an indicator to detect NDs and their progression. This review aims to provide an updated view of the clinical potential of Apo D as a possible biomarker for NDs.
Collapse
Affiliation(s)
- Eva del Valle
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (E.d.V.); (N.R.-S.); (C.M.-P.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Nuria Rubio-Sardón
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (E.d.V.); (N.R.-S.); (C.M.-P.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Carlota Menéndez-Pérez
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (E.d.V.); (N.R.-S.); (C.M.-P.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Eva Martínez-Pinilla
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (E.d.V.); (N.R.-S.); (C.M.-P.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Ana Navarro
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (E.d.V.); (N.R.-S.); (C.M.-P.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| |
Collapse
|
4
|
Rzagalinski I, Bogdanova A, Raghuraman BK, Geertsma ER, Hersemann L, Ziemssen T, Shevchenko A. FastCAT Accelerates Absolute Quantification of Proteins Using Multiple Short Nonpurified Chimeric Standards. J Proteome Res 2022; 21:1408-1417. [PMID: 35561006 PMCID: PMC9171895 DOI: 10.1021/acs.jproteome.2c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Absolute (molar)
quantification of clinically relevant proteins
determines their reference values in liquid and solid biopsies. The
FastCAT (for Fast-track QconCAT) method employs multiple short (<50
kDa), stable-isotope labeled chimeric proteins (CPs) composed of concatenated
quantotypic (Q)-peptides representing the quantified proteins. Each
CP also comprises scrambled sequences of reference (R)-peptides that
relate its abundance to a single protein standard (bovine serum albumin,
BSA). FastCAT not only alleviates the need to purify CP or use sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) but
also improves the accuracy, precision, and dynamic range of the absolute
quantification by grouping Q-peptides according to the expected abundance
of the target proteins. We benchmarked FastCAT against the reference
method of MS Western and tested it in the direct molar quantification
of neurological markers in human cerebrospinal fluid at the low ng/mL
level.
Collapse
Affiliation(s)
- Ignacy Rzagalinski
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Aliona Bogdanova
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | - Eric R Geertsma
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Lena Hersemann
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, 01307 Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
5
|
Becirovic-Agic M, Chalise U, Jung M, Rodriguez-Paar JR, Konfrst SR, Flynn ER, Salomon JD, Hall ME, Lindsey ML. Faster skin wound healing predicts survival after myocardial infarction. Am J Physiol Heart Circ Physiol 2022; 322:H537-H548. [PMID: 35089808 PMCID: PMC8917917 DOI: 10.1152/ajpheart.00612.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/06/2022] [Accepted: 01/24/2022] [Indexed: 12/20/2022]
Abstract
Both skin wound healing and the cardiac response to myocardial infarction (MI) progress through similar pathways involving inflammation, resolution, tissue repair, and scar formation. Due to the similarities, we hypothesized that the healing response to skin wounding would predict future response to MI. Mice were given a 3-mm skin wound using a disposable biopsy punch and the skin wound was imaged daily until closure. The same set of animals was given MI by permanent coronary artery ligation 28 days later and followed for 7 days. Cardiac physiology was measured by echocardiography at baseline and MI days 3 and 7. Animals that survived until day 7 were grouped as survivors, and animals that died from MI were grouped as nonsurvivors. Survivors had faster skin wound healing than nonsurvivors. Faster skin wound healing predicted MI survival better than commonly used cardiac functional variables (e.g., infarct size, fractional shortening, and end diastolic dimension). N-glycoproteome profiling of MI day 3 plasma revealed α2-macroglobulin and ELL-associated factor 1 as strong predictors of future MI death and progression to heart failure. A second cohort of MI mice validated these findings. To investigate the clinical relevance of α2-macroglobulin, we mapped the plasma glycoproteome in patients with MI 48 h after admission and in healthy controls. In patients, α2-macroglobulin was increased 48 h after MI. Apolipoprotein D, another plasma glycoprotein, detrimentally regulated both skin and cardiac wound healing in male but not female mice by promoting inflammation. Our results reveal that the skin is a mirror to the heart and common pathways link wound healing across organs.NEW & NOTEWORTHY Faster skin wound healers had more efficient cardiac healing after myocardial infarction (MI). Two plasma proteins at D3 MI, EAF1 and A2M, predicted MI death in 66% of cases. ApoD regulated both skin and cardiac wound healing in male mice by promoting inflammation. The skin was a mirror to the heart and common pathways linked wound healing across organs.
Collapse
Affiliation(s)
- Mediha Becirovic-Agic
- University of Nebraska Medical Center, Omaha, Nebraska
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Upendra Chalise
- University of Nebraska Medical Center, Omaha, Nebraska
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Mira Jung
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Jocelyn R Rodriguez-Paar
- University of Nebraska Medical Center, Omaha, Nebraska
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Shelby R Konfrst
- University of Nebraska Medical Center, Omaha, Nebraska
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Elizabeth R Flynn
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jeffrey D Salomon
- University of Nebraska Medical Center, Omaha, Nebraska
- Division of Pediatric Critical Care, Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska
| | - Michael E Hall
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Merry L Lindsey
- University of Nebraska Medical Center, Omaha, Nebraska
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| |
Collapse
|
6
|
Rivera AD, Azim K, Macchi V, Porzionato A, Butt AM, De Caro R. Epidermal Growth Factor Pathway in the Age-Related Decline of Oligodendrocyte Regeneration. Front Cell Neurosci 2022; 16:838007. [PMID: 35370556 PMCID: PMC8968959 DOI: 10.3389/fncel.2022.838007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/23/2022] [Indexed: 01/01/2023] Open
Abstract
Oligodendrocytes (OLs) are specialized glial cells that myelinate CNS axons. OLs are generated throughout life from oligodendrocyte progenitor cells (OPCs) via a series of tightly controlled differentiation steps. Life-long myelination is essential for learning and to replace myelin lost in age-related pathologies such as Alzheimer's disease (AD) as well as white matter pathologies such as multiple sclerosis (MS). Notably, there is considerable myelin loss in the aging brain, which is accelerated in AD and underpins the failure of remyelination in secondary progressive MS. An important factor in age-related myelin loss is a marked decrease in the regenerative capacity of OPCs. In this review, we will contextualize recent advances in the key role of Epidermal Growth Factor (EGF) signaling in regulating multiple biological pathways in oligodendroglia that are dysregulated in aging.
Collapse
Affiliation(s)
- Andrea D. Rivera
- Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
| | - Kasum Azim
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Veronica Macchi
- Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
| | - Andrea Porzionato
- Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
| | - Arthur M. Butt
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Raffaele De Caro
- Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
| |
Collapse
|
7
|
Pashaei S, Mohammadi P, Yarani R, Haghgoo SM, Emami Aleagha MS. Carbohydrate and lipid metabolism in multiple sclerosis: Clinical implications for etiology, pathogenesis, diagnosis, prognosis, and therapy. Arch Biochem Biophys 2021; 712:109030. [PMID: 34517010 DOI: 10.1016/j.abb.2021.109030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/16/2021] [Accepted: 09/06/2021] [Indexed: 01/28/2023]
Abstract
Multiple sclerosis (MS) is a complicated autoimmune disease characterized by inflammatory and demyelinating events in the central nervous system. The exact etiology and pathogenesis of MS have not been elucidated. However, a set of metabolic changes and their effects on immune cells and neural functions have been explained. This review highlights the contribution of carbohydrates and lipids metabolism to the etiology and pathogenesis of MS. Then, we have proposed a hypothetical relationship between such metabolic changes and the immune system in patients with MS. Finally, the potential clinical implications of these metabolic changes in diagnosis, prognosis, and discovering therapeutic targets have been discussed. It is concluded that research on the pathophysiological alterations of carbohydrate and lipid metabolism may be a potential strategy for paving the way toward MS treatment.
Collapse
Affiliation(s)
- Somayeh Pashaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Biology, Department of Clinical Research, Steno Diabetes Center Copenhagen, Copenhagen, Denmark; Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Seyyed Mortaza Haghgoo
- Department of Clinical Biochemistry, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Sajad Emami Aleagha
- Medical Technology Research Center (MTRC), School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
8
|
Sanchez D, Ganfornina MD. The Lipocalin Apolipoprotein D Functional Portrait: A Systematic Review. Front Physiol 2021; 12:738991. [PMID: 34690812 PMCID: PMC8530192 DOI: 10.3389/fphys.2021.738991] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Apolipoprotein D is a chordate gene early originated in the Lipocalin protein family. Among other features, regulation of its expression in a wide variety of disease conditions in humans, as apparently unrelated as neurodegeneration or breast cancer, have called for attention on this gene. Also, its presence in different tissues, from blood to brain, and different subcellular locations, from HDL lipoparticles to the interior of lysosomes or the surface of extracellular vesicles, poses an interesting challenge in deciphering its physiological function: Is ApoD a moonlighting protein, serving different roles in different cellular compartments, tissues, or organisms? Or does it have a unique biochemical mechanism of action that accounts for such apparently diverse roles in different physiological situations? To answer these questions, we have performed a systematic review of all primary publications where ApoD properties have been investigated in chordates. We conclude that ApoD ligand binding in the Lipocalin pocket, combined with an antioxidant activity performed at the rim of the pocket are properties sufficient to explain ApoD association with different lipid-based structures, where its physiological function is better described as lipid-management than by long-range lipid-transport. Controlling the redox state of these lipid structures in particular subcellular locations or extracellular structures, ApoD is able to modulate an enormous array of apparently diverse processes in the organism, both in health and disease. The new picture emerging from these data should help to put the physiological role of ApoD in new contexts and to inspire well-focused future research.
Collapse
Affiliation(s)
- Diego Sanchez
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| | - Maria D Ganfornina
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| |
Collapse
|
9
|
Patel PA, Lee TJ, Kodeboyina SK, Jones G, Bollinger K, Ulrich L, Bogorad D, Estes A, Zhi W, Sharma S, Sharma A. Intra-population differences of apolipoproteins in the aqueous humor. Lipids Health Dis 2021; 20:128. [PMID: 34602085 PMCID: PMC8487476 DOI: 10.1186/s12944-021-01555-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Evidence suggests that proteins related to lipid metabolism, such as apolipoproteins, play an important role in the maintenance of normal vision. While several members of the apolipoprotein family are abundant in human aqueous humor (AH), their study remains difficult due to the AH's small volume, low protein concentration, and the invasive nature of sample collection. In this study, we report the use of Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) to discover associations between AH apolipoproteins and race, gender, and ocular structure in patients with and without primary open angle glaucoma (POAG). METHODS AH samples were collected from 231 patients undergoing phacoemulsification or glaucoma incisional surgery at the Medical College of Georgia, Augusta University and subsequently analyzed via LC-MS/MS. The number of peptide spectrum matches (PSMs) for each protein was used as a semi-quantitative measure of relative protein levels. Parameters related to ocular structure were determined using Optical Coherence Tomography (OCT) and Heidelberg Retinal Tomography (HRT). These data sets were probed for relationships between apolipoprotein levels and POAG, demographics (gender and race), and ocular structure. RESULTS A total of ten apolipoproteins were detected in the 231 collected AH samples, with six detected in 100% of the samples, one detected in almost 57% of the samples and three detected in less than 10% of the samples. The levels of APOA1, APOC3, and APOD were higher among POAG subjects. Stratification by gender and race revealed demographic-specific variations. The levels of five apolipoproteins (APOA1, APOA2, APOA4, APOC3, and APOD) were higher in female POAG patients, whereas no apolipoprotein levels were altered in male POAG patients. The levels of APOA1, APOA2, APOA4, and APOD were increased in glaucomatous African American patients, whereas APOE and APOH levels were decreased in glaucomatous Caucasian patients. We also found distinct associations between apolipoprotein levels and OCT and HRT parameters in patients with and without POAG. CONCLUSIONS The intra-population variation in apolipoprotein levels highlights the heterogeneity of glaucoma as a disease, suggesting the importance of personalized treatments. Gender and race-specific alterations may be associated with higher risks of POAG in females and members of the African American population.
