1
|
Bai M, Sun R, Cao B, Feng J, Wang J. Monocyte-related cytokines/chemokines in cerebral ischemic stroke. CNS Neurosci Ther 2023; 29:3693-3712. [PMID: 37452512 PMCID: PMC10651979 DOI: 10.1111/cns.14368] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
AIMS Ischemic stroke is one of the leading causes of death worldwide and the most common cause of disability in Western countries. Multiple mechanisms contribute to the development and progression of ischemic stroke, and inflammation is one of the most important mechanisms. DISCUSSION Ischemia induces the release of adenosine triphosphate/reactive oxygen species, which activates immune cells to produce many proinflammatory cytokines that activate downstream inflammatory cascades to induce fatal immune responses. Research has confirmed that peripheral blood immune cells play a vital role in the immunological cascade after ischemic stroke. The role of monocytes has received much attention among numerous peripheral blood immune cells. Monocytes induce their effects by secreting cytokines or chemokines, including CCL2/CCR2, CCR4, CCR5, CD36, CX3CL1/CX3CR1, CXCL12(SDF-1), LFA-1/ICAM-1, Ly6C, MMP-2/9, NR4A1, P2X4R, P-selectin, CD40L, TLR2/4, and VCAM-1/VLA-4. Those factors play important roles in the process of monocyte recruitment, migration, and differentiation. CONCLUSION This review focuses on the function and mechanism of the cytokines secreted by monocytes in the process of ischemic stroke and provides novel targets for treating cerebral ischemic stroke.
Collapse
Affiliation(s)
- Meiling Bai
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ruize Sun
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bin Cao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Michinaga S, Hishinuma S, Koyama Y. Roles of Astrocytic Endothelin ET B Receptor in Traumatic Brain Injury. Cells 2023; 12:cells12050719. [PMID: 36899860 PMCID: PMC10000579 DOI: 10.3390/cells12050719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Traumatic brain injury (TBI) is an intracranial injury caused by accidents, falls, or sports. The production of endothelins (ETs) is increased in the injured brain. ET receptors are classified into distinct types, including ETA receptor (ETA-R) and ETB receptor (ETB-R). ETB-R is highly expressed in reactive astrocytes and upregulated by TBI. Activation of astrocytic ETB-R promotes conversion to reactive astrocytes and the production of astrocyte-derived bioactive factors, including vascular permeability regulators and cytokines, which cause blood-brain barrier (BBB) disruption, brain edema, and neuroinflammation in the acute phase of TBI. ETB-R antagonists alleviate BBB disruption and brain edema in animal models of TBI. The activation of astrocytic ETB receptors also enhances the production of various neurotrophic factors. These astrocyte-derived neurotrophic factors promote the repair of the damaged nervous system in the recovery phase of patients with TBI. Thus, astrocytic ETB-R is expected to be a promising drug target for TBI in both the acute and recovery phases. This article reviews recent observations on the role of astrocytic ETB receptors in TBI.
Collapse
Affiliation(s)
- Shotaro Michinaga
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Tokyo 204-8588, Japan
| | - Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Tokyo 204-8588, Japan
| | - Yutaka Koyama
- Laboratory of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kita Higashinada, Kobe 668-8558, Japan
- Correspondence: ; Tel.: +81-78-441-7572
| |
Collapse
|
3
|
McCamy KM, Rees KA, Winzer-Serhan UH. Peripheral immune challenges elicit differential up-regulation of hippocampal cytokine and chemokine mRNA expression in a mouse model of the 15q13.3 microdeletion syndrome. Cytokine 2022; 159:156005. [PMID: 36084604 DOI: 10.1016/j.cyto.2022.156005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/06/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022]
Abstract
The human heterozygous 15q13.3 microdeletion is associated with neuropathological disorders, most prominently with epilepsy and intellectual disability. The 1.5 Mb deletion encompasses six genes (FAN1 [MTMR15], MTMR10, TRPM1, KLF13, OTUD7A, and CHRNA7); all but one (TRPM1) are expressed in the brain. The 15q13.3 microdeletion causes highly variable neurological symptoms, and confounding factors may contribute to a more severe phenotype. CHRNA7 and KLF13 are involved in immune system regulation and altered immune responses may contribute to neurological deficits. We used the Df[h15q13]/+ transgenic mouse model with a heterozygous deletion of the orthologous region (Het) to test the hypothesis that the microdeletion increases innate immune responses compared to wild type (WT). Male and female mice were acutely challenged with the bacteriomimetic lipopolysaccharide (LPS, 0.1 mg/kg, i.p.) or the viral mimetic polyinosinic:polycytidylic acid (Poly(I:C), 5 mg/kg). Hippocampal mRNA expression of pro-inflammatory cytokines and chemokines were determined three hours after injection using quantitative PCR analysis. In controls, expression was not affected by sex or genotype. LPS and Poly(I:C) resulted in significantly increased hippocampal expression of cytokines, chemokines, and interferon-γ (IFNγ), with more robust increases for TNF-α, IL-6, IL-1β, CXCL1, and CCL2 by LPS, higher induction of IFNγ by Poly(I:C), and similar increases of CCL4 and CCL5 by both agents. Generally, Hets exhibited stronger responses than WT mice, and significant effects of genotype or genotype × treatment interactions were detected for CXCL1 and CCL5, and IL-6, IL-1β, and CCL4, respectively, after LPS. Sex differences were detected for some targets. LPS but not Poly(I:C), reduced overnight burrowing independent of sex or genotype, suggesting that LPS induced sickness behavior. Thus, mice carrying the microdeletion have an increased innate immune response following a LPS challenge, but further studies will have to determine the extent and mechanisms of altered immune activation and subsequent contributions to 15q13.3 microdeletion associated deficits.
Collapse
Affiliation(s)
- Kristin M McCamy
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, United States
| | - Katherine A Rees
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, United States
| | - Ursula H Winzer-Serhan
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, United States.
| |
Collapse
|
4
|
Shi J, Li W, Zhang F, Park JH, An H, Guo S, Duan Y, Wu D, Hayakawa K, Lo EH, Ji X. CCL2 (C-C Motif Chemokine Ligand 2) Biomarker Responses in Central Versus Peripheral Compartments After Focal Cerebral Ischemia. Stroke 2021; 52:3670-3679. [PMID: 34587791 PMCID: PMC8545911 DOI: 10.1161/strokeaha.120.032782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background and Purpose Inflammatory mediators in blood have been proposed as potential biomarkers in stroke. However, a direct relationship between these circulating factors and brain-specific ischemic injury remains to be fully defined. Methods An unbiased screen in a nonhuman primate model of stroke was used to find out the most responsive circulating biomarker flowing ischemic stroke. Then this phenomenon was checked in human beings and mice. Finally, we observed the temporospatial responsive characteristics of this biomarker after ischemic brain injury in mice to evaluate the direct relationship between this circulating factor and central nervous system–specific ischemic injury. Results In a nonhuman primate model, an unbiased screen revealed CCL2 (C-C motif chemokine ligand 2) as a major response factor in plasma after stroke. In mouse models of focal cerebral ischemia, plasma levels of CCL2 showed a transient response, that is, rapidly elevated by 2 to 3 hours postischemia but then renormalized back to baseline levels by 24 hours. However, a different CCL2 temporal profile was observed in whole brain homogenate, cerebrospinal fluid, and isolated brain microvessels, with a progressive increase over 24 hours, demonstrating a mismatch between brain versus plasma responses. In contrast to the lack of correlation with central nervous system responses, 2 peripheral compartments showed transient profiles that matched circulating plasma signatures. CCL2 protein in lymph nodes and adipose tissue was significantly increased at 2 hours and renormalized by 24 hours. Conclusions These findings may provide a cautionary tale for biomarker pursuits in plasma. Besides a direct central nervous system response, peripheral organs may also contribute to blood signatures in complex and indirect ways.
Collapse
Affiliation(s)
- Jingfei Shi
- Cerebrovascular and Neuroscience Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China.,Neuroprotection Research Laboratories, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Wenlu Li
- Neuroprotection Research Laboratories, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fang Zhang
- Neuroprotection Research Laboratories, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ji Hyun Park
- Neuroprotection Research Laboratories, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hong An
- Cerebrovascular and Neuroscience Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China.,Neuroprotection Research Laboratories, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shuzhen Guo
- Neuroprotection Research Laboratories, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yunxia Duan
- Cerebrovascular and Neuroscience Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Di Wu
- Cerebrovascular and Neuroscience Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China.,Neuroprotection Research Laboratories, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratories, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eng H. Lo
- Neuroprotection Research Laboratories, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xunming Ji
- Cerebrovascular and Neuroscience Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China.,Departments of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Rong Y, Ji C, Wang Z, Ge X, Wang J, Ye W, Tang P, Jiang D, Fan J, Yin G, Liu W, Cai W. Small extracellular vesicles encapsulating CCL2 from activated astrocytes induce microglial activation and neuronal apoptosis after traumatic spinal cord injury. J Neuroinflammation 2021; 18:196. [PMID: 34511129 PMCID: PMC8436564 DOI: 10.1186/s12974-021-02268-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023] Open
Abstract
Background Spinal cord injury (SCI) is a severe traumatic disease which causes high disability and mortality rates. The molecular pathological features after spinal cord injury mainly involve the inflammatory response, microglial and neuronal apoptosis, abnormal proliferation of astrocytes, and the formation of glial scars. However, the microenvironmental changes after spinal cord injury are complex, and the interactions between glial cells and nerve cells remain unclear. Small extracellular vesicles (sEVs) may play a key role in cell communication by transporting RNA, proteins, and bioactive lipids between cells. Few studies have examined the intercellular communication of astrocytes through sEVs after SCI. The inflammatory signal released from astrocytes is known to initiate microglial activation, but its effects on neurons after SCI remain to be further clarified. Methods Electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blotting were applied to characterize sEVs. We examined microglial activation and neuronal apoptosis mediated by astrocyte activation in an experimental model of acute spinal cord injury and in cell culture in vitro. Results Our results indicated that astrocytes activated after spinal cord injury release CCL2, act on microglia and neuronal cells through the sEV pathway, and promote neuronal apoptosis and microglial activation after binding the CCR2. Subsequently, the activated microglia release IL-1β, which acts on neuronal cells, thereby further aggravating their apoptosis. Conclusion This study elucidates that astrocytes interact with microglia and neurons through the sEV pathway after SCI, enriching the mechanism of CCL2 in neuroinflammation and spinal neurodegeneration, and providing a new theoretical basis of CCL2 as a therapeutic target for SCI. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02268-y.
