1
|
Zhang Y, Fan C, Zhang J, Tian X, Zuo W, He K. Lipid-conjugated nucleoside monophosphate and monophosphonate prodrugs: A versatile drug delivery paradigm. Eur J Med Chem 2024; 275:116614. [PMID: 38925014 DOI: 10.1016/j.ejmech.2024.116614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Integrating lipid conjugation strategies into the design of nucleoside monophosphate and monophosphonate prodrugs is a well-established approach for discovering potential therapeutics. The unique prodrug design endows nucleoside analogues with strong lipophilicity and structures resembling lysoglycerophospholipids, which improve cellular uptake, oral bioavailability and pharmacological activity. In addition, the metabolic stability, pharmacological activity, pharmacokinetic profiles and biodistribution of lipid prodrugs can be finely optimized by adding biostable caps, incorporating transporter-targeted groups, inserting stimulus-responsive bonds, adjusting chain lengths, and applying proper isosteric replacements. This review summarizes recent advances in the structural features and application fields of lipid-conjugated nucleoside monophosphate and monophosphonate prodrugs. This collection provides deep insights into the increasing repertoire of lipid prodrug development strategies and offers design inspirations for medicinal chemists for the development of novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Yanhua Zhang
- College of Science, Xichang University, Sichuan, 615000, China.
| | - Conghua Fan
- Xichang People's Hospital, Xichang, Sichuan, 615000, China
| | - Junjie Zhang
- College of Science, Xichang University, Sichuan, 615000, China
| | - Xin Tian
- College of Science, Xichang University, Sichuan, 615000, China
| | - Wen Zuo
- Xichang People's Hospital, Xichang, Sichuan, 615000, China
| | - Kehan He
- College of Science, Xichang University, Sichuan, 615000, China
| |
Collapse
|
2
|
Ganesan A, Arunagiri T, Mani S, Kumaran VR, Sk G, Elumalai S, Kannaiah KP, Chanduluru HK. Mpox treatment evolution: past milestones, present advances, and future directions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03385-0. [PMID: 39225831 DOI: 10.1007/s00210-024-03385-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
An underestimated worldwide health concern, Monkeypox (Mpox) is becoming a bigger menace to the world's population. After smallpox was eradicated in 1970, Mpox was found in a rural region of Africa and quickly spread to other African countries. The etiological agent of the Mpox infection, the Mpox virus, is constantly evolving, and its capability for cross-species transmission led to a global outbreak in 2022 which led to several deaths throughout the world. This review aims to showcase the progressive treatment methods and emerging innovations in the diagnostic and prevention strategies for controlling Mpox. The clinical trial data for antiviral drugs were systematically collected and analyzed using statistical tests to determine the most effective antiviral treatment. Emerging viral protein inhibitors that are under investigation for Mpox treatment were also scrutinized in this review. Additionally, modern diagnostic methods, such as the Streamlined CRISPR On Pod Evaluation platform (SCOPE) and graphene quantum rods were reviewed, and the efficacy of mRNA vaccines with traditional smallpox vaccines used for Mpox were compared. The statistical analysis revealed that tecovirimat (TCV) is the most effective antiviral drug among the other evaluated drugs, showing superior efficacy in clinical trials. Similarly, mRNA vaccines offer greater effectiveness compared to conventional smallpox vaccines. Furthermore, emerging nanomedicine and herbal drug candidates were highlighted as potential future treatments for Mpox. The findings underscore the effectiveness of TCV in treating Mpox and highlight significant advancements in preventive treatments. The review also points to innovative approaches in vaccine technology and potential future therapies, including nanomedicine and herbal remedies, which may enhance Mpox management.
