1
|
Aharoni R, Milo R, Arnon R. Glatiramer Acetate for the Treatment of Multiple Sclerosis: From First-Generation Therapy to Elucidation of Immunomodulation and Repair. Pharmacol Rev 2024; 76:1133-1158. [PMID: 39406508 DOI: 10.1124/pharmrev.124.000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 10/18/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS), with a putative autoimmune origin and complex pathogenesis. Modification of the natural history of MS by reducing relapses and slowing disability accumulation was first attained in the 1990 s with the development of the first-generation disease-modifying therapies. Glatiramer acetate (GA), a copolymer of L-alanine, L-lysine, L-glutamic acid, and L-tyrosine, was discovered due to its ability to suppress the animal model of MS, experimental autoimmune encephalomyelitis. Extensive clinical trials and long-term assessments established the efficacy and the safety of GA. Furthermore, studies of the therapeutic processes induced by GA in animal models and in MS patients indicate that GA affects various levels of the innate and the adaptive immune response, generating deviation from proinflammatory to anti-inflammatory pathways. This includes competition for binding to antigen presenting cells; driving dendritic cells, monocytes, and B-cells toward anti-inflammatory responses; and stimulating T-helper 2 and T-regulatory cells. The immune cells stimulated by GA reach the CNS and secrete in situ anti-inflammatory cytokines alleviating the pathological processes. Furthermore, cumulative findings reveal that in addition to its immunomodulatory effect, GA promotes neuroprotective repair processes such as neurotrophic factors secretion, remyelination, and neurogenesis. This review aims to provide an overview of MS pathology diagnosis and treatment as well as the diverse mechanism of action of GA. SIGNIFICANCE STATEMENT: Understanding the complex MS immune pathogenesis provided multiple targets for therapeutic intervention, resulting in a plethora of agents, with various mechanisms of action, efficacy, and safety profiles. However, promoting repair beyond the body's limited spontaneous extent is still a major challenge. GA, one of the first approved disease-modifying therapies, induces diverse immunomodulatory effects. Furthermore, GA treatment results in elevated neurotrophic factors secretion, remyelination and neurogenesis, supporting the notion that immunomodulatory treatment can support in situ a growth-promoting and repair environment.
Collapse
Affiliation(s)
- Rina Aharoni
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| | - Ron Milo
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| | - Ruth Arnon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| |
Collapse
|
2
|
Inyang KE, Folger JK, Laumet G. Can FDA-Approved Immunomodulatory Drugs be Repurposed/Repositioned to Alleviate Chronic Pain? J Neuroimmune Pharmacol 2021; 16:531-547. [PMID: 34041656 DOI: 10.1007/s11481-021-10000-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
Pain is among the most widespread chronic health condition confronting society today and our inability to manage chronic pain contributes to the opioid abuse epidemic in America. The immune system is known to contribute to acute and chronic pain, but only limited therapeutic treatments such as non-steroid anti-inflammatory drugs have resulted from this knowledge. The last decade has shed light on neuro-immune interactions mediating the development, maintenance, and resolution of chronic pain. Here, we do not aim to perform a comprehensive review of all immune mechanisms involved in chronic pain, but to briefly review the contribution of the main cytokines and immune cells (macrophages, microglia, mast cells and T cells) to chronic pain. Given the urgent need to address the Pain crisis, we provocatively propose to repurpose/reposition FDA-approved immunomodulatory drugs for their potential to alleviate chronic pain. Repositioning or repurposing offers an attractive way to accelerate the arrival of new analgesics.
Collapse
Affiliation(s)
| | - Joseph K Folger
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
3
|
Brod SA. In MS: Immunosuppression is passé. Mult Scler Relat Disord 2020; 40:101967. [PMID: 32007655 DOI: 10.1016/j.msard.2020.101967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 10/25/2022]
Abstract
IMPORTANCE Prolonged and significant alterations of the immune system by immunosuppression makes multiple sclerosis (MS) patients susceptible to opportunistic infections and malignancies over long periods of treatment. OBSERVATIONS A reasonable clinical and practical definition of immunosuppression is a temporary or permanent alteration of the body's immune system and subsequent lack of ability to fight infections and malignancies. Immunosurveillance is the sine qua non of the immune system. Immunosurveillance is the constant process by which the immune system looks for and recognizes foreign pathogens such as bacteria and viruses or pre-cancerous or cancerous cells in the body. Immunomodulation (a decrease or increase in pitch or tone - in this case a decrease) maintains immunosurveillance. Immunosuppression (quashing, stamping out) impedes immunosurveillance by one mechanism or another. Immunosuppressive agents need to be administered continually in order to maintain effectiveness. In contrast, immune reconstitution therapies (IRTs) are short course agents that are initially immunosuppressive but ultimately immunomodulatory and can provide significant decreased disease activity over time without retreatment. CONCLUSIONS AND RELEVANCE The goal of disease modifying therapies in MS is effectiveness over long periods of time with minimal risk. The preservation, reduction or elimination of immunosurveillance should be an important consideration in deciding on the optimal disease modifying treatments (DMT) for an individual MS patient. IRTs have the advantage of providing long term control of disease activity with short term immunosuppression followed by long term immunomodulation without retreatment. For most MS patients with mild or modest disease activity, initial immunomodulation followed by IRT for breakthrough disease may be the best option. In MS, immunosuppression may be passé.
Collapse
Affiliation(s)
- Staley A Brod
- Department of Neurology, Medical College of Wisconsin, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA.
| |
Collapse
|
4
|
Prod'homme T, Zamvil SS. The Evolving Mechanisms of Action of Glatiramer Acetate. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a029249. [PMID: 29440323 DOI: 10.1101/cshperspect.a029249] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glatiramer acetate (GA) is a synthetic amino acid copolymer that is approved for treatment of relapsing remitting multiple sclerosis (RRMS) and clinically isolated syndrome (CIS). GA reduces multiple sclerosis (MS) disease activity and has shown comparable efficacy with high-dose interferon-β. The mechanism of action (MOA) of GA has long been an enigma. Originally, it was recognized that GA treatment promoted expansion of GA-reactive T-helper 2 and regulatory T cells, and induced the release of neurotrophic factors. However, GA treatment influences both innate and adaptive immune compartments, and it is now recognized that antigen-presenting cells (APCs) are the initial cellular targets for GA. The anti-inflammatory (M2) APCs induced following treatment with GA are responsible for the induction of anti-inflammatory T cells that contribute to its therapeutic benefit. Here, we review studies that have shaped our current understanding of the MOA of GA.
Collapse
Affiliation(s)
| | - Scott S Zamvil
- Department of Neurology and Program in Immunology, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
5
|
D Alessandro J, Garofalo K, Zhao G, Honan C, Duffner J, Capila I, Fier I, Kaundinya G, Kantor D, Ganguly T. Demonstration of Biological and Immunological Equivalence of a Generic Glatiramer Acetate. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2018; 16:714-723. [PMID: 28240190 PMCID: PMC5684786 DOI: 10.2174/1871527316666170223162747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/24/2017] [Accepted: 02/02/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND In April 2015, the US Food and Drug Administration approved the first generic glatiramer acetate, Glatopa® (M356), as fully substitutable for Copaxone® 20 mg/mL for relapsing forms of multiple sclerosis (MS). This approval was accomplished through an Abbreviated New Drug Application that demonstrated equivalence to Copaxone. METHOD This article will provide an overview of the methods used to establish the biological and immunological equivalence of the two glatiramer acetate products, including methods evaluating antigenpresenting cell (APC) biology, T-cell biology, and other immunomodulatory effects. RESULTS In vitro and in vivo experiments from multiple redundant orthogonal assays within four biological processes (aggregate biology, APC biology, T-cell biology, and B-cell biology) modulated by glatiramer acetate in MS established the biological and immunological equivalence of Glatopa and Copaxone and are described. The following were observed when comparing Glatopa and Copaxone in these experiments: equivalent delays in symptom onset and reductions in "disease" intensity in experimental autoimmune encephalomyelitis; equivalent dose-dependent increases in Glatopa- and Copaxone- induced monokine-induced interferon-gamma release from THP-1 cells; a shift to a T helper 2 phenotype resulting in the secretion of interleukin (IL)-4 and downregulation of IL-17 release; no differences in immunogenicity and the presence of equivalent "immunofingerprints" between both versions of glatiramer acetate; and no stimulation of histamine release with either glatiramer acetate in basophilic leukemia 2H3 cell lines. CONCLUSION In summary, this comprehensive approach across different biological and immunological pathways modulated by glatiramer acetate consistently supported the biological and immunological equivalence of Glatopa and Copaxone.