Collapse
Affiliation(s)
- Yuluo Rong
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Chengyue Ji
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zhuanghui Wang
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xuhui Ge
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jiaxing Wang
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wu Ye
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Pengyu Tang
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Dongdong Jiang
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jin Fan
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Guoyong Yin
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wei Liu
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Weihua Cai
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
6
|
Pedragosa J, Miró-Mur F, Otxoa-de-Amezaga A, Justicia C, Ruíz-Jaén F, Ponsaerts P, Pasparakis M, Planas AM. CCR2 deficiency in monocytes impairs angiogenesis and functional recovery after ischemic stroke in mice. J Cereb Blood Flow Metab 2020; 40:S98-S116. [PMID: 32151226 PMCID: PMC7687030 DOI: 10.1177/0271678x20909055] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammatory Ly6ChiCCR2+ monocytes infiltrate the brain after stroke but their functions are not entirely clear. We report that CCR2+ monocytes and CCR2+ lymphocytes infiltrate the brain after permanent ischemia. To underscore the role of CCR2+ monocytes, we generated mice with selective CCR2 deletion in monocytes. One day post-ischemia, these mice showed less infiltrating monocytes and reduced expression of pro-inflammatory cytokines, markers of alternatively macrophage activation, and angiogenesis. Accordingly, Ly6Chi monocytes sorted from the brain of wild type mice 24 h post-ischemia expressed pro-inflammatory genes, M2 genes, and pro-angiogenic genes. Flow cytometry showed heterogeneous phenotypes within the infiltrating Ly6ChiCCR2+ monocytes, including a subgroup of Arginase-1+ cells. Mice with CCR2-deficient monocytes displayed a delayed inflammatory rebound 15 days post-ischemia that was not found in wild type mice. Furthermore, they showed reduced angiogenesis and worse behavioral performance. Administration of CCR2+/+ bone-marrow monocytes to mice with CCR2-deficient monocytes did not improve the behavioral performance suggesting that immature bone-marrow monocytes lack pro-reparative functions. The results show that CCR2+ monocytes contribute to acute post-ischemic inflammation and participate in functional recovery. The study unravels heterogeneity in the population of CCR2+ monocytes infiltrating the ischemic brain and suggests that pro-reparative monocyte subsets promote functional recovery after ischemic stroke.
Collapse
Affiliation(s)
- Jordi Pedragosa
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Area of Neurociences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francesc Miró-Mur
- Area of Neurociences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Fundació Clínic, Barcelona, Spain
| | - Amaia Otxoa-de-Amezaga
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Area of Neurociences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Carles Justicia
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Area of Neurociences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francisca Ruíz-Jaén
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Area of Neurociences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Manolis Pasparakis
- CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Anna M Planas
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Area of Neurociences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
7
|
Mulet M, Blasco-Ibáñez JM, Kirstein M, Crespo C, Nacher J, Varea E. Phenotypic characterization of MCP-1 expressing neurons in the rat cerebral cortex. J Chem Neuroanat 2020; 106:101785. [PMID: 32205215 DOI: 10.1016/j.jchemneu.2020.101785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 11/26/2022]
Abstract
Chemokines are small, secreted molecules that mediate inflammatory reactions. Neurons and astrocytes constitutively express chemokines implicated in the process of neuroinflammation associated with neurodegenerative diseases. The monocyte chemoattractant protein-1 (MCP-1) has been widely related to this process. However, the constitutive expression of this molecule by neurons has not been elucidated so far. In this study, we set out to characterize the neurochemical phenotype of MCP-1-expressing neurons in the rat neocortex to infer its role in basal conditions. We observed the presence of two populations of neurons expressing MCP-1: One population of cells with weak expression of MCP-1 corresponding to principal neurons (Tbr-1 positive) and a second population with high expression of MCP-1 corresponding to inhibitory neurons (GAD-67 positive), in particular to CCK/CBR1 interneurons. Moreover, high MCP-1-expressing neurons were metabolically active (pCREB positive). The population of CCK interneurons that co-localizes with MCP-1 corresponds to the regular-spiking basket cells and is co-responsible for the perisomatic inhibition of principal pyramidal neurons. Previous studies have demonstrated that MCP-1 can alter the electric properties of neurons and a tonic function for this molecule has been postulated. As CCK-inhibitory neurons are affected in mood disorders, whether the expression of MCP-1 was maintained in humans could be part of the link between inflammatory responses and observed changes in mood state.
Collapse
Affiliation(s)
- Maria Mulet
- Cell Biology Department, Universitat de València, Spain
| | | | | | - Carlos Crespo
- Cell Biology Department, Universitat de València, Spain.
| | - Juan Nacher
- Cell Biology Department, Universitat de València, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Spain; CIBERSAM: Spanish National Network for Research in Mental Health, Spain.
| | - Emilio Varea
- Cell Biology Department, Universitat de València, Spain.
| |
Collapse
|
8
|
Neuroinflammation in Post-Traumatic Epilepsy: Pathophysiology and Tractable Therapeutic Targets. Brain Sci 2019; 9:brainsci9110318. [PMID: 31717556 PMCID: PMC6895909 DOI: 10.3390/brainsci9110318] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a common chronic consequence of traumatic brain injury (TBI), contributing to increased morbidity and mortality for survivors. As post-traumatic epilepsy (PTE) is drug-resistant in at least one-third of patients, there is a clear need for novel therapeutic strategies to prevent epilepsy from developing after TBI, or to mitigate its severity. It has long been recognized that seizure activity is associated with a local immune response, characterized by the activation of microglia and astrocytes and the release of a plethora of pro-inflammatory cytokines and chemokines. More recently, increasing evidence also supports a causal role for neuroinflammation in seizure induction and propagation, acting both directly and indirectly on neurons to promote regional hyperexcitability. In this narrative review, we focus on key aspects of the neuroinflammatory response that have been implicated in epilepsy, with a particular focus on PTE. The contributions of glial cells, blood-derived leukocytes, and the blood–brain barrier will be explored, as well as pro- and anti-inflammatory mediators. While the neuroinflammatory response to TBI appears to be largely pro-epileptogenic, further research is needed to clearly demonstrate causal relationships. This research has the potential to unveil new drug targets for PTE, and identify immune-based biomarkers for improved epilepsy prediction.
Collapse
|
9
|
Melatonin Modulates the Microenvironment of Glioblastoma Multiforme by Targeting Sirtuin 1. Nutrients 2019; 11:nu11061343. [PMID: 31207928 PMCID: PMC6627125 DOI: 10.3390/nu11061343] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 01/21/2023] Open
Abstract
Natural products have historically been regarded as an important resource of therapeutic agents. Resveratrol and melatonin have been shown to increase SIRT1 activity and stimulate deacetylation. Glioblastoma multiforme (GBM) is the deadliest of malignant types of tumor in the central nervous system (CNS) and their biological features make treatment difficult. In the glioma microenvironment, infiltrating immune cells has been shown to possess beneficial effects for tumor progression. We analyzed SIRT1, CCL2, VCAM-1 and ICAM-1 in human glioma cell lines by immunoblotting. The correlation between those markers and clinico-pathological grade of glioma patients were assessed by the Gene Expression Omnibus (GEO) datasets analysis. We also used monocyte-binding assay to study the effects of melatonin on monocyte adhesion to GBM. Importantly, overexpression of SIRT1 by genetic modification or treatment of melatonin significantly downregulated the adhesion molecular VCAM-1 and ICAM-1 expression in GBM. CCL2-mediated monocyte adhesion and expression of VCAM-1 and ICAM-1 were regulated through SIRT1 signaling. SIRT1 is an important modulator of monocytes interaction with GBM that gives the possibility of improved therapies for GBM. Hence, this study provides a novel treatment strategy for the understanding of microenvironment changes in tumor progression.
Collapse
|
10
|
Prophylactic Zinc and Therapeutic Selenium Administration Increases the Antioxidant Enzyme Activity in the Rat Temporoparietal Cortex and Improves Memory after a Transient Hypoxia-Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9416432. [PMID: 30258527 PMCID: PMC6146673 DOI: 10.1155/2018/9416432] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/31/2018] [Indexed: 11/17/2022]
Abstract
In the cerebral hypoxia-ischemia rat model, the prophylactic administration of zinc can cause either cytotoxicity or preconditioning effect, whereas the therapeutic administration of selenium decreases the ischemic damage. Herein, we aimed to explore whether supplementation of low doses of prophylactic zinc and therapeutic selenium could protect from a transient hypoxic-ischemic event. We administrated zinc (0.2 mg/kg of body weight; ip) daily for 14 days before a 10 min common carotid artery occlusion (CCAO). After CCAO, we administrated sodium selenite (6 μg/kg of body weight; ip) daily for 7 days. In the temporoparietal cerebral cortex, we determined nitrites by the Griess method and lipid peroxidation by the Gerard-Monnier assay. qPCR was used to measure mRNA of nitric oxide synthases, antioxidant enzymes, chemokines, and their receptors. We measured the enzymatic activity of SOD and GPx and protein levels of chemokines and their receptors by ELISA. We evaluated long-term memory using the Morris-Water maze test. Our results showed that prophylactic administration of zinc caused a preconditioning effect, decreasing nitrosative/oxidative stress and increasing GPx and SOD expression and activity, as well as eNOS expression. The therapeutic administration of selenium maintained this preconditioning effect up to the late phase of hypoxia-ischemia. Ccl2, Ccr2, Cxcl12, and Cxcr4 were upregulated, and long-term memory was improved. Pyknotic cells were decreased suggesting prevention of neuronal cell death. Our results show that the prophylactic zinc and therapeutic selenium administration induces effective neuroprotection in the early and late phases after CCAO.
Collapse
|
11
|
Hwang CJ, Park MH, Hwang JY, Kim JH, Yun NY, Oh SY, Song JK, Seo HO, Kim YB, Hwang DY, Oh KW, Han SB, Hong JT. CCR5 deficiency accelerates lipopolysaccharide-induced astrogliosis, amyloid-beta deposit and impaired memory function. Oncotarget 2017; 7:11984-99. [PMID: 26910914 PMCID: PMC4914263 DOI: 10.18632/oncotarget.7453] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 02/05/2016] [Indexed: 11/25/2022] Open
Abstract
Chemokine receptors are implicated in inflammation and immune responses. Neuro-inflammation is associated with activation of astrocyte and amyloid-beta (Aβ) generations that lead to pathogenesis of Alzheimer disease (AD). Previous our study showed that deficiency of CC chemokine receptor 5 (CCR5) results in activation of astrocytes and Aβ deposit, and thus memory dysfunction through increase of CC chemokine receptor 2 (CCR2) expression. CCR5 knockout mice were used as an animal model with memory dysfunction. For the purpose LPS was injected i.p. daily (0.25 mg/kg/day). The memory dysfunctions were much higher in LPS-injected CCR5 knockout mice compared to CCR5 wild type mice as well as non-injected CCR5 knockout mice. Associated with severe memory dysfuction in LPS injected CCR5 knockout mice, LPS injection significant increase expression of inflammatory proteins, astrocyte activation, expressions of β-secretase as well as Aβ deposition in the brain of CCR5 knockout mice as compared with that of CCR5 wild type mice. In CCR5 knockout mice, CCR2 expressions were high and co-localized with GFAP which was significantly elevated by LPS. Expression of monocyte chemoattractant protein-1 (MCP-1) which ligands of CCR2 also increased by LPS injection, and increment of MCP-1 expression is much higher in CCR5 knockout mice. BV-2 cells treated with CCR5 antagonist, D-ala-peptide T-amide (DAPTA) and cultured astrocytes isolated from CCR5 knockout mice treated with LPS (1 μg/ml) and CCR2 antagonist, decreased the NF-ĸB activation and Aβ level. These findings suggest that the deficiency of CCR5 enhances response of LPS, which accelerates to neuro-inflammation and memory impairment.