Collapse
Affiliation(s)
- Alagammai Ganesan
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Thirumalai Arunagiri
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Suganandhini Mani
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Vamsi Ravi Kumaran
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Gayathrii Sk
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Sandhiya Elumalai
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Kanaka Parvathi Kannaiah
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| | - Hemanth Kumar Chanduluru
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
3
|
Wang B, Cao B, Bei ZC, Xu L, Zhang D, Zhao L, Song Y, Wang H. Disulfide-incorporated lipid prodrugs of cidofovir: Synthesis, antiviral activity, and release mechanism. Eur J Med Chem 2023; 258:115601. [PMID: 37390509 DOI: 10.1016/j.ejmech.2023.115601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
The double-stranded DNA (dsDNA) viruses represented by adenovirus and monkeypox virus, have attracted widespread attention due to their high infectivity. In 2022, the global outbreak of mpox (or monkeypox) has led to the declaration of a Public Health Emergency of International Concern. However, to date therapeutics approved for dsDNA virus infections remain limited and there are still no available treatments for some of these diseases. The development of new therapies for treating dsDNA infection is in urgent need. In this study, we designed and synthesized a series of novel disulfide-incorporated lipid conjugates of cidofovir (CDV) as potential candidates against dsDNA viruses including vaccinia virus (VACV) and adenovirus (AdV) 5. The structure-activity relationship analyses revealed that the optimum linker moiety was C2H4 and the optimum aliphatic chain length was 18 or 20 atoms. Among the synthesized conjugates, 1c exhibited more potency against VACV (IC50 = 0.0960 μM in Vero cells; IC50 = 0.0790 μM in A549 cells) and AdV5 (IC50 = 0.1572 μM in A549 cells) than brincidofovir (BCV). The transmission electron microscopy (TEM) images revealed that the conjugates could form micelles in phosphate buffer. The stability studies in the GSH environment demonstrated that the formation of micelles in phosphate buffer might protect the disulfide bond from glutathione (GSH) reduction. The dominant means of the synthetic conjugates to liberate the parent drug CDV was by enzymatic hydrolysis. Furthermore, the synthetic conjugates remained sufficiently stable in simulated gastric fluid (SGF), simulated intestinal fluid (SIF), and pooled human plasma, which indicated the possibility for oral administration. These results indicated 1c may be a broad-spectrum antiviral candidate against dsDNA viruses with potential oral administration. Moreover, modification of the aliphatic chain attached to the nucleoside phosphonate group was involved as an efficient prodrug strategy for the development of potent antiviral candidates.
Collapse
Affiliation(s)
- Baogang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Binwang Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Zhu-Chun Bei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Likun Xu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Dongna Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Liangliang Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yabin Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Hongquan Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
4
|
Wang J, Shahed-Ai-Mahmud M, Chen A, Li K, Tan H, Joyce R. An Overview of Antivirals against Monkeypox Virus and Other Orthopoxviruses. J Med Chem 2023; 66:4468-4490. [PMID: 36961984 DOI: 10.1021/acs.jmedchem.3c00069] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The current monkeypox outbreaks during the COVID-19 pandemic have reignited interest in orthopoxvirus antivirals. Monkeypox belongs to the Orthopoxvirus genus of the Poxviridae family, which also includes the variola virus, vaccinia virus, and cowpox virus. Two orally bioavailable drugs, tecovirimat and brincidofovir, have been approved for treating smallpox infections. Given their human safety profiles and in vivo antiviral efficacy in animal models, both drugs have also been recommended to treat monkeypox infection. To facilitate the development of additional orthopoxvirus antivirals, we summarize the antiviral activity, mechanism of action, and mechanism of resistance of orthopoxvirus antivirals. This perspective covers both direct-acting and host-targeting antivirals with an emphasis on drug candidates showing in vivo antiviral efficacy in animal models. We hope to speed the orthopoxvirus antiviral drug discovery by providing medicinal chemists with insights into prioritizing proper drug targets and hits for further development.