Collapse
Affiliation(s)
- Parth A Patel
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA4094, Augusta, GA, 30912, USA
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA4094, Augusta, GA, 30912, USA
| | - Sai Karthik Kodeboyina
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA4094, Augusta, GA, 30912, USA
- Mass General Brigham, 215 First Street, Cambridge, MA, 02142, USA
| | - Garrett Jones
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA4094, Augusta, GA, 30912, USA
| | - Kathryn Bollinger
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Lane Ulrich
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - David Bogorad
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Amy Estes
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA4094, Augusta, GA, 30912, USA
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA4094, Augusta, GA, 30912, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA4094, Augusta, GA, 30912, USA.
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
10
|
Laudanski K. Persistence of Lipoproteins and Cholesterol Alterations after Sepsis: Implication for Atherosclerosis Progression. Int J Mol Sci 2021; 22:ijms221910517. [PMID: 34638860 PMCID: PMC8508791 DOI: 10.3390/ijms221910517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Sepsis is one of the most common critical care illnesses with increasing survivorship. The quality of life in sepsis survivors is adversely affected by several co-morbidities, including increased incidence of dementia, stroke, cardiac disease and at least temporary deterioration in cognitive dysfunction. One of the potential explanations for their progression is the persistence of lipid profile abnormalities induced during acute sepsis into recovery, resulting in acceleration of atherosclerosis. (2) Methods: This is a targeted review of the abnormalities in the long-term lipid profile abnormalities after sepsis; (3) Results: There is a well-established body of evidence demonstrating acute alteration in lipid profile (HDL-c ↓↓, LDL-C -c ↓↓). In contrast, a limited number of studies demonstrated depression of HDL-c levels with a concomitant increase in LDL-C -c in the wake of sepsis. VLDL-C -c and Lp(a) remained unaltered in few studies as well. Apolipoprotein A1 was altered in survivors suggesting abnormalities in lipoprotein metabolism concomitant to overall lipoprotein abnormalities. However, most of the studies were limited to a four-month follow-up and patient groups were relatively small. Only one study looked at the atherosclerosis progression in sepsis survivors using clinical correlates, demonstrating an acceleration of plaque formation in the aorta, and a large metanalysis suggested an increase in the risk of stroke or acute coronary event between 3% to 9% in sepsis survivors. (4) Conclusions: The limited evidence suggests an emergence and persistence of the proatherogenic lipid profile in sepsis survivors that potentially contributes, along with other factors, to the clinical sequel of atherosclerosis.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA; ; Tel.: +1-215-662-8200
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Leonard Davis Institute of Healthcare Economics, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Martínez-Pinilla E, Rubio-Sardón N, Peláez R, García-Álvarez E, del Valle E, Tolivia J, Larráyoz IM, Navarro A. Neuroprotective Effect of Apolipoprotein D in Cuprizone-Induced Cell Line Models: A Potential Therapeutic Approach for Multiple Sclerosis and Demyelinating Diseases. Int J Mol Sci 2021; 22:1260. [PMID: 33514021 PMCID: PMC7866080 DOI: 10.3390/ijms22031260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Apolipoprotein D (Apo D) overexpression is a general finding across neurodegenerative conditions so the role of this apolipoprotein in various neuropathologies such as multiple sclerosis (MS) has aroused a great interest in last years. However, its mode of action, as a promising compound for the development of neuroprotective drugs, is unknown. The aim of this work was to address the potential of Apo D to prevent the action of cuprizone (CPZ), a toxin widely used for developing MS models, in oligodendroglial and neuroblastoma cell lines. On one hand, immunocytochemical quantifications and gene expression measures showed that CPZ compromised neural mitochondrial metabolism but did not induce the expression of Apo D, except in extremely high doses in neurons. On the other hand, assays of neuroprotection demonstrated that antipsychotic drug, clozapine, induced an increase in Apo D synthesis only in the presence of CPZ, at the same time that prevented the loss of viability caused by the toxin. The effect of the exogenous addition of human Apo D, once internalized, was also able to directly revert the loss of cell viability caused by treatment with CPZ by a reactive oxygen species (ROS)-independent mechanism of action. Taken together, our results suggest that increasing Apo D levels, in an endo- or exogenous way, moderately prevents the neurotoxic effect of CPZ in a cell model that seems to replicate some features of MS which would open new avenues in the development of interventions to afford MS-related neuroprotection.
Collapse
Affiliation(s)
- Eva Martínez-Pinilla
- Department of Morphology and Cell Biology, University of Oviedo, 33003 Oviedo, Spain; (N.R.-S.); (E.G.-Á.); (E.d.V.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33003 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Núria Rubio-Sardón
- Department of Morphology and Cell Biology, University of Oviedo, 33003 Oviedo, Spain; (N.R.-S.); (E.G.-Á.); (E.d.V.); (A.N.)
| | - Rafael Peláez
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain; (R.P.); (I.M.L.)
| | - Enrique García-Álvarez
- Department of Morphology and Cell Biology, University of Oviedo, 33003 Oviedo, Spain; (N.R.-S.); (E.G.-Á.); (E.d.V.); (A.N.)
| | - Eva del Valle
- Department of Morphology and Cell Biology, University of Oviedo, 33003 Oviedo, Spain; (N.R.-S.); (E.G.-Á.); (E.d.V.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33003 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jorge Tolivia
- Department of Morphology and Cell Biology, University of Oviedo, 33003 Oviedo, Spain; (N.R.-S.); (E.G.-Á.); (E.d.V.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33003 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Ignacio M. Larráyoz
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain; (R.P.); (I.M.L.)
| | - Ana Navarro
- Department of Morphology and Cell Biology, University of Oviedo, 33003 Oviedo, Spain; (N.R.-S.); (E.G.-Á.); (E.d.V.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33003 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
12
|
Vardi A, Pri-Or A, Wigoda N, Grishchuk Y, Futerman AH. Proteomics analysis of a human brain sample from a mucolipidosis type IV patient reveals pathophysiological pathways. Orphanet J Rare Dis 2021; 16:39. [PMID: 33478506 PMCID: PMC7818904 DOI: 10.1186/s13023-021-01679-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022] Open
Abstract
Background Mucolipidosis type IV (MLIV), an ultra-rare neurodevelopmental and neurodegenerative disorder, is caused by mutations in the MCOLN1 gene, which encodes the late endosomal/lysosomal transient receptor potential channel TRPML1 (mucolipin 1). The precise pathophysiogical pathways that cause neurological disease in MLIV are poorly understood. Recently, the first post-mortem brain sample became available from a single MLIV patient, and in the current study we performed mass spectrometry (MS)-based proteomics on this tissue with a view to delineating pathological pathways, and to compare with previously-published data on MLIV, including studies using the Mcoln1−/− mouse. Results A number of pathways were altered in two brain regions from the MLIV patient, including those related to the lysosome, lipid metabolism, myelination, cellular trafficking and autophagy, mTOR and calmodulin, the complement system and interferon signaling. Of these, levels of some proteins not known previously to be associated with MLIV were altered, including APOD, PLIN4, ATG and proteins related to interferon signaling. Moreover, when proteins detected by proteomics in the human brain were compared with their orthologs detected in the Mcoln1−/− mouse by RNAseq, the results were remarkably similar. Finally, analysis of proteins in human and mouse CSF suggest that calbindin 1 and calbindin 2 might be useful as biomarkers to help chart the course of disease development. Conclusions Despite the sample size limitations, our findings are consistent with the relatively general changes in lysosomal function previously reported in MLIV, and shed light on new pathways of disease pathophysiology, which is required in order to understand the course of disease development and to determine the efficacy of therapies when they become available for this devastating disease.
Collapse
Affiliation(s)
- Ayelet Vardi
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Amir Pri-Or
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Noa Wigoda
- The Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Yulia Grishchuk
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA, 02114, USA
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
13
|
Paraoxonase Role in Human Neurodegenerative Diseases. Antioxidants (Basel) 2020; 10:antiox10010011. [PMID: 33374313 PMCID: PMC7824310 DOI: 10.3390/antiox10010011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
The human body has biological redox systems capable of preventing or mitigating the damage caused by increased oxidative stress throughout life. One of them are the paraoxonase (PON) enzymes. The PONs genetic cluster is made up of three members (PON1, PON2, PON3) that share a structural homology, located adjacent to chromosome seven. The most studied enzyme is PON1, which is associated with high density lipoprotein (HDL), having paraoxonase, arylesterase and lactonase activities. Due to these characteristics, the enzyme PON1 has been associated with the development of neurodegenerative diseases. Here we update the knowledge about the association of PON enzymes and their polymorphisms and the development of multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD) and Parkinson's disease (PD).