Collapse
Affiliation(s)
- Chul Ju Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Jae Yeon Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Ju Hwan Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Na Young Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Sang Yeon Oh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Ju Kyung Song
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyun Ok Seo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Yun-Bae Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Dae Yeon Hwang
- College of Natural Resources and Life Science, Pusan National University, Pusan, Republic of Korea
| | - Ki-Wan Oh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
12
|
Cédile O, Wlodarczyk A, Owens T. CCL2 recruits T cells into the brain in a CCR2-independent manner. APMIS 2017; 125:945-956. [PMID: 28836736 DOI: 10.1111/apm.12740] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/09/2017] [Indexed: 12/24/2022]
Abstract
CCL2 is a chemokine that can be induced during neuroinflammation to recruit immune cells, but its role in the central nervous system (CNS) is unclear. Our aim was to better understand its role. We induced CCL2 in CNS of naive CCL2-deficient mice using intrathecally administered replication-defective adenovirus and examined cell infiltration by flow cytometry. CCL2 expression induced pronounced and unexpected recruitment of regulatory and IFNγ-producing T cells to CNS from blood, possibly related to defective egress of monocytes from CCL2-deficient bone marrow. Infiltration also occurred in mice lacking CCR2, a receptor for CCL2. Expression of another receptor for CCL2, CCR4, and CXCR3, a receptor for CXCL10, which was also induced, were both increased in CCL2-treated CNS. CCR4 was expressed by neurons and astrocytes as well as CD4 T cells, and CXCR3 was expressed by CD4 and CD8 T cells. Chemokine-recruited T cells did not lead to CNS pathology. Our findings show a role for CCL2 in recruitment of CD4 T cells to the CNS and show that redundancy among chemokine receptors ensures optimal response.
Collapse
Affiliation(s)
- Oriane Cédile
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Agnieszka Wlodarczyk
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Trevor Owens
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
13
|
Xu J, Dong H, Qian Q, Zhang X, Wang Y, Jin W, Qian Y. Astrocyte-derived CCL2 participates in surgery-induced cognitive dysfunction and neuroinflammation via evoking microglia activation. Behav Brain Res 2017; 332:145-153. [PMID: 28587818 DOI: 10.1016/j.bbr.2017.05.066] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/15/2017] [Accepted: 05/30/2017] [Indexed: 12/14/2022]
Abstract
Neuroinflammation induced by peripheral trauma plays a key role in the development of postoperative cognitive dysfunction (POCD). Substantial evidence points to reactive glia as a pivotal factor during the inflammation process. However, little is known about the functional interactions between astrocytes and microglia. Recent evidence suggests the involvement of the CCL2-CCR2 pathway in CNS inflammation-related diseases. Our previous studies have suggested that astrocyte-derived CCL2 can induce microglial activation in vitro. Within this context, we sought to determine if the CCL2/CCR2 axis is involved in the crosstalk between astrocytes and microglia, contributing to increased neuroinflammation. Here, we show that tibial fracture surgery promoted CCL2 upregulation in activated astrocytes, increased CCR2 expression in activated microglia, and induced deficits in learning and memory. Site-directed pre-injection of RS504393, a CCR2 antagonist, inhibited this effect by reducing microglial activation, M1 polarization, inflammatory cytokines, and neuronal injury and death and improving cognitive function. Taken together, these data implicate CCL2-CCR2 signaling in astrocyte-mediated microglial activation in central nervous system (CNS) inflammation and suggest that interference with CCL2 signaling could constitute another potential therapeutic target for POCD.
Collapse
Affiliation(s)
- Jiawen Xu
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210002, PR China
| | - Hongquan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210002, PR China
| | - Qingqing Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210002, PR China
| | - Xiang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210002, PR China
| | - Yiwei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210002, PR China
| | - Wenjie Jin
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210002, PR China.
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210002, PR China.
| |
Collapse
|
14
|
Lee NY, Kim MH, Park CK. Visual Field Progression is Associated with Systemic Concentration of Macrophage Chemoattractant Protein-1 in Normal-Tension Glaucoma. Curr Eye Res 2017; 42:1002-1006. [PMID: 28306361 DOI: 10.1080/02713683.2016.1276193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE To investigate the associations between endothelin-1 (ET-1) and macrophage chemoattractant protein-1 (MCP-1) levels and visual field (VF) progression in normal-tension glaucoma (NTG). METHODS We conducted a prospective, longitudinal study in 71 patients with NTG. Blood samples from all subjects were assayed for ET-1 and MCP-1 concentrations, and baseline ophthalmic examinations, including the VF, were performed. Baseline data were compared with follow-up data over 3 years. RESULTS After 3 years of follow-up, 14 of the 71 patients showed VF progression, and the systemic MCP-1 level was significantly associated with VF progression (r = 0.318, p = 0.007). Multiple regression analysis showed that VF progression was significantly associated with MCP-1 (odds ratio, OR = 1.021, 95% CI = 1.003-1.040; p = 0.020) and optic disc hemorrhage (ODH; OR = 1.573; 95% CI = 1.140-2.170; p = 0.023). CONCLUSIONS Systemic MCP-1 levels were associated with VF progression in patients with NTG.
Collapse
Affiliation(s)
- Na Young Lee
- a College of Medicine , The Catholic University of Korea , Seoul , Korea.,b Department of Ophthalmology , Incheon St. Mary's Hospital , Incheon , Korea
| | - Min Hee Kim
- a College of Medicine , The Catholic University of Korea , Seoul , Korea.,c Department of Ophthalmology , Yeouido St. Mary's Hospital , Seoul , Korea
| | - Chan Kee Park
- a College of Medicine , The Catholic University of Korea , Seoul , Korea.,d Department of Ophthalmology , Seoul St. Mary's Hospital , Seoul , Korea
| |
Collapse
|
15
|
Cotrina ML, Lou N, Tome-Garcia J, Goldman J, Nedergaard M. Direct comparison of microglial dynamics and inflammatory profile in photothrombotic and arterial occlusion evoked stroke. Neuroscience 2017; 343:483-494. [PMID: 28003156 PMCID: PMC5523105 DOI: 10.1016/j.neuroscience.2016.12.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/03/2016] [Accepted: 12/07/2016] [Indexed: 12/25/2022]
Abstract
Many focal cerebral ischemia models utilize the middle cerebral artery occlusion (MCAO) evoked by coagulation to induce ischemic damage in the cortex and mimic the pathology observed in human patients. A second, increasingly popular model, the photothrombotic stroke, uses a laser beam to irradiate the MCA after administration of a photosensitizing dye. This widely used procedure is slowly replacing the MCAO model because of the easiness of the surgical protocol and the reproducibility of the damage. However, the photochemical reaction also results in wider microvascular injury. In this study, we have evaluated the impact of these two types of stroke in the cell survival and evolution of stroke, focusing on microglial cells, the first responders to cell injury. Two groups of heterozygote Cx3CR1-GFP reporter mice (to follow microglia) were subject to stroke injury either with coagulator-mediated occlusion or photothrombotic MCA damage. Microglial cells' dynamics of activation and phagocytosis together with astrocytic response and leukocyte infiltration were characterized at 1, 3 and 7days after damage. Photothrombotic stroke delayed microglial and astrocytic invasion of the ischemic core and accumulation of phagocytic microglia. It also elicited higher levels of inflammatory cytokines/chemokines and increased infiltration from the periphery. In addition, only the neurons in the MCAO stroke showed phenotype plasticity by downregulating the transcription factor NeuN. These data provide a better understanding of the exact temporal and spatial dynamics of the inflammatory response in these two animal models of stroke and identify more relevant targets for human therapy.
Collapse
Affiliation(s)
- Maria L Cotrina
- Division of Glia Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY 14640
| | - Nanghong Lou
- Division of Glia Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY 14640
| | - Jessica Tome-Garcia
- Department of Pathology and Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James Goldman
- Department of Pathology, Columbia University Medical Center
| | - Maiken Nedergaard
- Division of Glia Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY 14640
| |
Collapse
|
16
|
Anti-Inflammation of Natural Components from Medicinal Plants at Low Concentrations in Brain via Inhibiting Neutrophil Infiltration after Stroke. Mediators Inflamm 2016; 2016:9537901. [PMID: 27688603 PMCID: PMC5027307 DOI: 10.1155/2016/9537901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/27/2016] [Accepted: 06/14/2016] [Indexed: 12/17/2022] Open
Abstract
Inflammation after stroke consists of activation of microglia/astrocytes in situ and infiltration of blood-borne leukocytes, resulting in brain damage and neurological deficits. Mounting data demonstrated that most natural components from medicinal plants had anti-inflammatory effects after ischemic stroke through inhibiting activation of resident microglia/astrocytes within ischemic area. However, it is speculated that this classical activity cannot account for the anti-inflammatory function of these natural components in the cerebral parenchyma, where they are detected at very low concentrations due to their poor membrane permeability and slight leakage of BBB. Could these drugs exert anti-inflammatory effects peripherally without being delivered across the BBB? Factually, ameliorating blood-borne neutrophil recruitment in peripheral circulatory system has been proved to reduce ischemic damage and improve outcomes. Thus, it is concluded that if drugs could achieve effective concentrations in the cerebral parenchyma, they can function via crippling resident microglia/astrocytes activation and inhibiting neutrophil infiltration, whereas the latter will be dominating when these drugs localize in the brain at a low concentration. In this review, the availability of some natural components crossing the BBB in stroke will be discussed, and how these drugs lead to improvements in stroke through inhibition of neutrophil rolling, adhesion, and transmigration will be illustrated.
Collapse
|
17
|
Xing C, Lo EH. Help-me signaling: Non-cell autonomous mechanisms of neuroprotection and neurorecovery. Prog Neurobiol 2016; 152:181-199. [PMID: 27079786 DOI: 10.1016/j.pneurobio.2016.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 12/11/2022]
Abstract
Self-preservation is required for life. At the cellular level, this fundamental principle is expressed in the form of molecular mechanisms for preconditioning and tolerance. When the cell is threatened, internal cascades of survival signaling become triggered to protect against cell death and defend against future insults. Recently, however, emerging findings suggest that this principle of self-preservation may involve not only intracellular signals; the release of extracellular signals may provide a way to recruit adjacent cells into an amplified protective program. In the central nervous system where multiple cell types co-exist, this mechanism would allow threatened neurons to "ask for help" from glial and vascular compartments. In this review, we describe this new concept of help-me signaling, wherein damaged or diseased neurons release signals that may shift glial and vascular cells into potentially beneficial phenotypes, and help remodel the neurovascular unit. Understanding and dissecting these non-cell autonomous mechanisms of self-preservation in the CNS may lead to novel opportunities for neuroprotection and neurorecovery.
Collapse
Affiliation(s)
- Changhong Xing
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | - Eng H Lo
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
18
|
Kawamura Y, Nakayama A, Kato T, Miura H, Ishihara N, Ihira M, Takahashi Y, Matsuda K, Yoshikawa T. Pathogenic Role of Human Herpesvirus 6B Infection in Mesial Temporal Lobe Epilepsy. J Infect Dis 2015; 212:1014-21. [DOI: 10.1093/infdis/jiv160] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/29/2015] [Indexed: 11/13/2022] Open
|
19
|
Zhang X, Chen C, Ma S, Wang Y, Zhang X, Su X. Inhibition of monocyte chemoattractant peptide-1 decreases secondary spinal cord injury. Mol Med Rep 2015; 11:4262-6. [PMID: 25672988 DOI: 10.3892/mmr.2015.3330] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 05/13/2013] [Indexed: 11/06/2022] Open
Abstract
Previous studies have suggested that impairment secondary to mechanical injury is a major cause of irreversible damage to the spinal cord. Inflammatory chemokines have been shown to play an important role in the pathological and physiological consequences of secondary spinal cord injury (SCI). The aim of the present study was to evaluate how changes in the expression levels of the cellular chemokine, monocyte chemoattractant peptide-1 (MCP-1), and the chemotaxis of inflammatory cells (monocytes and macrophages) are involved in the process of SCI. RNA interference methods were used to study the mechanisms that protect residual neurons after SCI in an attempt to explore novel, early interventions for managing SCI. Our results suggested that inhibiting inflammation alleviates nerve cell injury caused by apoptosis and provides a potentially important approach for the future treatment of secondary SCI.