Collapse
Affiliation(s)
| | - Kevin Garofalo
- Research Department, Momenta Pharmaceuticals, Inc., Cambridge, MA. United States
| | - Ganlin Zhao
- Division of Bioequivalence I, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD. United States
| | - Christopher Honan
- Research Department, Momenta Pharmaceuticals, Inc., Cambridge, MA. United States
| | - Jay Duffner
- Research Department, Momenta Pharmaceuticals, Inc., Cambridge, MA. United States
| | - Ishan Capila
- Research Department, Momenta Pharmaceuticals, Inc., Cambridge, MA. United States
| | - Ian Fier
- Research Department, Momenta Pharmaceuticals, Inc., Cambridge, MA. United States
| | - Ganesh Kaundinya
- Research Department, Momenta Pharmaceuticals, Inc., Cambridge, MA. United States
| | - Daniel Kantor
- Division of Neurology, Florida Atlantic University, Boca Raton, FL. United States
| | - Tanmoy Ganguly
- Momenta Pharmaceuticals, Inc., 675 West Kendall Street, Cambridge, MA 02142. United States
| |
Collapse
|
6
|
Annovazzi P, Bertolotto A, Brescia Morra V, Gasperini C, Montanari E, Navarra P, Patti F, Sormani MP, Ghezzi A. A Comprehensive Review on Copemyl ®. Neurol Ther 2017; 6:161-173. [PMID: 28762192 PMCID: PMC5700901 DOI: 10.1007/s40120-017-0079-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Indexed: 01/17/2023] Open
Abstract
Economic sustainability is of paramount importance in the rapidly evolving therapeutic scenario of multiple sclerosis (MS). Glatiramoids are a class of drugs whose forefather, glatiramer acetate, has been used as a disease modifying drug (DMD) in patients with MS for over 20 years. Its patent expired in 2015; new versions of such drug are nowadays available on the market, potentially contributing to lowering prices and enhancing a better allocation of economic resources. In this review, we analyze the recommendations underlying the approval of both generic drugs and biosimilars by regulatory authorities, and we provide methodological tools to contextualize the design of studies on these new classes of drugs. We examine in more detail the preclinical and clinical data of Copemyl®, a new member of the glatiramoid class, focusing on its biological and immunological properties and illustrating randomized controlled trials that led to its authorization.
Collapse
Affiliation(s)
- Pietro Annovazzi
- Multiple Sclerosis Study Center, ASST Valle Olona, Gallarate, VA, Italy.
| | - Antonio Bertolotto
- Neurology and Multiple Sclerosis Regional Reference Center (CRESM), AOU San Luigi, Orbassano, Italy
| | - Vincenzo Brescia Morra
- Multiple Sclerosis Clinical Care and Research Center, Departement of Neuroscience (NSRO), Federico II University, Naples, Italy
| | - Claudio Gasperini
- Multiple Sclerosis Center, S. Camillo-Forlanini Hospital Rome, Rome, Italy
| | | | - Pierluigi Navarra
- Institute of Pharmacology, Catholic University Medical School, Largo F. Vito 1, 00168, Rome, Italy
| | - Francesco Patti
- Department of Medical and Surgical Sciences, and Advanced Technologies, GF Ingrassia, Multiple Sclerosis Center, University of Catania, Catania, Italy
| | - Maria Pia Sormani
- Department of Health Sciences, Section of Biostatistics, University of Genova, Genoa, Italy
| | - Angelo Ghezzi
- Multiple Sclerosis Study Center, ASST Valle Olona, Gallarate, VA, Italy
| |
Collapse
|
7
|
Abstract
Glatiramer acetate is a mixture of synthetic peptides that are cross-reactive with MBP. The antigen-based therapy induces a shift to an anti-inflammatory Th2 bias and is used in the treatment of relapsing-remitting multiple sclerosis. Like other peptide antigens, GA induces an antibody response in all patients. In contrast to biologically active agents, such as the recombinant interferon beta drugs, GA is a peptide antigen that lacks intrinsic biological activity. In vitro and in vivo data have shown that GA-reactive antibodies are not neutralizing. Antibodies do not alter the principal immunological effects of GA, including binding to MHC Class II molecules, activation and proliferation of GA-reactive T cells, and the release of anti-inflammatory Th2 cytokines. Higher antibody titres do not appear to be associated with a deterioration in clinical endpoints, such as relapse rate, EDSS progression or the occurrence of side effects in MS patients treated with GA. The presence of GA-reactive antibodies may promote remyelination and enhance the immunological and clinical effects of GA, indicating that they may be part of GA's mechanism of action. Multiple Sclerosis 2007; 13: S28—S35. http://msj.sagepub.com
Collapse
|
8
|
Mindur JE, Valenzuela RM, Yadav SK, Boppana S, Dhib-Jalbut S, Ito K. IL-27: a potential biomarker for responders to glatiramer acetate therapy. J Neuroimmunol 2016; 304:21-28. [PMID: 27449853 DOI: 10.1016/j.jneuroim.2016.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 07/06/2016] [Indexed: 01/02/2023]
Abstract
Glatiramer acetate (GA) is an FDA-approved efficacious drug for the treatment of relapsing-remitting multiple sclerosis (RRMS). However, this treatment is not effective for all RRMS patients. Therefore, it is important to identify reliable biomarkers that can predict a beneficial clinical response to GA therapy. Since an increase in IL-27 has been demonstrated to suppress autoimmune and allergic diseases of inflammatory origin, we examined the effect of GA on the production of IL-27. We observed that IL-27 production in PBMCs cultured with GA was heterogeneous amongst MS patients and healthy donors (HD), and thus, defined these MS patients as either efficient, weak, or non-IL-27 producers. Interestingly, GA could induce the expression of the IL-27p28 subunit more efficiently than the IL-27 EBI3 subunit, and the production of IL-27 depended on MHC class II binding by GA. In addition, we found that GA could augment Toll-like receptor (TLR)-mediated IL-27 production. Importantly, serum production of IL-27 and IL-10 was significantly increased at 6months during GA therapy in clinical responders to GA, but not in GA non-responders. Altogether, our data suggest that GA-induced IL-27 may represent a therapeutic mechanism of GA-mediated immunomodulation and that GA-mediated IL-27 production in PBMCs is worth exploring as a biomarker to screen for GA responders prior to the initiation of GA treatment.
Collapse
Affiliation(s)
- John E Mindur
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Reuben M Valenzuela
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Sudhir K Yadav
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Sridhar Boppana
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Suhayl Dhib-Jalbut
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Kouichi Ito
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
9
|
Comi G, Amato MP, Bertolotto A, Centonze D, De Stefano N, Farina C, Gallo P, Ghezzi A, Grimaldi LM, Mancardi G, Marrosu MG, Montanari E, Patti F, Pozzilli C, Provinciali L, Salvetti M, Tedeschi G, Trojano M. The heritage of glatiramer acetate and its use in multiple sclerosis. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s40893-016-0010-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Nolden S, Casper C, Kuhn A, Petereit HF. Jessner-Kanof lymphocytic infiltration of the skin associated with glatiramer acetate. Mult Scler 2016; 11:245-8. [PMID: 15794402 DOI: 10.1191/1352458505ms1130cr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Glatiramer acetate (GLAT) is a well tolerated and safe immunomodulatory drug for the treatment of relapsing=remitting multiple sclerosis. The most commonly recognized side effects are localized injection site reactions consisting of pain, pruritus, mild erythema and induration, which sometimes persist for several days. We describe the first case of a biopsy-proven lymphocytic infiltration (T-cell pseudolymphoma) with the clinical appearance of a figured erythema on the ventrolateral thighs in the first four weeks under GLAT treatment, resolving without any evidence of recurrence despite ongoing therapy. A T-cell pseudolymphoma is a very rare side effect of GLAT treatment. For clinical purposes it is important to state that re-exposition after GLAT-induced pseudolymphoma is possible without permanent sequelae.