Collapse
|
14
|
Tristán-Noguero A, Borràs E, Molero-Luis M, Wassenberg T, Peters T, Verbeek MM, Willemsen M, Opladen T, Jeltsch K, Pons R, Thony B, Horvath G, Yapici Z, Friedman J, Hyland K, Agosta GE, López-Laso E, Artuch R, Sabidó E, García-Cazorla À. Novel Protein Biomarkers of Monoamine Metabolism Defects Correlate with Disease Severity. Mov Disord 2020; 36:690-703. [PMID: 33152132 DOI: 10.1002/mds.28362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Genetic defects of monoamine neurotransmitters are rare neurological diseases amenable to treatment with variable response. They are major causes of early parkinsonism and other spectrum of movement disorders including dopa-responsive dystonia. OBJECTIVES The objective of this study was to conduct proteomic studies in cerebrospinal fluid (CSF) samples of patients with monoamine defects to detect biomarkers involved in pathophysiology, clinical phenotypes, and treatment response. METHODS A total of 90 patients from diverse centers of the International Working Group on Neurotransmitter Related Disorders were included in the study (37 untreated before CSF collection, 48 treated and 5 unknown at the collection time). Clinical and molecular metadata were related to the protein abundances in the CSF. RESULTS Concentrations of 4 proteins were significantly altered, detected by mass spectrometry, and confirmed by immunoassays. First, decreased levels of apolipoprotein D were found in severe cases of aromatic L-amino acid decarboxylase deficiency. Second, low levels of apolipoprotein H were observed in patients with the severe phenotype of tyrosine hydroxylase deficiency, whereas increased concentrations of oligodendrocyte myelin glycoprotein were found in the same subset of patients with tyrosine hydroxylase deficiency. Third, decreased levels of collagen6A3 were observed in treated patients with tetrahydrobiopterin deficiency. CONCLUSION This study with the largest cohort of patients with monoamine defects studied so far reports the proteomic characterization of CSF and identifies 4 novel biomarkers that bring new insights into the consequences of early dopaminergic deprivation in the developing brain. They open new possibilities to understand their role in the pathophysiology of these disorders, and they may serve as potential predictors of disease severity and therapies. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alba Tristán-Noguero
- Synaptic Metabolism Laboratory, Sant Joan de Déu Foundation, Research Pediatric Institute (IPR), Sant Joan de Déu Hospital, Barcelona, Spain
| | - Eva Borràs
- Proteomics Unit, Center for Genomics Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Molero-Luis
- Department of Clinical Biochemistry, IPR and CIBERER-ISCIII, Sant Joan de Déu Hospital, Barcelona, Spain
| | - Tessa Wassenberg
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Tessa Peters
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands.,Department of Pediatric Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Michel Willemsen
- Department Laboratory Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Thomas Opladen
- Division of Neuropediatrics & Metabolic Medicine, University Children's Hospital, Heidelberg, Germany
| | - Kathrin Jeltsch
- Division of Neuropediatrics & Metabolic Medicine, University Children's Hospital, Heidelberg, Germany
| | - Roser Pons
- First Department of Pediatrics, Pediatric Neurology Unit, Agia Sofia Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Beat Thony
- Division of Metabolism and Children's Research Centre, University Children's Hospital, Zurich, Switzerland
| | - Gabriella Horvath
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Zuhal Yapici
- Division of Child Neurology, Department of Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Jennifer Friedman
- Departments of Neuroscience and Pediatrics, University of California, San Diego, California, USA.,Rady Children's Hospital and Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Keith Hyland
- Medical Neurogenetics, LLC, Atlanta, Georgia, USA
| | | | - Eduardo López-Laso
- Pediatric Neurology Unit, Department of Pediatrics, University Hospital Reina Sofía, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), and CIBERER, Córdoba, Spain
| | - Rafael Artuch
- Department of Clinical Biochemistry, IPR and CIBERER-ISCIII, Sant Joan de Déu Hospital, Barcelona, Spain
| | - Eduard Sabidó
- Proteomics Unit, Center for Genomics Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Àngels García-Cazorla
- Synaptic Metabolism Laboratory, Sant Joan de Déu Foundation, Research Pediatric Institute (IPR), Sant Joan de Déu Hospital, Barcelona, Spain.,Neurometabolic Unit, Neurology Department, IPR, CIBER ("Centro de investigación Biomédica en Red") of Rare Diseases and Carlos III Healthcare Institute (CIBERER-ISCIII), European Reference Network for Hereditary Metabolic Disorders (MetabERN), Sant Joan de Déu Hospital, Barcelona, Spain
| |
Collapse
|
15
|
Pascua-Maestro R, Corraliza-Gomez M, Fadrique-Rojo C, Ledesma MD, Schuchman EH, Sanchez D, Ganfornina MD. Apolipoprotein D-mediated preservation of lysosomal function promotes cell survival and delays motor impairment in Niemann-Pick type A disease. Neurobiol Dis 2020; 144:105046. [PMID: 32798728 DOI: 10.1016/j.nbd.2020.105046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/20/2020] [Accepted: 08/08/2020] [Indexed: 12/31/2022] Open
Abstract
Lysosomal Storage Diseases (LSD) are genetic diseases causing systemic and nervous system dysfunction. The glia-derived lipid binding protein Apolipoprotein D (ApoD) is required for lysosomal functional integrity in glial and neuronal cells, ensuring cell survival upon oxidative stress or injury. Here we test whether ApoD counteracts the pathogenic consequences of a LSD, Niemann Pick-type-A disease (NPA), where mutations in the acid sphingomyelinase gene result in sphingomyelin accumulation, lysosomal permeabilization and early-onset neurodegeneration. We performed a multivariable analysis of behavioral, cellular and molecular outputs in 12 and 24 week-old male and female NPA model mice, combined with ApoD loss-of-function mutation. Lack of ApoD in NPA mice accelerates cerebellar-dependent motor deficits, enhancing loss of Purkinje neurons. We studied ApoD expression in brain sections from a NPA patient and age-matched control, and the functional consequences of ApoD supplementation in primary human fibroblasts from two independent NPA patients and two control subjects. Cell viability, lipid peroxidation, and lysosomal functional integrity (pH, Cathepsin B activity, Galectin-3 exclusion) were examined. ApoD is endogenously overexpressed in NPA patients and NPA mouse brains and targeted to lysosomes of NPA patient cells, including Purkinje neurons and cultured fibroblasts. The accelerated lysosomal targeting of ApoD by oxidative stress is hindered in NPA fibroblasts, contributing to NPA lysosomes vulnerability. Exogenously added ApoD reduces NPA-prompted lysosomal permeabilization and alkalinization, reverts lipid peroxides accumulation, and significantly increases NPA cell survival. ApoD administered simultaneously to sphingomyelin overload results in complete rescue of cell survival. Our results reveal that ApoD protection of lysosomal integrity counteracts NPA pathology. ApoD supplementation could significantly delay not only the progression of NPA disease, but also of other LSDs through its beneficial effects in lysosomal functional maintenance.
Collapse
Affiliation(s)
- Raquel Pascua-Maestro
- Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain
| | - Miriam Corraliza-Gomez
- Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain
| | - Cristian Fadrique-Rojo
- Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain
| | - Maria D Ledesma
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | | | - Diego Sanchez
- Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain.
| | - Maria D Ganfornina
- Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain.
| |
Collapse
|
16
|
Control of the neuroprotective Lipocalin Apolipoprotein D expression by alternative promoter regions and differentially expressed mRNA 5' UTR variants. PLoS One 2020; 15:e0234857. [PMID: 32559215 PMCID: PMC7304576 DOI: 10.1371/journal.pone.0234857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/03/2020] [Indexed: 02/02/2023] Open
Abstract
The Lipocalin Apolipoprotein D (ApoD) is one of the few genes consistently overexpressed in the aging brain, and in most neurodegenerative and psychiatric diseases. Its functions include metabolism regulation, myelin management, neuroprotection, and longevity regulation. Knowledge of endogenous regulatory mechanisms controlling brain disease-triggered ApoD expression is relevant if we want to boost pharmacologically its neuroprotecting potential. In addition to classical transcriptional control, Lipocalins have a remarkable variability in mRNA 5’UTR-dependent translation efficiency. Using bioinformatic analyses, we uncover strong selective pressures preserving ApoD 5’UTR properties, indicating unexpected functional conservation. PCR amplifications demonstrate the production of five 5’UTR variants (A-E) in mouse ApoD, with diverse expression levels across tissues and developmental stages. Importantly, Variant E is specifically expressed in the oxidative stress-challenged brain. Predictive analyses of 5’UTR secondary structures and enrichment in elements restraining translation, point to Variant E as a tight regulator of ApoD expression. We find two genomic regions conserved in human and mouse ApoD: a canonical (α) promoter region and a previously unknown region upstream of Variant E that could function as an alternative mouse promoter (β). Luciferase assays demonstrate that both α and β promoter regions can drive expression in cultured mouse astrocytes, and that Promoter β activity responds proportionally to incremental doses of the oxidative stress generator Paraquat. We postulate that Promoter β works in association with Variant E 5’UTR as a regulatory tandem that organizes ApoD gene expression in the nervous system in response to oxidative stress, the most common factor in aging and neurodegeneration.
Collapse
|
17
|
Rassart E, Desmarais F, Najyb O, Bergeron KF, Mounier C. Apolipoprotein D. Gene 2020; 756:144874. [PMID: 32554047 DOI: 10.1016/j.gene.2020.144874] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/28/2022]
Abstract
ApoD is a 25 to 30 kDa glycosylated protein, member of the lipocalin superfamily. As a transporter of several small hydrophobic molecules, its known biological functions are mostly associated to lipid metabolism and neuroprotection. ApoD is a multi-ligand, multi-function protein that is involved lipid trafficking, food intake, inflammation, antioxidative response and development and in different types of cancers. An important aspect of ApoD's role in lipid metabolism appears to involve the transport of arachidonic acid, and the modulation of eicosanoid production and delivery in metabolic tissues. ApoD expression in metabolic tissues has been associated positively and negatively with insulin sensitivity and glucose homeostasis in a tissue dependent manner. ApoD levels rise considerably in association with aging and neuropathologies such as Alzheimer's disease, stroke, meningoencephalitis, moto-neuron disease, multiple sclerosis, schizophrenia and Parkinson's disease. ApoD is also modulated in several animal models of nervous system injury/pathology.
Collapse
Affiliation(s)
- Eric Rassart
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada.
| | - Frederik Desmarais
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada; Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Ouafa Najyb
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Karl-F Bergeron
- Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Catherine Mounier
- Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
18
|
Kuiperij HB, Hondius DC, Kersten I, Versleijen AAM, Rozemuller AJM, Greenberg SM, Schreuder FHBM, Klijn CJM, Verbeek MM. Apolipoprotein D: a potential biomarker for cerebral amyloid angiopathy. Neuropathol Appl Neurobiol 2020; 46:431-440. [PMID: 31872472 DOI: 10.1111/nan.12595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/18/2019] [Indexed: 01/08/2023]
Abstract
AIMS We investigated the potential of apolipoprotein D (apoD) as cerebrospinal fluid (CSF) biomarker for cerebral amyloid angiopathy (CAA) after confirmation of its association with CAA pathology in human brain tissue. METHODS The association of apoD with CAA pathology was analysed in human occipital lobe tissue of CAA (n = 9), Alzheimer's disease (AD) (n = 11) and healthy control cases (n = 11). ApoD levels were quantified in an age- and sex-matched CSF cohort of CAA patients (n = 31), AD patients (n = 27) and non-neurological controls (n = 67). The effects of confounding factors (age, sex, serum levels) on apoD levels were studied using CSF of non-neurological controls (age range 16-85 years), and paired CSF and serum samples. RESULTS ApoD was strongly associated with amyloid deposits in vessels, but not with parenchymal plaques in human brain tissue. CSF apoD levels correlated with age and were higher in men than women in subjects >50 years. The apoD CSF/serum ratio correlated with the albumin ratio. When controlling for confounding factors, CSF apoD levels were significantly lower in CAA patients compared with controls and compared with AD patients (P = 0.0008). CONCLUSIONS Our data show that apoD is specifically associated with CAA pathology and may be a CSF biomarker for CAA, but clinical application is complicated due to dependency on age, sex and blood-CSF barrier integrity. Well-controlled follow-up studies are required to determine whether apoD can be used as reliable biomarker for CAA.