Collapse
Affiliation(s)
- Xuesong Zhang
- Spine Department, General Hospital of PLA, Beijing 100853, P.R. China
| | - Chao Chen
- Spine Department, General Hospital of PLA, Beijing 100853, P.R. China
| | - Shengzhong Ma
- Spine Department, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yan Wang
- Spine Department, General Hospital of PLA, Beijing 100853, P.R. China
| | - Xuelian Zhang
- Endocrine Department, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Xiaojing Su
- Spine Department, General Hospital of PLA, Beijing 100853, P.R. China
| |
Collapse
|
20
|
Famakin BM. The Immune Response to Acute Focal Cerebral Ischemia and Associated Post-stroke Immunodepression: A Focused Review. Aging Dis 2014; 5:307-26. [PMID: 25276490 DOI: 10.14336/ad.2014.0500307] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022] Open
Abstract
It is currently well established that the immune system is activated in response to transient or focal cerebral ischemia. This acute immune activation occurs in response to damage, and injury, to components of the neurovascular unit and is mediated by the innate and adaptive arms of the immune response. The initial immune activation is rapid, occurs via the innate immune response and leads to inflammation. The inflammatory mediators produced during the innate immune response in turn lead to recruitment of inflammatory cells and the production of more inflammatory mediators that result in activation of the adaptive immune response. Under ideal conditions, this inflammation gives way to tissue repair and attempts at regeneration. However, for reasons that are just being understood, immunosuppression occurs following acute stroke leading to post-stroke immunodepression. This review focuses on the current state of knowledge regarding innate and adaptive immune activation in response to focal cerebral ischemia as well as the immunodepression that can occur following stroke. A better understanding of the intricate and complex events that take place following immune response activation, to acute cerebral ischemia, is imperative for the development of effective novel immunomodulatory therapies for the treatment of acute stroke.
Collapse
Affiliation(s)
- Bolanle M Famakin
- National Institutes of Health, National Institute of Neurological Diseases and Stroke, Stroke Branch, Branch, Bethesda, MD, 20892, USA
| |
Collapse
|
21
|
Bose S, Cho J. Role of chemokine CCL2 and its receptor CCR2 in neurodegenerative diseases. Arch Pharm Res 2013; 36:1039-50. [PMID: 23771498 DOI: 10.1007/s12272-013-0161-z] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/20/2013] [Indexed: 01/25/2023]
Abstract
Chemokines are members of the chemoattractant cytokine family. They play key roles in the trafficking of leukocytes and in the induction of chemotaxis through the activation of G protein-coupled receptor. Considerable interest has been paid to these molecules to elucidate their roles in the unique inflammatory responses elicited in the central nervous system (CNS). Chemokine CCL2 (also known as monocyte chemoattractant protein-1, MCP-1) is one of the vital chemokines that control the migration and infiltration of monocytes/macrophages. CCL2 and its receptor CCR2 have been shown to be induced and involved in various neurodegenerative disorders including Alzheimer's disease, multiple sclerosis, and ischemic brain injury. The present review will focus on the biological and pathophysiological aspects of CCL2 and CCR2 in the CNS and the possible therapeutic approaches for targeting these two proteins to combat neurodegenerative diseases.
Collapse
Affiliation(s)
- Shambhunath Bose
- College of Pharmacy, Dongguk University, Goyang, 410-820, Republic of Korea
| | | |
Collapse
|
22
|
Koyama Y, Kotani M, Sawamura T, Kuribayashi M, Konishi R, Michinaga S. Different actions of endothelin-1 on chemokine production in rat cultured astrocytes: reduction of CX3CL1/fractalkine and an increase in CCL2/MCP-1 and CXCL1/CINC-1. J Neuroinflammation 2013; 10:51. [PMID: 23627909 PMCID: PMC3675376 DOI: 10.1186/1742-2094-10-51] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/02/2013] [Indexed: 01/03/2023] Open
Abstract
Background Chemokines are involved in many pathological responses of the brain.
Astrocytes produce various chemokines in brain disorders, but little is
known about the factors that regulate astrocytic chemokine production.
Endothelins (ETs) have been shown to regulate astrocytic functions through
ETB receptors. In this study, the effects of ETs on chemokine
production were examined in rat cerebral cultured astrocytes. Methods Astrocytes were prepared from the cerebra of one- to two-day-old Wistar rats
and cultured in serum-containing medium. After serum-starvation for 48
hours, astrocytes were treated with ETs. Total RNA was extracted using an
acid-phenol method and expression of chemokine mRNAs was determined by
quantitative RT-PCR. The release of chemokines was measured by ELISA. Results Treatment of cultured astrocytes with ET-1 and Ala1,3,11,15-ET-1,
an ETB agonist, increased mRNA levels of CCL2/MCP1 and
CXCL1/CINC-1. In contrast, CX3CL1/fractalkine mRNA expression decreased in
the presence of ET-1 and Ala1,3,11,15-ET-1. The effect of ET-1 on
chemokine mRNA expression was inhibited by BQ788, an ETB
antagonist. ET-1 increased CCL2 and CXCL1 release from cultured astrocytes,
but decreased that of CX3CL1. The increase in CCL2 and CXCL1 expression by
ET-1 was inhibited by actinomycin D, pyrrolidine dithiocarbamate, SN50,
mithramycin, SB203580 and SP600125. The decrease in CX3CL1 expression by
ET-1 was inhibited by cycloheximide, Ca2+ chelation and
staurosporine. Conclusion These findings suggest that ETs are one of the factors regulating astrocytic
chemokine production. Astrocyte-derived chemokines are involved in
pathophysiological responses of neurons and microglia. Therefore, the
ET-induced alterations of astrocytic chemokine production are of
pathophysiological significance in damaged brains.
Collapse
Affiliation(s)
- Yutaka Koyama
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tonda-bayashi, Osaka, 584-8540, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Neuroimmune communication in hypertension and obesity: a new therapeutic angle? Pharmacol Ther 2013; 138:428-40. [PMID: 23458610 DOI: 10.1016/j.pharmthera.2013.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 02/12/2013] [Indexed: 12/13/2022]
Abstract
Hypertension is an epidemic health concern and a major risk factor for the development of cardiovascular disease. Although there are available treatment strategies for hypertension, numerous hypertensive patients do not have their clinical symptoms under control and it is imperative that new avenues to treat or prevent high blood pressure in these patients are developed. It is well established that increases in sympathetic nervous system (SNS) outflow and enhanced renin-angiotensin system (RAS) activity are common features of hypertension and various pathological conditions that predispose individuals to hypertension. More recently, hypertension has also become recognized as an immune condition and accumulating evidence suggests that interactions between the RAS, SNS and immune systems play a role in blood pressure regulation. This review summarizes what is known about the interconnections between the RAS, SNS and immune systems in the neural regulation of blood pressure. Based on the reviewed studies, a model for RAS/neuroimmune interactions during hypertension is proposed and the therapeutic potential of targeting RAS/neuroimmune interactions in hypertensive patients is discussed. Special emphasis is placed on the applicability of the proposed model to obesity-related hypertension.
Collapse
|
24
|
Réaux-Le Goazigo A, Van Steenwinckel J, Rostène W, Mélik Parsadaniantz S. Current status of chemokines in the adult CNS. Prog Neurobiol 2013; 104:67-92. [PMID: 23454481 DOI: 10.1016/j.pneurobio.2013.02.001] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 02/01/2013] [Accepted: 02/03/2013] [Indexed: 12/13/2022]
Abstract
Chemokines - chemotactic cytokines - are small secreted proteins that attract and activate immune and non-immune cells in vitro and in vivo. It has been suggested that chemokines and their receptors play a role in the central nervous system (CNS), in addition to their well established role in the immune system. We focus here on three chemokines-CXCL12 (C-X-C motif ligand 12), CCL2 (C-C motif ligand 2), and CX3CL1 (C-X-3C motif ligand 1) - and their principal receptors - CXCR4 (C-X-C motif receptor 4), CCR2 (C-C motif receptor 2) and CX3CR1 (C-X-3C motif receptor 1), respectively. We first introduce the classification of chemokines and their G-protein coupled receptors and the main signaling pathways triggered by receptor activation. We then discuss the cellular distribution of CXCL12/CXCR4, CCL2/CCR2 and CX3CL1/CX3CR1 in adult brain and the neurotransmission and neuromodulation effects controlled by these chemokines in the adult CNS. Changes in the expression of CXCL12, CCL2 and CX3CL1 and their respective receptors are also increasingly being implicated in the pathogenesis of CNS disorders, such as Alzheimer's disease, Parkinson's disease, HIV-associated encephalopathy, stroke and multiple sclerosis, and are therefore plausible targets for future pharmacological intervention. The final section thus discusses the role of these chemokines in these pathophysiological states. In conclusion, the role of these chemokines in cellular communication may make it possible: (i) to identify new pathways of neuron-neuron, glia-glia or neuron-glia communications relevant to both normal brain function and neuroinflammatory and neurodegenerative diseases; (ii) to develop new therapeutic approaches for currently untreatable brain diseases.
Collapse
|
25
|
Wang S, Song L, Tan Y, Ma Y, Tian Y, Jin X, Lim G, Zhang S, Chen L, Mao J. A functional relationship between trigeminal astroglial activation and NR1 expression in a rat model of temporomandibular joint inflammation. PAIN MEDICINE 2012; 13:1590-600. [PMID: 23110394 DOI: 10.1111/j.1526-4637.2012.01511.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To examine the hypothesis that glial activation would regulate the expression of the N-methyl-D-aspartate receptor subunit 1 (NR1) in the trigeminal subnucleus caudalis (Sp5C) after temporomandibular joint (TMJ) inflammation. METHODS Inflammation of TMJ was produced in rats by injecting 50 μL complete Freund's adjuvant (CFA) into unilateral TMJ space. Sham control rats received incomplete Freund's adjuvant injection. Mechanical nociception in the affected and non-affected TMJ site was tested by using a digital algometer. Fractalkine, fluorocitrate, and/or MK801 were intracisternally administrated to examine the relationship between astroglial activation and NR1 upregulation. RESULTS CFA TMJ injection resulted in persistent ipsilateral mechanical hyperalgesia 1, 3, and 5 days after CFA injection. The inflammation also induced significant upregulation of CX3C chemokine receptor 1 and glial fibrillary acidic protein (GFAP) beginning on day 1 and of NR1 beginning on day 3 within the ipsilateral Sp5C. Intracisternal administration of fluorocitrate for 5 days blocked the development of mechanical hyperalgesia as well as the upregulation of GFAP and NR1 in the Sp5C. Conversely, intracisternal injection of fractalkine for 5 days exacerbated the expression of NR1 in Sp5C and mechanical hyperalgesia induced by TMJ inflammation. Moreover, once daily intracisternal fractalkine administration for 5 days in naïve rats induced the upregulation of NR1 and mechanical hyperalgesia. CONCLUSIONS These results suggest that astroglial activation contributes to the mechanism of TMJ pain through the regulation of NR1 expression in Sp5C.
