1
|
Criscuolo C, Chartampila E, Ginsberg SD, Scharfman HE. Dentate Gyrus Granule Cells Show Stability of BDNF Protein Expression in Mossy Fiber Axons with Age, and Resistance to Alzheimer's Disease Neuropathology in a Mouse Model. eNeuro 2024; 11:ENEURO.0192-23.2023. [PMID: 38164567 PMCID: PMC10913042 DOI: 10.1523/eneuro.0192-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is important in the development and maintenance of neurons and their plasticity. Hippocampal BDNF has been implicated in Alzheimer's disease (AD) because hippocampal levels in AD patients and AD animal models are often downregulated, suggesting that reduced BDNF contributes to AD. However, the location where hippocampal BDNF protein is most highly expressed, the mossy fiber (MF) axons of dentate gyrus granule cells (GCs), has been understudied, and not in controlled conditions. Therefore, we evaluated MF BDNF protein in the Tg2576 mouse model of AD. Tg2576 and wild-type (WT) mice of both sexes were examined at 2-3 months of age, when amyloid-β (Aβ) is present in neurons but plaques are absent, and 11-20 months of age, after plaque accumulation. As shown previously, WT mice exhibited high levels of MF BDNF protein. Interestingly, there was no significant decline with age in either the genotype or sex. Notably, MF BDNF protein was correlated with GC ΔFosB, a transcription factor that increases after 1-2 weeks of elevated neuronal activity. We also report the novel finding that Aβ in GCs or the GC layer was minimal even at old ages. The results indicate that MF BDNF is stable in the Tg2576 mouse, and MF BDNF may remain unchanged due to increased GC neuronal activity, since BDNF expression is well known to be activity dependent. The resistance of GCs to long-term Aβ accumulation provides an opportunity to understand how to protect vulnerable neurons from increased Aβ levels and therefore has translational implications.
Collapse
Affiliation(s)
- Chiara Criscuolo
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Child & Adolescent Psychiatry, NewYork University Grossman School of Medicine, New York, NY 10016
| | - Elissavet Chartampila
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephen D Ginsberg
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Neuroscience & Physiology, NewYork University Grossman School of Medicine, New York, NY 10016
- Psychiatry, NewYork University Grossman School of Medicine, New York, NY 10016
- NYU Neuroscience Institute, NewYork University Grossman School of Medicine, New York, NY 10016
| | - Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Child & Adolescent Psychiatry, NewYork University Grossman School of Medicine, New York, NY 10016
- Department of Neuroscience & Physiology, NewYork University Grossman School of Medicine, New York, NY 10016
- NYU Neuroscience Institute, NewYork University Grossman School of Medicine, New York, NY 10016
| |
Collapse
|
2
|
Beltran-Casanueva R, Hernández-García A, de Amo García P, Blanco-Reina E, Serrano-Castro P, García-Casares N, Fuxe K, Borroto-Escuela DO, Narváez M. Neuropeptide Y receptor 1 and galanin receptor 2 (NPY1R-GALR2) interactions in the dentate gyrus and their relevance for neurogenesis and cognition. Front Cell Neurosci 2024; 18:1323986. [PMID: 38425430 PMCID: PMC10902914 DOI: 10.3389/fncel.2024.1323986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction This study may unveil novel insights into the interactions between neuropeptide Y receptor 1 (NPY1R) and galanin receptor 2 (GALR2), in the dentate gyrus of the dorsal hippocampus, shedding light on their role in neurogenesis and cognitive functions. Existing literature highlights the potential of these interactions in enhancing learning and memory, yet detailed mechanisms remain underexplored. Methods Utilizing intracerebroventricular injections of GALR2 and NPY1R agonists in Sprague-Dawley male rats, we examined neurogenesis via markers PCNA and DCX, and memory consolidation through the object-in-place task over a three-week period. Results Significant increases in NPY1R-GALR2 co-localization and neuroblast proliferation were observed, alongside enhanced memory consolidation. These findings suggest a synergistic effect of NPY1R and GALR2 activation on cognitive functions. Discussion Our findings may foster the development of novel heterobivalent or multitargeting drugs, affecting NPY1R-GALR2 interaction, and suggest a future pharmacogical strategy for improving learning and memory found in many brain diseases. Further research is encouraged to explore these mechanisms in pathological models.
Collapse
Affiliation(s)
- Rasiel Beltran-Casanueva
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Receptomics and Brain Disorders Lab, Facultad de Medicina, Edificio Lopez-Peñalver, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Spain
| | - Aracelis Hernández-García
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Receptomics and Brain Disorders Lab, Facultad de Medicina, Edificio Lopez-Peñalver, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Spain
- Departamento de Docencia e Investigación, Universidad de Ciencias Médicas de Holguín, Hospital Pedíatrico Universitario Octavio de la Concepción de la Pedraja, Holguín, Cuba
| | - Paula de Amo García
- Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Encarnación Blanco-Reina
- Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Pedro Serrano-Castro
- Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
- Grupo Hospitalario Vithas, Vithas Málaga, Málaga, Spain
- Unit of Neurology, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Natalia García-Casares
- Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Dasiel O. Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Receptomics and Brain Disorders Lab, Facultad de Medicina, Edificio Lopez-Peñalver, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Spain
| | - Manuel Narváez
- Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
- Grupo Hospitalario Vithas, Vithas Málaga, Málaga, Spain
| |
Collapse
|
3
|
Tukacs V, Mittli D, Hunyadi-Gulyás É, Darula Z, Juhász G, Kardos J, Kékesi KA. Comparative analysis of hippocampal extracellular space uncovers widely altered peptidome upon epileptic seizure in urethane-anaesthetized rats. Fluids Barriers CNS 2024; 21:6. [PMID: 38212833 PMCID: PMC10782730 DOI: 10.1186/s12987-024-00508-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/31/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND The brain extracellular fluid (ECF), composed of secreted neurotransmitters, metabolites, peptides, and proteins, may reflect brain processes. Analysis of brain ECF may provide new potential markers for synaptic activity or brain damage and reveal additional information on pathological alterations. Epileptic seizure induction is an acute and harsh intervention in brain functions, and it can activate extra- and intracellular proteases, which implies an altered brain secretome. Thus, we applied a 4-aminopyridine (4-AP) epilepsy model to study the hippocampal ECF peptidome alterations upon treatment in rats. METHODS We performed in vivo microdialysis in the hippocampus for 3-3 h of control and 4-AP treatment phase in parallel with electrophysiology measurement. Then, we analyzed the microdialysate peptidome of control and treated samples from the same subject by liquid chromatography-coupled tandem mass spectrometry. We analyzed electrophysiological and peptidomic alterations upon epileptic seizure induction by two-tailed, paired t-test. RESULTS We detected 2540 peptides in microdialysate samples by mass spectrometry analysis; and 866 peptides-derived from 229 proteins-were found in more than half of the samples. In addition, the abundance of 322 peptides significantly altered upon epileptic seizure induction. Several proteins of significantly altered peptides are neuropeptides (Chgb) or have synapse- or brain-related functions such as the regulation of synaptic vesicle cycle (Atp6v1a, Napa), astrocyte morphology (Vim), and glutamate homeostasis (Slc3a2). CONCLUSIONS We have detected several consequences of epileptic seizures at the peptidomic level, as altered peptide abundances of proteins that regulate epilepsy-related cellular processes. Thus, our results indicate that analyzing brain ECF by in vivo microdialysis and omics techniques is useful for monitoring brain processes, and it can be an alternative method in the discovery and analysis of CNS disease markers besides peripheral fluid analysis.
Collapse
Affiliation(s)
- Vanda Tukacs
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Dániel Mittli
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvári Körút 62, Szeged, 6726, Hungary
| | - Zsuzsanna Darula
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvári Körút 62, Szeged, 6726, Hungary
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, Temesvári Körút 62, Szeged, 6726, Hungary
| | - Gábor Juhász
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- InnoScience Hungary Ltd., Bátori Út 9, Mátranovák, 3142, Hungary
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Katalin Adrienna Kékesi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
- InnoScience Hungary Ltd., Bátori Út 9, Mátranovák, 3142, Hungary.
- Department of Physiology and Neurobiology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
| |
Collapse
|
4
|
Lankhuijzen LM, Ridler T. Opioids, microglia, and temporal lobe epilepsy. Front Neurol 2024; 14:1298489. [PMID: 38249734 PMCID: PMC10796828 DOI: 10.3389/fneur.2023.1298489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
A lack of treatment options for temporal lobe epilepsy (TLE) demands an urgent quest for new therapies to recover neuronal damage and reduce seizures, potentially interrupting the neurotoxic cascades that fuel hyper-excitability. Endogenous opioids, along with their respective receptors, particularly dynorphin and kappa-opioid-receptor, present as attractive candidates for controlling neuronal excitability and therapeutics in epilepsy. We perform a critical review of the literature to evaluate the role of opioids in modulating microglial function and morphology in epilepsy. We find that, in accordance with anticonvulsant effects, acute opioid receptor activation has unique abilities to modulate microglial activation through toll-like 4 receptors, regulating downstream secretion of cytokines. Abnormal activation of microglia is a dominant feature of neuroinflammation, and inflammatory cytokines are found to aggravate TLE, inspiring the challenge to alter microglial activation by opioids to suppress seizures. We further evaluate how opioids can modulate microglial activation in epilepsy to enhance neuroprotection and reduce seizures. With controlled application, opioids may interrupt inflammatory cycles in epilepsy, to protect neuronal function and reduce seizures. Research on opioid-microglia interactions has important implications for epilepsy and healthcare approaches. However, preclinical research on opioid modulation of microglia supports a new therapeutic pathway for TLE.
Collapse
Affiliation(s)
| | - Thomas Ridler
- Hatherly Laboratories, Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
5
|
Guo Q, Chen N, Patel K, Wan M, Zheng J, Cao X. Unloading-Induced Skeletal Interoception Alters Hypothalamic Signaling to Promote Bone Loss and Fat Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305042. [PMID: 37880864 PMCID: PMC10724445 DOI: 10.1002/advs.202305042] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/02/2023] [Indexed: 10/27/2023]
Abstract
Microgravity is the primary factor that affects human physiology in spaceflight, particularly bone loss and disturbances of the central nervous system. However, little is known about the cellular and molecular mechanisms of these effects. Here, it is reported that in mice hindlimb unloading stimulates expression of neuropeptide Y (NPY) and tyrosine hydroxylase (TH) in the hypothalamus, resulting in bone loss and altered fat metabolism. Enhanced expression of TH and NPY in the hypothalamus occurs downstream of a reduced prostaglandin E2 (PGE2)-mediated ascending interoceptive signaling of the skeletal interoception. Sympathetic antagonist propranolol or deletion of Adrb2 in osteocytes rescue bone loss in the unloading model. Moreover, depletion of TH+ sympathetic nerves or inhibition of norepinephrine release ameliorated bone resorption. Stereotactic inhibition of NPY expression in the hypothalamic neurons reduces the food intake with altered energy expenditure with a limited effect on bone, indicating hypothalamic neuroendocrine factor NPY in the facilitation of bone formation by sympathetic TH activity. These findings suggest that reduced PGE2-mediated interoceptive signaling in response to microgravity or unloading has impacts on the skeletal and central nervous systems that are reciprocally regulated.