Collapse
Affiliation(s)
- S Nolden
- Department of Neurology, University of Cologne, 50924 Cologne, Germany.
| | | | | | | |
Collapse
|
11
|
Jones TB. Lymphocytes and autoimmunity after spinal cord injury. Exp Neurol 2014; 258:78-90. [PMID: 25017889 DOI: 10.1016/j.expneurol.2014.03.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 12/23/2022]
Abstract
Over the past 15 years an immense amount of data has accumulated regarding the infiltration and activation of lymphocytes in the traumatized spinal cord. Although the impact of the intraspinal accumulation of lymphocytes is still unclear, modulation of the adaptive immune response via active and passive vaccination is being evaluated for its preclinical efficacy in improving the outcome for spinal-injured individuals. The complexity of the interaction between the nervous and the immune systems is highlighted in the contradictions that appear in response to these modulations. Current evidence regarding augmentation and inhibition of the adaptive immune response to spinal cord injury is reviewed with an aim toward reconciling conflicting data and providing consensus issues that may be exploited in future therapies. Opportunities such an approach may provide are highlighted as well as the obstacles that must be overcome before such approaches can be translated into clinical trials.
Collapse
Affiliation(s)
- T Bucky Jones
- Department of Anatomy, Arizona College of Medicine, Midwestern University, Glendale, AZ, USA.
| |
Collapse
|
12
|
Aharoni R. Immunomodulation neuroprotection and remyelination - the fundamental therapeutic effects of glatiramer acetate: a critical review. J Autoimmun 2014; 54:81-92. [PMID: 24934599 DOI: 10.1016/j.jaut.2014.05.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 05/23/2014] [Indexed: 01/04/2023]
Abstract
Multiple sclerosis (MS) is a multifaceted heterogeneous disease with various patterns of tissue damage. In addition to inflammation and demyelination, widespread axonal and neuronal pathologies are central components of this disease. MS therapies aim to restrain the pathological processes, enhance protective mechanisms, and prevent disease progression. The amino acid copolymer, glatiramer acetate (GA, Copaxone), an approved treatment for MS, has a unique mode of action. Evidence from the animal model experimental autoimmune encephalomyelitis (EAE) and from MS patients indicates that GA affects various levels of the innate and the adaptive immune response, inducing deviation from the pro-inflammatory to the anti-inflammatory pathways. This includes competition for the binding of antigen presenting cells, driving dendritic cells, monocytes, and B-cells towards anti-inflammatory responses, induction of Th2/3 and T-regulatory cells, and downregulating of both Th1 and Th-17 cells. The immune cells induced by GA reach the inflamed disease organ and secrete in situ anti-inflammatory cytokines alleviating the pathological processes. Furthermore, cumulative findings have revealed that in addition to its immunomodulatory activities GA promotes neuroprotective repair processes such as neurotrophic factors secretion and remyelination. This review aims to provide a comprehensive overview on the diverse mechanism of action of GA in EAE/MS, in particular on the in situ effect of GA and its ability to generate neuroprotection and repair in the CNS. In view of its immunomodulatory activity, the beneficial effects of GA in various models of additional autoimmune related pathologies, such as immune rejection and inflammatory bowel disease (IBD), are also presented.
Collapse
Affiliation(s)
- Rina Aharoni
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
13
|
Bar-Or A, Pachner A, Menguy-Vacheron F, Kaplan J, Wiendl H. Teriflunomide and its mechanism of action in multiple sclerosis. Drugs 2014; 74:659-74. [PMID: 24740824 PMCID: PMC4003395 DOI: 10.1007/s40265-014-0212-x] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Treatment of multiple sclerosis (MS) is challenging: disease-modifying treatments (DMTs) must both limit unwanted immune responses associated with disease initiation and propagation (as T and B lymphocytes are critical cellular mediators in the pathophysiology of relapsing MS), and also have minimal adverse impact on normal protective immune responses. In this review, we summarize key preclinical and clinical data relating to the proposed mechanism of action of the recently approved DMT teriflunomide in MS. Teriflunomide selectively and reversibly inhibits dihydro-orotate dehydrogenase, a key mitochondrial enzyme in the de novo pyrimidine synthesis pathway, leading to a reduction in proliferation of activated T and B lymphocytes without causing cell death. Results from animal experiments modelling the immune activation implicated in MS demonstrate reductions in disease symptoms with teriflunomide treatment, accompanied by reduced central nervous system lymphocyte infiltration, reduced axonal loss, and preserved neurological functioning. In agreement with the results obtained in these model systems, phase 3 clinical trials of teriflunomide in patients with MS have consistently shown that teriflunomide provides a therapeutic benefit, and importantly, does not cause clinical immune suppression. Taken together, these data demonstrate how teriflunomide acts as a selective immune therapy for patients with MS.
Collapse
Affiliation(s)
- Amit Bar-Or
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Andrew Pachner
- Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | | | | | - Heinz Wiendl
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, Building A10 (previously Domagkstr. 13), 48149 Münster, Germany
| |
Collapse
|
14
|
Johnson KP. Glatiramer acetate for treatment of relapsing–remitting multiple sclerosis. Expert Rev Neurother 2014; 12:371-84. [DOI: 10.1586/ern.12.25] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Conner J. Glatiramer acetate and therapeutic peptide vaccines for multiple sclerosis. ACTA ACUST UNITED AC 2014. [DOI: 10.7243/2054-989x-1-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Thamilarasan M, Hecker M, Goertsches RH, Paap BK, Schröder I, Koczan D, Thiesen HJ, Zettl UK. Glatiramer acetate treatment effects on gene expression in monocytes of multiple sclerosis patients. J Neuroinflammation 2013; 10:126. [PMID: 24134771 PMCID: PMC3852967 DOI: 10.1186/1742-2094-10-126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/06/2013] [Indexed: 12/20/2022] Open
Abstract
Background Glatiramer acetate (GA) is a mixture of synthetic peptides used in the treatment of patients with relapsing-remitting multiple sclerosis (RRMS). The aim of this study was to investigate the effects of GA therapy on the gene expression of monocytes. Methods Monocytes were isolated from the peripheral blood of eight RRMS patients. The blood was obtained longitudinally before the start of GA therapy as well as after one day, one week, one month and two months. Gene expression was measured at the mRNA level by microarrays. Results More than 400 genes were identified as up-regulated or down-regulated in the course of therapy, and we analyzed their biological functions and regulatory interactions. Many of those genes are known to regulate lymphocyte activation and proliferation, but only a subset of genes was repeatedly differentially expressed at different time points during treatment. Conclusions Overall, the observed gene regulatory effects of GA on monocytes were modest and not stable over time. However, our study revealed several genes that are worthy of investigation in future studies on the molecular mechanisms of GA therapy.
Collapse
Affiliation(s)
| | - Michael Hecker
- Institute of Immunology, University of Rostock, Schillingallee 68, Rostock 18057, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Glatiramer promotes oligodendroglial cell maturation in a cuprizone-induced demyelination model. Neurochem Int 2013; 63:10-24. [DOI: 10.1016/j.neuint.2013.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/29/2013] [Accepted: 04/15/2013] [Indexed: 11/19/2022]
|
18
|
Messina S, Patti F. The pharmacokinetics of glatiramer acetate for multiple sclerosis treatment. Expert Opin Drug Metab Toxicol 2013; 9:1349-59. [PMID: 23795716 DOI: 10.1517/17425255.2013.811489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a T-cell-mediated disease affecting the central nervous system (CNS), characterized by demyelination and axonal degeneration. INF-β1b was the first drug approved for MS patients in 1993. In 1996, glatiramer acetate (GA), a synthetic copolymer, was approved in the USA for the treatment of relapsing-remitting MS (RRMS) and clinically isolated syndrome (CIS). Although the immunological action of GA has been fully investigated, the exact mechanisms of action of GA are still not completely elucidated. Several in vitro studies on mice and human antigen-presenting cells (APCs) have shown that GA is able to bind to the major histocompatibility complex (MHC), on the surface of APCs, recognizing myelin basic protein (MBP). AREAS COVERED This review explores the pharmacological characteristics of GA, its mechanism of action and its pharmacokinetics properties. The article also provides information on the efficacy, tolerability and an overview of the most important clinical data on GA. EXPERT OPINION Despite the development of novel compounds, it is not surprising that GA is, to date, one of the most prescribed drugs for RRMS patients and CIS patients. The proven efficacy and the mild adverse events, makes GA a good therapeutic option in the early stage of the disease. This is particularly useful for patients who suffer flu-like symptoms from other RRMS therapies as an alternative.