Collapse
Affiliation(s)
- Shuxing Wang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Guo C, Otani A, Oishi A, Kojima H, Makiyama Y, Nakagawa S, Yoshimura N. Knockout of ccr2 alleviates photoreceptor cell death in a model of retinitis pigmentosa. Exp Eye Res 2012; 104:39-47. [PMID: 23022404 DOI: 10.1016/j.exer.2012.08.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 07/23/2012] [Accepted: 08/31/2012] [Indexed: 01/23/2023]
Abstract
Neuroinflammation involving CC chemokines such as monocyte chemoattractant protein-1 (MCP-1) has been demonstrated in the pathological process of retinitis pigmentosa (RP), an inherited degenerative retinal disease. However, the mechanism of MCP-1 and its receptor CCR2 involvement in the disease remains unclear. To investigate the role of MCP1/CCR2 in RP pathogenesis, ccr2 mutant RP mice (ccr2(-/-) rd10) were created and analyzed. The expression of MCP-1, RANTES, stromal cell-derived factor (SDF-1), and tumor necrosis factor-α (TNF-α) in the retinas of wild-type, rd10, and ccr2(-/-) rd10 mice was analyzed using quantitative RT-PCR. Photoreceptor apoptosis (TUNEL staining) and the number of microglia (positive for the F4/80 antibody) in the retina were examined. Retinal function was assessed using electroretinograms, and the structure of the whole retina was analyzed from images obtained using optical coherence tomography (OCT) and by histological examination. The expression levels of MCP-1, RANTES, and SDF-1 increased with time in the rd10 mice but not in the wild-type mice. Rearing the mice in the dark prevented degeneration and resulted in thicker photoreceptor layers at each time point. In those mice, the peaks of chemokine expression shifted to a later time with degeneration, suggesting that the expression of these chemokines was induced during the progression of degeneration. Although the difference was not so obvious, the retina in the ccr2(-/-) rd10 mice was consistently and significantly thicker than that in the rd10 (ccr2(+/+) rd10) mice at all time points. Rhodopsin gene expression was also higher in the ccr2(-/-) rd10 mice than in rd10 (ccr2(+/+) rd10) mice, suggesting photoreceptor survival in the former. Retinal function was also better preserved in the ccr2(-/-) rd10 mice than in the rd10 mice. The number of microglia in the retinas of the ccr2(-/-) rd10 mice was significantly lower than that in the retinas of the rd10 mice. Interestingly, the MCP-1 induction that was observed in the retinas of the rd10 mice was diminished in the retinas of the ccr2(-/-) rd10 mice. Our results suggest that the MCP-1/CCR2 system plays a role in retinal degeneration in rd mouse retinas. Retinal MCP-1 expression in the rd mouse retina may be partially controlled by ccr2-positive circulating cells.
Collapse
Affiliation(s)
- Congrong Guo
- Department of Ophthalmology, Kyoto University Graduate School of Medicine, 54-Kawaharacho, Shogoin, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Xu F, Yu ZY, Ding L, Zheng SY. Experimental studies of erythropoietin protection following traumatic brain injury in rats. Exp Ther Med 2012; 4:977-982. [PMID: 23226759 PMCID: PMC3494136 DOI: 10.3892/etm.2012.723] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/21/2012] [Indexed: 11/25/2022] Open
Abstract
This study aimed to explore the effect of erythropoietin (EPO) on brain tissue after traumatic brain injury in rats. Animals were divided into sham, control and EPO groups. The model was constructed using the improved Feeney’s free falling weight traumatic brain injury model. The brain water content and the number of the apoptotic monocyte chemotactic protein-1+ (MCP-1+) and CD68+ cells were monitored at 12, 48 and 120 h post-trauma. The water content was lower in the EPO group at each time point compared to the control group. The number of apoptotic MCP-1+ and CD68+ cells surrounding the traumatic brain injury lesion was less in the EPO group compared to these values in the control group. In conclusion, following traumatic brain injury, EPO significantly decreased the number of apoptotic cells, the expression of MCP-1, the infiltration of CD68+ cells as well as brain edema to protect the brain.
Collapse
Affiliation(s)
- Feng Xu
- Department of Emergency Surgery, The First Affiliated Hospital of Soochow University
| | | | | | | |
Collapse
|
28
|
Lee NY, Park HYL, Park CK, Ahn MD. Analysis of systemic endothelin-1, matrix metalloproteinase-9, macrophage chemoattractant protein-1, and high-sensitivity C-reactive protein in normal-tension glaucoma. Curr Eye Res 2012; 37:1121-6. [PMID: 22966842 DOI: 10.3109/02713683.2012.725798] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate the roles of vascular dysregulation and inflammation in normal-tension glaucoma (NTG), we determined the plasma levels of endothelin-1 (ET-1), matrix metalloproteinase-9 (MMP-9), macrophage chemoattractant protein-1 (MCP-1), and high-sensitivity C-reactive protein (hs-CRP). MATERIALS AND METHODS Forty-five patients with NTG and age-matched 35 healthy controls were enrolled in this study. Blood samples from all subjects were assayed for ET-1, MMP-9, MCP-1, and hs-CRP concentrations and other systemic factors. RESULTS There were no significant differences in hemoglobin, hematocrit, RBC count, WBC count, platelet count, fasting glucose, HbA1c, total cholesterol, triglyceride, LDL, and HDL between the NTG and control groups. The systemic levels of ET-1 and MCP-1 were significantly higher in the NTG group than in the control group (p = 0.05 and 0.02, respectively). The MMP-9 and hs-CRP levels were not significantly different between the NTG and control groups. CONCLUSIONS After excluding patients with cardiovascular and other systemic diseases, plasma ET-1 and MCP-1 levels were elevated in patients with NTG. The MMP-9 and hs-CRP levels were not significantly different in NTG. Increased ET-1 and MCP-1 levels suggest that ischemia/inflammation may play a role in the pathogenesis of NTG.
Collapse
Affiliation(s)
- Na Young Lee
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | |
Collapse
|
29
|
Jaerve A, Müller HW. Chemokines in CNS injury and repair. Cell Tissue Res 2012; 349:229-48. [PMID: 22700007 DOI: 10.1007/s00441-012-1427-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/05/2012] [Indexed: 12/17/2022]
Abstract
Recruitment of inflammatory cells is known to drive the secondary damage cascades that are common to injuries of the central nervous system (CNS). Cell activation and infiltration to the injury site is orchestrated by changes in the expression of chemokines, the chemoattractive cytokines. Reducing the numbers of recruited inflammatory cells by the blocking of the action of chemokines has turned out be a promising approach to diminish neuroinflammation and to improve tissue preservation and neovascularization. In addition, several chemokines have been shown to be essential for stem/progenitor cell attraction, their survival, differentiation and cytokine production. Thus, chemokines might indirectly participate in remyelination, neovascularization and neuroprotection, which are important prerequisites for CNS repair after trauma. Moreover, CXCL12 promotes neurite outgrowth in the presence of growth inhibitory CNS myelin and enhances axonal sprouting after spinal cord injury (SCI). Here, we review current knowledge about the exciting functions of chemokines in CNS trauma, including SCI, traumatic brain injury and stroke. We identify common principles of chemokine action and discuss the potentials and challenges of therapeutic interventions with chemokines.
Collapse
Affiliation(s)
- Anne Jaerve
- Molecular Neurobiology Laboratory, Department of Neurology, Medical Faculty Heinrich Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | |
Collapse
|
30
|
Rosenblum S, Wang N, Smith TN, Pendharkar AV, Chua JY, Birk H, Guzman R. Timing of intra-arterial neural stem cell transplantation after hypoxia-ischemia influences cell engraftment, survival, and differentiation. Stroke 2012; 43:1624-31. [PMID: 22535265 DOI: 10.1161/strokeaha.111.637884] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND PURPOSE Intra-arterial neural stem cell (NSC) transplantation shows promise as a minimally invasive therapeutic option for stroke. We assessed the effect of timing of transplantation on cell engraftment, survival, and differentiation. METHODS Mouse NSCs transduced with a green fluorescent protein and renilla luciferase reporter gene were transplanted into animals 6 and 24 hours and 3, 7, and 14 days after hypoxia-ischemia (HI). Bioluminescent imaging was used to assess cell survival at 6 hours and 4 and 7 days after transplantation. Immunohistochemistry was used to assess NSC survival and phenotypic differentiation 1 month after transplantation. NSC receptor expression and brain gene expression were evaluated using real-time reverse transcription-quantitative polymerase chain reaction to elucidate mechanisms of cell migration. Boyden chamber assays were used to assess cell migratory potential in vitro. RESULTS NSC transplantation 3 days after HI resulted in significantly higher cell engraftment and survival at 7 and 30 days compared with all other groups (P<0.05). Early transplantation at 6 and 24 hours after HI resulted in significantly higher expression of glial fibrillary acidic protein (P=0.0140), whereas late transplantation at 7 and 14 days after HI resulted in higher expression of β-tubulin (P<0.0001). Corroborating the high cell engraftment 3 days after HI was robust expression of vascular cell adhesion molecule-1, CCL2, and CXCL12 in brain homogenates 3 days after HI. CONCLUSIONS Intra-arterial transplantation 3 days after HI results in the highest cell engraftment. Early transplantation of NSCs leads to greater differentiation into astrocytes, whereas transplantation at later time points leads to greater differentiation into neurons.
Collapse
Affiliation(s)
- Sahar Rosenblum
- Department of Neurosurgery, Stanford University, 300 Pasteur Drive R211, Stanford, CA 94305-5327. or
| | | | | | | | | | | | | |
Collapse
|
31
|
Chemokines and their receptors in intracerebral hemorrhage. Transl Stroke Res 2012; 3:70-9. [PMID: 24323863 DOI: 10.1007/s12975-012-0155-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 12/11/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating clinical event which results in a high rate of disability and death. At present, no effective treatment is available for ICH. Accumulating evidence suggests that inflammatory responses contribute significantly to the ICH-induced secondary brain outcomes. During ICH, inflammatory cells accumulate at the ICH site attracted by gradients of chemokines. This review summarizes recent progress in ICH studies and the chemoattractants that act during the injury and focuses on and introduces the basic biology of the chemokine monocyte chemoattractant protein-1 (MCP1) and its role in the progression of ICH. Better understanding of MCP1 signaling cascade and the compensation after its inhibition could shed light on the development of effective treatments for ICH.
Collapse
|
32
|
Bye N, Turnley AM, Morganti-Kossmann MC. Inflammatory regulators of redirected neural migration in the injured brain. Neurosignals 2012; 20:132-46. [PMID: 22456466 DOI: 10.1159/000336542] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 01/16/2012] [Indexed: 01/19/2023] Open
Abstract
Brain injury following stroke or trauma induces the migration of neuroblasts derived from subventricular zone neural precursor cells (NPCs) towards the damaged tissue, where they then have the potential to contribute to repair. Enhancing the recruitment of new cells thus presents an enticing prospect for the development of new therapeutic approaches to treat brain injury; to this end, an understanding of the factors regulating this process is required. During the neuroinflammatory response to ischemic and traumatic brain injuries, a plethora of pro- and anti-inflammatory cytokines, chemokines and growth factors are released in the damaged tissue, and recent work indicates that a variety of these are able to influence injury-induced migration. In this review, we will discuss the contribution of specific chemokines and growth factors towards stimulating NPC migration in the injured brain.