Collapse
Affiliation(s)
- Qiaoyue Guo
- Department of Orthopedic SurgeryJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
| | - Ningrong Chen
- Department of Orthopedic SurgeryJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Kalp Patel
- Department of Orthopedic SurgeryJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Mei Wan
- Department of Orthopedic SurgeryJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Junying Zheng
- Department of Orthopedic SurgeryJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Xu Cao
- Department of Orthopedic SurgeryJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMD21205USA
| |
Collapse
|
6
|
Silveira MA, Drotos AC, Pirrone TM, Versalle TS, Bock A, Roberts MT. Neuropeptide Y Signaling Regulates Recurrent Excitation in the Auditory Midbrain. J Neurosci 2023; 43:7626-7641. [PMID: 37704372 PMCID: PMC10634549 DOI: 10.1523/jneurosci.0900-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
Neuropeptides play key roles in shaping the organization and function of neuronal circuits. In the inferior colliculus (IC), which is in the auditory midbrain, Neuropeptide Y (NPY) is expressed by a class of GABAergic neurons that project locally and outside the IC. Most neurons in the IC have local axon collaterals; however, the organization and function of local circuits in the IC remain unknown. We previously found that excitatory neurons in the IC can express the NPY Y1 receptor (Y1R+) and application of the Y1R agonist, [Leu31, Pro34]-NPY (LP-NPY), decreases the excitability of Y1R+ neurons. As NPY signaling regulates recurrent excitation in other brain regions, we hypothesized that Y1R+ neurons form interconnected local circuits in the IC and that NPY decreases the strength of recurrent excitation in these circuits. To test this hypothesis, we used optogenetics to activate Y1R+ neurons in mice of both sexes while recording from other neurons in the ipsilateral IC. We found that nearly 80% of glutamatergic IC neurons express the Y1 receptor, providing extensive opportunities for NPY signaling to regulate local circuits. Additionally, Y1R+ neuron synapses exhibited modest short-term synaptic plasticity, suggesting that local excitatory circuits maintain their influence over computations during sustained stimuli. We further found that application of LP-NPY decreased recurrent excitation in the IC, suggesting that NPY signaling strongly regulates local circuit function in the auditory midbrain. Our findings show that Y1R+ excitatory neurons form interconnected local circuits in the IC, and their influence over local circuits is regulated by NPY signaling.SIGNIFICANCE STATEMENT Local networks play fundamental roles in shaping neuronal computations in the brain. The IC, localized in the auditory midbrain, plays an essential role in sound processing, but the organization of local circuits in the IC is largely unknown. Here, we show that IC neurons that express the Neuropeptide Y1 receptor (Y1R+ neurons) make up most of the excitatory neurons in the IC and form interconnected local circuits. Additionally, we found that NPY, which is a powerful neuromodulator known to shape neuronal activity in other brain regions, decreases the extensive recurrent excitation mediated by Y1R+ neurons in local IC circuits. Thus, our results suggest that local NPY signaling is a key regulator of auditory computations in the IC.
Collapse
Affiliation(s)
- Marina A Silveira
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Audrey C Drotos
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Trinity M Pirrone
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
- Macalester College, St. Paul, Minnesota 55105
| | - Trevor S Versalle
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Amanda Bock
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Michael T Roberts
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
7
|
Whitebirch AC, Santoro B, Barnett A, Lisgaras CP, Scharfman HE, Siegelbaum SA. Reduced Cholecystokinin-Expressing Interneuron Input Contributes to Disinhibition of the Hippocampal CA2 Region in a Mouse Model of Temporal Lobe Epilepsy. J Neurosci 2023; 43:6930-6949. [PMID: 37643861 PMCID: PMC10573827 DOI: 10.1523/jneurosci.2091-22.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
A significant proportion of temporal lobe epilepsy (TLE) patients experience drug-resistant seizures associated with mesial temporal sclerosis, in which there is extensive cell loss in the hippocampal CA1 and CA3 subfields, with a relative sparing of dentate gyrus granule cells and CA2 pyramidal neurons (PNs). A role for CA2 in seizure generation was suggested based on findings of a reduction in CA2 synaptic inhibition (Williamson and Spencer, 1994) and the presence of interictal-like spike activity in CA2 in resected hippocampal tissue from TLE patients (Wittner et al., 2009). We recently found that in the pilocarpine-induced status epilepticus (PILO-SE) mouse model of TLE there was an increase in CA2 intrinsic excitability associated with a loss of CA2 synaptic inhibition. Furthermore, chemogenetic silencing of CA2 significantly reduced seizure frequency, consistent with a role of CA2 in promoting seizure generation and/or propagation (Whitebirch et al., 2022). In the present study, we explored the cellular basis of this inhibitory deficit using immunohistochemical and electrophysiological approaches in PILO-SE male and female mice. We report a widespread decrease in the density of pro-cholecystokinin-immunopositive (CCK+) interneurons and a functional impairment of CCK+ interneuron-mediated inhibition of CA2 PNs. We also found a disruption in the perisomatic perineuronal net in the CA2 stratum pyramidale. Such pathologic alterations may contribute to an enhanced excitation of CA2 PNs and CA2-dependent seizure activity in the PILO-SE mouse model.SIGNIFICANCE STATEMENT Impaired synaptic inhibition in hippocampal circuits has been identified as a key feature that contributes to the emergence and propagation of seizure activity in human patients and animal models of temporal lobe epilepsy (TLE). Among the hippocampal subfields, the CA2 region is particularly resilient to seizure-associated neurodegeneration and has been suggested to play a key role in seizure activity in TLE. Here we report that perisomatic inhibition of CA2 pyramidal neurons mediated by cholecystokinin-expressing interneurons is selectively reduced in acute hippocampal slices from epileptic mice. Parvalbumin-expressing interneurons, in contrast, appear relatively conserved in epileptic mice. These findings advance our understanding of the cellular mechanisms underlying inhibitory disruption in hippocampal circuits in a mouse model of spontaneous recurring seizures.
Collapse
Affiliation(s)
- Alexander C Whitebirch
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University Irving Medical Center, New York, New York 10027
| | - Bina Santoro
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University Irving Medical Center, New York, New York 10027
| | - Anastasia Barnett
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University Irving Medical Center, New York, New York 10027
| | - Christos Panagiotis Lisgaras
- Department of Child & Adolescent Psychiatry, New York University Langone Health, New York, New York 10016
- Department of Neuroscience & Physiology, New York University Langone Health, New York, New York 10016
- Department of Psychiatry, New York University Langone Health, New York, New York 10016
- The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Helen E Scharfman
- Department of Child & Adolescent Psychiatry, New York University Langone Health, New York, New York 10016
- Department of Neuroscience & Physiology, New York University Langone Health, New York, New York 10016
- Department of Psychiatry, New York University Langone Health, New York, New York 10016
- The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Steven A Siegelbaum
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University Irving Medical Center, New York, New York 10027
| |
Collapse
|
8
|
Melin E, Andersson M, Gøtzsche CR, Wickham J, Huang Y, Szczygiel JA, Boender A, Christiansen SH, Pinborg L, Woldbye DPD, Kokaia M. Combinatorial gene therapy for epilepsy: Gene sequence positioning and AAV serotype influence expression and inhibitory effect on seizures. Gene Ther 2023; 30:649-658. [PMID: 37029201 PMCID: PMC10457185 DOI: 10.1038/s41434-023-00399-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/24/2023] [Accepted: 03/16/2023] [Indexed: 04/09/2023]
Abstract
Gene therapy with AAV vectors carrying genes for neuropeptide Y and its receptor Y2 has been shown to inhibit seizures in multiple animal models of epilepsy. It is however unknown how the AAV serotype or the sequence order of these two transgenes in the expression cassette affects the actual parenchymal gene expression levels and the seizure-suppressant efficacy. To address these questions, we compared three viral vector serotypes (AAV1, AAV2 and AAV8) and two transgene sequence orders (NPY-IRES-Y2 and Y2-IRES-NPY) in a rat model of acutely induced seizures. Wistar male rats were injected bilaterally with viral vectors and 3 weeks later acute seizures were induced by a subcutaneous injection of kainate. The latency until 1st motor seizure, time spent in motor seizure and latency to status epilepticus were measured to evaluate the seizure-suppressing efficacy of these vectors compared to an empty cassette control vector. Based on the results, the effect of the AAV1-NPY-IRES-Y2 vector was further investigated by in vitro electrophysiology, and its ability to achieve transgene overexpression in resected human hippocampal tissue was evaluated. The AAV1-NPY-IRES-Y2 proved to be better to any other serotype or gene sequence considering both transgene expression and ability to suppress induced seizures in rats. The vector also demonstrated transgene-induced decrease of glutamate release from excitatory neuron terminals and significantly increased both NPY and Y2 expression in resected human hippocampal tissue from patients with drug-resistant temporal lobe epilepsy. These results validate the feasibility of NPY/Y2 receptor gene therapy as a therapeutic opportunity in focal epilepsies.
Collapse
Affiliation(s)
- Esbjörn Melin
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, 17 Sölvegatan, 221 84, Lund, Sweden.
| | - My Andersson
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, 17 Sölvegatan, 221 84, Lund, Sweden
| | - Casper R Gøtzsche
- CombiGene AB, Medicon Village, 2 Scheelevägen, 223 81, Lund, Sweden
- Department of Neuroscience, Panum Institute, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Jenny Wickham
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, 17 Sölvegatan, 221 84, Lund, Sweden
| | - Yuzhe Huang
- Department of Neuroscience, Panum Institute, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Julia Alicja Szczygiel
- Department of Neuroscience, Panum Institute, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Arnie Boender
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, 17 Sölvegatan, 221 84, Lund, Sweden
| | - Søren H Christiansen
- Department of Neuroscience, Panum Institute, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Lars Pinborg
- Department of Neurology and Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, 9 Blegdamsvej, DK-2100, Copenhagen, Denmark
| | - David P D Woldbye
- Department of Neuroscience, Panum Institute, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Merab Kokaia
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, 17 Sölvegatan, 221 84, Lund, Sweden
| |
Collapse
|
9
|
Novelli G, Cassadonte C, Sbraccia P, Biancolella M. Genetics: A Starting Point for the Prevention and the Treatment of Obesity. Nutrients 2023; 15:2782. [PMID: 37375686 DOI: 10.3390/nu15122782] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Obesity is a common, serious, and costly disease. More than 1 billion people worldwide are obese-650 million adults, 340 million adolescents, and 39 million children. The WHO estimates that, by 2025, approximately 167 million people-adults and children-will become less healthy because they are overweight or obese. Obesity-related conditions include heart disease, stroke, type 2 diabetes, and certain types of cancer. These are among the leading causes of preventable, premature death. The estimated annual medical cost of obesity in the United States was nearly $173 billion in 2019 dollars. Obesity is considered the result of a complex interaction between genes and the environment. Both genes and the environment change in different populations. In fact, the prevalence changes as the result of eating habits, lifestyle, and expression of genes coding for factors involved in the regulation of body weight, food intake, and satiety. Expression of these genes involves different epigenetic processes, such as DNA methylation, histone modification, or non-coding micro-RNA synthesis, as well as variations in the gene sequence, which results in functional alterations. Evolutionary and non-evolutionary (i.e., genetic drift, migration, and founder's effect) factors have shaped the genetic predisposition or protection from obesity in modern human populations. Understanding and knowing the pathogenesis of obesity will lead to prevention and treatment strategies not only for obesity, but also for other related diseases.
Collapse
Affiliation(s)
- Giuseppe Novelli
- Department of Biomedicine and Prevention, Medical School, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Italian Barometer Diabetes Observatory Foundation, IBDO, 00186 Rome, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Carmen Cassadonte
- Department of Biomedicine and Prevention, Medical School, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Paolo Sbraccia
- Italian Barometer Diabetes Observatory Foundation, IBDO, 00186 Rome, Italy
- Department of Systems Medicine, Medical School, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Michela Biancolella
- Department of Biology, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
10
|
Wang CL, Ohkubo R, Mu WC, Chen W, Fan JL, Song Z, Maruichi A, Sudmant PH, Pisco AO, Dubal DB, Ji N, Chen D. The mitochondrial unfolded protein response regulates hippocampal neural stem cell aging. Cell Metab 2023; 35:996-1008.e7. [PMID: 37146607 PMCID: PMC10330239 DOI: 10.1016/j.cmet.2023.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/14/2022] [Accepted: 04/06/2023] [Indexed: 05/07/2023]
Abstract
Aging results in a decline in neural stem cells (NSCs), neurogenesis, and cognitive function, and evidence is emerging to demonstrate disrupted adult neurogenesis in the hippocampus of patients with several neurodegenerative disorders. Here, single-cell RNA sequencing of the dentate gyrus of young and old mice shows that the mitochondrial protein folding stress is prominent in activated NSCs/neural progenitors (NPCs) among the neurogenic niche, and it increases with aging accompanying dysregulated cell cycle and mitochondrial activity in activated NSCs/NPCs in the dentate gyrus. Increasing mitochondrial protein folding stress results in compromised NSC maintenance and reduced neurogenesis in the dentate gyrus, neural hyperactivity, and impaired cognitive function. Reducing mitochondrial protein folding stress in the dentate gyrus of old mice improves neurogenesis and cognitive function. These results establish the mitochondrial protein folding stress as a driver of NSC aging and suggest approaches to improve aging-associated cognitive decline.