Collapse
Affiliation(s)
- H B Kuiperij
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - D C Hondius
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - I Kersten
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A A M Versleijen
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A J M Rozemuller
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - S M Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - F H B M Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - C J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Corraliza-Gomez M, Sanchez D, Ganfornina MD. Lipid-Binding Proteins in Brain Health and Disease. Front Neurol 2019; 10:1152. [PMID: 31787919 PMCID: PMC6854030 DOI: 10.3389/fneur.2019.01152] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022] Open
Abstract
A proper lipid management is paramount for a healthy brain. Lipid homeostasis alterations are known to be causative or risk factors for many neurodegenerative diseases, or key elements in the recovery from nervous system injuries of different etiology. In addition to lipid biogenesis and catabolism, non-enzymatic lipid-binding proteins play an important role in brain function and maintenance through aging. Among these types of lipoproteins, apolipoprotein E has received much attention due to the relationship of particular alleles of its gene with the risk and progression of Alzheimer's disease. However, other lipid-binding proteins whose role in lipid homeostasis and control are less known need to be brought to the attention of both researchers and clinicians. The aim of this review is to cover the knowledge of lipid-managing proteins in the brain, with particular attention to new candidates to be relevant for brain function and health.
Collapse
Affiliation(s)
- Miriam Corraliza-Gomez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Diego Sanchez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Maria D Ganfornina
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, Valladolid, Spain
| |
Collapse
|
20
|
McCanney GA, McGrath MA, Otto TD, Burchmore R, Yates EA, Bavington CD, Willison HJ, Turnbull JE, Barnett SC. Low sulfated heparins target multiple proteins for central nervous system repair. Glia 2019; 67:668-687. [PMID: 30585359 PMCID: PMC6492281 DOI: 10.1002/glia.23562] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/05/2018] [Accepted: 10/17/2018] [Indexed: 01/01/2023]
Abstract
The lack of endogenous repair following spinal cord injury (SCI) accounts for the frequent permanent deficits for which effective treatments are absent. Previously, we demonstrated that low sulfated modified heparin mimetics (LS-mHeps) attenuate astrocytosis, suggesting they may represent a novel therapeutic approach. mHeps are glycomolecules with structural similarities to resident heparan sulfates (HS), which modulate cell signaling by both sequestering ligands, and acting as cofactors in the formation of ligand-receptor complexes. To explore whether mHeps can affect the myelination and neurite outgrowth necessary for repair after SCI, we created lesioned or demyelinated neural cell co-cultures and exposed them with a panel of mHeps with varying degrees and positions of their sulfate moieties. LS-mHep7 enhanced neurite outgrowth and myelination, whereas highly sulfated mHeps (HS-mHeps) had attenuating effects. LS-mHeps had no effects on myelination or neurite extension in developing, uninjured myelinating cultures, suggesting they might exert their proregenerating effects by modulating or sequestering inhibitory factors secreted after injury. To investigate this, we examined conditioned media from cultures using chemokine arrays and conducted an unbiased proteomics approach by applying TMT-LC/MS to mHep7 affinity purified conditioned media from these cultures. Multiple protein factors reported to play a role in damage or repair mechanisms were identified, including amyloid betaA4. Amyloid beta peptide (1-42) was validated as an important candidate by treating myelination cultures and shown to inhibit myelination. Thus, we propose that LS-mHeps exert multiple beneficial effects on mechanisms supporting enhanced repair, and represent novel candidates as therapeutics for CNS damage.
Collapse
Affiliation(s)
- George A. McCanney
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUK
| | - Michael A. McGrath
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUK
| | - Thomas D. Otto
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUK
| | - Richard Burchmore
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUK
| | - Edwin A. Yates
- Department of BiochemistryInstitute of Integrative Biology, University of LiverpoolLiverpoolUK
| | - Charles D. Bavington
- GlycoMar Limited, European Centre for Marine Biotechnology, Dunstaffnage Marine LaboratoryObanArgyllScotland, UK
| | - Hugh J. Willison
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUK
| | - Jeremy E. Turnbull
- Department of BiochemistryInstitute of Integrative Biology, University of LiverpoolLiverpoolUK
| | - Susan C. Barnett
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUK
| |
Collapse
|
21
|
Pascua-Maestro R, González E, Lillo C, Ganfornina MD, Falcón-Pérez JM, Sanchez D. Extracellular Vesicles Secreted by Astroglial Cells Transport Apolipoprotein D to Neurons and Mediate Neuronal Survival Upon Oxidative Stress. Front Cell Neurosci 2019; 12:526. [PMID: 30687015 PMCID: PMC6335244 DOI: 10.3389/fncel.2018.00526] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicle (EV)-mediated glia-to-neuron communication has been recognized in a growing number of physiological and pathological situations. They transport complex sets of molecules that can be beneficial or detrimental for the receiving cell. As in other areas of biology, their analysis is revolutionizing the field of neuroscience, since fundamental signaling processes are being re-evaluated, and applications for neurodegenerative disease therapies have emerged. Using human astrocytic and differentiated neuronal cell lines, we demonstrate that a classical neuroprotective protein, Apolipoprotein D (ApoD), expressed by glial cells and known to promote functional integrity and survival of neurons, is exclusively transported by EVs from astrocytes to neurons, where it gets internalized. Indeed, we demonstrate that conditioned media derived from ApoD-knock-out (KO) astrocytes exert only a partial autocrine protection from oxidative stress (OS) challenges, and that EVs are required for ApoD-positive astrocytic cell line derived medium to exert full neuroprotection. When subfractionation of EVs is performed, ApoD is revealed as a very specific marker of the exosome-containing fractions. These discoveries help us reframe our understanding of the neuroprotective role of this lipid binding protein and open up new research avenues to explore the use of systemically administered ApoD-loaded exosomes that can cross the blood-brain barrier to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Raquel Pascua-Maestro
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Esperanza González
- Exosomes Group, Metabolomics Unit and Platform, CIC bioGUNE, CIBERehd, Technology Park of Bizkaia, Derio, Spain
| | - Concepción Lillo
- Instituto de Neurociencias de Castilla y León, IBSAL, Universidad de Salamanca, Salamanca, Spain
| | - Maria D Ganfornina
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Juan Manuel Falcón-Pérez
- Exosomes Group, Metabolomics Unit and Platform, CIC bioGUNE, CIBERehd, Technology Park of Bizkaia, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Diego Sanchez
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
| |
Collapse
|
22
|
Nery TGM, Silva EM, Tavares R, Passetti F. The Challenge to Search for New Nervous System Disease Biomarker Candidates: the Opportunity to Use the Proteogenomics Approach. J Mol Neurosci 2018; 67:150-164. [PMID: 30554402 DOI: 10.1007/s12031-018-1220-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/18/2018] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease, Parkinson's disease, prion diseases, schizophrenia, and multiple sclerosis are the most common nervous system diseases, affecting millions of people worldwide. The current scientific literature associates these pathological conditions to abnormal expression levels of certain proteins, which in turn improved the knowledge concerning normal and affected brains. However, there is no available cure or preventive therapy for any of these disorders. Proteogenomics is a recent approach defined as the data integration of both nucleotide high-throughput sequencing and protein mass spectrometry technologies. In the last years, proteogenomics studies in distinct diseases have emerged as a strategy for the identification of uncharacterized proteoforms, which are all the different protein forms derived from a single gene. For many of these diseases, at least one protein used as biomarker presents more than one proteoform, which fosters the analysis of publicly available data focusing proteoforms. Given this context, we describe the most important biomarkers for each neurodegenerative disease and how genomics, transcriptomics, and proteomics separately contributed to unveil them. Finally, we present a selection of proteogenomics studies in which the combination of nucleotide and proteome high-throughput data, from cell lines or brain tissue samples, is used to uncover proteoforms not previously described. We believe that this new approach may improve our knowledge about nervous system diseases and brain function and an opportunity to identify new biomarker candidates.
Collapse
Affiliation(s)
- Thais Guimarães Martins Nery
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Manguinhos, Rio de Janeiro, Brazil
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Esdras Matheus Silva
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Manguinhos, Rio de Janeiro, Brazil
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Raphael Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Fabio Passetti
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Manguinhos, Rio de Janeiro, Brazil.
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil.
| |
Collapse
|
23
|
Navarro A, Rioseras B, Del Valle E, Martínez-Pinilla E, Astudillo A, Tolivia J. Expression Pattern of Myelin-Related Apolipoprotein D in Human Multiple Sclerosis Lesions. Front Aging Neurosci 2018; 10:254. [PMID: 30186153 PMCID: PMC6110904 DOI: 10.3389/fnagi.2018.00254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 08/02/2018] [Indexed: 11/13/2022] Open
Abstract
Apolipoprotein D (Apo D) is a key molecule in the lipid transport during homeostasis and repair processes in normal and pathological conditions of the nervous system with a putative neuroprotective effect. In the last decades, huge experimental efforts have been made to know the exact mechanism of action of Apo D, even though, it remains an open question. In this regard, studies in mammals and flies have suggested that Apo D seems to act through a variety of cellular mechanisms related with its ability to selectively bind different lipid ligands. For instance, this apolipoprotein is required to myelin compaction, it participates in axon regeneration/remyelination, and it can control the magnitude and timing of the inflammatory response after injury, promoting myelin clearance, and regulating the number of immune cells recruited to the damaged area. These, among others, are some of the reasons to study Apo D in multiple sclerosis (MS) pathology, where it could be particularly important since the autoimmune reaction against oligodendrocytes (OLGs) and myelin is generally assumed as the most plausible cause of this pathology. The aim of this work was to investigate the Apo D expression pattern in MS lesions, including active and inactive demyelinating plaques, and also remyelinating ones. Human brain tissues with inflammatory demyelination consistent with MS were used to quantify Apo D immunosignal in different lesions. Our results show a clear decrease of Apo D expression in all sclerosis plaques, being lower in the inactive than in active areas but recovers in the remyelination ones. Apo D is mainly produced by the matured OLGs of white matter and is located in cell processes surrounding the myelin sheath. All these data seem to indicate an important role of Apo D in myelination/remyelination processes as a molecule with a neuroprotective potential, and may serve as a good starting point for its study in MS.