Collapse
Affiliation(s)
- Nicole Bye
- National Trauma Research Institute, Alfred Hospital, Department of Surgery, Monash University, Melbourne, Vic, Australia.
| | | | | |
Collapse
|
33
|
Stowe AM, Wacker BK, Cravens PD, Perfater JL, Li MK, Hu R, Freie AB, Stüve O, Gidday JM. CCL2 upregulation triggers hypoxic preconditioning-induced protection from stroke. J Neuroinflammation 2012; 9:33. [PMID: 22340958 PMCID: PMC3298779 DOI: 10.1186/1742-2094-9-33] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 02/16/2012] [Indexed: 02/04/2023] Open
Abstract
Background A brief exposure to systemic hypoxia (i.e., hypoxic preconditioning; HPC) prior to transient middle cerebral artery occlusion (tMCAo) reduces infarct volume, blood-brain barrier disruption, and leukocyte migration. CCL2 (MCP-1), typically regarded as a leukocyte-derived pro-inflammatory chemokine, can also be directly upregulated by hypoxia-induced transcription. We hypothesized that such a hypoxia-induced upregulation of CCL2 is required for HPC-induced ischemic tolerance. Methods Adult male SW/ND4, CCL2-null, and wild-type mice were used in these studies. Cortical CCL2/CCR2 message, protein, and cell-type specific immunoreactivity were determined following HPC (4 h, 8% O2) or room air control (21% O2) from 6 h through 2 weeks following HPC. Circulating leukocyte subsets were determined by multi-parameter flow cytometry in naïve mice and 12 h after HPC. CCL2-null and wild-type mice were exposed to HPC 2 days prior to tMCAo, with immunoneutralization of CCL2 during HPC achieved by a monoclonal CCL2 antibody. Results Cortical CCL2 mRNA and protein expression peaked at 12 h after HPC (both p < 0.01), predominantly in cortical neurons, and returned to baseline by 2 days. A delayed cerebral endothelial CCL2 message expression (p < 0.05) occurred 2 days after HPC. The levels of circulating monocytes (p < 0.0001), T lymphocytes (p < 0.0001), and granulocytes were decreased 12 h after HPC, and those of B lymphocytes were increased (p < 0.0001), but the magnitude of these respective changes did not differ between wild-type and CCL2-null mice. HPC did decrease the number of circulating CCR2+ monocytes (p < 0.0001) in a CCL2-dependent manner, but immunohistochemical analyses at this 12 h timepoint indicated that this leukocyte subpopulation did not move into the CNS. While HPC reduced infarct volumes by 27% (p < 0.01) in wild-type mice, CCL2-null mice subjected to tMCAo were not protected by HPC. Moreover, administration of a CCL2 immunoneutralizing antibody prior to HPC completely blocked (p < 0.0001 vs. HPC-treated mice) the development of ischemic tolerance. Conclusions The early expression of CCL2 in neurons, the delayed expression of CCL2 in cerebral endothelial cells, and CCL2-mediated actions on circulating CCR2+ monocytes, appear to be required to establish ischemic tolerance to focal stroke in response to HPC, and thus represent a novel role for this chemokine in endogenous neurovascular protection.
Collapse
Affiliation(s)
- Ann M Stowe
- Department of Neurological Surgery, Washington University School of Medicine, 660 S, Euclid Ave,, Box 8057, St, Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kranjac D, McLinden KA, Deodati LE, Papini MR, Chumley MJ, Boehm GW. Peripheral bacterial endotoxin administration triggers both memory consolidation and reconsolidation deficits in mice. Brain Behav Immun 2012; 26:109-21. [PMID: 21889586 DOI: 10.1016/j.bbi.2011.08.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/18/2011] [Accepted: 08/18/2011] [Indexed: 10/17/2022] Open
Abstract
Peripherally administered inflammatory stimuli, such as lipopolysaccharide (LPS), induce the synthesis and release of proinflammatory cytokines and chemokines in the periphery and the central nervous system, and trigger a variety of neurobiological responses. Indeed, prior reports indicate that peripheral LPS administration in rats disrupts contextual fear memory consolidation processes, potentially due to elevated cytokine expression. We used a similar, but partially olfaction-based, contextual fear conditioning paradigm to examine the effects of LPS on memory consolidation and reconsolidation in mice. Additionally, interleukin-1β (IL-1β), brain-derived neurotrophic factor (BDNF), and zinc finger (Zif)-268 mRNA expression in the hippocampus and the cortex, along with peripheral cytokines and chemokines, were assessed. As hypothesized, LPS administered immediately or 2 h, but not 12 h, post-training impaired memory consolidation processes that support the storage of the conditioned contextual fear memory. Additionally, as hypothesized, LPS administered immediately following the fear memory trace reactivation session impaired memory reconsolidation processes. Four hours post-injection, both central cytokine and peripheral cytokine and chemokine levels were heightened in LPS-treated animals, with a simultaneous decrease in BDNF, but not Zif-268, mRNA. Collectively, these data reinforce prior work showing LPS- and cytokine-related effects on memory consolidation, and extend this work to memory reconsolidation.
Collapse
Affiliation(s)
- Dinko Kranjac
- Department of Psychology, Texas Christian University, Fort Worth, TX 76129, USA
| | | | | | | | | | | |
Collapse
|
35
|
Yamanaka R, Kajiwara K. Dendritic cell vaccines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 746:187-200. [PMID: 22639169 DOI: 10.1007/978-1-4614-3146-6_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite progress in brain tumor therapy, the prognosis of malignant glioma patients remains dismal. Among the new treatments currently being investigated, immunotherapy is theoretically very attractive since it offers the potential for high tumor-specific cytotoxicity. Increasing numbers of reports demonstrate that systemic immunotherapy using dendritic cells is capable of inducing an antiglioma response. Therefore, dendritic cell-based immunotherapy could be a new treatment modality for patients with glioma. In this chapter, we will discuss the implications of these findings for glioma therapy, reviewing current literature on dendritic cell-based glioma immunotherapy. We will overview the role of dendritic cells in immunobiology, the central nervous system and tumor immunology, before outlining dendritic cell therapy results in clinical trials and future directions. Dendritic cell-based immunotherapy strategies appear promising as an approach to successfully induce an antitumor immune response in patients with glioma, where it seems to be safe and without major side effects. The development of methods for manipulating dendritic cells for the purpose of vaccination will enhance the clinical usefulness of these cells for biotherapy. Its efficacy should be further determined in randomized, controlled clinical trials.
Collapse
|
36
|
Lichtenstein MP, Madrigal JLM, Pujol A, Galea E. JNK/ERK/FAK mediate promigratory actions of basic fibroblast growth factor in astrocytes via CCL2 and COX2. Neurosignals 2011; 20:86-102. [PMID: 22189091 DOI: 10.1159/000330805] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 07/07/2011] [Indexed: 12/31/2022] Open
Abstract
While the role of cytokines in causing pro- and anti-inflammatory cascades in the brain and that of chemokines in promoting chemotaxis is well recognized, the immunomodulatory actions of neurotrophins released during brain injury remains largely undetermined. This knowledge gap affects basic fibroblast growth factor (FGF2), which in the brain is mainly produced by astrocytes and characteristically upregulated in reactive astrocytes. The goal of this study was to characterize the inflammatory actions of FGF2 in astrocytes using primary cultures. We report that FGF2 induced the upregulation of monocyte chemoattractant protein (CCL2) and cyclo-oxygenase type 2 (COX2), and the inhibition of lipopolysaccharide-elicited ICAM1 upregulation. The effects of FGF2 were: (i) dependent on gene transcription as revealed by the concomitant regulation of CCL2 or ICAM1 mRNAs; (ii) mediated by the FGF2 receptor type 2; (iii) dependent on ERK, JNK and FAK, and (iv) NF-κB-independent. FGF2 also caused accelerated wound closure dependent on CCL2, COX2, ERK, JNK and FAK in a scratch assay. We conclude that the signaling network triggered by FGF2 in astrocytes converged into accelerating directed motion. It follows that astrocyte migration to injury sites may be a key factor in the repair mechanisms orchestrated by FGF2.
Collapse
|
37
|
Functional genomics reveals an essential and specific role for Stat1 in protection of the central nervous system following herpes simplex virus corneal infection. J Virol 2011; 85:12972-81. [PMID: 21994441 DOI: 10.1128/jvi.06032-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Innate immune deficiencies result in a spectrum of severe clinical outcomes following infection. In particular, there is a strong association between loss of the signal transducer and activator of transcription (Stat) pathway, breach of the blood-brain barrier (BBB), and virus-induced neuropathology. The gene signatures that characterize resistance, disease, and mortality in the virus-infected nervous system have not been defined. Herpes simplex virus type 1 (HSV-1) is commonly associated with encephalitis in humans, and humans and mice lacking Stat1 display increased susceptibility to HSV central nervous system (CNS) infections. In this study, two HSV-1 strains were used, KOS (wild type [WT]), and Δvhs, an avirulent recombinant lacking the virion host shutoff (vhs) function. In addition, two mouse strains were used: strain 129 (control) and a Stat1-deficient (Stat1(-/-)) strain. Using combinations of these virus and mouse strains, we established a model of infection resulting in three different outcomes: viral clearance without neurological disease (Δvhs infection of control mice), neurological disease followed by viral clearance (Δvhs infection of Stat1(-/-) mice and WT infection of control mice), or neurological disease followed by death (WT infection of Stat1(-/-) mice). Through the use of functional genomics on the infected brain stems, we determined gene signatures that were representative of the three infection outcomes. We demonstrated a pathological signature in the brain stem of Stat1-deficient mice characterized by upregulation of transcripts encoding chemokine receptors, inflammatory markers, neutrophil chemoattractants, leukocyte adhesion proteins, and matrix metalloproteases. Additionally, there was a greater than 100-fold increase in the inflammatory markers interleukin 1β (IL-1β) and IL-6. Consistent with this gene signature, we demonstrated profound CNS inflammation with a concomitant lethal breach of the BBB. Taken together, our results indicated an essential role for normal Stat1-dependent signaling in mediating a nonpathological immune response to viral CNS infection.
Collapse
|
38
|
Mukherjee S, Katki K, Arisi GM, Foresti ML, Shapiro LA. Early TBI-Induced Cytokine Alterations are Similarly Detected by Two Distinct Methods of Multiplex Assay. Front Mol Neurosci 2011; 4:21. [PMID: 21954376 PMCID: PMC3174383 DOI: 10.3389/fnmol.2011.00021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 08/22/2011] [Indexed: 11/17/2022] Open
Abstract
Annually, more than a million persons experience traumatic brain injury (TBI) in the US and a substantial proportion of this population develop debilitating neurological disorders, such as, paralysis, cognitive deficits, and epilepsy. Despite the long-standing knowledge of the risks associated with TBI, no effective biomarkers or interventions exist. Recent evidence suggests a role for inflammatory modulators in TBI-induced neurological impairments. Current technological advances allow for the simultaneous analysis of the precise spatial and temporal expression patterns of numerous proteins in single samples which ultimately can lead to the development of novel treatments. Thus, the present study examined 23 different cytokines, including chemokines, in the ipsi and contralateral cerebral cortex of rats at 24 h after a fluid percussion injury (FPI). Furthermore, the estimation of cytokines were performed in a newly developed multiplex assay instrument, MAGPIX (Luminex Corp), and compared with an established instrument, Bio-Plex (Bio-Rad), in order to validate the newly developed instrument. The results show numerous inflammatory changes in the ipsi and contralateral side after FPI that were consistently reported by both technologies.