Collapse
Affiliation(s)
- Silvia Messina
- Department G.F. Ingrassia, Section of Neurosciences, Università degli studi di Catania , Via S. Sofia, 78, Catania , Italy +0953782642 ; +0953782626 ;
| | | |
Collapse
|
19
|
Tyler AF, Mendoza JP, Firan M, Karandikar NJ. CD8(+) T Cells Are Required For Glatiramer Acetate Therapy in Autoimmune Demyelinating Disease. PLoS One 2013; 8:e66772. [PMID: 23805274 PMCID: PMC3689655 DOI: 10.1371/journal.pone.0066772] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/10/2013] [Indexed: 12/19/2022] Open
Abstract
The exact mechanism of glatiramer acetate (GA, Copaxone®), an FDA-approved immunomodulatory therapy for multiple sclerosis (MS), remains unclear after decades of research. Previously, we have shown that GA therapy of MS induces CD8+ T cell responses that can potentially suppress pathogenic CD4+ T cell responses. Using a murine model of MS, experimental autoimmune encephalomyelitis (EAE), we now demonstrate that CD8+ T cells are necessary in mediating the therapeutic effects of GA. Further, adoptive transfer of GA-induced CD8+ T cells resulted in amelioration of EAE, establishing a role as a viable immunotherapy in demyelinating disease. Generation of these cells required indoleamine-2,3-dioxygenase (IDO), while suppressive function depended on non-classical MHC class I, IFN-γ, and perforin expression. GA-induced regulatory myeloid cells, previously shown to activate CD4+ regulatory T cells in an antigen-independent manner, required CD8+ T cells for disease suppression in vivo. These studies demonstrate an essential role for CD8+ T cells in GA therapy and identify their potential as an adoptive immunotherapeutic agent.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cytotoxicity, Immunologic/drug effects
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Female
- Forkhead Transcription Factors/metabolism
- Glatiramer Acetate/pharmacology
- Histocompatibility Antigens Class I/metabolism
- Immunotherapy
- Indoleamine-Pyrrole 2,3,-Dioxygenase/deficiency
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Interferon-gamma/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Peptide Fragments/toxicity
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Andrew F. Tyler
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jason P. Mendoza
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Mihail Firan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Nitin J. Karandikar
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Koenig PA, Spooner E, Kawamoto N, Strominger JL, Ploegh HL. Amino acid copolymers that alleviate experimental autoimmune encephalomyelitis in vivo interact with heparan sulfates and glycoprotein 96 in APCs. THE JOURNAL OF IMMUNOLOGY 2013; 191:208-16. [PMID: 23740953 DOI: 10.4049/jimmunol.1300345] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease that affects the CNS. One approved treatment for relapsing forms of MS is YEAK, a random copolymer of the amino acids tyrosine, glutamic acid, alanine, and lysine. YFAK, a second-generation copolymer composed of tyrosine, phenylalanine, alanine, and lysine, is more successful in treating experimental autoimmune encephalomyelitis, a mouse model of MS. Although originally designed and optimized based on the autoantigen myelin basic protein (MBP) and the MBP-derived peptide MBP85-99 presented to the MS-associated class II MHC molecule HLA-DR2, YEAK and YFAK also stimulate cytokine and chemokine production in APCs that lack class II MHC products. How YEAK and YFAK copolymers interact with APCs remains enigmatic. We used biotinylated YFAK to affinity-purify YFAK-interacting proteins from RAW264.7 cells and tested APCs from mice deficient in several of the newly identified interactors for their capacity to secrete CCL22 in response to YEAK and YFAK. We propose that initial contact of YFAK with cells is mediated mainly by electrostatic interactions, and find that interaction of YFAK with host proteins is strongly dependent on ionic strength. Cells deficient in enzymes involved in sulfation of proteins and proteoglycans showed strongly reduced binding of biotinylated YFAK. Lastly, cells stimulated with YFAK in the presence of heparin, structurally similar to heparan sulfates, failed to produce CCL22. We conclude that charge-dependent interactions of copolymers that alleviate MS/experimental autoimmune encephalomyelitis are critical for their effects exerted on APCs and may well be the main initial mediators of these therapeutically active copolymers.
Collapse
|
21
|
Bakshi S, Chalifa-Caspi V, Plaschkes I, Perevozkin I, Gurevich M, Schwartz R. Gene expression analysis reveals functional pathways of glatiramer acetate activation. Expert Opin Ther Targets 2013; 17:351-62. [PMID: 23469939 DOI: 10.1517/14728222.2013.778829] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Glatiramer acetate (GA, Copaxone®), a mixture of polymers comprising four amino acids, is approved for treatment of relapsing-remitting multiple sclerosis and clinically isolated syndrome. GA mediates its activity by induction of GA-specific T cells that shift the T cell balance from a dominant proinflammatory phenotype (Th1/Th17) to an anti-inflammatory phenotype (Th2/Treg). OBJECTIVE To characterize the functional pathways by which GA acts on immune cells, the authors conducted gene expression profiling using glatiramoid-stimulated splenocytes. METHODS Mice were immunized with GA and harvested splenocytes were reactivated ex vivo with GA or a purported generic GA. Gene expression profiles and functional pathways were evaluated in reactivated splenocytes. RESULTS Overall, 1,474 genes were significantly upregulated or downregulated by GA. The main functional pathways induced by GA were: increased proliferation and activation of immune cells including T and B lymphocytes, stimulation of antigen presenting cells and differentiation of effector T lymphocytes. T-helper cell differentiation was the most significant canonical pathway associated with gene transcripts altered by GA. These expression patterns were not observed when splenocytes were activated with generic GA. CONCLUSION GA-induced functional pathways coincide with known mechanisms of GA activity in MS patients and further support the unique therapeutic effect of this drug.
Collapse
Affiliation(s)
- Shlomo Bakshi
- Teva Pharmaceutical Industries, P.O. Box 8077, Netanya 42504, Israel
| | | | | | | | | | | |
Collapse
|
22
|
Jalilian B, Einarsson HB, Vorup-Jensen T. Glatiramer acetate in treatment of multiple sclerosis: a toolbox of random co-polymers for targeting inflammatory mechanisms of both the innate and adaptive immune system? Int J Mol Sci 2012; 13:14579-605. [PMID: 23203082 PMCID: PMC3509598 DOI: 10.3390/ijms131114579] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 10/23/2012] [Accepted: 11/05/2012] [Indexed: 01/17/2023] Open
Abstract
Multiple sclerosis is a disease of the central nervous system, resulting in the demyelination of neurons, causing mild to severe symptoms. Several anti-inflammatory treatments now play a significant role in ameliorating the disease. Glatiramer acetate (GA) is a formulation of random polypeptide copolymers for the treatment of relapsing-remitting MS by limiting the frequency of attacks. While evidence suggests the influence of GA on inflammatory responses, the targeted molecular mechanisms remain poorly understood. Here, we review the multiple pharmacological modes-of-actions of glatiramer acetate in treatment of multiple sclerosis. We discuss in particular a newly discovered interaction between the leukocyte-expressed integrin α(M)β(2) (also called Mac-1, complement receptor 3, or CD11b/CD18) and perspectives on the GA co-polymers as an influence on the function of the innate immune system.