Collapse
Affiliation(s)
- Chih-Ling Wang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rika Ohkubo
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wei-Chieh Mu
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wei Chen
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jiang Lan Fan
- Joint Graduate Program in Bioengineering, University of California, San Francisco, and University of California, Berkeley, San Francisco, CA 94720, USA
| | - Zehan Song
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ayane Maruichi
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Dena B Dubal
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Danica Chen
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
11
|
Silveira MA, Drotos AC, Pirrone TM, Versalle TS, Bock A, Roberts MT. Neuropeptide Y signaling regulates recurrent excitation in the auditory midbrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.540954. [PMID: 37292904 PMCID: PMC10245754 DOI: 10.1101/2023.05.16.540954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Neuropeptides play key roles in shaping the organization and function of neuronal circuits. In the inferior colliculus (IC), which is located in the auditory midbrain, Neuropeptide Y (NPY) is expressed by a large class of GABAergic neurons that project locally as well as outside the IC. The IC integrates information from numerous auditory nuclei making the IC an important hub for sound processing. Most neurons in the IC have local axon collaterals, however the organization and function of local circuits in the IC remains largely unknown. We previously found that neurons in the IC can express the NPY Y1 receptor (Y 1 R + ) and application of the Y 1 R agonist, [Leu 31 , Pro 34 ]-NPY (LP-NPY), decreases the excitability of Y 1 R + neurons. To investigate how Y 1 R + neurons and NPY signaling contribute to local IC networks, we used optogenetics to activate Y 1 R + neurons while recording from other neurons in the ipsilateral IC. Here, we show that 78.4% of glutamatergic neurons in the IC express the Y1 receptor, providing extensive opportunities for NPY signaling to regulate excitation in local IC circuits. Additionally, Y 1 R + neuron synapses exhibit modest short-term synaptic plasticity, suggesting that local excitatory circuits maintain their influence over computations during sustained stimuli. We further found that application of LP-NPY decreases recurrent excitation in the IC, suggesting that NPY signaling strongly regulates local circuit function in the auditory midbrain. Together, our data show that excitatory neurons are highly interconnected in the local IC and their influence over local circuits is tightly regulated by NPY signaling.
Collapse
Affiliation(s)
- Marina A. Silveira
- Kresge Hearing Research Institute, Department of Otolaryngology – Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Audrey C. Drotos
- Kresge Hearing Research Institute, Department of Otolaryngology – Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Trinity M. Pirrone
- Kresge Hearing Research Institute, Department of Otolaryngology – Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
- Macalester College, St. Paul, Minnesota 55105
| | - Trevor S. Versalle
- Kresge Hearing Research Institute, Department of Otolaryngology – Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Amanda Bock
- Kresge Hearing Research Institute, Department of Otolaryngology – Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Michael T. Roberts
- Kresge Hearing Research Institute, Department of Otolaryngology – Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, 48109
| |
Collapse
|
12
|
Criscuolo C, Chartampila E, Ginsberg SD, Scharfman HE. Stability of dentate gyrus granule cell mossy fiber BDNF protein expression with age and resistance of granule cells to Alzheimer's disease neuropathology in a mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.07.539742. [PMID: 37214931 PMCID: PMC10197599 DOI: 10.1101/2023.05.07.539742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) is important in development and maintenance of neurons and their plasticity. Hippocampal BDNF has been implicated Alzheimer's disease (AD) because hippocampal levels in AD patients and AD animal models are consistently downregulated, suggesting that reduced BDNF contributes to AD. However, the location where hippocampal BDNF protein is most highly expressed, the mossy fiber (MF) axons of dentate gyrus (DG) granule cells (GCs), has been understudied, and never in controlled in vivo conditions. We examined MF BDNF protein in the Tg2576 mouse model of AD. Tg2576 and wild type (WT) mice of both sexes were examined at 2-3 months of age, when amyloid-β (Aβ) is present in neurons but plaques are absent, and 11-20 months of age, after plaque accumulation. As shown previously, WT mice exhibited high levels of MF BDNF protein. Interestingly, there was no significant decline with age in either genotype or sex. Notably, we found a correlation between MF BDNF protein and GC ΔFosB, a transcription factor that increases after 1-2 weeks of elevated neuronal activity. Remarkably, there was relatively little evidence of Aβ in GCs or the GC layer even at old ages. Results indicate MF BDNF is stable in the Tg2576 mouse, and MF BDNF may remain unchanged due to increased GC neuronal activity, since BDNF expression is well known to be activity-dependent. The resistance of GCs to long-term Aβ accumulation provides an opportunity to understand how to protect other vulnerable neurons from increased Aβ levels and therefore has translational implications.
Collapse
Affiliation(s)
- Chiara Criscuolo
- Center for Dementia Research, the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child & Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Elissavet Chartampila
- Center for Dementia Research, the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stephen D. Ginsberg
- Center for Dementia Research, the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Helen E. Scharfman
- Center for Dementia Research, the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child & Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
13
|
Burgos DF, Sciaccaluga M, Worby CA, Zafra-Puerta L, Iglesias-Cabeza N, Sánchez-Martín G, Prontera P, Costa C, Serratosa JM, Sánchez MP. Epm2a R240X knock-in mice present earlier cognitive decline and more epileptic activity than Epm2a -/- mice. Neurobiol Dis 2023; 181:106119. [PMID: 37059210 DOI: 10.1016/j.nbd.2023.106119] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023] Open
Abstract
Lafora disease is a rare recessive form of progressive myoclonic epilepsy, usually diagnosed during adolescence. Patients present with myoclonus, neurological deterioration, and generalized tonic-clonic, myoclonic, or absence seizures. Symptoms worsen until death, usually within the first ten years of clinical onset. The primary histopathological hallmark is the formation of aberrant polyglucosan aggregates called Lafora bodies in the brain and other tissues. Lafora disease is caused by mutations in either the EPM2A gene, encoding laforin, or the EPM2B gene, coding for malin. The most frequent EPM2A mutation is R241X, which is also the most prevalent in Spain. The Epm2a-/- and Epm2b-/- mouse models of Lafora disease show neuropathological and behavioral abnormalities similar to those seen in patients, although with a milder phenotype. To obtain a more accurate animal model, we generated the Epm2aR240X knock-in mouse line with the R240X mutation in the Epm2a gene, using genetic engineering based on CRISPR-Cas9 technology. Epm2aR240X mice exhibit most of the alterations reported in patients, including the presence of LBs, neurodegeneration, neuroinflammation, interictal spikes, neuronal hyperexcitability, and cognitive decline, despite the absence of motor impairments. The Epm2aR240X knock-in mouse displays some symptoms that are more severe that those observed in the Epm2a-/- knock-out, including earlier and more pronounced memory loss, increased levels of neuroinflammation, more interictal spikes and increased neuronal hyperexcitability, symptoms that more precisely resemble those observed in patients. This new mouse model can therefore be specifically used to evaluate how new therapies affects these features with greater precision.
Collapse
Affiliation(s)
- Daniel F Burgos
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain; Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, Madrid 28029, Spain
| | - Miriam Sciaccaluga
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy; Fondazione Malattie Rare Mauro Baschirotto BIRD Onlus, Longare (VI), Italy
| | - Carolyn A Worby
- University of California at San Diego, 9500 Gilman Drive, La Jolla CA92093-0721, USA
| | - Luis Zafra-Puerta
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain; Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, Madrid 28029, Spain; Fondazione Malattie Rare Mauro Baschirotto BIRD Onlus, Longare (VI), Italy
| | - Nerea Iglesias-Cabeza
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Gema Sánchez-Martín
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Paolo Prontera
- Medical Genetics Unit, S. Maria della Misericordia Hospital, Perugia 06132, Italy
| | - Cinzia Costa
- Section of Neurology, S. Maria della Misericordia Hospital, Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - José M Serratosa
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Marina P Sánchez
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain.
| |
Collapse
|
14
|
Ching-Ju Huang, Zayabaatar E, Wang SM, Keshari S, Peng WH, Kung HN, Lee YH. Bacillus amyloliquefaciens-Inoculated GABA-Rich Rice Upregulate Neuropeptide Y to Relieve Psychological Stress through Mediations of GABAB Receptor and Vagus Nerves. BIOL BULL+ 2023. [DOI: 10.1134/s1062359022700054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
15
|
Zulkifli NA, Hassan Z, Mustafa MZ, Azman WNW, Hadie SNH, Ghani N, Mat Zin AA. The potential neuroprotective effects of stingless bee honey. Front Aging Neurosci 2023; 14:1048028. [PMID: 36846103 PMCID: PMC9945235 DOI: 10.3389/fnagi.2022.1048028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/29/2022] [Indexed: 02/11/2023] Open
Abstract
Tropical Meliponini bees produce stingless bee honey (SBH). Studies have shown beneficial properties, including antibacterial, bacteriostatic, anti-inflammatory, neurotherapeutic, neuroprotective, wound, and sunburn healing capabilities. High phenolic acid and flavonoid concentrations offer SBH its benefits. SBH can include flavonoids, phenolic acids, ascorbic acid, tocopherol, organic acids, amino acids, and protein, depending on its botanical and geographic origins. Ursolic acid, p-coumaric acid, and gallic acid may diminish apoptotic signals in neuronal cells, such as nuclear morphological alterations and DNA fragmentation. Antioxidant activity minimizes reactive oxygen species (ROS) formation and lowers oxidative stress, inhibiting inflammation by decreasing enzymes generated during inflammation. Flavonoids in honey reduce neuroinflammation by decreasing proinflammatory cytokine and free radical production. Phytochemical components in honey, such as luteolin and phenylalanine, may aid neurological problems. A dietary amino acid, phenylalanine, may improve memory by functioning on brain-derived neurotrophic factor (BDNF) pathways. Neurotrophin BDNF binds to its major receptor, TrkB, and stimulates downstream signaling cascades, which are crucial for neurogenesis and synaptic plasticity. Through BDNF, SBH can stimulate synaptic plasticity and synaptogenesis, promoting learning and memory. Moreover, BDNF contributes to the adult brain's lasting structural and functional changes during limbic epileptogenesis by acting through the cognate receptor tyrosine receptor kinase B (TrkB). Given the higher antioxidants activity of SBH than the Apis sp. honey, it may be more therapeutically helpful. There is minimal research on SBH's neuroprotective effects, and the related pathways contribute to it is unclear. More research is needed to elucidate the underlying molecular process of SBH on BDNF/TrkB pathways in producing neuroprotective effects.
Collapse
Affiliation(s)
- Nurdarina Ausi Zulkifli
- Department of Pathology, School of Medical Sciences Universiti Sains Malaysia and Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
| | - Mohd Zulkifli Mustafa
- Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Wan Norlina Wan Azman
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia and Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Siti Nurma Hanim Hadie
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Nurhafizah Ghani
- Basic and Medical Sciences Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Anani Aila Mat Zin
- Department of Pathology, School of Medical Sciences Universiti Sains Malaysia and Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
16
|
Müller P, Lerche H. [Gene Therapy for Epilepsy: Clinical Studies are on the Road]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2023; 91:135-140. [PMID: 36716773 DOI: 10.1055/a-1995-5405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
For more than 10 years, research has been conducted on gene therapies for the most severe forms of epilepsy, which until now have proven resistant to treatment. First gene therapies are now in clinical trials for pharmacoresistant focal epilepsies and Dravet syndrome. In this article, we describe how these and many more gene therapies work and what they target.