Collapse
Affiliation(s)
- Sanjib Mukherjee
- Neuroscience Research Institute, Scott & White Hospital Temple, TX, USA
| | | | | | | | | |
Collapse
|
39
|
Choe CU, Lardong K, Gelderblom M, Ludewig P, Leypoldt F, Koch-Nolte F, Gerloff C, Magnus T. CD38 exacerbates focal cytokine production, postischemic inflammation and brain injury after focal cerebral ischemia. PLoS One 2011; 6:e19046. [PMID: 21625615 PMCID: PMC3097994 DOI: 10.1371/journal.pone.0019046] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 03/25/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Converging evidence suggests that inflammatory processes significantly influence brain injury and clinical impairment in ischemic stroke. Although early studies suggested a key role of lymphocytes, recent data has emphasized the orchestrating function of innate immunity, i.e., macrophages and microglia. The bifunctional receptor and ectoenzyme CD38 synthesizes calcium-mobilizing second messengers (e.g., cyclic ADP-ribose), which have been shown to be necessary for activation and migration of myeloid immune cells. Therefore, we investigated the dynamics of CD38 in stroke and the impact of CD38-deficiency on cytokine production, inflammation and cerebral damage in a mouse model of cerebral ischemia-reperfusion. METHODOLOGY/PRINCIPAL FINDINGS We show that the local expression of the chemokine MCP-1 was attenuated in CD38-deficient mice compared with wildtype mice after focal cerebral ischemia and reperfusion. In contrast, no significant induction of MCP-1 expression was observed in peripheral blood after 6 hours. Flow cytometry analysis revealed less infiltrating macrophages and lymphocytes in the ischemic hemisphere of CD38-deficient mice, whereas the amount of resident microglia was unaltered. An up-regulation of CD38 expression was observed in macrophages and CD8(+) cells after focal cerebral ischemia in wildtype mice, whereas CD38 expression was unchanged in microglia. Finally, we demonstrate that CD38-deficiency decreases the cerebral ischemic injury and the persistent neurological deficit after three days of reperfusion in this murine temporary middle cerebral artery occlusion (tMCAO) model. CONCLUSION/SIGNIFICANCE CD38 is differentially regulated following stroke and its deficiency attenuates the postischemic chemokine production, the immune cell infiltration and the cerebral injury after temporary ischemia and reperfusion. Therefore CD38 might prove a therapeutic target in ischemic stroke.
Collapse
Affiliation(s)
- Chi-un Choe
- Department of Neurology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- * E-mail: (C-uC); (TM)
| | - Kerstin Lardong
- Department of Neurology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Mathias Gelderblom
- Department of Neurology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Ludewig
- Department of Neurology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Chemistry, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Leypoldt
- Department of Neurology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Department of Immunology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- * E-mail: (C-uC); (TM)
| |
Collapse
|
40
|
Fil D, Borysiewicz E, Konat GW. A broad upregulation of cerebral chemokine genes by peripherally-generated inflammatory mediators. Metab Brain Dis 2011; 26:49-59. [PMID: 21258854 DOI: 10.1007/s11011-010-9231-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 12/21/2010] [Indexed: 12/22/2022]
Abstract
Previously, we have shown that peripheral challenge of mice with double stranded RNA (dsRNA), a viral mimic, evokes global upregulation of cerebral inflammatory genes and, particularly, genes encoding chemokines. Because chemokine networks are potent modulators of brain function, the present study was undertaken to comprehensively characterize the cerebral response of chemokine ligand and receptor genes to peripheral immune system stimulation. Briefly, C57BL/6 mice were intraperitoneally injected with 12 mg/kg of polyinosinic-polycytidylic acid (PIC) and the expression of 39 mouse chemokine ligand and 20 receptor genes was monitored in the cerebellum by real time quantitative RT-PCR within 24 h. Almost half of the ligand genes featured either transient or sustained upregulation from several- to several thousand-fold. Five CXC type genes, i.e., Cxcl9, Cxcl11, Cxcl10, Cxcl2 and Cxcl1, were the most robustly upregulated, and were followed by six CC type genes, i.e., Ccl2, Ccl7, Ccl5, Ccl12, Ccl4 and Ccl11. Seven genes showed moderate upregulation, whereas the remaining genes were unresponsive. Six receptor genes, i.e., Cxcr2, Ccr7, Cxcr5, Ccr6, Ccr1 and Ccr5, featured a several-fold upregulation. Similar chemokine gene response was observed in the forebrain and brainstem. This upregulation of chemokine genes could be induced in naïve mice by transfer of blood plasma from PIC-challenged mice. Employing oligodeoxynucleotide-labeled PIC we further showed that intraperitoneally injected PIC was not transferred to the blood. In conclusion, peripheral PIC challenge elicits a broad upregulation of cerebral chemokine genes, and this upregulation is mediated by blood-borne agents.
Collapse
Affiliation(s)
- Daniel Fil
- Department of Neurobiology and Anatomy, West Virginia University School of Medicine, 4052 HSN, P.O. Box 9128, Morgantown, WV 26506-9128, USA
| | | | | |
Collapse
|
41
|
Ortega A, Jadeja V, Zhou H. Postnatal development of lipopolysaccharide-induced inflammatory response in the brain. Inflamm Res 2010; 60:175-85. [PMID: 20865294 DOI: 10.1007/s00011-010-0252-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 08/23/2010] [Accepted: 09/10/2010] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE This study aimed to characterize postnatal development of lipopolysaccharide (LPS)-induced inflammatory response in the brain. METHODS Postnatal day (P)1, P21 and P70 Sprague-Dawley(®) rats were treated with saline or 0.25 mg/kg LPS for 2 h, and the mRNA expression of neuroinflammatory mediators in the brain was determined using reverse transcriptase-polymerase chain reaction (RT-PCR). The kinetics of LPS-induced neuroinflammatory mediators in the brain of P1 and P21 animals was determined using RT-PCR, and the kinetics of LPS-induced cytokines in the serum were determined using ELISA. The basal levels of Toll-like receptor (TLR)-4, CD14, and myeloid differentiation factor 88 (Myd88) were measured at the mRNA and protein levels using RT-PCR and Western blot assay respectively. RESULTS The mRNA expression levels of cytokines and chemokines were considerably increased in P21 and P70 brains but not significantly altered in P1 brain at 2 h following LPS stimulation. Instead, the induction of cytokines and chemokines was significantly delayed in the brain of P1 animals following LPS stimulation, which was associated with diminished Myd88 production in P1 brain. In parallel, the cytokine response in the serum of P1 animals after LPS stimulation was also delayed compared to P21 animals. CONCLUSIONS TLR-4-mediated innate immunity in the brain was significantly delayed in P1 animals, and underwent significant development during the early postnatal period.
Collapse
Affiliation(s)
- Andres Ortega
- Department of Biological Sciences, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA
| | | | | |
Collapse
|
42
|
Conductier G, Blondeau N, Guyon A, Nahon JL, Rovère C. The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. J Neuroimmunol 2010; 224:93-100. [DOI: 10.1016/j.jneuroim.2010.05.010] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Denes A, Thornton P, Rothwell NJ, Allan SM. Inflammation and brain injury: acute cerebral ischaemia, peripheral and central inflammation. Brain Behav Immun 2010; 24:708-23. [PMID: 19770034 DOI: 10.1016/j.bbi.2009.09.010] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 09/15/2009] [Accepted: 09/15/2009] [Indexed: 12/18/2022] Open
Abstract
Inflammation is a classical host defence response to infection and injury that has many beneficial effects. However, inappropriate (in time, place and magnitude) inflammation is increasingly implicated in diverse disease states, now including cancer, diabetes, obesity, atherosclerosis, heart disease and, most relevant here, CNS disease. A growing literature shows strong correlations between inflammatory status and the risk of cerebral ischaemia (CI, most commonly stroke), as well as with outcome from an ischaemic event. Intervention studies to demonstrate a causal link between inflammation and CI (or its consequences) are limited but are beginning to emerge, while experimental studies of CI have provided direct evidence that key inflammatory mediators (cytokines, chemokines and inflammatory cells) contribute directly to ischaemic brain injury. However, it remains to be determined what the relative importance of systemic (largely peripheral) versus CNS inflammation is in CI. Animal models in which CI is driven by a CNS intervention may not accurately reflect the clinical condition; stroke being typically induced by atherosclerosis or cardiac dysfunction, and hence current experimental paradigms may underestimate the contribution of peripheral inflammation. Experimental studies have already identified a number of potential anti-inflammatory therapeutic interventions that may limit ischaemic brain damage, some of which have been tested in early clinical trials with potentially promising results. However, a greater understanding of the contribution of inflammation to CI is still required, and this review highlights some of the key mechanism that may offer future therapeutic targets.
Collapse
Affiliation(s)
- A Denes
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
44
|
Pineau I, Sun L, Bastien D, Lacroix S. Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion. Brain Behav Immun 2010; 24:540-53. [PMID: 19932745 DOI: 10.1016/j.bbi.2009.11.007] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 11/12/2009] [Accepted: 11/16/2009] [Indexed: 01/01/2023] Open
Abstract
CNS injury stimulates the expression of several proinflammatory cytokines and chemokines, some of which including MCP-1 (also known as CCL2), KC (CXCL1), and MIP-2 (CXCL2) act to recruit Gr-1(+) leukocytes at lesion sites. While earlier studies have reported that neutrophils and monocytes/macrophages contribute to secondary tissue loss after spinal cord injury (SCI), recent work has shown that depletion of Gr-1(+) leukocytes compromised tissue healing and worsened functional recovery. Here, we demonstrate that astrocytes distributed throughout the spinal cord initially contribute to early neuroinflammation by rapidly synthesizing MCP-1, KC, and MIP-2, from 3 up to 12h post-SCI. Chemokine expression by astrocytes was followed by the infiltration of blood-derived immune cells, such as type I "inflammatory" monocytes and neutrophils, into the lesion site and nearby damaged areas. Interestingly, astrocytes from mice deficient in MyD88 signaling produced significantly less MCP-1 and MIP-2 and were unable to synthesize KC. Analysis of the contribution of MyD88-dependent receptors revealed that the astrocytic expression of MCP-1, KC, and MIP-2 was mediated by the IL-1 receptor (IL-1R1), and not by TLR2 or TLR4. Flow cytometry analysis of cells recovered from the spinal cord of MyD88- and IL-1R1-knockout mice confirmed the presence of significantly fewer type I "inflammatory" monocytes and the almost complete absence of neutrophils at 12h and 4days post-SCI. Together, these results indicate that MyD88/IL-1R1 signals regulate the entry of neutrophils and, to a lesser extent, type I "inflammatory" monocytes at sites of SCI.