Collapse
Affiliation(s)
- Babak Jalilian
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, Building 1242, DK-8000, Aarhus C, Denmark; E-Mails: (B.J.); (H.B.E.)
| | - Halldór Bjarki Einarsson
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, Building 1242, DK-8000, Aarhus C, Denmark; E-Mails: (B.J.); (H.B.E.)
| | - Thomas Vorup-Jensen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, Building 1242, DK-8000, Aarhus C, Denmark; E-Mails: (B.J.); (H.B.E.)
| |
Collapse
|
23
|
Belogurov AA, Stepanov AV, Smirnov IV, Melamed D, Bacon A, Mamedov AE, Boitsov VM, Sashchenko LP, Ponomarenko NA, Sharanova SN, Boyko AN, Dubina MV, Friboulet A, Genkin DD, Gabibov AG. Liposome-encapsulated peptides protect against experimental allergic encephalitis. FASEB J 2012; 27:222-31. [PMID: 23047895 PMCID: PMC3528315 DOI: 10.1096/fj.12-213975] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Multiple sclerosis (MS) is a severe inflammatory and neurodegenerative disease with an autoimmune background. Despite the variety of therapeutics available against MS, the development of novel approaches to its treatment is of high importance in modern pharmaceutics. In this study, experimental autoimmune encephalomyelitis (EAE) in Dark Agouti rats has been treated with immunodominant peptides of the myelin basic protein (MBP) encapsulated in mannosylated small unilamellar vesicles. The results show that liposome-encapsulated MBP46–62 is the most effective in reducing maximal disease score during the first attack, while MBP124–139 and MBP147–170 can completely prevent the development of the exacerbation stage. Both mannosylation of liposomes and encapsulation of peptides are critical for the therapeutic effect, since neither naked peptides nor nonmannosylated liposomes, loaded or empty, have proved effective. The liposome-mediated synergistic effect of the mixture of 3 MBP peptides significantly suppresses the progression of protracted EAE, with the median cumulative disease score being reduced from 22 to 14 points, compared to the placebo group; prevents the production of circulating autoantibodies; down-regulates the synthesis of Th1 cytokines; and induces the production of brain-derived neurotrophic factor in the central nervous system. Thus, the proposed formulation ameliorates EAE, providing for a less severe first attack and rapid recovery from exacerbation, and offers a promising therapeutic modality in MS treatment.—Belogurov, A. A., Jr., Stepanov, A. V., Smirnov, I. V., Melamed, D., Bacon, A., Mamedov, A. E., Boitsov, V. M., Sashchenko, L. P., Ponomarenko, N. A., Sharanova, S. N., Boyko, A. N., Dubina, M. V., Friboulet, A., Genkin, D. D., Gabibov, A. G. Liposome-encapsulated peptides protect against experimental allergic encephalitis.
Collapse
Affiliation(s)
- Alexey A Belogurov
- M. M. Shemyakin and Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Aharoni R. The mechanism of action of glatiramer acetate in multiple sclerosis and beyond. Autoimmun Rev 2012; 12:543-53. [PMID: 23051633 DOI: 10.1016/j.autrev.2012.09.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 09/19/2012] [Indexed: 12/24/2022]
Abstract
In multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE), the immune system reacts again self myelin constitutes in the central nervous system (CNS), initiating a detrimental inflammatory cascade that leads to demyelination as well as axonal and neuronal pathology. The amino acid copolymer glatiramer acetate (GA, Copaxone) is an approved first-line treatment for MS that has a unique mode of action. Accumulated evidence from EAE-induced animals and from MS patients indicates that GA affects various levels of the innate and the adaptive immune response, generating deviation from the pro-inflammatory to the anti-inflammatory pathway. This review aims to provide a comprehensive perspective on the diverse mechanism of action of GA in EAE/MS, in particular on the in situ immunomodulatory effect of GA and its ability to generate neuroprotective repair consequences in the CNS. In view of its immunomodulatory activity, the beneficial effect of GA in various models of other autoimmune related pathologies, such as immune rejection and inflammatory bowel disease (IBD) is noteworthy.
Collapse
Affiliation(s)
- Rina Aharoni
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
25
|
Kawamoto N, Ohnishi H, Kondo N, Strominger JL. The role of dendritic cells in the generation of CD4(+) CD25(HI) Foxp3(+) T cells induced by amino acid copolymers. Int Immunol 2012; 25:53-65. [PMID: 22968996 DOI: 10.1093/intimm/dxs087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The effects of the amino acid copolymers used in the therapy of experimental autoimmune encephalomyelitis, poly(Y,E,A,K)(n) (Copaxone(®)) and poly(Y,F,A,K)(n), on murine myeloid cells have been investigated. After administration of these copolymers to mice, increases in several splenic myeloid cell populations were observed, including CD11b(+) CD11c(+) dendritic cells. The latter were the major splenic cell type that secreted CCL22 (macrophage-derived chemokine) on stimulation with amino acid copolymers. CCL22 secretion was also stimulated from bone marrow-derived dendritic cells (BMDC) generated with GM-CSF in much larger amounts than from bone marrow-derived macrophages generated with M-CSF. Moreover, CCL22 secretion could also be obtained using BMDC generated from two different types of MHC II(-/-) mice, indicating that an innate immune receptor is involved. Finally, incubation of these BMDC or splenic dendritic cells with naive CD4(+) CD25(-) T cells resulted in formation of CD4(+) CD25(HI) Foxp3 T cells (~25% of which were Foxp3(+)). The number of these regulatory cells was doubled by pretreatment of BMDC with amino acid copolymers.
Collapse
Affiliation(s)
- Norio Kawamoto
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
26
|
Constantinescu CS, Farooqi N, O'Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 2012; 164:1079-106. [PMID: 21371012 DOI: 10.1111/j.1476-5381.2011.01302.x] [Citation(s) in RCA: 1010] [Impact Index Per Article: 84.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is the most commonly used experimental model for the human inflammatory demyelinating disease, multiple sclerosis (MS). EAE is a complex condition in which the interaction between a variety of immunopathological and neuropathological mechanisms leads to an approximation of the key pathological features of MS: inflammation, demyelination, axonal loss and gliosis. The counter-regulatory mechanisms of resolution of inflammation and remyelination also occur in EAE, which, therefore can also serve as a model for these processes. Moreover, EAE is often used as a model of cell-mediated organ-specific autoimmune conditions in general. EAE has a complex neuropharmacology, and many of the drugs that are in current or imminent use in MS have been developed, tested or validated on the basis of EAE studies. There is great heterogeneity in the susceptibility to the induction, the method of induction and the response to various immunological or neuropharmacological interventions, many of which are reviewed here. This makes EAE a very versatile system to use in translational neuro- and immunopharmacology, but the model needs to be tailored to the scientific question being asked. While creating difficulties and underscoring the inherent weaknesses of this model of MS in straightforward translation from EAE to the human disease, this variability also creates an opportunity to explore multiple facets of the immune and neural mechanisms of immune-mediated neuroinflammation and demyelination as well as intrinsic protective mechanisms. This allows the eventual development and preclinical testing of a wide range of potential therapeutic interventions.
Collapse
Affiliation(s)
- Cris S Constantinescu
- Division of Clinical Neurology, School of Clinical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| | | | | | | |
Collapse
|
27
|
Lalive PH, Neuhaus O, Benkhoucha M, Burger D, Hohlfeld R, Zamvil SS, Weber MS. Glatiramer acetate in the treatment of multiple sclerosis: emerging concepts regarding its mechanism of action. CNS Drugs 2011; 25:401-14. [PMID: 21476611 PMCID: PMC3963480 DOI: 10.2165/11588120-000000000-00000] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glatiramer acetate is a synthetic, random copolymer widely used as a first-line agent for the treatment of relapsing-remitting multiple sclerosis (MS). While earlier studies primarily attributed its clinical effect to a shift in the cytokine secretion of CD4+ T helper (T(h)) cells, growing evidence in MS and its animal model, experimental autoimmune encephalomyelitis (EAE), suggests that glatiramer acetate treatment is associated with a broader immunomodulatory effect on cells of both the innate and adaptive immune system. To date, glatiramer acetate-mediated modulation of antigen-presenting cells (APC) such as monocytes and dendritic cells, CD4+ T(h) cells, CD8+ T cells, Foxp3+ regulatory T cells and antibody production by plasma cells have been reported; in addition, most recent investigations indicate that glatiramer acetate treatment may also promote regulatory B-cell properties. Experimental evidence suggests that, among these diverse effects, a fostering interplay between anti-inflammatory T-cell populations and regulatory type II APC may be the central axis in glatiramer acetate-mediated immune modulation of CNS autoimmune disease. Besides altering inflammatory processes, glatiramer acetate could exert direct neuroprotective and/or neuroregenerative properties, which could be of relevance for the treatment of MS, but even more so for primarily neurodegenerative disorders, such as Alzheimer's or Parkinson's disease. In this review, we provide a comprehensive and critical overview of established and recent findings aiming to elucidate the complex mechanism of action of glatiramer acetate.