Collapse
Affiliation(s)
- Peter Müller
- Abteilung Neurologie mit Schwerpunkt Epileptologie, Hertie Institute für klinische Hirnforschung, Universität Tübingen
| | - Holger Lerche
- Abteilung Neurologie mit Schwerpunkt Epileptologie, Hertie Institute für klinische Hirnforschung, Universität Tübingen
| |
Collapse
|
17
|
Cellot G, Jacquemin L, Reina G, Franceschi Biagioni A, Fontanini M, Chaloin O, Nishina Y, Bianco A, Ballerini L. Bonding of Neuropeptide Y on Graphene Oxide for Drug Delivery Applications to the Central Nervous System. ACS APPLIED NANO MATERIALS 2022; 5:17640-17651. [PMID: 36583122 PMCID: PMC9791619 DOI: 10.1021/acsanm.2c03409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/21/2022] [Indexed: 05/20/2023]
Abstract
Nanoscale graphene-based materials (GBMs) enable targeting subcellular structures of the nervous system, a feature crucial for the successful engineering of alternative nanocarriers to deliver drugs and to treat neurodisorders. Among GBMs, graphene oxide (GO) nanoflakes, showing good dispersibility in water solution and being rich of functionalizable oxygen groups, are ideal core structures for carrying biological active molecules to the brain, such as the neuropeptide Y (NPY). In addition, when unconjugated, these nanomaterials have been reported to modulate neuronal function per se. Although some GBM-based nanocarriers have been tested both in vitro and in vivo, a thorough characterization of covalent binding impact on the biological properties of the carried molecule and/or of the nanomaterial is still missing. Here, a copper(I)-catalyzed alkyne-azide cycloaddition strategy was employed to synthesize the GO-NPY complex. By investigating through electrophysiology the impact of these conjugates on the activity of hippocampal neurons, we show that the covalent modification of the nanomaterial, while making GO an inert platform for the vectorized delivery, enhances the duration of NPY pharmacological activity. These findings support the future use of GO for the development of smart platforms for nervous system drug delivery.
Collapse
Affiliation(s)
- Giada Cellot
- International
School for Advanced Studies, SISSA, Via Bonomea n. 265, 34136Trieste, Italy
| | - Lucas Jacquemin
- CNRS,
Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University
of Strasbourg ISIS, 67000Strasbourg, France
| | - Giacomo Reina
- CNRS,
Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University
of Strasbourg ISIS, 67000Strasbourg, France
| | | | - Mario Fontanini
- International
School for Advanced Studies, SISSA, Via Bonomea n. 265, 34136Trieste, Italy
| | - Olivier Chaloin
- CNRS,
Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University
of Strasbourg ISIS, 67000Strasbourg, France
| | - Yuta Nishina
- Graduate
School of Natural Science and Technology and Research Core for Interdisciplinary
Sciences, Okayama University, Tsushimanaka, Kita-ku, Okayama700-8530, Japan
| | - Alberto Bianco
- CNRS,
Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University
of Strasbourg ISIS, 67000Strasbourg, France
| | - Laura Ballerini
- International
School for Advanced Studies, SISSA, Via Bonomea n. 265, 34136Trieste, Italy
| |
Collapse
|
18
|
Error-prone protein synthesis recapitulates early symptoms of Alzheimer disease in aging mice. Cell Rep 2022; 40:111433. [PMID: 36170830 DOI: 10.1016/j.celrep.2022.111433] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/19/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
Age-related neurodegenerative diseases (NDDs) are associated with the aggregation and propagation of specific pathogenic protein species (e.g., Aβ, α-synuclein). However, whether disruption of synaptic homeostasis results from protein misfolding per se rather than accumulation of a specific rogue protein is an unexplored question. Here, we show that error-prone translation, with its frequent outcome of random protein misfolding, is sufficient to recapitulate many early features of NDDs, including perturbed Ca2+ signaling, neuronal hyperexcitability, and mitochondrial dysfunction. Mice expressing the ribosomal ambiguity mutation Rps9 D95N exhibited disrupted synaptic homeostasis resulting in behavioral changes reminiscent of early Alzheimer disease (AD), such as learning and memory deficits, maladaptive emotional responses, epileptiform discharges, suppressed circadian rhythmicity, and sleep fragmentation, accompanied by hippocampal NPY expression and cerebral glucose hypometabolism. Collectively, our findings suggest that random protein misfolding may contribute to the pathogenesis of age-related NDDs, providing an alternative framework for understanding the initiation of AD.
Collapse
|
19
|
Chen Q, Liang Z, Yue Q, Wang X, Siu SWI, Pui-Man Hoi M, Lee SMY. A Neuropeptide Y/F-like Polypeptide Derived from the Transcriptome of Turbinaria peltata Suppresses LPS-Induced Astrocytic Inflammation. JOURNAL OF NATURAL PRODUCTS 2022; 85:1569-1580. [PMID: 35694811 DOI: 10.1021/acs.jnatprod.2c00158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neuropeptides are a group of neuronal signaling molecules that regulate physiological and behavioral processes in animals. Here, we used in silico mining to predict the polypeptide composition of available transcriptomic data of Turbinaria peltata. In total, 118 transcripts encoding putative peptide precursors were discovered. One neuropeptide Y/F-like peptide, named TpNPY, was identified and selected for in silico structural, in silico binding, and pharmacological studies. In our study, the anti-inflammation effect of TpNPY was evaluated using an LPS-stimulated C8-D1A astrocyte cell model. Our results demonstrated that TpNPY, at 0.75-3 μM, inhibited LPS-induced NO production and reduced the expression of iNOS in a dose-dependent manner. Furthermore, TpNPY reduced the secretion of proinflammatory cytokines. Additionally, treatment with TpNPY reduced LPS-mediated elevation of ROS production and the intracellular calcium concentration. Further investigation revealed that TpNPY downregulated the IKK/IκB/NF-κB signaling pathway and inhibited expression of the NLRP3 inflammasome. Through molecular docking and using an NPY receptor antagonist, TpNPY was shown to have the ability to interact with the NPY Y1 receptor. On the basis of these findings, we concluded that TpNPY might prevent LPS-induced injury in astrocytes through activation of the NPY-Y1R.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zirong Liang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qian Yue
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiufen Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shirley Weng In Siu
- Institute of Science and Environment, University of Saint Joseph, Macao, China
| | - Maggie Pui-Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China
| |
Collapse
|
20
|
CUX2 deficiency causes facilitation of excitatory synaptic transmission onto hippocampus and increased seizure susceptibility to kainate. Sci Rep 2022; 12:6505. [PMID: 35581205 PMCID: PMC9114133 DOI: 10.1038/s41598-022-10715-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/11/2022] [Indexed: 01/19/2023] Open
Abstract
CUX2 gene encodes a transcription factor that controls neuronal proliferation, dendrite branching and synapse formation, locating at the epilepsy-associated chromosomal region 12q24 that we previously identified by a genome-wide association study (GWAS) in Japanese population. A CUX2 recurrent de novo variant p.E590K has been described in patients with rare epileptic encephalopathies and the gene is a candidate for the locus, however the mutation may not be enough to generate the genome-wide significance in the GWAS and whether CUX2 variants appear in other types of epilepsies and physiopathological mechanisms are remained to be investigated. Here in this study, we conducted targeted sequencings of CUX2, a paralog CUX1 and its short isoform CASP harboring a unique C-terminus on 271 Japanese patients with a variety of epilepsies, and found that multiple CUX2 missense variants, other than the p.E590K, and some CASP variants including a deletion, predominantly appeared in patients with temporal lobe epilepsy (TLE). The CUX2 variants showed abnormal localization in human cell culture analysis. While wild-type CUX2 enhances dendritic arborization in fly neurons, the effect was compromised by some of the variants. Cux2- and Casp-specific knockout mice both showed high susceptibility to kainate, increased excitatory cell number in the entorhinal cortex, and significant enhancement in glutamatergic synaptic transmission to the hippocampus. CASP and CUX2 proteins physiologically bound to each other and co-expressed in excitatory neurons in brain regions including the entorhinal cortex. These results suggest that CUX2 and CASP variants contribute to the TLE pathology through a facilitation of excitatory synaptic transmission from entorhinal cortex to hippocampus.
Collapse
|
21
|
Restraint stress potentiates neuropeptide Y-mediated impairment on spatial memory in rats. Behav Brain Res 2022; 419:113705. [PMID: 34871704 DOI: 10.1016/j.bbr.2021.113705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/02/2022]
Abstract
Memory is the ability to store, retrieve and use information that requires a progressive time-dependent stabilization process known as consolidation to be established. The hippocampus is essential for processing all the information that forms memory, especially spatial memory. Neuropeptide Y (NPY) affects memory, so in this study we investigated the participation and recruitment of NPY receptors during spatial memory consolidation in rats. Using the water maze test, we show that NPY (1 pmol) injected into the dorsal hippocampus impaired memory consolidation and that previous restraint stress (30 min) potentiates NPY effects, i.e. further impaired memory consolidation. Using selective antagonists for NPY Y1 and Y2 receptors we demonstrate that both receptors play a key role on spatial memory consolidation. Our data suggest that NPY modulates aversive and adaptive memory formation by NPY receptors activation.
Collapse
|
22
|
Ding D, Chen Z, Wang C, Tang X, Zhang L, Fang Q, Qiu R, Jiang H. A Variant in Genes of the NPY System as Modifier Factor of Machado-Joseph Disease in the Chinese Population. Front Aging Neurosci 2022; 14:822657. [PMID: 35185528 PMCID: PMC8851415 DOI: 10.3389/fnagi.2022.822657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, NPY overexpression has been proposed to alleviate motor deficits and neuropathy in Machado-Joseph disease (MJD) mouse models, indicating its neuroprotective role in the pathogenesis of MJD. We aimed to evaluate the association between SNPs in NPY and its receptors and the susceptibility of MJD in the Chinese population. Moreover, we investigated whether these SNPs modulate the age at onset (AO) of MJD. In total, 527 MJD patients and 487 healthy controls were enrolled in the study, and four specific selected SNPs (rs16139, rs3037354, rs2234759, and rs11100494) in NPY and its receptor genes were genotyped. In this study, the genotypic frequency using the dominant model and the allelic distribution of rs11100494 in NPY5R revealed a significant difference between the MJD and control group during the first-stage analysis (P = 0.048 and P = 0.024, respectively). After we expanded the sample size, significant differences were observed between the two groups using the dominant model in genotypic and allelic distribution (P = 0.034, P = 0.046, and P = 0.016, respectively). No significant differences in genotypic and allelic distribution were found between the MJD and control groups for the other three SNPs. All selected SNPs had no significant effect on the AO of MJD. The association of rs11100494 in the NPY5R gene and susceptibility of MJD suggested that the NPY system might be implicated in the pathogenesis of MJD. Our study demonstrated the existence of other genetic modifiers in MJD, along with CAG expansion and known genetic modifier factors, which might lead to a better understanding of MJD pathogenesis.
Collapse
Affiliation(s)
- Dongxue Ding
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Chunrong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Tang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lulu Zhang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Rong Qiu
- School of Information Science and Engineering, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Central South University, Changsha, China
- Laboratory of Medical Genetics, Central South University, Changsha, China
- School of Basic Medical Science, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- *Correspondence: Hong Jiang,
| |
Collapse
|
23
|
You J, Huang H, Chan CTY, Li L. Pathological Targets for Treating Temporal Lobe Epilepsy: Discoveries From Microscale to Macroscale. Front Neurol 2022; 12:779558. [PMID: 35069411 PMCID: PMC8777077 DOI: 10.3389/fneur.2021.779558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common and severe types of epilepsy, characterized by intractable, recurrent, and pharmacoresistant seizures. Histopathology of TLE is mostly investigated through observing hippocampal sclerosis (HS) in adults, which provides a robust means to analyze the related histopathological lesions. However, most pathological processes underlying the formation of these lesions remain elusive, as they are difficult to detect and observe. In recent years, significant efforts have been put in elucidating the pathophysiological pathways contributing to TLE epileptogenesis. In this review, we aimed to address the new and unrecognized neuropathological discoveries within the last 5 years, focusing on gene expression (miRNA and DNA methylation), neuronal peptides (neuropeptide Y), cellular metabolism (mitochondria and ion transport), cellular structure (microtubule and extracellular matrix), and tissue-level abnormalities (enlarged amygdala). Herein, we describe a range of biochemical mechanisms and their implication for epileptogenesis. Furthermore, we discuss their potential role as a target for TLE prevention and treatment. This review article summarizes the latest neuropathological discoveries at the molecular, cellular, and tissue levels involving both animal and patient studies, aiming to explore epileptogenesis and highlight new potential targets in the diagnosis and treatment of TLE.