Collapse
Affiliation(s)
- Isabelle Pineau
- Department of Molecular Medicine, Laval University, Québec, Québec, Canada G1V 4G2
| | | | | | | |
Collapse
|
45
|
Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2-/- mice. J Cereb Blood Flow Metab 2010; 30:769-82. [PMID: 20029451 PMCID: PMC2949175 DOI: 10.1038/jcbfm.2009.262] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cerebral inflammation involves molecular cascades contributing to progressive damage after traumatic brain injury (TBI). The chemokine CC ligand-2 (CCL2) (formerly monocyte chemoattractant protein-1, MCP-1) is implicated in macrophage recruitment into damaged parenchyma after TBI. This study analyzed the presence of CCL2 in human TBI, and further investigated the role of CCL2 in physiological and cellular mechanisms of secondary brain damage after TBI. Sustained elevation of CCL2 was detected in the cerebrospinal fluid (CSF) of severe TBI patients for 10 days after trauma, and in cortical homogenates of C57Bl/6 mice, peaking at 4 to 12 h after closed head injury (CHI). Neurological outcome, lesion volume, macrophage/microglia infiltration, astrogliosis, and the cerebral cytokine network were thus examined in CCL2-deficient (-/-) mice subjected to CHI. We found that CCL2-/- mice showed altered production of multiple cytokines acutely (2 to 24 h); however, this did not affect lesion size or cell death within the first week after CHI. In contrast, by 2 and 4 weeks, a delayed reduction in lesion volume, macrophage accumulation, and astrogliosis were observed in the injured cortex and ipsilateral thalamus of CCL2-/- mice, corresponding to improved functional recovery as compared with wild-type mice after CHI. Our findings confirm the significant role of CCL2 in mediating post-traumatic secondary brain damage.
Collapse
|
46
|
Abstract
Chemokines and their receptors have crucial roles in the trafficking of leukocytes, and are of particular interest in the context of the unique immune responses elicited in the central nervous system (CNS). The chemokine system CC ligand 2 (CCL2) with its receptor CC receptor 2 (CCR2), as well as the receptor CXCR2 and its multiple ligands CXCL1, CXCL2 and CXCL8, have been implicated in a wide range of neuropathologies, including trauma, ischemic injury and multiple sclerosis. This review aims to overview the current understanding of chemokines as mediators of leukocyte migration into the CNS under neuroinflammatory conditions. We will specifically focus on the involvement of two chemokine networks, namely CCL2/CCR2 and CXCL8/CXCR2, in promoting macrophage and neutrophil infiltration, respectively, into the lesioned parenchyma after focal traumatic brain injury. The constitutive brain expression of these chemokines and their receptors, including their recently identified roles in the modulation of neuroprotection, neurogenesis, and neurotransmission, will be discussed. In conclusion, the value of evidence obtained from the use of Ccl2- and Cxcr2-deficient mice will be reported, in the context of potential therapeutics inhibiting chemokine activity which are currently in clinical trial for various inflammatory diseases.
Collapse
|
47
|
Hall AA, Pennypacker KR. Implications of immune system in stroke for novel therapeutic approaches. Transl Stroke Res 2010; 1:85-95. [PMID: 24323491 DOI: 10.1007/s12975-009-0003-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 10/20/2009] [Accepted: 11/09/2009] [Indexed: 12/27/2022]
Abstract
Each year, approximately 795,000 people suffer a new or recurrent stroke. About 610,000 of these are first attacks, and 185,000 are recurrent attacks. Currently, the only FDA approved treatment for ischemic stroke is the thrombolytic recombinant tissue plasminogen activator (Alteplase), which must be given within 4.5 h of stroke onset. Beyond this time, apoptotic and inflammatory processes greatly diminish the therapeutic benefits of current treatments. While there have been many experimental treatments for stroke that showed promising preclinical efficacy, these treatments have failed to show efficacy in clinical trials. In many of these cases, the preclinical animal studies did not model the clinical setting effectively. The injury that occurs following stroke is a dynamic process. To effectively treat stroke patients at clinically relevant timepoints, it is imperative to understand both the humeral and cell-mediated phenomena that occur throughout the body in response to ischemic injury over time. Promising experimental therapeutics designed to be given 1 to 2 days following stroke require both neuroprotective and anti-inflammatory properties in order to be efficacious.
Collapse
Affiliation(s)
- Aaron A Hall
- Department of Molecular Pharmacology and Physiology, School of Basic Biomedical Sciences, College of Medicine, University of South Florida, MDC Box 9, 12901, Bruce B Downs Blvd., Tampa, FL, 33612, USA
| | | |
Collapse
|
48
|
Ziebell JM, Morganti-Kossmann MC. Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics 2010; 7:22-30. [PMID: 20129494 PMCID: PMC5084109 DOI: 10.1016/j.nurt.2009.10.016] [Citation(s) in RCA: 510] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/27/2009] [Accepted: 10/28/2009] [Indexed: 12/12/2022] Open
Abstract
Despite dramatic improvements in the management of traumatic brain injury (TBI), to date there is no effective treatment available to patients, and morbidity and mortality remain high. The damage to the brain occurs in two phases, the initial primary phase being the injury itself, which is irreversible and amenable only to preventive measures to minimize the extent of damage, followed by an ongoing secondary phase, which begins at the time of injury and continues in the ensuing days to weeks. This delayed phase leads to a variety of physiological, cellular, and molecular responses aimed at restoring the homeostasis of the damaged tissue, which, if not controlled, will lead to secondary insults. The development of secondary brain injury represents a window of opportunity in which pharmaceutical compounds with neuroprotective properties could be administered. To establish effective treatments for TBI victims, it is imperative that the complex molecular cascades contributing to secondary injury be fully elucidated. One pathway known to be activated in response to TBI is cellular and humoral inflammation. Neuroinflammation within the injured brain has long been considered to intensify the damage sustained following TBI. However, the accumulated findings from years of clinical and experimental research support the notion that the action of inflammation may differ in the acute and delayed phase after TBI, and that maintaining limited inflammation is essential for repair. This review addresses the role of several cytokines and chemokines following focal and diffuse TBI, as well as the controversies around the use of therapeutic anti-inflammatory treatments versus genetic deletion of cytokine expression.
Collapse
Affiliation(s)
- Jenna M. Ziebell
- grid.1002.30000000419367857National Trauma Research Institute (NTRI), The Alfred Hospital, and Department of Medicine, Monash University, 3181 Melbourne, VIC Australia
| | - Maria Cristina Morganti-Kossmann
- grid.1002.30000000419367857National Trauma Research Institute (NTRI), The Alfred Hospital, and Department of Medicine, Monash University, 3181 Melbourne, VIC Australia
| |
Collapse
|
49
|
Xu JH, Long L, Tang YC, Zhang JT, Hut HT, Tang FR. CCR3, CCR2A and macrophage inflammatory protein (MIP)-1a, monocyte chemotactic protein-1 (MCP-1) in the mouse hippocampus during and after pilocarpine-induced status epilepticus (PISE) . Neuropathol Appl Neurobiol 2009; 35:496-514. [PMID: 19490431 DOI: 10.1111/j.1365-2990.2009.01022.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIMS To investigate protein and gene expressions of chemokine subtypes CCR3, CCR2A and their respective ligands macrophage inflammatory protein 1-alpha (MIP-1alpha), monocyte chemotactic protein-1 (MCP-1) in the normal mouse central nervous system (CNS) and in the hippocampus at different time points during and after pilocarpine-induced status epilepticus (PISE). METHODS CCR3 and MIP-1alpha protein expressions were mapped in the mouse CNS. The protein and gene expressions of CCR3 and CCR2A and their respective ligands MIP-1alpha, MCP-1 in the hippocampus were studies by immunocytochemical and quantitative real-time RT-PCR during and after PISE. RESULTS CCR3 and MIP-1alpha gene expression and immunopositive neurones were broadly distributed in the CNS. CCR3 and CCA2A gene and their protein expression were downregulated in the hippocampus at 1 h during PISE. The protein expression of MIP-1alpha, MCP-1 decreased but gene expression increased at 2 h during PISE. In the hilus of the dentate gyrus, significant reduction of the numbers of CCR3, CCR2A, MCP-1 immunopositive neurones occurred from 1 h during to 2 months after PISE, but the number of MIP-1alpha neurones reduced from 2 h during to 2 months after PISE. Induced expression of CCR3 at 1 week, CCR2A, MCP-1 or MIP-1alpha at 1 week and 2 months after PISE was found in reactive astrocytes. MCP-1 was also demonstrated in the blood vessels of the hippocampus at 2 months after PISE. CONCLUSIONS CCR3 and MIP-1alpha may play important functional roles in the mouse brain. The downregulation of CCR3, CCR2A, MIP-1alpha and MCP-1 in the hippocampal neurones at the acute stage during and after PISE may weaken the neuroprotective mechanisms. However, induced expression of MCP-1 in hippocampal blood vessel may be related to changes in permeability of the blood-brain barrier during epileptogenesis.
Collapse
Affiliation(s)
- J H Xu
- Epilepsy Research Lab, National Neuroscience Institute, Singapore
| | | | | | | | | | | |
Collapse
|
50
|
Briet F, Mazer CD, Tsui AKY, Zhang H, Khang J, Pang V, Baker AJ, Hare GMT. Cerebral cortical gene expression in acutely anemic rats: a microarray analysis. Can J Anaesth 2009; 56:921-34. [PMID: 19847587 DOI: 10.1007/s12630-009-9201-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 09/14/2009] [Indexed: 01/29/2023] Open
Abstract
PURPOSE Hemodilution in perioperative patients has been associated with neurological morbidity and increased mortality by undefined mechanisms. This study assesses whether hemodilutional anemia up-regulated inflammatory cerebral gene expression (microarray) to help define the mechanism. METHODS Hemodilution was performed in anesthetized rats by exchanging 50% of the estimated blood volume (30 mL kg(-1)) with pentastarch. Two groups of control animals were utilized, i.e., a non-anesthetized control (Normal Control) and an anesthetized control group (Anesthesia Control). Blood pressure, hemoglobin concentration, and arterial blood gas analysis were performed before and after hemodilution. Cerebral cortex was harvested from isoflurane-anesthetized rats (n = 6) after 6 and 24 hr of recovery and was used to perform complimentary DNA (cDNA) microarray analyses. Pro-inflammatory chemokine and cytokine protein levels were also measured. RESULTS Microarray analysis demonstrated up-regulation of 72 and 27 genes (6 and 24 hr, respectively) in anemic cerebral cortex. These genes were involved in a number of biological functions, including (1) inflammatory responses; (2) angiogenesis; (3) vascular homeostasis; (4) cellular biology; and (5) apoptosis. Chemokine ribonucleic acid (RNA) expression (CXCL-1, -10, and -11) was highest in anemic brain tissue (P < 0.0125 for each). Protein measurements demonstrated a significant increase in interleukin-6, tumor necrosis factor alpha, and monocyte chemoattractant protein-1 (P < 0.05 for each). CONCLUSION This study utilizes microarray technology to elucidate changes in cerebral cortical gene expression in response to acute hemodilution. These findings demonstrate an increase in pro-inflammatory chemokines (RNA, protein) and cytokines (protein). An improved understanding of the inflammatory response to anemia may help to minimize associated morbidity and mortality.
Collapse
Affiliation(s)
- Françoise Briet
- Department of Anaesthesia, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|