Collapse
Affiliation(s)
- Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Md Shahed-Ai-Mahmud
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Angelo Chen
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Kan Li
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Ryan Joyce
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
5
|
Sukhdeo S, Mishra S, Walmsley S. Human monkeypox: a comparison of the characteristics of the new epidemic to the endemic disease. BMC Infect Dis 2022; 22:928. [PMID: 36503476 PMCID: PMC9742013 DOI: 10.1186/s12879-022-07900-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
In May 2022, a new global outbreak of mpox (formerly, human monkeypox) emerged that was declared a public health emergency of international concern by the World Health Organization on July 23, 2022. With new patterns of person-to-person spread within sexual networks in nonendemic countries and several differences from the classic disease course, we performed a comprehensive review of existing literature on human monkeypox to discuss epidemiology, modes of transmission, clinical presentation and asymptomatic infection, diagnostics, therapeutics, and vaccines with the primary aim to identify important areas for future research of this new epidemic form of the disease. A comprehensive literature search was performed of all published literature to August 15, 2022. Historically, in regions of monkeypox virus endemicity, human outbreaks have occurred related to discrete zoonotic events. The animal reservoir is unknown, but the virus has been isolated from rodents. Traditionally, transmission occurred by direct or indirect contact with an infected animal. In nonendemic countries affected in the 2022 outbreak, almost exclusive person-to-person spread has been observed, and most cases are connected to sexual networks of gay, bisexual, and other men who have sex with men. After an incubation period of approximately 13 days, in traditional human cases affected persons developed a febrile prodrome preceding a rash that started on the face and body, spread centrifugally to the palms and soles and healed monomorphically over two to four weeks. However, in the 2022 outbreak, the febrile illness is often absent or occurs after the onset of the rash. The rash presents primarily in the anogenital region and face before disseminating throughout the body, with lesions displaying regional pleomorphism. There is a paucity of data for the role of antiviral agents or vaccines. The epidemiology and clinical course of mpox has changed in the 2022 epidemic from that observed with the endemic disease. There is an urgent need to establish rapid and collaborative research platforms to diagnose, treat and prevent disease and inform important public health and other strategies to stop the spread of disease.
Collapse
Affiliation(s)
- Sharon Sukhdeo
- Department of Medicine, University of Toronto, Toronto, Canada.
| | - Sharmistha Mishra
- Division of Infectious Diseases, Department of Medicine, St. Michael's Hospital, MAP Centre for Urban Health Solutions, University of Toronto, Toronto, Canada
| | - Sharon Walmsley
- Department of Medicine, Division of Infectious Diseases, University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
6
|
James J, A P, P K, Rani J, V S. An Update on the Pharmacological Aspects of Vaccines and Antivirals for the Management of Monkeypox. J Pharmacol Pharmacother 2022. [DOI: 10.1177/0976500x231156733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Monkeypox is a self-limiting zoonotic disease caused by the monkeypox virus belonging to the genus of orthopox viruses. Initially considered an ‘African disease’, this infection has crossed the boundaries to affect other continents and it has raised tremendous concerns among the general public as well as the medical fraternity all over the world, particularly because of the lack of specific vaccinations and drugs for the management of the illness. Epidemiological evaluation of the current infection has reported that it is mainly transmitted through sexual contact in bisexual men, mostly whites, and in those with pre-existing human immunodeficiency virus infection. The most common presentations were skin rash, anogenital lesions, or mucosal lesions along with systemic symptoms. It has been established that the vaccines and drugs approved for the management of smallpox could be used for the management of the current monkeypox outbreak. Vaccinia Immune Globulin (VIG) and vaccines like JYNNEOS and ACAM2000 and antiviral drugs like tecovirimat, cidofovir (CDV), and brincidofovir are being considered for those patients with serious diseases. It is imperative for physicians to understand the pharmacological aspects of these drugs for delivering better care to patients with monkeypox, which is eventually essential for the containment of this infection. This review covers updates on vaccines as well as drugs for the prevention and management of monkeypox.