Collapse
Affiliation(s)
- Jing You
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | - Haiyan Huang
- Department of Nutrition and Food Science, Texas Women University, Denton, TX, United States
| | - Clement T Y Chan
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | - Lin Li
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States.,Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
24
|
Kajita Y, Mushiake H. Heterogeneous GAD65 Expression in Subtypes of GABAergic Neurons Across Layers of the Cerebral Cortex and Hippocampus. Front Behav Neurosci 2021; 15:750869. [PMID: 34803625 PMCID: PMC8595203 DOI: 10.3389/fnbeh.2021.750869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Gamma-aminobutyric acid (GABA), a major inhibitory transmitter in the central nervous system, is synthesized via either of two enzyme isoforms, GAD65 or GAD67. GAD65 is synthesized in the soma but functions at synaptic terminals in an activity-dependent manner, playing a distinct role in excitatory-inhibitory balance. However, the extent to which each GABAergic subtype expresses GAD65 in the resting state remains unclear. In this study, we compared GAD65 expression among six GABAergic subtypes: NPY+, nNOS+, PV+, SOM+, CR+, and CCK+. According to the results, the GABAergic subtypes were classified into two groups per region based on GAD65 expression levels: high-expression (NPY+ and nNOS+) and low-expression groups (PV+, SOM+, CR+, and CCK+) in the cerebral cortex and high-expression (NPY+, nNOS+, and CCK+) and low-expression groups (PV+, SOM+, and CR+) in the hippocampus. Moreover, these expression patterns revealed a distinct laminar distribution in the cerebral cortex and hippocampus. To investigate the extent of GAD65 transport from the soma to synaptic terminals, we examined GAD65 expression in colchicine-treated rats in which GAD65 was synthesized in the soma but not transported to terminals. We found a significant positive correlation in GAD65 expression across subtypes between colchicine-treated and control rats. In summary, each GABAergic subtype exhibits a distinct GAD65 expression pattern across layers of the cerebral cortex and hippocampus. In addition, the level of GAD65 expression in the soma can be used as a proxy for the amount of GAD65 in the cytoplasm. These findings suggest that exploration of the distinct profiles of GAD65 expression among GABAergic subtypes could clarify the roles that GABAergic subtypes play in maintaining the excitatory-inhibitory balance.
Collapse
Affiliation(s)
- Yuki Kajita
- Department of Physiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hajime Mushiake
- Department of Physiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
25
|
Neuropeptide Y Reduces Social Fear in Male Mice: Involvement of Y1 and Y2 Receptors in the Dorsolateral Septum and Central Amygdala. Int J Mol Sci 2021; 22:ijms221810142. [PMID: 34576305 PMCID: PMC8472534 DOI: 10.3390/ijms221810142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 11/17/2022] Open
Abstract
Neuropeptide Y (NPY) has anxiolytic-like effects and facilitates the extinction of cued and contextual fear in rodents. We previously showed that intracerebroventricular administration of NPY reduces the expression of social fear in a mouse model of social fear conditioning (SFC) and localized these effects to the dorsolateral septum (DLS) and central amygdala (CeA). In the present study, we aimed to identify the receptor subtypes that mediate these local effects of NPY. We show that NPY (0.1 nmol/0.2 µL/side) reduced the expression of SFC-induced social fear in a brain region- and receptor-specific manner in male mice. In the DLS, NPY reduced the expression of social fear by acting on Y2 receptors but not on Y1 receptors. As such, prior administration of the Y2 receptor antagonist BIIE0246 (0.2 nmol/0.2 μL/side) but not the Y1 receptor antagonist BIBO3304 trifluoroacetate (0.2 nmol/0.2 μL/side) blocked the effects of NPY in the DLS. In the CeA, however, BIBO3304 trifluoroacetate but not BIIE0246 blocked the effects of NPY, suggesting that NPY reduced the expression of social fear by acting on Y1 receptors but not Y2 receptors within the CeA. This study suggests that at least two distinct receptor subtypes are differentially recruited in the DLS and CeA to mediate the effects of NPY on the expression of social fear.
Collapse
|
26
|
Ness N, Schultz SR. A computational grid-to-place-cell transformation model indicates a synaptic driver of place cell impairment in early-stage Alzheimer's Disease. PLoS Comput Biol 2021; 17:e1009115. [PMID: 34133417 PMCID: PMC8238223 DOI: 10.1371/journal.pcbi.1009115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 06/28/2021] [Accepted: 05/26/2021] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's Disease (AD) is characterized by progressive neurodegeneration and cognitive impairment. Synaptic dysfunction is an established early symptom, which correlates strongly with cognitive decline, and is hypothesised to mediate the diverse neuronal network abnormalities observed in AD. However, how synaptic dysfunction contributes to network pathology and cognitive impairment in AD remains elusive. Here, we present a grid-cell-to-place-cell transformation model of long-term CA1 place cell dynamics to interrogate the effect of synaptic loss on network function and environmental representation. Synapse loss modelled after experimental observations in the APP/PS1 mouse model was found to induce firing rate alterations and place cell abnormalities that have previously been observed in AD mouse models, including enlarged place fields and lower across-session stability of place fields. Our results support the hypothesis that synaptic dysfunction underlies cognitive deficits, and demonstrate how impaired environmental representation may arise in the early stages of AD. We further propose that dysfunction of excitatory and inhibitory inputs to CA1 pyramidal cells may cause distinct impairments in place cell function, namely reduced stability and place map resolution.
Collapse
Affiliation(s)
- Natalie Ness
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Simon R. Schultz
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
27
|
Abotalebi H, Ebrahimi B, Shahriyari R, Shafieian R. Sex steroids-induced neurogenesis in adult brain: a better look at mechanisms and mediators. Horm Mol Biol Clin Investig 2021; 42:209-221. [PMID: 34058796 DOI: 10.1515/hmbci-2020-0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 01/14/2021] [Indexed: 11/15/2022]
Abstract
Adult neurogenesis is the production of new nerve cells in the adult brain. Neurogenesis is a clear example of the neuroplasticity phenomenon which can be observed in most of mammalian species, including human beings. This phenomenon occurs, at least, in two regions of the brain: the subgranular zone of the dentate gyrus in hippocampus and the ventricular zone of lateral ventricles. Numerous studies have investigated the relationship between sex steroid hormones and neurogenesis of adult brain; of which, mostly concentrated on the role of estradiol. It has been shown that estrogen plays a significant role in this process through both classic and non-classic mechanisms, including a variety of different growth factors. Therefore, the objective of this review is to investigate the role of female sex steroids with an emphasis on estradiol and also its potential implications for regulating the neurogenesis in the adult brain.
Collapse
Affiliation(s)
- Hamideh Abotalebi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Babak Ebrahimi
- Department of Anatomy and Cell Biology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Raziyeh Shahriyari
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Shafieian
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Moro A, van Nifterick A, Toonen RF, Verhage M. Dynamin controls neuropeptide secretion by organizing dense-core vesicle fusion sites. SCIENCE ADVANCES 2021; 7:eabf0659. [PMID: 34020952 PMCID: PMC8139595 DOI: 10.1126/sciadv.abf0659] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/02/2021] [Indexed: 05/13/2023]
Abstract
Synaptic vesicles (SVs) release neurotransmitters at specialized active zones, but release sites and organizing principles for the other major secretory pathway, neuropeptide/neuromodulator release from dense-core vesicles (DCVs), remain elusive. We identify dynamins, yeast Vps1 orthologs, as DCV fusion site organizers in mammalian neurons. Genetic or pharmacological inactivation of all three dynamins strongly impaired DCV exocytosis, while SV exocytosis remained unaffected. Wild-type dynamin restored normal exocytosis but not guanosine triphosphatase-deficient or membrane-binding mutants that cause neurodevelopmental syndromes. During prolonged stimulation, repeated use of the same DCV fusion location was impaired in dynamin 1-3 triple knockout neurons. The syntaxin-1 staining efficiency, but not its expression level, was reduced. αSNAP (α-soluble N-ethylmaleimide-sensitive factor attachment protein) expression restored this. We conclude that mammalian dynamins organize DCV fusion sites, downstream of αSNAP, by regulating the equilibrium between fusogenic and non-fusogenic syntaxin-1 promoting its availability for SNARE (SNAP receptor) complex formation and DCV exocytosis.
Collapse
Affiliation(s)
- Alessandro Moro
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Medical Center, Amsterdam, Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, de Boelelaan 1087, 1081 HV Amsterdam, Netherlands
| | - Anne van Nifterick
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, de Boelelaan 1087, 1081 HV Amsterdam, Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, de Boelelaan 1087, 1081 HV Amsterdam, Netherlands.
| | - Matthijs Verhage
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Medical Center, Amsterdam, Netherlands.
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, de Boelelaan 1087, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
29
|
Kohek SRB, Foresti ML, Blanco MM, Cavarsan CF, da Silva CS, Mello LE. Anxious Profile Influences Behavioral and Immunohistological Findings in the Pilocarpine Model of Epilepsy. Front Pharmacol 2021; 12:640715. [PMID: 34025410 PMCID: PMC8132119 DOI: 10.3389/fphar.2021.640715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/22/2021] [Indexed: 12/01/2022] Open
Abstract
Anxiety and epilepsy have a complex bidirectional relationship, where a depressive/anxious condition is a factor that can trigger seizures which in turn can aggravate the depressive/anxious condition. In addition, brain structures such as the hippocampus and amygdala might have a critical relevance in both epilepsy and anxiety. The aim of the present work was to investigate the influence of different anxious profiles to epileptogenesis. Initially, animals were screened through the elevated plus-maze anxiety test, and then seizure development was evaluated using the pilocarpine model of epilepsy. There were no differences in the susceptibility to status epilepticus, mortality rate or frequency of spontaneous recurrent seizures between animals characterized as anxious as compared to the non-anxious animals. Next, we evaluated immunohistological patterns related to seizures and anxiety in various related brain areas. Despite a decrease in the density of neuropeptide Y and parvalbumin expression in epileptic animals, those presenting greater neuropeptide Y immunoreactivity in various brain regions, also showed higher spontaneous recurrent seizures frequency. Differences on the anxious profile showed to interfere with some of these findings in some regions. In addition, animals that were injected with pilocarpine, but did not develop status epilepticus, had behavioral and neuroanatomical alterations as compared to control animals, indicating its importance as an additional tool for investigating the heterogeneity of the epileptogenic response after an initial insult. This study allowed to better understand the association between anxiety and temporal lobe epilepsy and might allow for therapeutic targets to be developed to minimize the negative impacts associated with it.