Collapse
Affiliation(s)
- Ana Navarro
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Asturias, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain.,Departamento de Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Beatriz Rioseras
- Departamento de Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Eva Del Valle
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Asturias, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain.,Departamento de Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Eva Martínez-Pinilla
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Asturias, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain.,Departamento de Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Aurora Astudillo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain.,Servicio de Anatomía Patológica, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Jorge Tolivia
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Asturias, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain.,Departamento de Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
24
|
Lee MY, Kim EY, Kim SH, Cho KC, Ha K, Kim KP, Ahn YM. Discovery of serum protein biomarkers in drug-free patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:60-8. [PMID: 27105922 DOI: 10.1016/j.pnpbp.2016.04.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Major depressive disorder (MDD) is a systemic and multifactorial disorder involving complex interactions between genetic predisposition and disturbances of various molecular pathways. Its underlying molecular pathophysiology remains unclear, and no valid and objective diagnostic tools for the condition are available. METHODS We performed large-scale proteomic profiling to identify novel peripheral biomarkers implicated in the pathophysiology of MDD in 25 drug-free female MDD patients and 25 healthy controls. First, quantitative serum proteome profiles were obtained and analyzed by liquid chromatography-tandem mass spectrometry using serum samples from 10 MDD patients and 10 healthy controls. Next, candidate biomarker sets, including differentially expressed proteins from the profiling experiment and those identified in the literature, were verified using multiple-reaction monitoring in 25 patients and 25 healthy controls. The final panel of potential biomarkers was selected using multiparametric statistical analysis. RESULTS We identified a serum biomarker panel consisting of six proteins: apolipoprotein D, apolipoprotein B, vitamin D-binding protein, ceruloplasmin, hornerin, and profilin 1, which could be used to distinguish MDD patients from controls with 68% diagnostic accuracy. Our results suggest that modulation of the immune and inflammatory systems and lipid metabolism are involved in the pathophysiology of MDD. CONCLUSIONS Our findings of functional proteomic changes in the peripheral blood of patients with MDD further clarify the molecular biological pathway underlying depression. Further studies using larger, independent cohorts are needed to verify the role of these candidate biomarkers for the diagnosis of MDD.
Collapse
Affiliation(s)
- Min Young Lee
- Institute for Systems Biology, Seattle, WA, United States; Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, Republic of Korea
| | - Eun Young Kim
- Department of Psychiatry, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Republic of Korea
| | - Se Hyun Kim
- Department of Neuropsychiatry, Dongguk University Medical School, Dongguk University International Hospital, Goyang, Republic of Korea
| | - Kyung-Cho Cho
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, Republic of Korea
| | - Kyooseob Ha
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea;; Seoul National Hospital, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, Republic of Korea.
| | - Yong Min Ahn
- Department of Psychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Najyb O, Do Carmo S, Alikashani A, Rassart E. Apolipoprotein D Overexpression Protects Against Kainate-Induced Neurotoxicity in Mice. Mol Neurobiol 2016; 54:3948-3963. [PMID: 27271124 PMCID: PMC7091089 DOI: 10.1007/s12035-016-9920-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 05/03/2016] [Indexed: 01/23/2023]
Abstract
Excitotoxicity due to the excessive activation of glutamatergic receptors leads to neuronal dysfunction and death. Excitotoxicity has been implicated in the pathogenesis of a myriad of neurodegenerative diseases with distinct etiologies such as Alzheimer's and Parkinson's. Numerous studies link apolipoprotein D (apoD), a secreted glycoprotein highly expressed in the central nervous system (CNS), to maintain and protect neurons in various mouse models of acute stress and neurodegeneration. Here, we used a mouse model overexpressing human apoD in neurons (H-apoD Tg) to test the neuroprotective effects of apoD in the kainic acid (KA)-lesioned hippocampus. Our results show that apoD overexpression in H-apoD Tg mice induces an increased resistance to KA-induced seizures, significantly attenuates inflammatory responses and confers protection against KA-induced cell apoptosis in the hippocampus. The apoD-mediated protection against KA-induced toxicity is imputable in part to increased plasma membrane Ca2+ ATPase type 2 expression (1.7-fold), decreased N-methyl-D-aspartate receptor (NMDAR) subunit NR2B levels (30 %) and lipid metabolism alterations. Indeed, we demonstrate that apoD can attenuate intracellular cholesterol content in primary hippocampal neurons and in brain of H-apoD Tg mice. In addition, apoD can be internalised by neurons and this internalisation is accentuated in ageing and injury conditions. Our results provide additional mechanistic information on the apoD-mediated neuroprotection in neurodegenerative conditions.
Collapse
Affiliation(s)
- Ouafa Najyb
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, QC, H3C-3P8, Canada
| | - Sonia Do Carmo
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, QC, H3C-3P8, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Azadeh Alikashani
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, QC, H3C-3P8, Canada
| | - Eric Rassart
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, QC, H3C-3P8, Canada.
| |
Collapse
|
26
|
Zhornitsky S, McKay KA, Metz LM, Teunissen CE, Rangachari M. Cholesterol and markers of cholesterol turnover in multiple sclerosis: relationship with disease outcomes. Mult Scler Relat Disord 2016; 5:53-65. [DOI: 10.1016/j.msard.2015.10.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/08/2015] [Accepted: 10/19/2015] [Indexed: 01/29/2023]
|
27
|
Apolipoprotein D subcellular distribution pattern in neuronal cells during oxidative stress. Acta Histochem 2015; 117:536-44. [PMID: 25953740 DOI: 10.1016/j.acthis.2015.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/09/2015] [Accepted: 04/14/2015] [Indexed: 12/19/2022]
Abstract
Apolipoprotein D (Apo D) is a secreted glycoprotein, member of the lipocalin superfamily, with a related beneficial role in metabolism and lipid transport due to the presence of a binding pocket that allows its interaction with several lipids. Nowadays, it has been clearly demonstrated that Apo D expression is induced and its subcellular location undergoes modifications in stressful and pathological conditions that characterize aging processes and neurodegenerative diseases. The aim of the present work was to study in detail the effect of H2O2 on the subcellular location of Apo D, in the hippocampal cell line HT22, by structural, ultrastructural, immunocytochemical, and molecular techniques in order to characterize the Apo D distribution pattern in neurons during oxidative stress. Our results indicate that Apo D is located in the cytoplasm under physiological conditions but treatment with H2O2 induces apoptosis and causes a displacement of Apo D location to the nucleus, coinciding with DNA fragmentation. In addition, we demonstrated that Apo D tends to accumulate around the nuclear envelope in neurons and glial cells of different brain areas in some neurodegenerative diseases and during human aging, but never inside the nucleus. These data suggest that the presence of Apo D in the nucleus, which some authors related with a specific transport, is a consequence of structural and functional alterations during oxidative stress and not the result of a specific role in the regulation of nuclear processes.
Collapse
|
28
|
Najyb O, Brissette L, Rassart E. Apolipoprotein D Internalization Is a Basigin-dependent Mechanism. J Biol Chem 2015; 290:16077-87. [PMID: 25918162 DOI: 10.1074/jbc.m115.644302] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 01/07/2023] Open
Abstract
Apolipoprotein D (apoD), a member of the lipocalin family, is a 29-kDa secreted glycoprotein that binds and transports small lipophilic molecules. Expressed in several tissues, apoD is up-regulated under different stress stimuli and in a variety of pathologies. Numerous studies have revealed that overexpression of apoD led to neuroprotection in various mouse models of acute stress and neurodegeneration. This multifunctional protein is internalized in several cells types, but the specific internalization mechanism remains unknown. In this study, we demonstrate that the internalization of apoD involves a specific cell surface receptor in 293T cells, identified as the transmembrane glycoprotein basigin (BSG, CD147); more particularly, its low glycosylated form. Our results show that internalized apoD colocalizes with BSG into vesicular compartments. Down-regulation of BSG disrupted the internalization of apoD in cells. In contrast, overexpression of basigin in SH-5YSY cells, which poorly express BSG, restored the uptake of apoD. Cyclophilin A, a known ligand of BSG, competitively reduced apoD internalization, confirming that BSG is a key player in the apoD internalization process. In summary, our results demonstrate that basigin is very likely the apoD receptor and provide additional clues on the mechanisms involved in apoD-mediated functions, including neuroprotection.
Collapse
Affiliation(s)
- Ouafa Najyb
- From the Laboratoire de Biologie Moléculaire and
| | - Louise Brissette
- Laboratoire du Métabolisme des Lipoprotéines, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Succursale Centre-ville, Montréal, Quebec H3C 3P8, Canada
| | - Eric Rassart
- From the Laboratoire de Biologie Moléculaire and
| |
Collapse
|
29
|
Kroksveen AC, Opsahl JA, Guldbrandsen A, Myhr KM, Oveland E, Torkildsen Ø, Berven FS. Cerebrospinal fluid proteomics in multiple sclerosis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:746-56. [PMID: 25526888 DOI: 10.1016/j.bbapap.2014.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/27/2014] [Accepted: 12/11/2014] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) is an immune mediated chronic inflammatory disease of the central nervous system usually initiated during young adulthood, affecting approximately 2.5 million people worldwide. There is currently no cure for MS, but disease modifying treatment has become increasingly more effective, especially when started in the first phase of the disease. The disease course and prognosis are often unpredictable and it can be challenging to determine an early diagnosis. The detection of novel biomarkers to understand more of the disease mechanism, facilitate early diagnosis, predict disease progression, and find treatment targets would be very attractive. Over the last decade there has been an increasing effort toward finding such biomarker candidates. One promising strategy has been to use state-of-the-art quantitative proteomics approaches to compare the cerebrospinal fluid (CSF) proteome between MS and control patients or between different subgroups of MS. In this review we summarize and discuss the status of CSF proteomics in MS, including the latest findings with a focus on the last five years. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.
Collapse
Affiliation(s)
- Ann C Kroksveen
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Postbox 7804, N-5009 Bergen, Norway; The KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Postbox 7804, N-5021 Bergen, Norway
| | - Jill A Opsahl
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Postbox 7804, N-5009 Bergen, Norway; The KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Postbox 7804, N-5021 Bergen, Norway
| | - Astrid Guldbrandsen
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Postbox 7804, N-5009 Bergen, Norway
| | - Kjell-Morten Myhr
- The KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Postbox 7804, N-5021 Bergen, Norway; Department of Neurology, Haukeland University Hospital, Postbox 1400, 5021 Bergen, Norway; The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Postbox 1400, 5021 Bergen, Norway
| | - Eystein Oveland
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Postbox 7804, N-5009 Bergen, Norway; The KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Postbox 7804, N-5021 Bergen, Norway
| | - Øivind Torkildsen
- The KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Postbox 7804, N-5021 Bergen, Norway; Department of Neurology, Haukeland University Hospital, Postbox 1400, 5021 Bergen, Norway; The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Postbox 1400, 5021 Bergen, Norway
| | - Frode S Berven
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Postbox 7804, N-5009 Bergen, Norway; The KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Postbox 7804, N-5021 Bergen, Norway; The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Postbox 1400, 5021 Bergen, Norway.
| |
Collapse
|
30
|
Salvisberg C, Tajouri N, Hainard A, Burkhard PR, Lalive PH, Turck N. Exploring the human tear fluid: discovery of new biomarkers in multiple sclerosis. Proteomics Clin Appl 2014; 8:185-94. [PMID: 24488530 DOI: 10.1002/prca.201300053] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 12/19/2013] [Accepted: 01/22/2014] [Indexed: 12/19/2022]
Abstract
PURPOSE Multiple sclerosis is the first cause of progressive neurological disability among young adults living in Western countries. Its diagnosis is mostly based on clinical evaluation, neuroimaging, and in some cases cerebrospinal fluid (CSF) analysis, but no definitive diagnostic test exists. We proposed here that the exploration of tears from multiple sclerosis patients could lead to the discovery of new biomarkers. EXPERIMENTAL DESIGN Thirty multiple sclerosis patients (20% men) recruited to the Geneva University Hospitals were included in our study (mean age ± SD [years]: 42.4 ± 15.9). Twenty-five control patients (32% men) were also enrolled (mean age ± SD [years]: 42.7±15.1). Tears, CSF or blood was collected for each patient. Three independent quantitative (tandem mass tag) experiments were carried out between tears from multiple sclerosis and control patients. Protein verification was performed by Western blot on tears and CSF and by ELISA on serum samples. RESULTS Combined proteomics analyses provided 185 identified tear proteins. Among the differential proteins, alpha-1 antichymotrypsin was the only one to be significantly increased in the three experiments with similar ratios (ratios 1.6 to 2.5, p < 0.05). Its tear, CSF and serum elevation were further confirmed by Western blot and ELISA, respectively. CONCLUSIONS AND CLINICAL RELEVANCE This study supports the concept that modifications of the tear proteome can reflect biological abnormalities associated with multiple sclerosis and perhaps other inflammatory conditions affecting the CNS. In addition, alpha-1 antichymotrypsin elevation in tear fluid emerges as a promising biomarker for the diagnosis of multiple sclerosis.