Collapse
|
7
|
Siegrist EA, Sassine J. Antivirals With Activity Against Mpox: A Clinically Oriented Review. Clin Infect Dis 2022; 76:155-164. [PMID: 35904001 PMCID: PMC9825831 DOI: 10.1093/cid/ciac622] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 01/12/2023] Open
Abstract
Mpox virus is an emergent human pathogen. While it is less lethal than smallpox, it can still cause significant morbidity and mortality. In this review, we explore 3 antiviral agents with activity against mpox and other orthopoxviruses: cidofovir, brincidofovir, and tecovirimat. Cidofovir, and its prodrug brincidofovir, are inhibitors of DNA replication with a broad spectrum of activity against multiple families of double-stranded DNA viruses. Tecovirimat has more specific activity against orthopoxviruses and inhibits the formation of the extracellular enveloped virus necessary for cell-to-cell transmission. For each agent, we review basic pharmacology, data from animal models, and reported experience in human patients.
Collapse
Affiliation(s)
| | - Joseph Sassine
- Correspondence: J. Sassine, Infectious Diseases Section, Department of Medicine, The University of Oklahoma Health Sciences Center, 800 Stanton L. Young Blvd, Oklahoma City, OK 73104 ()
| |
Collapse
|
8
|
Abstract
Phosphoryl prodrugs are key compounds in drug development. Biologically active phosphoryl compounds often have negative charges on the phosphoryl group, and as a result, frequently have poor pharmacokinetic (PK) profiles. The use of lipophilic moieties bonded to the phosphorus (or attached oxygen atoms) masks the negative charge of the phosphoryl group, cleavage releasing the active molecule. The use of prodrugs to improve the PK of active parent molecules is an essential step in drug development. This review highlights promising trends in terminal elimination half-life, Cmax, clearance, oral bioavailability, and cLogP in phosphoryl prodrugs. We focus on specific prodrug families: esters, amidates, and ProTides. We conclude that moderating lipophilicity is a key part of prodrug success. This type of evaluation is important for drug development, regardless of clinical application. It is our hope that this analysis, and future ones like it, will play a significant role in prodrug evolution.
Collapse
Affiliation(s)
- Samuel A Kirby
- Department of Chemistry, George Washington University, Washington DC 20052
| | - Cynthia S Dowd
- Department of Chemistry, George Washington University, Washington DC 20052
| |
Collapse
|
9
|
Parker S, D'Angelo J, Buller RM, Smee DF, Lantto J, Nielsen H, Jensen A, Prichard M, George SL. A human recombinant analogue to plasma-derived vaccinia immunoglobulin prophylactically and therapeutically protects against lethal orthopoxvirus challenge. Antiviral Res 2021; 195:105179. [PMID: 34530009 PMCID: PMC9628779 DOI: 10.1016/j.antiviral.2021.105179] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022]
Abstract
Orthopoxviruses such as variola and monkeypox viruses continue to threaten the human population. Monkeypox virus is endemic in central and western Africa and outbreaks have reached as far as the U.S. Although variola virus, the etiologic agent of smallpox, has been eradicated by a successful vaccination program, official and likely clandestine stocks of the virus exist. Moreover, studies with ectromelia virus (the etiological agent of mousepox) have revealed that IL-4 recombinant viruses are significantly more virulent than wild-type viruses even in mice treated with vaccines and/or antivirals. For these reasons, it is critical that antiviral modalities are developed to treat these viruses should outbreaks, or deliberate dissemination, occur. Currently, 2 antivirals (brincidofovir and tecovirimat) are in the U.S. stockpile allowing for emergency use of the drugs to treat smallpox. Both antivirals have advantages and disadvantages in a clinical and emergency setting. Here we report on the efficacy of a recombinant immunoglobulin (rVIG) that demonstrated efficacy against several orthopoxviruses in vitro and in vivo in both a prophylactic and therapeutic fashion. A single intraperitoneal injection of rVIG significantly protected mice when given up to 14 days before or as late as 6 days post challenge. Moreover, rVIG reduced morbidity, as measured by weight-change, as well as several previously established biomarkers of disease. In rVIG treated mice, we found that vDNA levels in blood were significantly reduced, as was ALT (a marker of liver damage) and infectious virus levels in the liver. No apparent adverse events were observed in rVIG treated mice, suggesting the immunoglobulin is well tolerated. These findings suggest that recombinant immunoglobulins could be candidates for further evaluation and possible licensure under the FDA Animal Rule.