Collapse
Affiliation(s)
| | | | | | - Clarissa Fantin Cavarsan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, United States
| | | | - Luiz E Mello
- Physiology Department, Universidade Federal de São Paulo, São Paulo, Brazil.,Instituto D' Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Kornhuber J, Zoicas I. Brain Region-Dependent Effects of Neuropeptide Y on Conditioned Social Fear and Anxiety-Like Behavior in Male Mice. Int J Mol Sci 2021; 22:ijms22073695. [PMID: 33918123 PMCID: PMC8037261 DOI: 10.3390/ijms22073695] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Neuropeptide Y (NPY) has anxiolytic-like effects and facilitates the extinction of cued and contextual fear in rodents. We have previously shown that the intracerebroventricular administration of NPY reduces the expression of social fear in a mouse model of social fear conditioning (SFC). In the present study, we aimed to identify the brain regions that mediate these effects of NPY. We show that NPY (0.1 nmol/0.2 µL/side) reduces the expression of SFC-induced social fear in a brain-region-dependent manner. In more detail, NPY reduced the expression of social fear when administered into the dorsolateral septum (DLS) and central amygdala (CeA), but not when administered into the dorsal hippocampus (DH), medial amygdala (MeA) and basolateral amygdala (BLA). We also investigated whether the reduced expression of social fear might partly be due to a reduced anxiety-like behavior, and showed that NPY exerted anxiolytic-like effects when administered into the DH, DLS, CeA and BLA, but not when administered into the MeA. This study identifies the DLS and the CeA as brain regions mediating the effects of NPY on the expression of social fear and suggests that partly distinct neural circuitries mediate the effects of NPY on the expression of social fear and on anxiety-like behavior.
Collapse
|
31
|
Szczygieł JA, Danielsen KI, Melin E, Rosenkranz SH, Pankratova S, Ericsson A, Agerman K, Kokaia M, Woldbye DPD. Gene Therapy Vector Encoding Neuropeptide Y and Its Receptor Y2 for Future Treatment of Epilepsy: Preclinical Data in Rats. Front Mol Neurosci 2020; 13:232. [PMID: 33343295 PMCID: PMC7746806 DOI: 10.3389/fnmol.2020.603409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/11/2020] [Indexed: 01/15/2023] Open
Abstract
Gene therapy to treat pharmacoresistant temporal lobe epilepsy in humans is now being developed using an AAV vector (CG01) that encodes the combination of neuropeptide Y and its antiepileptic receptor Y2. With this in mind, the present study aimed to provide important preclinical data on the effects of CG01 on the duration of transgene expression, cellular tropism, and potential side effects on body weight and cognitive function. The CG01 vector was administered unilaterally into the dorsal and ventral hippocampus of adult male rats and expression of both transgenes was found to remain elevated without a sign of decline at 6 months post-injection. CG01 appeared to mediate expression selectively in hippocampal neurons, without expression in astrocytes or oligodendrocytes. No effects were seen on body weight as well as on short- or long-term memory as revealed by testing in the Y-maze or Morris water maze tests. Thus these data show that unilateral CG01 vector treatment as future gene therapy in pharmacoresistant temporal lobe epilepsy patients should result in stable and long-term expression predominantly in neurons and be well tolerated without side effects on body weight and cognitive function.
Collapse
Affiliation(s)
| | - Kira Iben Danielsen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Lund, Sweden
| | - Esbjörn Melin
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Lund, Sweden
| | | | | | | | | | - Merab Kokaia
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Lund, Sweden
| | | |
Collapse
|
32
|
CSF levels of a set of neurotrophic factors (brain-derived neurotrophic factor, nerve growth factor) and neuropeptides (neuropeptide Y, galanin) in epileptic children. J Clin Neurosci 2020; 76:41-45. [PMID: 32327377 DOI: 10.1016/j.jocn.2020.04.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/12/2020] [Indexed: 01/03/2023]
Abstract
This paper aims to investigate the possible roles of a set of neurotrophic factors (brain-derived neurotrophic factor-BDNF, nerve growth factor-NGF) and neuropeptides (neuropeptide Y-NPY, and galanin) in children with active epileptogenesis. The cerebrospinal fluid (CSF) levels of BDNF, NPY, NGF and galanin were measured with enzyme-linked immunosorbent assays in epileptic children (n = 73) and controls (n = 64). There were no significant alterations in the CSF levels of BDNF, NPY and NGF in epileptic children with active clinical seizures compared with the levels of controls. However profoundly depressed galanin levels were found in infants with epileptic encephalopathy (mean ± SD:0.63 ± 0.19 pg/ml) and significantly increased galanin levels were measured in children with drug resistant epilepsy during the period of status epilepticus (mean ± SD: 6.92 ± 1.19, pg/ml pg/ml) compared with the levels of controls. Depressed levels of galanin might reflect a defective anti-epileptogenic effect of galanin in infants with epileptic encephalopathy. On the contrary, increased CSF levels of galanin might be a result of anti-epileptogenic effects of this peptide in epileptic children with status epilepticus.
Collapse
|
33
|
Sharma P, Kumar A, Singh D. Dietary Flavonoids Interaction with CREB-BDNF Pathway: An Unconventional Approach for Comprehensive Management of Epilepsy. Curr Neuropharmacol 2020; 17:1158-1175. [PMID: 31400269 PMCID: PMC7057203 DOI: 10.2174/1570159x17666190809165549] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/26/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022] Open
Abstract
cAMP response element binding protein (CREB) is a key transcriptional regulator that regulates the transcription of genes related with neuronal differentiation, synaptic plasticity, learning and memory. Brain derived neurotrophic factor (BDNF), is a CREB dependent gene which plays a pivotal role in the pathogenesis of epilepsy and central comorbid conditions associated with epilepsy. However, the beneficial or detrimental consequences of CREB-BDNF activation on the induction and/or progression of seizures depend specifically on the region of brain involved and the time of activation. The bioactive molecules that alter the activity of CREB in a way to have specialized effects in different brain regions and neural circuits involved could potentially be utilized for therapeutic purposes. Flavonoids are the polyphenolic compounds which lead to phosphorylation of CREB in the hippocampus, followed by increase in extracellular signal regulated kinase (ERK) and BDNF. Several members of flavonoid family have also showed suppression of epileptic seizures via interaction with CREB/BDNF pathway. Moreover, epilepsy is often accompanied by a number of behavioural and psychological comorbid conditions that further gets aggravated by the use of conventional antiepileptic drug therapy. Multiple studies have also supported the beneficial effects of flavonoids in cognitive and memory impairments by upregulation of CREB-BDNF pathway. The current review is an attempt to collate the available preclinical and clinical studies to establish the therapeutic potential of various dietary flavonoids in comprehensive management of epilepsy with relation to CREB-BDNF pathway.
Collapse
Affiliation(s)
- Pallavi Sharma
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India
| | - Amit Kumar
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India
| |
Collapse
|
34
|
Sahab-Negah S, Hajali V, Moradi HR, Gorji A. The Impact of Estradiol on Neurogenesis and Cognitive Functions in Alzheimer's Disease. Cell Mol Neurobiol 2020; 40:283-299. [PMID: 31502112 DOI: 10.1007/s10571-019-00733-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/31/2019] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is described as cognitive and memory impairments with a sex-related epidemiological profile, affecting two times more women than men. There is emerging evidence that alternations in the hippocampal neurogenesis occur at the early stage of AD. Therapies that may effectively slow, stop, or regenerate the dying neurons in AD are being extensively investigated in the last few decades, but none has yet been found to be effective. The regulation of endogenous neurogenesis is one of the main therapeutic targets for AD. Mounting evidence indicates that the neurosteroid estradiol (17β-estradiol) plays a supporting role in neurogenesis, neuronal activity, and synaptic plasticity of AD. This effect may provide preventive and/or therapeutic approaches for AD. In this article, we discuss the molecular mechanism of potential estradiol modulatory action on endogenous neurogenesis, synaptic plasticity, and cognitive function in AD.
Collapse
Affiliation(s)
- Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Vahid Hajali
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Moradi
- Histology and Embryology Group, Basic Science Department, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neurosurgery and Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Domagkstr. 11, Münster, Germany.
| |
Collapse
|
35
|
Clinical value of a set of neuropeptides in term and preterm neonates with seizures: Brain derived neurotrophic factor, galanin and neuropeptide Y. J Clin Neurosci 2020; 74:168-174. [PMID: 32098713 DOI: 10.1016/j.jocn.2020.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/10/2020] [Indexed: 12/26/2022]
Abstract
The aim of our study to investigate clinical value of a set of neuropeptides (brain derived neurotrophic factor-BDNF, galanin and neuropeptide Y-NPY) in critically ill neonates. A total of 53 neonates (preterm: 26, term: 27) evaluated with lumbar pucture for etiologic evaluation were consequtively included into the study. Serum and CSF levels of the neuropeptides were measured in the first 48 h of life. All infants were prospectively followed for prognostic outcome (survival and neurodevelopmental) at the first year of life. The study cohort was categorized into four groups with respect to seizure development; preterm neonates with or without seizure and term neonates with or without seizure. Mean CSF levels of NPY (pg/ml) were significantly higher in term neonates with than those without seizures (389.76 vs. 122.66) and galanin (3.31 vs. 1.55) respectively. Term neonates with seizures had significantly higher serum levels of NPY (ng/mL) as compared with neonates without seizures (54.00 vs. 9.10). No significant difference was noted in serum and CSF levels for the set of neuropeptides in neonates with respect to prognostic outcome. Serum NPY and CSF NPY and galanin levels have a potential role for detection of clinical seizures in term neonates.
Collapse
|
36
|
Damasceno S, Gómez-Nieto R, Garcia-Cairasco N, Herrero-Turrión MJ, Marín F, Lopéz DE. Top Common Differentially Expressed Genes in the Epileptogenic Nucleus of Two Strains of Rodents Susceptible to Audiogenic Seizures: WAR and GASH/Sal. Front Neurol 2020; 11:33. [PMID: 32117006 PMCID: PMC7031349 DOI: 10.3389/fneur.2020.00033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/10/2020] [Indexed: 11/16/2022] Open
Abstract
The Wistar Audiogenic Rat (WAR) and the Genetic Audiogenic Seizure Hamster from Salamanca (GASH/Sal) strains are audiogenic epilepsy models, in which seizures are triggered by acoustic stimulation. These strains were developed by selective reproduction and have a genetic background with minimal or no variation. In the current study, we evaluated the transcriptome of the inferior colliculus, the epileptogenic nucleus, of both audiogenic models, in order to get insights into common molecular aspects associated to their epileptic phenotype. Based on GASH/Sal RNA-Seq and WAR microarray data, we performed a comparative analysis that includes selection and functional annotation of differentially regulated genes in each model, transcriptional evaluation by quantitative reverse transcription PCR of common genes identified in both transcriptomes and immunohistochemistry. The microarray data revealed 71 genes with differential expression in WAR, and the RNA-Seq data revealed 64 genes in GASH/Sal, showing common genes in both models. Analysis of transcripts showed that Egr3 was overexpressed in WAR and GASH/Sal after audiogenic seizures. The Npy, Rgs2, Ttr, and Abcb1a genes presented the same transcriptional profile in the WAR, being overexpressed in the naïve and stimulated WAR in relation to their controls. Npy appeared overexpressed only in the naïve GASH/Sal compared to its control, while Rgs2 and Ttr genes appeared overexpressed in naïve GASH/Sal and overexpressed after audiogenic seizure. No statistical difference was observed in the expression of Abcb1a in the GASH/Sal model. Compared to control animals, the immunohistochemical analysis of the inferior colliculus showed an increased immunoreactivity for NPY, RGS2, and TTR in both audiogenic models. Our data suggest that WAR and GASH/Sal strains have a difference in the timing of gene expression after seizure, in which GASH/Sal seems to respond more quickly. The transcriptional profile of the Npy, Rgs2, and Ttr genes under free-seizure conditions in both audiogenic models indicates an intrinsic expression already established in the strains. Our findings suggest that these genes may be causing small changes in different biological processes involved in seizure occurrence and response, and indirectly contributing to the susceptibility of the WAR and GASH/Sal models to audiogenic seizures.