Collapse
Affiliation(s)
- Cindy Salvisberg
- Translational Biomarker Group, Department of Human Protein Sciences, Medical University Center, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
31
|
Lifelong expression of apolipoprotein D in the human brainstem: correlation with reduced age-related neurodegeneration. PLoS One 2013; 8:e77852. [PMID: 24167586 PMCID: PMC3805570 DOI: 10.1371/journal.pone.0077852] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/04/2013] [Indexed: 11/19/2022] Open
Abstract
The lipocalin apolipoprotein D (Apo D) is upregulated in peripheral nerves following injury and in regions of the central nervous system, such as the cerebral cortex, hippocampus, and cerebellum, during aging and progression of certain neurological diseases. In contrast, few studies have examined Apo D expression in the brainstem, a region necessary for survival and generally less prone to age-related degeneration. We measured Apo D expression in whole human brainstem lysates by slot-blot and at higher spatial resolution by quantitative immunohistochemistry in eleven brainstem nuclei (the 4 nuclei of the vestibular nuclear complex, inferior olive, hypoglossal nucleus, oculomotor nucleus, facial motor nucleus, nucleus of the solitary tract, dorsal motor nucleus of the vagus nerve, and Roller`s nucleus). In contrast to cortex, hippocampus, and cerebellum, apolipoprotein D was highly expressed in brainstem tissue from subjects (N = 26, 32−96 years of age) with no history of neurological disease, and expression showed little variation with age. Expression was significantly stronger in somatomotor nuclei (hypoglossal, oculomotor, facial) than visceromotor or sensory nuclei. Both neurons and glia expressed Apo D, particularly neurons with larger somata and glia in the periphery of these brainstem centers. Immunostaining was strongest in the neuronal perinuclear region and absent in the nucleus. We propose that strong brainstem expression of Apo D throughout adult life contributes to resistance against neurodegenerative disease and age-related degeneration, possibly by preventing oxidative stress and ensuing lipid peroxidation.
Collapse
|
32
|
Kroksveen AC, Guldbrandsen A, Vedeler C, Myhr KM, Opsahl JA, Berven FS. Cerebrospinal fluid proteome comparison between multiple sclerosis patients and controls. Acta Neurol Scand 2013:90-6. [PMID: 23278663 DOI: 10.1111/ane.12029] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2012] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The aim of the present study was to identify proteins in cerebrospinal fluid (CSF) with different abundance between patients with relapsing-remitting multiple sclerosis (RRMS) and controls. Such proteins may be diagnostic biomarkers and contribute with novel information about the disease pathogenesis. MATERIALS AND METHODS Cerebrospinal fluid from patients with RRMS (n = 17) and controls (n = 17) were trypsin digested and analyzed in a label-free fashion using liquid chromatography mass spectrometry. The resulting data were analyzed using SearchGUI, PeptideShaker, and the Progenesis software. RESULTS Two hundred and ninety-one proteins were identified, of which 32 were significantly differentially abundant between the patients with RRMS and controls (P-value ≤ 0.05, two or more peptides quantified). Among these were proteins which previously have been linked to MS, including immunoglobulin subunits, vitamin D-binding protein, apolipoprotein D, kallikrein-6, neuronal pentraxin receptor, Dickkopf-related protein 3, and contactin-1. CONCLUSION The study provides an overview of differentially abundant proteins between RRMS and controls, and a few of these are further discussed. It should be stressed that a larger verification study is needed to reveal the potential value of these proteins as biomarkers for RRMS and their involvement in the disease pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - J. A. Opsahl
- Proteomics Unit (PROBE); Department of Biomedicine; University of Bergen; Bergen; Norway
| | | |
Collapse
|
33
|
Binding and repressive activities of apolipoprotein E3 and E4 isoforms on the human ApoD promoter. Mol Neurobiol 2013; 48:669-80. [PMID: 23715769 PMCID: PMC7090986 DOI: 10.1007/s12035-013-8456-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/09/2013] [Indexed: 11/04/2022]
Abstract
Apolipoprotein D (ApoD) gene expression is increased in several neurological disorders such as Alzheimer’s disease (AD) and multiple sclerosis. We previously showed that transgenic mice that overexpress human ApoD show a better resistance against paraquat or OC43 coronavirus-induced neurodegeneration. Here, we identified several nuclear factors from the cortex of control and OC43-infected mice which bind a fragment of the proximal ApoD promoter in vitro. Of interest, we detected apolipoprotein E (ApoE). Human ApoE consists of three isoforms (E2, E3, and E4) with the E4 and E2 alleles representing a greater and a lower risk for developping AD, respectively. Our results show that ApoE is located in the nucleus and on the ApoD promoter in human hepatic and glioblastoma cells lines. Furthermore, overexpression of ApoE3 and ApoE4 isoforms but not ApoE2 significantly inhibited the ApoD promoter activity in U87 cells (E3/E3 genotype) cultured under normal or different stress conditions while ApoE knock-down by siRNA had a converse effect. Consistent with these results, we also demonstrated by ChIP assay that E3 and E4 isoforms, but not E2, bind the ApoD promoter. Moreover, using the Allen Brain Atlas in situ hybridization database, we observed an inverse correlation between ApoD and ApoE mRNA expression during development and in several regions of the mouse brain, notably in the cortex, hippocampus, plexus choroid, and cerebellum. This negative correlation was also observed for cortex layers IV–VI based on a new Transcriptomic Atlas of the Mouse Neocortical Layers. These findings reveal a new function for ApoE by regulating ApoD gene expression.
Collapse
|
34
|
He L, Lu QR. Coordinated control of oligodendrocyte development by extrinsic and intrinsic signaling cues. Neurosci Bull 2013; 29:129-43. [PMID: 23494530 DOI: 10.1007/s12264-013-1318-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/17/2013] [Indexed: 01/06/2023] Open
Abstract
Oligodendrocytes, the myelin-forming cells for axon ensheathment in the central nervous system, are critical for maximizing and maintaining the conduction velocity of nerve impulses and proper brain function. Demyelination caused by injury or disease together with failure of myelin regeneration disrupts the rapid propagation of action potentials along nerve fibers, and is associated with acquired and inherited disorders, including devastating multiple sclerosis and leukodystrophies. The molecular mechanisms of oligodendrocyte myelination and remyelination remain poorly understood. Recently, a series of signaling pathways including Shh, Notch, BMP and Wnt signaling and their intracellular effectors such as Olig1/2, Hes1/5, Smads and TCFs, have been shown to play important roles in regulating oligodendrocyte development and myelination. In this review, we summarize our recent understanding of how these signaling pathways modulate the progression of oligodendrocyte specification and differentiation in a spatiotemporally-specific manner. A better understanding of the complex but coordinated function of extracellular signals and intracellular determinants during oligodendrocyte development will help to devise effective strategies to promote myelin repair for patients with demyelinating diseases.
Collapse
Affiliation(s)
- Li He
- Department of Pediatrics and Obstetrics/Gynaecology, Institute of Stem Cell and Developmental Biology, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | | |
Collapse
|
35
|
Discovery and initial verification of differentially abundant proteins between multiple sclerosis patients and controls using iTRAQ and SID-SRM. J Proteomics 2012; 78:312-25. [PMID: 23059536 DOI: 10.1016/j.jprot.2012.09.037] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 09/14/2012] [Accepted: 09/30/2012] [Indexed: 12/25/2022]
Abstract
In the present study, we aimed to discover cerebrospinal fluid (CSF) proteins with significant abundance difference between early multiple sclerosis patients and controls, and do an initial verification of these proteins using selected reaction monitoring (SRM). iTRAQ and Orbitrap MS were used to compare the CSF proteome of patients with clinically isolated syndrome (CIS) (n=5), patients with relapsing-remitting multiple sclerosis that had CIS at the time of lumbar puncture (n=5), and controls with other inflammatory neurological disease (n=5). Of more than 1200 identified proteins, five proteins were identified with significant abundance difference between the patients and controls. In the initial verification using SRM we analyzed a larger patient and control cohort (n=132) and also included proteins reported as differentially abundant in multiple sclerosis in the literature. We found significant abundance difference for 11 proteins after verification, of which the five proteins alpha-1-antichymotrypsin, contactin-1, apolipoprotein D, clusterin, and kallikrein-6 were significantly differentially abundant in several of the group comparisons. This initial study form the basis for further biomarker verification studies in even larger sample cohorts, to determine if these proteins have relevance as diagnostic or prognostic biomarkers for multiple sclerosis.
Collapse
|
36
|
Stoop MP, Rosenling T, Attali A, Meesters RJW, Stingl C, Dekker LJ, van Aken H, Suidgeest E, Hintzen RQ, Tuinstra T, van Gool A, Luider TM, Bischoff R. Minocycline effects on the cerebrospinal fluid proteome of experimental autoimmune encephalomyelitis rats. J Proteome Res 2012; 11:4315-25. [PMID: 22768796 DOI: 10.1021/pr300428e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To identify response biomarkers for pharmaceutical treatment of multiple sclerosis, we induced experimental autoimmune encephalomyelitis (EAE) in rats and treated symptomatic animals with minocycline. Cerebrospinal fluid (CSF) samples were collected 14 days after EAE induction at the peak of neurological symptoms, and proteomics analysis was performed using nano-LC-Orbitrap mass spectrometry. Additionally, the minocycline concentration in CSF was determined using quantitative matrix-assisted laser desorption/ionization-triple-quadrupole tandem mass spectrometry (MALDI-MS/MS) in the selected reaction monitoring (SRM) mode. Fifty percent of the minocycline-treated EAE animals did not show neurological symptoms on day 14 ("responders"), while the other half displayed neurological symptoms ("nonresponders"), indicating that minocycline delayed disease onset and attenuated disease severity in some, but not all, animals. Neither CSF nor plasma minocycline concentrations correlated with the onset of symptoms or disease severity. Analysis of the proteomics data resulted in a list of 20 differentially abundant proteins between the untreated animals and the responder group of animals. Two of these proteins, complement C3 and carboxypeptidase B2, were validated by quantitative LC-MS/MS in the SRM mode. Differences in the CSF proteome between untreated EAE animals and minocycline-treated responders were similar to the differences between minocycline-treated responders and nonresponders (70% overlap). Six proteins that remained unchanged in the minocycline-treated animals but were elevated in untreated EAE animals may be related to the mechanism of action of minocycline.