Collapse
Affiliation(s)
- Scott Parker
- Division of Infectious Diseases, Department of Internal Medicine, Saint Louis University, and St. Louis VA Medical Center, St. Louis, MO, 63104, USA
| | - June D'Angelo
- Division of Infectious Diseases, Department of Internal Medicine, Saint Louis University, and St. Louis VA Medical Center, St. Louis, MO, 63104, USA
| | - R Mark Buller
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, 63104, USA
| | - Donald F Smee
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | - Johan Lantto
- Symphogen, Pederstrupvej 93, DK-2750, Ballerup, Denmark
| | | | - Allan Jensen
- Symphogen, Pederstrupvej 93, DK-2750, Ballerup, Denmark
| | - Mark Prichard
- Department of Pediatrics, University of Alabama, Birmingham, AL, 35233, USA
| | - Sarah L George
- Division of Infectious Diseases, Department of Internal Medicine, Saint Louis University, and St. Louis VA Medical Center, St. Louis, MO, 63104, USA.
| |
Collapse
|
10
|
Wang X, Patel SA, Haddadin M, Cerny J. Post-allogeneic hematopoietic stem cell transplantation viral reactivations and viremias: a focused review on human herpesvirus-6, BK virus and adenovirus. Ther Adv Infect Dis 2021; 8:20499361211018027. [PMID: 34104434 PMCID: PMC8155777 DOI: 10.1177/20499361211018027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
Human cytomegalovirus and Epstein-Barr virus have been recognized as potential drivers of morbidity and mortality of patients undergoing allogeneic stem cell transplantation for years. Specific protocols for monitoring, prophylaxis and pre-emptive therapy are in place in many transplant settings. In this review, we focus on the next three most frequent viruses, human herpesvirus-6, BK virus and adenovirus, causing reactivation and/or viremia after allogeneic transplant, which are increasingly detected in patients in the post-transplant period owing to emerging techniques of molecular biology, recipients' characteristics, treatment modalities used for conditioning and factors related donors or stem cell source. Given the less frequent detection of an illness related to these viruses, there are often no specific protocols in place for the management of affected patients. While some patients develop significant morbidity (generally older), others may not need therapy at all (generally younger or children). Furthermore, some of the antiviral therapies used are potentially toxic. With the addition of increased risk of secondary infections, risk of graft failure or increased risk of graft-versus-host disease as well as the relationship with other post-transplant complications, the outcomes of patients with these viremias remain unsatisfactory and even long-term survivors experience increased morbidity.
Collapse
Affiliation(s)
- Xin Wang
- Department of Medicine, UMass Memorial Medical Center, Worcester, MA, USA
| | - Shyam A Patel
- Division of Hematology-Oncology, Department of Medicine, UMass Memorial Medical Center, Worcester, MA, USA
| | - Michael Haddadin
- Division of Hematology-Oncology, Department of Medicine, UMass Memorial Medical Center, Worcester, MA, USA
| | - Jan Cerny
- Division of Hematology and Oncology, Department of Medicine, UMass Memorial Medical Center, 55 Lake Avenue North, Worcester, MA, 01655, USA
| |
Collapse
|
11
|
Zhou X, Jin N, Chen B. Human cytomegalovirus infection: A considerable issue following allogeneic hematopoietic stem cell transplantation. Oncol Lett 2021; 21:318. [PMID: 33692850 PMCID: PMC7933754 DOI: 10.3892/ol.2021.12579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Cytomegalovirus (CMV) is an opportunistic virus, whereby recipients are most susceptible following allogeneic hematopoietic stem cell transplantation (allo-HSCT). With the development of novel immunosuppressive agents and antiviral drugs, accompanied with the widespread application of prophylaxis and preemptive treatment, significant developments have been made in transplant recipients with human (H)CMV infection. However, HCMV remains an important cause of short- and long-term morbidity and mortality in transplant recipients. The present review summarizes the molecular mechanism and risk factors of HCMV reactivation following allo-HSCT, the diagnosis of CMV infection following allo-HSCT, prophylaxis and treatment of HCMV infection, and future perspectives. All relevant literature were retrieved from PubMed and have been reviewed.