Collapse
Affiliation(s)
- Samara Damasceno
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain
| | - Ricardo Gómez-Nieto
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Salamanca Institute for Biomedical Research, Salamanca, Spain
| | | | - Manuel Javier Herrero-Turrión
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,INCYL Neurological Tissue Bank (BTN-INCYL), Salamanca, Spain
| | - Faustino Marín
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
| | - Dolores E Lopéz
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Salamanca Institute for Biomedical Research, Salamanca, Spain
| |
Collapse
|
37
|
Kornhuber J, Zoicas I. Neuropeptide Y reduces expression of social fear via simultaneous activation of Y1 and Y2 receptors. J Psychopharmacol 2019; 33:1533-1539. [PMID: 31328614 PMCID: PMC6854880 DOI: 10.1177/0269881119862529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Neuropeptide Y (NPY) has anxiolytic effects and facilitates extinction of cued and contextual fear in rodents, thereby acting as a resilience factor against exaggerated fear responses after adverse events. We investigated whether NPY influences acquisition, expression and extinction of social fear in a mouse model of social fear conditioning (SFC). METHODS NPY was administered intracerebroventricularly before SFC or before social fear extinction with or without prior administration of Y1 and/or Y2 receptor antagonists. RESULTS We show that NPY affects SFC-induced social fear in a time point-dependent manner. When administered before SFC, NPY did not affect acquisition, expression and extinction of social fear. However, when administered before social fear extinction, NPY reduced expression of social fear via simultaneous activation of Y1 and Y2 receptors. As such, neither the Y1 receptor antagonist BIBO3304 trifluoroacetate nor the Y2 receptor antagonist BIIE0246 was able to block the effects of NPY completely. However, when administered in combination, they completely blocked the effects of NPY on social fear expression. CONCLUSIONS These findings have important clinical implications, as they suggest that although medication strategies aimed at increasing brain NPY activity are unlikely to prevent the formation of aversive memories after a traumatic social experience, they might improve the recovery from a traumatic social experience by reducing the expression of social fear.
Collapse
Affiliation(s)
| | - Iulia Zoicas
- Iulia Zoicas, Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany.
| |
Collapse
|
38
|
Tekgul H, Simsek E, Erdoğan MA, Yiğittürk G, Erbaş O, Taşkıran D. The potential effects of anticonvulsant drugs on neuropeptides and neurotrophins in pentylenetetrazol kindled seizures in the rat. Int J Neurosci 2019; 130:193-203. [PMID: 31518546 DOI: 10.1080/00207454.2019.1667791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose: Neuropeptides and neurotrophic factors are thought to be involved in epileptogenesis. This study aims to investigate the potential effects of anticonvulsant drugs on neuropeptides (galanin and neuropeptide Y) and neurotrophic factors (BDNF and NGF) in pentylenetetrazol (PTZ)-kindled seizures in the rat.Methods: Forty-eight adult male Sprague-Dawley rats were included in the study. The animals were divided into 8 groups of six rats. Group 1 was defined as naïve control, and received no medication. Group 2 (PTZ + saline) was treated with sub-convulsive doses of PTZ (35 mg/kg) and saline i.p. for 14 days. For anticonvulsant treatments, Groups 3-8 were treated with 200 mg/kg levetiracetam (PTZ + LEV), 1 mg/kg midazolam (PTZ + MDZ), 80 mg/kg phenytoin (PTZ + PHT), 80 mg/kg topiramate (PTZ + TPR), 40 mg/kg lamotrigine (PTZ + LMT) and 50 mg/kg sodium valproate (PTZ + SV), respectively. All anticonvulsant drugs were injected 30 min prior to PTZ injection throughout 14 days. Following treatment period, behavioral, biochemical and immunohistochemical studies were performed.Results: PTZ + saline group revealed significantly decreased galanin, NPY, BDNF and NGF levels compared to control. PTZ + MDZ group had significantly increased galanin, BDNF and NGF levels compared to saline group. Also, PTZ + LEV group showed increased BDNF levels. PTZ + saline group revealed significantly lower neuron count and higher GFAP (+) cells in hippocampal CA1-CA3 regions. All anticonvulsants significantly reduced hippocampal astrogliosis whereas only midazolam, levetiracetam, sodium valproate and lamotrigine prevented neuronal loss.Conclusion: Our results suggested that anticonvulsant drugs may reduce the severity of seizures, and exert neuroprotective effects by altering the expression of neuropeptides and neurotrophins in the epileptogenic hippocampus.
Collapse
Affiliation(s)
- Hasan Tekgul
- Neurology Division, Department of Pediatrics, Ege University School of Medicine, Izmir, Turkey
| | - Erdem Simsek
- Neurology Division, Department of Pediatrics, Ege University School of Medicine, Izmir, Turkey
| | - Mumin Alper Erdoğan
- Department of Physiology, Katip Çelebi University School of Medicine, Izmir, Turkey
| | - Gürkan Yiğittürk
- Department of Histology and Embryology, Muğla Sıtkı Koçman University School of Medicine, Izmir, Turkey
| | - Oytun Erbaş
- Department of Physiology, Istanbul Bilim University School of Medicine, Istanbul, Turkey
| | - Dilek Taşkıran
- Department of Physiology, Ege University School of Medicine, Izmir, Turkey
| |
Collapse
|
39
|
Tulke S, Haas CA, Häussler U. Expression of brain‐derived neurotrophic factor and structural plasticity in the dentate gyrus and
CA
2 region correlate with epileptiform activity. Epilepsia 2019; 60:1234-1247. [DOI: 10.1111/epi.15540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 01/29/2023]
Affiliation(s)
- Susanne Tulke
- Experimental Epilepsy Research Department of Neurosurgery Medical Center - University of Freiburg Faculty of Medicine University of Freiburg Freiburg im Breisgau Germany
- Faculty of Biology University of Freiburg Freiburg im Breisgau Germany
| | - Carola A. Haas
- Experimental Epilepsy Research Department of Neurosurgery Medical Center - University of Freiburg Faculty of Medicine University of Freiburg Freiburg im Breisgau Germany
- BrainLinks‐BrainTools Cluster of Excellence University of Freiburg Freiburg im Breisgau Germany
| | - Ute Häussler
- Experimental Epilepsy Research Department of Neurosurgery Medical Center - University of Freiburg Faculty of Medicine University of Freiburg Freiburg im Breisgau Germany
- BrainLinks‐BrainTools Cluster of Excellence University of Freiburg Freiburg im Breisgau Germany
| |
Collapse
|
40
|
Kwakowsky A, Calvo-Flores Guzmán B, Pandya M, Turner C, Waldvogel HJ, Faull RL. GABA A receptor subunit expression changes in the human Alzheimer's disease hippocampus, subiculum, entorhinal cortex and superior temporal gyrus. J Neurochem 2019; 145:374-392. [PMID: 29485232 DOI: 10.1111/jnc.14325] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/17/2018] [Accepted: 02/12/2018] [Indexed: 12/14/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system. GABA type A receptors (GABAA Rs) are severely affected in Alzheimer's disease (AD). However, the distribution and subunit composition of GABAA Rs in the AD brain are not well understood. This is the first comprehensive study to show brain region- and cell layer-specific alterations in the expression of the GABAA R subunits α1-3, α5, β1-3 and γ2 in the human AD hippocampus, entorhinal cortex and superior temporal gyrus. In late-stage AD tissue samples using immunohistochemistry we found significant alteration of all investigated GABAA Rs subunits except for α3 and β1 that were well preserved. The most prominent changes include an increase in GABAA R α1 expression associated with AD in all layers of the CA3 region, in the stratum (str.) granulare and hilus of the dentate gyrus. We found a significant increase in GABAA R α2 expression in the str. oriens of the CA1-3, str. radiatum of the CA2,3 and decrease in the str. pyramidale of the CA1 region in AD cases. In AD there was a significant increase in GABAA R α5 subunit expression in str. pyramidale, str. oriens of the CA1 region and decrease in the superior temporal gyrus. We also found a significant decrease in the GABAA R β3 subunit immunoreactivity in the str. oriens of the CA2, str. granulare and str. moleculare of the dentate gyrus. In conclusion, these findings indicate that the expression of the GABAA R subunits shows brain region- and layer-specific alterations in AD, and these changes could significantly influence and alter GABAA R function in the disease. Cover Image for this issue: doi: 10.1111/jnc.14179.
Collapse
Affiliation(s)
- Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Beatriz Calvo-Flores Guzmán
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Madhavi Pandya
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Clinton Turner
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
41
|
Campos-Ordonez T, Zarate-Lopez D, Ibarra-Castaneda N, Buritica J, Gonzalez-Perez O. Cyclohexane Inhalation Produces Long-Lasting Alterations in the Hippocampal Integrity and Reward-Seeking Behavior in the Adult Mouse. Cell Mol Neurobiol 2019; 39:435-449. [PMID: 30771197 DOI: 10.1007/s10571-019-00660-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/05/2019] [Indexed: 12/20/2022]
Abstract
Cyclohexane (CHX) is an organic solvent commonly used as a drug-of-abuse. This drug increases the oxidative stress and glial reactivity in the hippocampus, which suggests that this brain region is vulnerable to CHX effects. This study aimed to establish the behavioral changes and the pathological alterations that occur in the Cornu Ammonis 3 (CA3) and Dentate Gyrus (DG) after a long-lasting exposure to CHX. We exposed CD1 mice to a recreational-like dose of CHX (~ 30,000 ppm) for 30 days and explored its consequences in motor skills, reward-seeking behavior, and the CA3 and DG hippocampal subfields. Twenty-four hours after the last administration of CHX, we found a significant decrease in the number of c-Fos+ cells in the hippocampal CA3 and DG regions. This event coincided with an increased in NMDAR1 expression and apoptotic cells in the CA3 region. At day 13th without CHX, we found a persistent reduction in the number of c-Fos+ and TUNEL+ cells in DG. At both time points, the CHX-exposed mice showed a strong overexpression of neuropeptide Y (NPY) in the CA3 stratum lucidum and the hippocampal hilus. In parallel, we used an operant-based task to assess motor performance and operant conditioning learning. The behavioral analysis indicated that CHX did not modify the acquisition of operant conditioning tasks, but affected some motor skills and increased the reward-seeking behavior. Altogether, this evidence reveals that CHX exposure provokes long-lasting changes in the hippocampal subfields, induces motor impairments and increases the motivation-guided behavior. These findings can help understand the deleterious effect of CHX into the adult hippocampus and unveil its potential to trigger addiction-like behaviors.
Collapse
Affiliation(s)
- Tania Campos-Ordonez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico
- Physiological Sciences PhD Program, School of Medicine, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico
| | - David Zarate-Lopez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico
- Physiological Sciences PhD Program, School of Medicine, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico
| | - Nereida Ibarra-Castaneda
- Laboratory of Neuroscience, School of Psychology, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico
| | - Jonathan Buritica
- Centro de Estudios e Investigaciones en Comportamiento, University of Guadalajara, St. Francisco de Quevedo 180, 44130, Guadalajara, Jalisco, Mexico
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico.
| |
Collapse
|
42
|
Sánchez-Rodríguez I, Gruart A, Delgado-García JM, Jiménez-Díaz L, Navarro-López JD. Role of GirK Channels in Long-Term Potentiation of Synaptic Inhibition in an In Vivo Mouse Model of Early Amyloid- β Pathology. Int J Mol Sci 2019; 20:ijms20051168. [PMID: 30866445 PMCID: PMC6429279 DOI: 10.3390/ijms20051168] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 01/01/2023] Open
Abstract
Imbalances of excitatory/inhibitory synaptic transmission occur early in the pathogenesis of Alzheimer’s disease (AD), leading to hippocampal hyperexcitability and causing synaptic, network, and cognitive dysfunctions. G-protein-gated potassium (GirK) channels play a key role in the control of neuronal excitability, contributing to inhibitory signaling. Here, we evaluate the relationship between GirK channel activity and inhibitory hippocampal functionality in vivo. In a non-transgenic mouse model of AD, field postsynaptic potentials (fPSPs) from the CA3–CA1 synapse in the dorsal hippocampus were recorded in freely moving mice. Intracerebroventricular (ICV) injections of amyloid-β (Aβ) or GirK channel modulators impaired ionotropic (GABAA-mediated fPSPs) and metabotropic (GirK-mediated fPSPs) inhibitory signaling and disrupted the potentiation of synaptic inhibition. However, the activation of GirK channels prevented Aβ-induced changes in GABAA components. Our data shows, for the first time, the presence of long-term potentiation (LTP) for both the GABAA and GirK-mediated inhibitory postsynaptic responses in vivo. In addition, our results support the importance of an accurate level of GirK-dependent signaling for dorsal hippocampal performance in early amyloid pathology models by controlling the excess of excitation that disrupts synaptic plasticity processes.