Collapse
Affiliation(s)
- Marcel P Stoop
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
The experimental autoimmune encephalomyelitis model for proteomic biomarker studies: from rat to human. Clin Chim Acta 2011; 412:812-22. [PMID: 21333641 DOI: 10.1016/j.cca.2011.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/01/2011] [Accepted: 02/01/2011] [Indexed: 01/13/2023]
Abstract
Multiple sclerosis (MScl) is defined by central nervous system (CNS) inflammation, demyelination and axonal damage. Some of the disease mechanisms are known but the cause of this complex disorder stays an enigma. Experimental autoimmune encephalomyelitis (EAE) is an animal model mimicking many aspects of MScl. This review aims to provide an overview over proteomic biomarker studies in the EAE model emphasizing the translational aspects with respect to MScl in humans.
Collapse
|
38
|
Stoop MP, Singh V, Dekker LJ, Titulaer MK, Stingl C, Burgers PC, Sillevis Smitt PAE, Hintzen RQ, Luider TM. Proteomics comparison of cerebrospinal fluid of relapsing remitting and primary progressive multiple sclerosis. PLoS One 2010; 5:e12442. [PMID: 20805994 PMCID: PMC2929207 DOI: 10.1371/journal.pone.0012442] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 08/03/2010] [Indexed: 01/16/2023] Open
Abstract
Background Based on clinical representation of disease symptoms multiple sclerosis (MScl) patients can be divided into two major subtypes; relapsing remitting (RR) MScl (85–90%) and primary progressive (PP) MScl (10–15%). Proteomics analysis of cerebrospinal fluid (CSF) has detected a number of proteins that were elevated in MScl patients. Here we specifically aimed to differentiate between the PP and RR subtypes of MScl by comparing CSF proteins. Methodology/Principal Findings CSF samples (n = 31) were handled according to the same protocol for quantitative mass spectrometry measurements we reported previously. In the comparison of PP MScl versus RR MScl we observed a number of differentially abundant proteins, such as protein jagged-1 and vitamin D-binding protein. Protein jagged-1 was over three times less abundant in PP MScl compared to RR MScl. Vitamin D-binding protein was only detected in the RR MScl samples. These two proteins were validated by independent techniques (western blot and ELISA) as differentially abundant in the comparison between both MScl types. Conclusions/Significance The main finding of this comparative study is the observation that the proteome profiles of CSF in PP and RR MScl patients overlap to a large extent. Still, a number of differences could be observed. Protein jagged-1 is a ligand for multiple Notch receptors and involved in the mediation of Notch signaling. It is suggested in literature that the Notch pathway is involved in the remyelination of MScl lesions. Aberration of normal homeostasis of Vitamin D, of which approximately 90% is bound to vitamin D-binding protein, has been widely implicated in MScl for some years now. Vitamin D directly and indirectly regulates the differentiation, activation of CD4+ T-lymphocytes and can prevent the development of autoimmune processes, and so it may be involved in neuroprotective elements in MScl.
Collapse
Affiliation(s)
- Marcel P. Stoop
- Laboratories of Neuro-Oncology/Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Vaibhav Singh
- Laboratories of Neuro-Oncology/Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Lennard J. Dekker
- Laboratories of Neuro-Oncology/Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Mark K. Titulaer
- Laboratories of Neuro-Oncology/Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Christoph Stingl
- Laboratories of Neuro-Oncology/Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Peter C. Burgers
- Laboratories of Neuro-Oncology/Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Peter A. E. Sillevis Smitt
- Laboratories of Neuro-Oncology/Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Rogier Q. Hintzen
- Laboratories of Neuro-Oncology/Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Theo M. Luider
- Laboratories of Neuro-Oncology/Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
39
|
Levros LC, Do Carmo S, Edouard E, Legault P, Charfi C, Rassart E. Characterization of nuclear factors modulating the apolipoprotein D promoter during growth arrest: implication of PARP-1, APEX-1 and ERK1/2 catalytic activities. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1062-71. [PMID: 20493910 PMCID: PMC7114184 DOI: 10.1016/j.bbamcr.2010.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/22/2010] [Accepted: 04/29/2010] [Indexed: 11/28/2022]
Abstract
Human Apolipoprotein D (apoD) is upregulated under several stress conditions and pathological situations such as neurodegenerative diseases and cancers. We previously showed that apoD mRNA expression is induced in growth-arrested cells and demonstrated the specific binding of nuclear proteins to the region −514 to −475 of the promoter. Such region contains a pair of Serum Responsive Elements (SRE), an Ets-Binding Site (EBS) and a Glucocorticoid Responsive Element (GRE). In this study, we show that Parp-1, HnRNP-U, CBF-A, BUB-3, Kif4, APEX-1 and Ifi204 bind these regulatory elements of the apoD promoter. Specific binding of HnRNP-U and Parp-1 was confirmed by Electrophoretic Mobility Shift Assay (EMSA). In a biotin pull-down assay, Kif4 and BUB-3 bind preferentially the SRE1 and the EBS-GRE sites, respectively, while APEX-1 seems recruited indirectly to these elements. We found that the mRNA expression of some of these binding factors is upregulated in growth-arrested cells and that these proteins also transactivate the apoD promoter. In agreement with these results, mutants of APEX-1 and of Parp-1 defective for their DNA-binding and catalytic activities could not transactivate the promoter. The knockdown of Parp-1 and HnRNP-U and the use of specific inhibitors of MEK1/2 and of Parp-1 also inhibited the induction of apoD gene expression. Moreover, ERK1/2 was found activated in a biphasic manner post serum-starvation and the inhibition of Parp-1 causes a sustained activation of ERK2 but not ERK1 for up to 2 h. Altogether, these findings demonstrate the importance of Parp-1, APEX-1 and ERK1/2 catalytic activities in the growth arrest-induced apoD gene expression.
Collapse
Affiliation(s)
- Louis-Charles Levros
- Laboratoire de biologie moléculaire, Département des Sciences Biologiques, and Centre BioMed, Université du Québec à Montréal, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Muffat J, Walker DW. Apolipoprotein D: an overview of its role in aging and age-related diseases. Cell Cycle 2010; 9:269-73. [PMID: 20023409 DOI: 10.4161/cc.9.2.10433] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Julien Muffat
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | | |
Collapse
|
41
|
Fissolo N, Haag S, de Graaf KL, Drews O, Stevanovic S, Rammensee HG, Weissert R. Naturally presented peptides on major histocompatibility complex I and II molecules eluted from central nervous system of multiple sclerosis patients. Mol Cell Proteomics 2009; 8:2090-101. [PMID: 19531498 DOI: 10.1074/mcp.m900001-mcp200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Tandem mass spectrometry was used to identify naturally processed peptides bound to major histocompatibility complex (MHC) I and MHC II molecules in central nervous system (CNS) of eight patients with multiple sclerosis (MS). MHC molecules were purified from autopsy CNS material by immunoaffinity chromatography with monoclonal antibody directed against HLA-A, -B, -C, and -DR. Subsequently peptides were separated by reversed-phase HPLC and analyzed by mass spectrometry. Database searches revealed 118 amino acid sequences from self-proteins eluted from MHC I molecules and 191 from MHC II molecules, corresponding to 174 identified source proteins. These sequences define previously known and potentially novel autoantigens in MS possibly involved in disease induction and antigen spreading. Taken together, we have initiated the characterization of the CNS-expressed MHC ligandome in CNS diseases and were able to demonstrate the presentation of naturally processed myelin basic protein peptides in the brain of MS patients.
Collapse
Affiliation(s)
- Nicolas Fissolo
- Hertie Institute for Clinical Brain Research, Experimental Neuroimmunology, University of Tuebingen, 72076 Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Neuroprotective effect of apolipoprotein D against human coronavirus OC43-induced encephalitis in mice. J Neurosci 2008; 28:10330-8. [PMID: 18842892 DOI: 10.1523/jneurosci.2644-08.2008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Apolipoprotein D (apoD) is a lipocalin upregulated in the nervous system after injury or pathologies such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. We previously demonstrated that apoD protects against neuropathology by controlling the level of peroxidated lipids. Here, we further investigated the biological function of apoD in a mouse model of acute encephalitis. Our results show that apoD transcript and protein are upregulated during acute encephalitis induced by the human coronavirus OC43 (HCoV-OC43) infection. The apoD upregulation coincides with glial activation, and its expression returns to normal levels when the virus is cleared, concomitantly to a resolved glial reactivity. In addition, the overexpression of human apoD in the neurons of Thy-1/ApoD transgenic mice results in a threefold increase of the number of mice surviving to HCoV-OC43 infection. This increased survival rate is correlated with an upregulated glial activation associated with a limited innate immune response (cytokines, chemokines) and T-cell infiltration into infected brains. Moreover, the protection seems to be associated with a restricted phospholipase A2 activity. These data reveal a role for apoD in the regulation of inflammation and suggest that it protects from HCoV-OC43-induced encephalitis, most likely through the phospholipase A2 signaling pathways.
Collapse
|
43
|
Stoop MP, Dekker LJ, Titulaer MK, Burgers PC, Sillevis Smitt PAE, Luider TM, Hintzen RQ. Multiple sclerosis-related proteins identified in cerebrospinal fluid by advanced mass spectrometry. Proteomics 2008; 8:1576-85. [PMID: 18351689 DOI: 10.1002/pmic.200700446] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A total of 164 cerebrospinal fluid (CSF) samples taken from neurological patients were classed into four groups according to the clinical diagnosis: multiple sclerosis (MScl, n = 44), clinically isolated syndrome of demyelination (CIS, n = 40), other inflammatory neurological disease (OIND, n = 26) and other neurological disease (OND, n = 54). After tryptic digestion, the samples were measured by MALDI-TOF MS. Spectra were analyzed using the R-project software package, in which a peak detection algorithm was developed. Subsequently, the peak lists were compared based on ranked data (non-parametric). Significant differences were observed in the comparisons of MScl vs. OND and CIS vs. OND. The comparisons of MScl vs. OIND, and CIS vs. OIND showed fewer significant differences. No significant differences were found in comparisons MScl vs. CIS and OIND vs. OND. MScl and CIS had strikingly similar profiles, probably a reflection of common pathological mechanisms. Three differentially expressed proteins in the comparison of MScl vs. OND were identified: chromogranin A, a potential marker for neurodegeneration; and two important factors in complement-mediated inflammatory reaction, clusterin and complement C3. CSF chromogranin A levels were confirmed to be significantly elevated in the MScl group using an ELISA.