Collapse
Affiliation(s)
- Xinyi Zhou
- Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Nan Jin
- Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
12
|
Alkoxylalkyl Esters of Nucleotide Analogs Inhibit Polyomavirus DNA Replication and Large T Antigen Activities. Antimicrob Agents Chemother 2021; 65:AAC.01641-20. [PMID: 33288638 DOI: 10.1128/aac.01641-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022] Open
Abstract
Polyomavirus infections occur commonly in humans and are normally nonfatal. However, in immunocompromised individuals, they are intractable and frequently fatal. Due to a lack of approved drugs to treat polyomavirus infections, cidofovir, a phosphonate nucleotide analog approved to treat cytomegalovirus infections, has been repurposed as an antipolyomavirus agent. Cidofovir has been modified in various ways to improve its efficacies as a broad-spectrum antiviral agent. However, the actual mechanisms and targets of cidofovir and its modified derivatives as antipolyomavirus agents are still under research. Here, polyomavirus large tumor antigen (Tag) activities were identified as the viral target of cidofovir derivatives. The alkoxyalkyl ester derivatives of cidofovir efficiently inhibit polyomavirus DNA replication in cell-free human extracts and a viral in vitro replication system utilizing only purified proteins. We present evidence that DNA helicase and DNA binding activities of polyomavirus Tags are diminished in the presence of low concentrations of alkoxyalkyl ester derivatives of cidofovir, suggesting that the inhibition of viral DNA replication is at least in part mediated by inhibiting single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) binding activities of Tags. These findings show that the alkoxyalkyl ester derivatives of cidofovir are effective in vitro without undergoing further conversions, and we conclude that the inhibitory mechanisms of nucleotide analog-based drugs are more complex than previously believed.
Collapse
|
13
|
Acosta E, Bowlin T, Brooks J, Chiang L, Hussein I, Kimberlin D, Kauvar LM, Leavitt R, Prichard M, Whitley R. Advances in the Development of Therapeutics for Cytomegalovirus Infections. J Infect Dis 2021; 221:S32-S44. [PMID: 32134483 DOI: 10.1093/infdis/jiz493] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The development of therapeutics for cytomegalovirus (CMV) infections, while progressing, has not matched the pace of new treatments of human immunodeficiency virus (HIV) infections; nevertheless, recent developments in the treatment of CMV infections have resulted in improved human health and perhaps will encourage the development of new therapeutic approaches. First, the deployment of ganciclovir and valganciclovir for both the prevention and treatment of CMV infections and disease in transplant recipients has been further improved with the licensure of the efficacious and less toxic letermovir. Regardless, late-onset CMV disease, specifically pneumonia, remains problematic. Second, the treatment of congenital CMV infections with valganciclovir has beneficially improved both hearing and neurologic outcomes, both fundamental advances for these children. In these pediatric studies, viral load was decreased but not eliminated. Thus, an important lesson learned from studies in both populations is the need for new antiviral agents and the necessity for combination therapies as has been shown to be beneficial in the treatment of HIV infections, among others. The development of monoclonal antibodies, sirtuins, and cyclopropovir may provide new treatment options.
Collapse
Affiliation(s)
- Edward Acosta
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | - David Kimberlin
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | - Mark Prichard
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Richard Whitley
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
14
|
Groaz E, De Jonghe S. Overview of Biologically Active Nucleoside Phosphonates. Front Chem 2021; 8:616863. [PMID: 33490040 PMCID: PMC7821050 DOI: 10.3389/fchem.2020.616863] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/30/2020] [Indexed: 12/25/2022] Open
Abstract
The use of the phosphonate motif featuring a carbon-phosphorous bond as bioisosteric replacement of the labile P–O bond is widely recognized as an attractive structural concept in different areas of medicinal chemistry, since it addresses the very fundamental principles of enzymatic stability and minimized metabolic activation. This review discusses the most influential successes in drug design with special emphasis on nucleoside phosphonates and their prodrugs as antiviral and cancer treatment agents. A description of structurally related analogs able to interfere with the transmission of other infectious diseases caused by pathogens like bacteria and parasites will then follow. Finally, molecules acting as agonists/antagonists of P2X and P2Y receptors along with nucleotidase inhibitors will also be covered. This review aims to guide readers through the fundamentals of nucleoside phosphonate therapeutics in order to inspire the future design of molecules to target infections that are refractory to currently available therapeutic options.