Collapse
Affiliation(s)
- Patrice H. Lalive
- Department of Neurosciences, Division of Neurology, Geneva University Hospital and University of Geneva, Geneva, Switzerland,Department of Genetics and Laboratory Medicine, Division of Laboratory Medicine, Geneva University Hospital and University of Geneva, Geneva, Switzerland,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Oliver Neuhaus
- Department of Neurology, Kliniken Landkreis Sigmaringen, Sigmaringen, Germany
| | - Mahdia Benkhoucha
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Danielle Burger
- Faculty of Medicine, Division of Immunology and Allergy, HansWilsdorf Laboratory, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Reinhard Hohlfeld
- Institute for Clinical Neuroimmunology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Scott S. Zamvil
- Department of Neurology, University of California, San Francisco, California, USA
| | - Martin S. Weber
- Department of Neurology, Technische Universität München, Munich, Germany
| |
Collapse
|
28
|
Expression and functional activity of chemokine receptors in glatiramer acetate–specific T cells isolated from multiple sclerosis patient receiving the drug glatiramer acetate. Hum Immunol 2011; 72:124-34. [DOI: 10.1016/j.humimm.2010.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 10/13/2010] [Accepted: 10/19/2010] [Indexed: 11/18/2022]
|
29
|
Abstract
Women are more susceptible to a variety of autoimmune diseases including systemic lupus erythematosus (SLE), multiple sclerosis (MS), primary biliary cirrhosis, rheumatoid arthritis and Hashimoto's thyroiditis. This increased susceptibility in females compared to males is also present in animal models of autoimmune diseases such as spontaneous SLE in (NZBxNZW)F1 and NZM.2328 mice, experimental autoimmune encephalomyelitis (EAE) in SJL mice, thyroiditis, Sjogren's syndrome in MRL/Mp-lpr/lpr mice and diabetes in non-obese diabetic mice. Indeed, being female confers a greater risk of developing these diseases than any single genetic or environmental risk factor discovered to date. Understanding how the state of being female so profoundly affects autoimmune disease susceptibility would accomplish two major goals. First, it would lead to an insight into the major pathways of disease pathogenesis and, secondly, it would likely lead to novel treatments which would disrupt such pathways.
Collapse
Affiliation(s)
- Rhonda Voskuhl
- Professor, UCLA Dept, of Neurology, Jack H Skirball Chair for Multiple Sclerosis Research, Director, UCLA Multiple Sclerosis Program, Neuroscience Research Building 1, Room 475D, 635 Charles Young Drive South, Los Angeles, CA 90095, USA.
| |
Collapse
|
30
|
Augmentation of regulatory B cell activity in experimental allergic encephalomyelitis by glatiramer acetate. J Neuroimmunol 2010; 232:136-44. [PMID: 21111489 DOI: 10.1016/j.jneuroim.2010.10.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/20/2010] [Accepted: 10/25/2010] [Indexed: 11/24/2022]
Abstract
We recently showed that B cells reduce CNS inflammation in mice with experimental allergic encephalomyelitis (EAE). Here, we demonstrate that adoptively transferred CD5/CD19+ B cells protect against EAE severity. Furthermore, we show that glatiramer acetate (GA), a therapeutic for relapsing multiple sclerosis treatment, amplifies this effect. Transfer of GA-conditioned B cells leads to increased production of immunoregulatory cytokines and reduced CNS inflammation, as well as decreased expression of the chemokine receptor, CXCR5, and elevated BDNF expression in the CNS. Thus B cells can protect against EAE, and GA augments this effect in maintaining immune homeostasis and controlling EAE disease progression.
Collapse
|
31
|
Pul R, Moharregh-Khiabani D, Škuljec J, Skripuletz T, Garde N, Voß EV, Stangel M. Glatiramer Acetate Modulates TNF-α and IL-10 Secretion in Microglia and Promotes Their Phagocytic Activity. J Neuroimmune Pharmacol 2010; 6:381-8. [DOI: 10.1007/s11481-010-9248-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
|
32
|
Farooqi N, Gran B, Constantinescu CS. Are current disease-modifying therapeutics in multiple sclerosis justified on the basis of studies in experimental autoimmune encephalomyelitis? J Neurochem 2010; 115:829-44. [DOI: 10.1111/j.1471-4159.2010.06982.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Glatiramer acetate-reactive T lymphocytes regulate oligodendrocyte progenitor cell number in vitro: role of IGF-2. J Neuroimmunol 2010; 227:71-9. [PMID: 20637510 DOI: 10.1016/j.jneuroim.2010.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/07/2010] [Accepted: 06/11/2010] [Indexed: 11/23/2022]
Abstract
Glatiramer acetate (GA) is an immunomodulator approved for therapy of relapsing-remitting multiple sclerosis (RRMS), but recent findings indicate that it may also have additional, neurotrophic effects. Here, we found that supernatants from human GA-reactive T lymphocytes potentiated oligodendrocyte numbers in rodent and human oligodendrocyte progenitor (OPC) cultures. Effects of Th2-polarized lines were stronger than Th1-polarized cells. Microarray and ELISA analyses revealed that neurotrophic factors induced in Th2- and Th1-polarized GA-reactive lines included IGF-2 and BMP-7 respectively, and functional studies confirmed IGF-2 as trophic for OPCs. Our results support the concept that GA therapy may result in supportive effects on oligodendrocytes in RRMS patients.
Collapse
|
34
|
Improved muscle strength and mobility in the dy(2J)/dy(2J) mouse with merosin deficient congenital muscular dystrophy treated with Glatiramer acetate. Neuromuscul Disord 2010; 20:267-72. [PMID: 20304648 DOI: 10.1016/j.nmd.2010.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 01/29/2010] [Accepted: 02/01/2010] [Indexed: 01/01/2023]
Abstract
The therapeutic effect of Glatiramer acetate, an immune modulating agent, was evaluated in the dy(2J)/dy(2J) mouse with merosin deficient congenital muscular dystrophy, which is a milder variant of the dy/dy mouse. The treated mice showed significant improvement in hind limb muscle strength measured by electronic grip strength meter and in motor performance quantified by video detection software. Glatiramer acetate treatment was associated with significantly increased expression of regeneration transcription factors MyoD and myogenin, and attenuation of the fibrosis markers vimentin and fibronectin. No effective treatment is currently available in congenital muscular dystrophy and Glatiramer acetate may present a new potential treatment for this disorder.
Collapse
|
35
|
Karussis D, Teitelbaum D, Sicsic C, Brenner T. Long-term treatment of multiple sclerosis with glatiramer acetate: Natural history of the subtypes of anti-glatiramer acetate antibodies and their correlation with clinical efficacy. J Neuroimmunol 2010; 220:125-30. [DOI: 10.1016/j.jneuroim.2010.01.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 12/15/2009] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
|
36
|
Liblau R. Glatiramer acetate for the treatment of multiple sclerosis: evidence for a dual anti-inflammatory and neuroprotective role. J Neurol Sci 2009; 287 Suppl 1:S17-23. [DOI: 10.1016/s0022-510x(09)71296-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Transplanted myogenic progenitor cells express neuronal markers in the CNS and ameliorate disease in Experimental Autoimmune Encephalomyelitis. J Neuroimmunol 2009; 215:73-83. [DOI: 10.1016/j.jneuroim.2009.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Revised: 08/23/2009] [Accepted: 08/24/2009] [Indexed: 12/27/2022]
|
38
|
Chen C, Liu X, Wan B, Zhang JZ. Regulatory properties of copolymer I in Th17 differentiation by altering STAT3 phosphorylation. THE JOURNAL OF IMMUNOLOGY 2009; 183:246-53. [PMID: 19542436 DOI: 10.4049/jimmunol.0900193] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Th17 and Th1 play an important role in multiple sclerosis for which copolymer I (COP-I) is a treatment option. We described here that the treatment effect of COP-I correlated with its unique regulatory properties on differentiation and survival of Th17 in experimental autoimmune encephalomyelitis mice, which was mediated through down-regulation of STAT3 phosphorylation. The effect of COP-I on Th17 differentiation required CD14(+) monocytes through IL-6 signaling as a key mediator to regulate STAT3 phosphorylation and subsequent RORgammat expression in Th17 cells. The observed effect was markedly dampened when monocytes were genetically deficient for IL-6. Similar regulatory properties of COP-I were demonstrated in human Th17 differentiation. The study revealed the differential regulatory roles and the novel mechanism of action of COP-I chiefly responsible for its treatment efficacy in experimental autoimmune encephalomyelitis and multiple sclerosis.