Collapse
Affiliation(s)
- Marcel P Stoop
- Laboratories of Neuro-Oncology/Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
44
|
Chen YW, Gregory CM, Scarborough MT, Shi R, Walter GA, Vandenborne K. Transcriptional pathways associated with skeletal muscle disuse atrophy in humans. Physiol Genomics 2007; 31:510-20. [PMID: 17804603 DOI: 10.1152/physiolgenomics.00115.2006] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Disuse atrophy is a common clinical phenomenon that significantly impacts muscle function and activities of daily living. The purpose of this study was to implement genome-wide expression profiling to identify transcriptional pathways associated with muscle remodeling in a clinical model of disuse. Skeletal muscle biopsies were acquired from the medial gastrocnemius in patients with an ankle fracture and from healthy volunteers subjected to 4-11 days of cast immobilization. We identified 277 misregulated transcripts in immobilized muscles of patients, of which the majority were downregulated. The most broadly affected pathways were involved in energy metabolism, mitochondrial function, and cell cycle regulation. We also found decreased expression in genes encoding proteolytic proteins, calpain-3 and calpastatin, and members of the myostatin and IGF-I pathway. Only 26 genes showed increased expression in immobilized muscles, including apolipoprotein (APOD) and leptin receptor (LEPR). Upregulation of APOD (5.0-fold, P < 0.001) and LEPR (5.7-fold, P < 0.05) was confirmed by quantitative RT-PCR and immunohistochemistry. In addition, atrogin-1/MAFbx was found to be 2.4-fold upregulated (P < 0.005) by quantitative RT-PCR. Interestingly, 96% of the transcripts differentially regulated in immobilized limbs also showed the same trend of change in the contralateral legs of patients but not the contralateral legs of healthy volunteers. Information obtained in this study complements findings in animal models of disuse and provides important feedback for future clinical studies targeting the restoration of muscle function following limb disuse in humans.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Center for Genetic Medicine Research, Children's National Medical Center, George Washington University, Washington, District of Columbia, USA
| | | | | | | | | | | |
Collapse
|
45
|
Liu T, Donahue KC, Hu J, Kurnellas MP, Grant JE, Li H, Elkabes S. Identification of differentially expressed proteins in experimental autoimmune encephalomyelitis (EAE) by proteomic analysis of the spinal cord. J Proteome Res 2007; 6:2565-75. [PMID: 17571869 PMCID: PMC2430926 DOI: 10.1021/pr070012k] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present study used isobaric tags for relative and absolute quantitation (iTRAQ) to identify novel targets in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. The expression of 41 proteins was significantly altered in the inflamed spinal cord. Twenty of these are implicated in EAE for the first time and many have previously been shown to play a role in antigen processing, inflammation, neuroprotection, or neurodegeneration.
Collapse
Affiliation(s)
- Tong Liu
- Center for Advanced Proteomics Research and Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School Cancer Center, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Do Carmo S, Levros LC, Rassart E. Modulation of apolipoprotein D expression and translocation under specific stress conditions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:954-69. [PMID: 17477983 DOI: 10.1016/j.bbamcr.2007.03.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/05/2007] [Accepted: 03/06/2007] [Indexed: 11/20/2022]
Abstract
Apolipoprotein D is a lipocalin, primarily associated with high density lipoproteins in human plasma. Its expression is induced in several pathological and stressful conditions including growth arrest suggesting that it could act as a nonspecific stress protein. A survey of cellular stresses shows those causing an extended growth arrest, as hydrogen peroxide and UV light increase apoD expression. Alternatively, lipopolysaccharide (LPS), a pro-inflammatory agonist showed a time- and dose-dependent effect on apoD expression that correlates with an increase in proliferation. At the promoter level, NF-kB, AP-1 and APRE-3 proved to be the elements implicated in the LPS response. Colocalization of apoDh-GFP fusion constructs with DNA and Golgi markers, immunocytochemistry of the endogenous protein and cell fractionation showed that both serum starvation and LPS treatment caused a displacement of apoD localization. In normal conditions, apoD is mainly perinuclear but it accumulates in cytoplasm and nucleus under these stress conditions. Since nuclear apoD appears derived from the secreted protein, it may act as an extracellular ligand transporter as well as a transcriptional regulator depending on its location. This role of apoD inside the cell is not only dependent of endogenous apoD but may also be provided by exogenous apoD entering the cell.
Collapse
Affiliation(s)
- Sonia Do Carmo
- Laboratoire de biologie moléculaire, Département des Sciences Biologiques, and BioMed, centre de recherches biomédicales, Université du Québec à Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
47
|
Ogrinc K, Logar M, Lotric-Furlan S, Cerar D, Ruzić-Sabljić E, Strle F. Doxycycline versus ceftriaxone for the treatment of patients with chronic Lyme borreliosis. Wien Klin Wochenschr 2006; 118:696-701. [PMID: 17160610 DOI: 10.1007/s00508-006-0698-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Therapeutic guidelines for treatment of late manifestations of Lyme borreliosis have not yet become well established. Patients with symptoms suggesting central nervous system involvement are often treated with courses of intravenous ceftriaxone. This is an expensive treatment approach with potentially severe side effects. We compared the efficacy, side effects and costs of doxycycline and ceftriaxone in the treatment of such patients. PATIENTS AND METHODS Adult patients qualified for the study if they had nonspecific symptoms suggesting central nervous system involvement for more than six months (but without overt clinical signs of the involvement), had positive serum borrelial antibody titers and/or erythema migrans prior to the onset of symptoms, had not been previously treated with antibiotics and did not have pleocytosis in the cerebrospinal fluid. Patients were given either 100 mg of oral doxycycline twice daily for 4 weeks (23 patients) or 2 g of intravenous ceftriaxone daily for 2 weeks followed by 100 mg of doxycycline twice daily for another 2 weeks (23 patients). Clinical outcome was assessed during a 12-month follow-up period. RESULTS Improvement in the frequency and/or the intensity of symptoms was reported by more than two-thirds of the 46 patients enrolled in the study. The two treatment regimens were found to be correspondingly effective. Photosensitivity reactions and gastrointestinal symptoms were noted more often among patients receiving doxycycline than in those receiving ceftriaxone. Treatment with doxycycline proved to be much cheaper than with ceftriaxone. CONCLUSIONS In patients with previously untreated chronic Lyme borreliosis with symptoms suggesting central nervous system involvement but without overt clinical signs of it, and without pleocytosis in the cerebrospinal fluid, treatment with doxycycline is as effective as with ceftriaxone. Treatment with doxycycline is cheap and relatively safe, but gastrointestinal symptoms and photosensitivity reactions can be expected more often than with ceftriaxone.
Collapse
Affiliation(s)
- Katarina Ogrinc
- Department of Infectious Diseases, University Medical Center Ljubljana, Slovenia.
| | | | | | | | | | | |
Collapse
|
48
|
Del Signore A, De Sanctis V, Di Mauro E, Negri R, Perrone-Capano C, Paggi P. Gene expression pathways induced by axotomy and decentralization of rat superior cervical ganglion neurons. Eur J Neurosci 2006; 23:65-74. [PMID: 16420416 DOI: 10.1111/j.1460-9568.2005.04520.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To identify genes potentially involved in remodelling synaptic connections, we induced the temporary detachment of pre- and post-synaptic elements by axotomy or denervation of rat superior cervical ganglion neurons. cDNA microarray analysis followed by stringent selection criteria allowed the identification of a panel of genes whose expression was modulated by axotomy at various time points after injury. Among these genes, 11 were validated by real-time reverse transcriptase-polymerase chain reaction on independently prepared samples after superior cervical ganglion neuron axotomy (1, 3 and 6 days) and compared with the effect of decentralization (8 h, 1 and 3 days). These genes code for extracellular matrix/space [apolipoprotein D (apoD), decorin, collagen alpha1 type I, collagen alpha1 type III] and intermediate filament (vimentin) proteins, for modulators of neurite outgrowth (thrombin receptor, plasminogen activator inhibitor-1, bone morphogenetic protein 4, annexin II and S-100-related protein, clone 42C) and for a nerve cell transcription factor (brain finger protein). Eight of these 11 genes showed significant and persistent modulations after both types of injury. Finally, protein levels of apoD were shown to increase in superior cervical ganglion after axotomy. Our results identify hitherto unrecorded genes responsive to axotomy and decentralization of superior cervical ganglion neurons, and probably involved in synapse formation, remodelling and elimination.
Collapse
Affiliation(s)
- Arianna Del Signore
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università La Sapienza, Piazzale A. Moro, 5, 00185 Roma, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Venter M, Myers TG, Wilson MA, Kindt TJ, Paweska JT, Burt FJ, Leman PA, Swanepoel R. Gene expression in mice infected with West Nile virus strains of different neurovirulence. Virology 2005; 342:119-40. [PMID: 16125213 DOI: 10.1016/j.virol.2005.07.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 06/01/2005] [Accepted: 07/14/2005] [Indexed: 10/25/2022]
Abstract
West Nile virus causes febrile illness in humans with a proportion of cases progressing to meningoencephalitis, encephalitis, hepatitis, and death. Isolates of the virus fall into two genetic lineages, with differences in neuroinvasiveness for mice occurring between strains within both lineages. We used DNA microarrays to compare gene expression in mice infected peripherally with seven lineage 1 and 2 strains confirmed to be of either high or low neuroinvasiveness in mice and associated with severe or benign infection in humans and birds. The 4 strains with highest neuroinvasiveness induced increased expression of 47 genes in the brain, 111 genes in the liver, and 70 genes in the spleen, relative to the 3 least neuroinvasive strains. Genes involved in interferon signaling pathways, protein degradation, T-cell recruitment, MHC class I and II antigen presentation, and apoptosis were identified that may have both pathogenic and protective effects, but increased expression of certain acute proteins, central nervous system specific proteins and proteins associated with T-cell hepatitis, implicate mechanisms related to exalted virulence.
Collapse
Affiliation(s)
- Marietjie Venter
- Special Pathogens Unit, National Institute for Communicable Diseases, Private Bag X4, Sandringham 2131, South Africa.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Saha S, Rangarajan PN. Common host genes are activated in mouse brain by Japanese encephalitis and rabies viruses. J Gen Virol 2003; 84:1729-1735. [PMID: 12810866 DOI: 10.1099/vir.0.18826-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study identified nine genes whose expression is upregulated in the central nervous system (CNS) of mice during Japanese encephalitis virus (JEV) infection. These include: cathepsin S, oligoadenylate synthetase (OAS), GARG49/IRG2, lymphocyte antigen-6A (Ly-6A), macrophage activation gene-2 (Mpa2), early growth response gene1 (Egr1), pyrimidine 5'-nucleotidase (P5N), apolipoprotein D (ApoD) and STAT1. Activation of all nine genes during JEV infection was confirmed by Northern blot analysis. JEV replication was inhibited in the majority of mice immunized with Biken JEV vaccine, and these mice also exhibited reduced expression of JEV-inducible CNS genes. Thus, there is a good correlation between virus load and upregulation of host CNS genes. It was also demonstrated that all the CNS genes activated by JEV are also upregulated during rabies virus infection. In addition, GARG49, STAT1, cathepsin S and ApoD are known to be upregulated in the CNS by Sindbis virus, an alphavirus, and this supports the proposal that common host cell pathways are activated in the CNS by different neurotropic viruses.
Collapse
Affiliation(s)
- S Saha
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - P N Rangarajan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|