Collapse
Affiliation(s)
- Irene Sánchez-Rodríguez
- Neurophysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071 Ciudad Real, Spain.
| | - Agnès Gruart
- Division of Neurosciences, University Pablo de Olavide, 41013 Seville, Spain.
| | | | - Lydia Jiménez-Díaz
- Neurophysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071 Ciudad Real, Spain.
| | - Juan D Navarro-López
- Neurophysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071 Ciudad Real, Spain.
| |
Collapse
|
43
|
Ingusci S, Cattaneo S, Verlengia G, Zucchini S, Simonato M. A Matter of Genes: The Hurdles of Gene Therapy for Epilepsy. Epilepsy Curr 2019; 19:38-43. [PMID: 30838918 PMCID: PMC6610370 DOI: 10.1177/1535759718822846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Gene therapy has recently advanced to the level of standard of care for several
diseases. However, its application to neurological disorders is still in the
experimental phase. In this review, we discuss recent advancements in the field
that provide optimism on the possibility to have first-in-human studies for gene
therapy of some forms of epilepsy in the not so distant future.
Collapse
Affiliation(s)
- Selene Ingusci
- 1 Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Stefano Cattaneo
- 2 School of Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | - Gianluca Verlengia
- 1 Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,2 School of Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | - Silvia Zucchini
- 1 Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,3 Technopole of Ferrara, LTTA Laboratory for the Technologies for Advanced Therapies, Ferrara, Italy
| | - Michele Simonato
- 1 Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,2 School of Medicine, University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
44
|
Soud K, Jørgensen SH, Woldbye DPD, Sørensen AT. The C-terminal flanking peptide of neuropeptide Y (NPY) is not essential for seizure-suppressant actions of prepro-NPY overexpression in male rats. J Neurosci Res 2018; 97:362-372. [PMID: 30367522 DOI: 10.1002/jnr.24350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 11/11/2022]
Abstract
The full coding sequence of neuropeptide Y (NPY), prepro-NPY, is sequentially metabolized into three peptides; an N-terminus 28-amino acid signaling peptide, the NPY peptide itself (NPY1-36), and a 30-amino acid C-terminus peptide, known as the C-terminal flanking peptide of neuropeptide-Y (CPON). While the signaling peptide directs intracellular trafficking and NPY1-36 is well characterized, the biological function of CPON is unknown. This is noteworthy because CPON is co-stored and co-released along with NPY1-36 and could thus potentially serve important functions. To assess the role of CPON, we adapted a viral genetic approach using two different vector designs encoding NPY, but where the CPON coding sequence was excluded from one of the vectors. Thus, the effect of CPON was indirectly assessed. Male rats received intrahippocampal injections of either a vector encoding NPY1-39 whose metabolism yields NPY1-36 and not CPON, or a prepro-NPY vector encoding both NPY1-36 and CPON. A third vector encoding EGFP served as control. We subsequently studied to what extent CPON might affect seizure susceptibility and memory performance, respectively, to address two important questions to evaluate the potential of NPY gene therapy in epilepsy. Both NPY vectors, as compared to EGFP control, were found to be equally effective at suppressing acute kainate-induced seizures, and both did not influence learning and memory performance in the Morris water maze. Thus CPON itself does not appear to aid actions governed by vector-mediated overexpression of NPY1-36 within the hippocampus. Whether CPON serves other important functions remains to be determined.
Collapse
Affiliation(s)
- Katia Soud
- Laboratory of Neural Plasticity, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Søren Heide Jørgensen
- Neuropharmacology and Genetics Laboratory, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - David Paul Drucker Woldbye
- Laboratory of Neural Plasticity, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Toft Sørensen
- Neuropharmacology and Genetics Laboratory, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
45
|
Hussain T, Kil H, Hattiangady B, Lee J, Kodali M, Shuai B, Attaluri S, Takata Y, Shen J, Abba MC, Shetty AK, Aldaz CM. Wwox deletion leads to reduced GABA-ergic inhibitory interneuron numbers and activation of microglia and astrocytes in mouse hippocampus. Neurobiol Dis 2018; 121:163-176. [PMID: 30290271 DOI: 10.1016/j.nbd.2018.09.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/18/2018] [Accepted: 09/30/2018] [Indexed: 02/07/2023] Open
Abstract
The association of WW domain-containing oxidoreductase WWOX gene loss of function with central nervous system (CNS) related pathologies is well documented. These include spinocerebellar ataxia, epilepsy and mental retardation (SCAR12, OMIM: 614322) and early infantile epileptic encephalopathy (EIEE28, OMIM: 616211) syndromes. However, there is complete lack of understanding of the pathophysiological mechanisms at play. In this study, using a Wwox knockout (Wwox KO) mouse model (2 weeks old, both sexes) and stereological studies we observe that Wwox deletion leads to a significant reduction in the number of hippocampal GABA-ergic (γ-aminobutyric acid) interneurons. Wwox KO mice displayed significantly reduced numbers of calcium-binding protein parvalbumin (PV) and neuropeptide Y (NPY) expressing interneurons in different subfields of the hippocampus in comparison to Wwox wild-type (WT) mice. We also detected decreased levels of Glutamic Acid Decarboxylase protein isoforms GAD65/67 expression in Wwox null hippocampi suggesting lower levels of GABA synthesis. In addition, Wwox deficiency was associated with signs of neuroinflammation such as evidence of activated microglia, astrogliosis, and overexpression of inflammatory cytokines Tnf-a and Il6. We also performed comparative transcriptome-wide expression analyses of neural stem cells grown as neurospheres from hippocampi of Wwox KO and WT mice thus identifying 283 genes significantly dysregulated in their expression. Functional annotation of transcriptome profiling differences identified 'neurological disease' and 'CNS development related functions' to be significantly enriched. Several epilepsy-related genes were found differentially expressed in Wwox KO neurospheres. This study provides the first genotype-phenotype observations as well as potential mechanistic clues associated with Wwox loss of function in the brain.
Collapse
Affiliation(s)
- Tabish Hussain
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Hyunsuk Kil
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Bharathi Hattiangady
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, United States; Research Service, Olin E. Teague Veterans' Medical Center, CTVHCS, Temple, TX, United States
| | - Jaeho Lee
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, United States; Research Service, Olin E. Teague Veterans' Medical Center, CTVHCS, Temple, TX, United States
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, United States; Research Service, Olin E. Teague Veterans' Medical Center, CTVHCS, Temple, TX, United States
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, United States; Research Service, Olin E. Teague Veterans' Medical Center, CTVHCS, Temple, TX, United States
| | - Yoko Takata
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Martin C Abba
- CINIBA, School of Medicine, UNLP, La Plata, Argentina
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, United States; Research Service, Olin E. Teague Veterans' Medical Center, CTVHCS, Temple, TX, United States
| | - C Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States.
| |
Collapse
|
46
|
Hippocampal neuropeptide Y protein expression following controlled cortical impact and posttraumatic epilepsy. Epilepsy Behav 2018; 87:188-194. [PMID: 30146352 DOI: 10.1016/j.yebeh.2018.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 11/23/2022]
Abstract
This study assessed neuropeptide Y (NPY) expression in the hippocampus after long-term survival following traumatic brain injury (TBI) induced by controlled cortical impact (CCI) with or without the development of posttraumatic epilepsy (PTE). We hypothesized that following long-term survival after CCI, the severity of tissue injury and the development of PTE would correlate with the degree of hippocampal neurodegeneration as reflected by NPY+ and neuronal nuclear antigen (NeuN)+ cell loss. Adult Sprague-Dawley rats of 2-3 months of age were lesioned in the right parietal cortex and monitored for seizure activity by video and/or video-EEG. Neuropeptide Y and NeuN immunoreactivities (IRs) were quantified by light microscopy and semiautomatic image analysis approaches for unbiased quantification. Severely injured animals, marked by extensive tissue loss in the ipsilateral neocortex and adjacent hippocampus, resulted in significantly lower NeuN+ hilar cell density and NPY+ cell loss in the contralateral Cornu Ammonis (CA)-3 and dentate hilus (DH). The degree of NPY+ cell loss was more severe in CCI-injured animals with PTE than those animals that did not develop PTE. Mildly injured animals demonstrated no significant change of NPY expression compared with control animals. Our findings of long-term alterations of NPY expression in the hippocampus of severely brain-injured animals can provide important insights into the cellular and molecular consequences of severe TBI and posttraumatic epileptogenesis.
Collapse
|
47
|
Inflammasome-derived cytokine IL18 suppresses amyloid-induced seizures in Alzheimer-prone mice. Proc Natl Acad Sci U S A 2018; 115:9002-9007. [PMID: 30127003 DOI: 10.1073/pnas.1801802115] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the progressive destruction and dysfunction of central neurons. AD patients commonly have unprovoked seizures compared with age-matched controls. Amyloid peptide-related inflammation is thought to be an important aspect of AD pathogenesis. We previously reported that NLRP3 inflammasome KO mice, when bred into APPswe/PS1ΔE9 (APP/PS1) mice, are completely protected from amyloid-induced AD-like disease, presumably because they cannot produce mature IL1β or IL18. To test the role of IL18, we bred IL18KO mice with APP/PS1 mice. Surprisingly, IL18KO/APP/PS1 mice developed a lethal seizure disorder that was completely reversed by the anticonvulsant levetiracetam. IL18-deficient AD mice showed a lower threshold in chemically induced seizures and a selective increase in gene expression related to increased neuronal activity. IL18-deficient AD mice exhibited increased excitatory synaptic proteins, spine density, and basal excitatory synaptic transmission that contributed to seizure activity. This study identifies a role for IL18 in suppressing aberrant neuronal transmission in AD.
Collapse
|
48
|
Jazmati D, Neubacher U, Funke K. Neuropeptide Y as a possible homeostatic element for changes in cortical excitability induced by repetitive transcranial magnetic stimulation. Brain Stimul 2018. [DOI: 10.1016/j.brs.2018.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
49
|
Gene therapy mediated seizure suppression in Genetic Generalised Epilepsy: Neuropeptide Y overexpression in a rat model. Neurobiol Dis 2018; 113:23-32. [DOI: 10.1016/j.nbd.2018.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/07/2018] [Accepted: 01/22/2018] [Indexed: 02/01/2023] Open
|
50
|
Jarero-Basulto JJ, Gasca-Martínez Y, Rivera-Cervantes MC, Ureña-Guerrero ME, Feria-Velasco AI, Beas-Zarate C. Interactions Between Epilepsy and Plasticity. Pharmaceuticals (Basel) 2018; 11:ph11010017. [PMID: 29414852 PMCID: PMC5874713 DOI: 10.3390/ph11010017] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 02/06/2023] Open
Abstract
Undoubtedly, one of the most interesting topics in the field of neuroscience is the ability of the central nervous system to respond to different stimuli (normal or pathological) by modifying its structure and function, either transiently or permanently, by generating neural cells and new connections in a process known as neuroplasticity. According to the large amount of evidence reported in the literature, many stimuli, such as environmental pressures, changes in the internal dynamic steady state of the organism and even injuries or illnesses (e.g., epilepsy) may induce neuroplasticity. Epilepsy and neuroplasticity seem to be closely related, as the two processes could positively affect one another. Thus, in this review, we analysed some neuroplastic changes triggered in the hippocampus in response to seizure-induced neuronal damage and how these changes could lead to the establishment of temporal lobe epilepsy, the most common type of focal human epilepsy.
Collapse
Affiliation(s)
- José J Jarero-Basulto
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Yadira Gasca-Martínez
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Martha C Rivera-Cervantes
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Mónica E Ureña-Guerrero
- Neurotransmission Biology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Alfredo I Feria-Velasco
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Carlos Beas-Zarate
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| |
Collapse
|