Collapse
Affiliation(s)
- Chunhua Chen
- Institute of Health Sciences, Shanghai JiaoTong University School of Medicine, China
| | | | | | | |
Collapse
|
39
|
Abstract
During recent years, many new therapies for human autoimmune diseases such as multiple sclerosis (MS) have been considered based on promising in vitro data or animal experiments. A number of them have proceeded to early clinical testing. However, very few finally advanced to approval by the regulatory agencies and are currently available to patients. The main reasons for failure were either lack of efficacy in humans and/or unexpected and untolerable adverse events. Although previous attempts toward antigen-specific immunomodulation have often been disappointing, these difficulties have led to renewed interest in therapies that aim at reestablishing tolerance to autoantigens at the level of either T cell-mediated or antibody-mediated immune responses or both. Such antigen-specific immunotherapies offer the prospect of correcting pathological immune reactivity against autoantigens in a highly specific and effective manner and also achievement of this goal with relatively little side effects. Here we will review the various approaches that are currently being considered for antigen-specific immunotherapies in MS.
Collapse
Affiliation(s)
- Mireia Sospedra
- Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | |
Collapse
|
40
|
Goodman AD, Rossman H, Bar-Or A, Miller A, Miller DH, Schmierer K, Lublin F, Khan O, Bormann NM, Yang M, Panzara MA, Sandrock AW. GLANCE: results of a phase 2, randomized, double-blind, placebo-controlled study. Neurology 2009; 72:806-12. [PMID: 19255407 DOI: 10.1212/01.wnl.0000343880.13764.69] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To evaluate the safety and tolerability of natalizumab when added to glatiramer acetate (GA) in patients with relapsing multiple sclerosis. The primary outcome assessed whether this combination would increase the rate of development of new active lesions on cranial MRI scans vs GA alone. METHODS This phase 2, randomized, double-blind, placebo-controlled study included patients aged 19 to 55 years who were treated with GA for at least 1 year before randomization and experienced at least one relapse during the previous year. Patients received IV natalizumab 300 mg (n = 55) or placebo (n = 55) once every 4 weeks plus GA 20 mg subcutaneously once daily for < or = 20 weeks. RESULTS The mean rate of development of new active lesions was 0.03 with combination therapy vs 0.11 with GA alone (p = 0.031). Combination therapy resulted in lower mean numbers of new gadolinium-enhancing lesions (0.6 vs 2.3 for GA alone, p = 0.020) and new/newly enlarging T2-hyperintense lesions (0.5 vs 1.3, p = 0.029). The incidence of infection and infusion reactions was similar in both groups; no hypersensitivity reactions were observed. One serious adverse event occurred with combination therapy (elective hip surgery). With the exception of an increase in anti-natalizumab antibodies with combination therapy, laboratory data were consistent with previous clinical studies of natalizumab alone. CONCLUSION The combination of natalizumab and glatiramer acetate seemed safe and well tolerated during 6 months of therapy.
Collapse
Affiliation(s)
- A D Goodman
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Schwartz M, Bukshpan S, Kunis G. Application of glatiramer acetate to neurodegenerative diseases beyond multiple sclerosis: the need for disease-specific approaches. BioDrugs 2008; 22:293-9. [PMID: 18778111 DOI: 10.2165/00063030-200822050-00002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Adaptive and innate immunity, if well controlled, contribute to the maintenance of the CNS, as well as to downregulation of adverse acute and chronic neurological conditions. T cells that recognize CNS antigens are needed to activate resident immune cells and to recruit blood-borne monocytes, which act to restore homeostasis and facilitate repair. However, boosting such a T-cell response in a risk-free way requires a careful choice of the antigen, carrier, and regimen. A single vaccination with CNS-derived peptides or their weak agonists reduces neuronal loss in animal models of acute neurodegeneration. Repeated injections are needed to maintain a long-lasting effect in chronic neurodegenerative conditions, yet the frequency of the injections seems to have a critical effect on the outcome. An example is glatiramer acetate, a compound that is administered in a daily regimen to patients with multiple sclerosis. A single injection of glatiramer acetate, with or without an adjuvant, is neuroprotective in some animal models of acute CNS injuries. However, in an animal model of amyotrophic lateral sclerosis, a single injection of adjuvant-free glatiramer acetate is insufficient, while daily injections are not only ineffective but can carry an increased risk of mortality in female mice.Thus, considering immune-based therapies as a single therapy, rather than as a family of therapies that are regimen dependent, may be misleading. Moreover, the vaccination regimen and administration of a compound, even one shown to be safe in humans for the treatment of a particular neurodegenerative disease, must be studied in preclinical experiments before it is tested in a clinical trial for a novel indication; otherwise, an effective drug in a certain regimen for one disease may be ineffective or even carry risks when used for another disorder.
Collapse
Affiliation(s)
- Michal Schwartz
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel.
| | | | | |
Collapse
|
42
|
Graber JJ, Dhib-Jalbut S. Protective autoimmunity in the nervous system. Pharmacol Ther 2008; 121:147-59. [PMID: 19000712 DOI: 10.1016/j.pharmthera.2008.10.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 10/02/2008] [Indexed: 12/31/2022]
Abstract
The immune system can play both detrimental and beneficial roles in the nervous system. Multiple arms of the immune system, including T cells, B cells, NK cells, mast cells, macrophages, dendritic cells, microglia, antibodies, complement and cytokines participate in limiting damage to the nervous system during toxic, ischemic, hemorrhagic, infective, degenerative, metabolic and immune-mediated insults and also assist in the process of repair after injury has occurred. Immune cells have been shown to produce neurotrophic growth factors and interact with neurons and glial cells to preserve them from injury and stimulate growth and repair. The immune system also appears to participate in proliferation of neural progenitor stem cells and their migration to sites of injury. Neural stem cells can also modify the immune response in the central and peripheral nervous system to enhance neuroprotective effects. Evidence for protective and reparative functions of the immune system has been found in diverse neurologic diseases including traumatic injury, ischemic and hemorrhagic stroke, multiple sclerosis, infection, and neurodegenerative diseases (Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis). Existing therapies including glatiramer acetate, interferon-beta and immunoglobulin have been shown to augment the protective and regenerative aspects of the immune system in humans, and other experimental interventions such as vaccination, minocycline, antibodies and neural stem cells, have shown promise in animal models of disease. The beneficent aspects of the immune response in the nervous system are beginning to be appreciated and their potential as pharmacologic targets in neurologic disease is being explored.
Collapse
Affiliation(s)
- Jerome J Graber
- New York University School of Medicine, Department of Neurology, New York, NY, USA
| | | |
Collapse
|
43
|
Aharoni R, Brenner O, Cohen A, Arnon R. The therapeutic effect of TV-5010 in a murine model of inflammatory bowel disease — Dextran induced colitis. Int Immunopharmacol 2008; 8:1578-88. [DOI: 10.1016/j.intimp.2008.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 06/29/2008] [Accepted: 06/30/2008] [Indexed: 11/29/2022]
|
44
|
Zheng B, Switzer K, Marinova E, Zhang J, Han S. Exacerbation of autoimmune arthritis by copolymer-I through promoting type 1 immune response and autoantibody production. Autoimmunity 2008; 41:363-71. [PMID: 18568641 DOI: 10.1080/08916930801931001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Copolymer-I (COP-I) is an unique immune regulatory polymer that has been shown to suppress experimental autoimmune encephalomyelitis (EAE) and is a treatment option for multiple sclerosis (MS). To investigate whether its immune suppressive effects can be extended to other autoimmune diseases, we treated mice with COP-I during the induction of collagen-induced arthritis (CIA). Our results show that COP-I treatment exacerbated CIA, leading to faster onset, more severe and longer-lasting disease. The mechanisms underlying the exacerbation of CIA by COP-I treatment include enhanced activation and inflammatory cytokine production by autoreactive T cells and elevated production of autoreactive antibodies. In addition, germinal center response was significantly enhanced by COP-I treatment. Thus, great caution should be taken when COP-I is to be used in MS patients with other autoimmune complications or its potential therapeutic effects are to be extended beyond autoimmune demyelinating diseases.
Collapse
Affiliation(s)
- Biao Zheng
- Department of Immunology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
45
|
Blanchette F, Neuhaus O. Glatiramer acetate: evidence for a dual mechanism of action. J Neurol 2008; 255 Suppl 1:26-36. [PMID: 18317674 DOI: 10.1007/s00415-008-1005-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glatiramer acetate is a disease-modifying drug approved for the treatment of relapsing-remitting multiple sclerosis. Since its discovery almost four decades ago, and in particular since the observation of its beneficial clinical effects in the late 1980s and early 1990s, numerous data have been generated and contribute pieces of a puzzle to help explain the mechanism of action of glatiramer acetate. Two major themes have emerged, namely (i) the induction of glatiramer acetate-reactive TH2 immunoregulatory cells, and (ii) the stimulation of neurotrophin secretion in the central nervous system that may promote neuronal repair.
Collapse
Affiliation(s)
- François Blanchette
- Scientific Affairs Director (Europe), Teva Pharma S.A., Immeuble Palatin 1, 1 cours du Triangle, 92936, Paris La Defense Cedex, France.
| | | |
Collapse
|
46
|
Liu J, Johnson TV, Lin J, Ramirez SH, Bronich TK, Caplan S, Persidsky Y, Gendelman HE, Kipnis J. T cell independent mechanism for copolymer-1-induced neuroprotection. Eur J Immunol 2007; 37:3143-54. [PMID: 17948266 DOI: 10.1002/eji.200737398] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Despite active investigation of copolymer-1 (Cop-1) for nearly 40 years the mechanisms underlying its neuroprotective properties remain contentious. Nonetheless, current dogma for Cop-1 neuroprotective activities in autoimmune and neurodegenerative diseases include bystander suppression of autoimmune T cells and attenuation of microglial responses. In this report, we demonstrate that Cop-1 interacts directly with primary human neurons and decreases neuronal cell death induced by staurosporine or oxidative stress. This neuroprotection is mediated through protein kinase Calpha and brain-derived neurotrophic factor. Dendritic cells (DC) uptake Cop-1, deliver it to the injury site, and release it in an active form. Interactions between Cop-1 and DC enhance DC blood brain barrier migration. In a rat model with optic nerve crush injury, Cop-1-primed DC induce T cell independent neuroprotection. These findings may facilitate the development of neuroprotective approaches using DC-mediated Cop-1 delivery to diseased nervous tissue.
Collapse
Affiliation(s)
- Jianuo Liu
- Laboratory of Neuro-Immune Regulation, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gorantla S, Liu J, Sneller H, Dou H, Holguin A, Smith L, Ikezu T, Volsky DJ, Poluektova L, Gendelman HE. Copolymer-1 induces adaptive immune anti-inflammatory glial and neuroprotective responses in a murine model of HIV-1 encephalitis. THE JOURNAL OF IMMUNOLOGY 2007; 179:4345-56. [PMID: 17878329 DOI: 10.4049/jimmunol.179.7.4345] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Copolymer-1 (COP-1) elicits neuroprotective activities in a wide range of neurodegenerative disorders. This occurs, in part, by adaptive immune-mediated suppression of microglial inflammatory responses. Because HIV infection and immune activation of perivascular macrophages and microglia drive a metabolic encephalopathy, we reasoned that COP-1 could be developed as an adjunctive therapy for disease. To test this, we developed a novel animal model system that reflects HIV-1 encephalitis in rodents with both innate and adaptive arms of the immune system. Bone marrow-derived macrophages were infected with HIV-1/vesicular stomatitis-pseudotyped virus and stereotactically injected into the basal ganglia of syngeneic mice. HIV-1 pseudotyped with vesicular stomatitis virus envelope-infected bone marrow-derived macrophages induced significant neuroinflammation, including astrogliosis and microglial activation with subsequent neuronal damage. Importantly, COP-1 immunization reduced astro- and microgliosis while diminishing neurodegeneration. Hippocampal neurogenesis was, in part, restored. This paralleled reductions in proinflammatory cytokines, including TNF-alpha and IL-1beta, and inducible NO synthase, and increases in brain-derived neurotrophic factor. Ingress of Foxp3- and IL-4-expressing lymphocytes into brains of COP-1-immunized animals was observed. We conclude that COP-1 may warrant therapeutic consideration for HIV-1-associated cognitive impairments.
Collapse
Affiliation(s)
- Santhi Gorantla
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Burster T, Marin-Esteban V, Boehm BO, Dunn S, Rotzschke O, Falk K, Weber E, Verhelst SHL, Kalbacher H, Driessen C. Design of protease-resistant myelin basic protein-derived peptides by cleavage site directed amino acid substitutions. Biochem Pharmacol 2007; 74:1514-23. [PMID: 17803968 DOI: 10.1016/j.bcp.2007.07.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 06/23/2007] [Accepted: 07/16/2007] [Indexed: 10/23/2022]
Abstract
Multiple Sclerosis (MS) is considered to be a T cell-mediated autoimmune disease. An attractive strategy to prevent activation of autoaggressive T cells in MS, is the use of altered peptide ligands (APL), which bind to major histocompatibility complex class II (MHC II) molecules. To be of clinical use, APL must be capable of resisting hostile environments including the proteolytic machinery of antigen presenting cells (APC). The current design of APL relies on cost- and labour-intensive strategies. To overcome these major drawbacks, we used a deductive approach which involved modifying proteolytic cleavage sites in APL. Cleavage site-directed amino acid substitution of the autoantigen myelin basic protein (MBP) resulted in lysosomal protease-resistant, high-affinity binding peptides. In addition, these peptides mitigated T cell activation in a similar fashion as conventional APL. The strategy outlined allows the development of protease-resistant APL and provides a universal design strategy to improve peptide-based immunotherapeutics.
Collapse
Affiliation(s)
- Timo Burster
- Department of Medicine II, University of Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Arnon R, Aharoni R. Neurogenesis and Neuroprotection in the CNS — Fundamental Elements in the Effect of Glatiramer Acetate on Treatment of Autoimmune Neurological Disorders. Mol Neurobiol 2007; 36:245-53. [DOI: 10.1007/s12035-007-8002-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 10/09/2006] [Indexed: 12/18/2022]
|
50
|
Weber MS, Hohlfeld R, Zamvil SS. Mechanism of action of glatiramer acetate in treatment of multiple sclerosis. Neurotherapeutics 2007; 4:647-53. [PMID: 17920545 PMCID: PMC7479674 DOI: 10.1016/j.nurt.2007.08.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Glatiramer acetate (GA) (Copolymer-1, Copaxone, Teva, Israel, YEAK) is a polypeptide-based therapy approved for the treatment of relapsing-remitting multiple sclerosis. Most investigations have attributed the immunomodulatory effect of GAs to its capability to alter T-cell differentiation. Specifically, GA treatment is believed to promote development of Th2-polarized GA-reactive CD4(+) T-cells, which may dampen neighboring inflammation within the central nervous system. Recent reports indicate that the deficiency in CD4(+)CD25(+)FoxP3(+) regulatory T-cells in multiple sclerosis is restored by GA treatment. GA also exerts immunomodulatory activity on antigen presenting cells, which participate in innate immune responses. These new findings represent a plausible explanation for GA-mediated T-cell immune modulation and may provide useful insight for the development of new and more effective treatment options for multiple sclerosis.
Collapse
Affiliation(s)
- Martin S. Weber
- Department of Neurology, Program in Immunology, University of California, San Francisco, 513 Parnassus Avenue, S-268, 94143 San Francisco, CA
| | - Reinhard Hohlfeld
- Institute for Clinical Neuroimmunology, Klinikum Grosshadern, Ludwig Maximilians University, 81377 Munich, Germany
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Scott S. Zamvil
- Department of Neurology, Program in Immunology, University of California, San Francisco, 513 Parnassus Avenue, S-268, 94143 San Francisco, CA
| |
Collapse
|