Collapse
Affiliation(s)
- Elisabetta Groaz
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Adenovirus infection and disease in recipients of hematopoietic cell transplantation. Curr Opin Infect Dis 2020; 32:591-600. [PMID: 31567568 DOI: 10.1097/qco.0000000000000605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW To provide an update on risk factors associated with adenovirus (ADV) infection in patients after hematopoietic cell transplant (HCT) and on options for ADV monitoring and treatment in the setting of HCT. RECENT FINDINGS Among patients undergoing HCT, ADV infection continues to be more common amongst those receiving a T-cell-depleted or graft other than from a matched-related donor. Among children undergoing HCT, reactivation in the gastrointestinal tract appears to be the most common source, and the virus is detectable by quantitative PCR in the stool before it is detectable in the blood. Thus, screening for the virus in the stool of these children may allow for preemptive therapy to reduce mortality. Brincidofovir, although still not approved by any regulatory agency, remains a potential agent for preemptive therapy and for salvage in cases not responding to cidofovir. Rapidly generated off-the-shelf virus-specific T cells may facilitate adoptive cell therapy in populations with a special need and previously not eligible for adoptive cell therapy, such as cord blood recipients. SUMMARY ADV infection continues to adversely affect survival in HCT recipients. Screening stool in children and preemptive therapy may reduce mortality. Brincidofovir and adoptive T-cell therapy remain potential options for treatment.
Collapse
|
16
|
Abstract
Forty years after the last endemic smallpox case, variola virus (VARV) is still considered a major threat to humans due to its possible use as a bioterrorism agent. For many years, the risk of disease reemergence was thought to solely be through deliberate misuse of VARV strains kept in clandestine laboratories. However, recent experiments using synthetic biology have proven the feasibility of recreating a poxvirus de novo, implying that VARV could, in theory, be resurrected. Because of this new perspective, the WHO Advisory Committee on VARV Research released new recommendations concerning research on poxviruses that strongly encourages pursuing the development of new antiviral drugs against orthopoxviruses. In 2018, the U.S. FDA advised in favor of two molecules for smallpox treatment, tecovirimat and brincidofovir. This review highlights the difficulties to develop new drugs targeting an eradicated disease, especially as it requires working under the FDA "animal efficacy rule" with the few, and imperfect, animal models available.
Collapse
|
17
|
Andronova VL. [Modern ethiotropic chemotherapy of human cytomegalovirus infection: clinical effectiveness, molecular mechanism of action, drug resistance, new trends and prospects. Part 1.]. Vopr Virusol 2019; 63:202-211. [PMID: 30550096 DOI: 10.18821/0507-4088-2018-63-5-202-211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/12/2017] [Indexed: 12/25/2022]
Abstract
Modern chemotherapy of cytomegalovirus (CMV) infections has a very limited arsenal of first-line drugs. These are preparations of ganciclovir (GCV) belonging to the class of modified nucleosides and its metabolic precursor ganciclovir valine ester. After three-step phosphorylation, GCV, as a structural analogue of the natural nucleotide, competes with it for binding to DNA polymerase and, due to its structural features, inhibits its activity. However, with prolonged use of GCV, mainly under conditions of immunosuppression, the virus develops drug resistance associated in most cases with changes in pUL97 catalyzing the first stage of GCV phosphorylation, as well as in the catalytic subunit of DNA polymerase. When variants of viruses resistant to GCV appear, second-line drugs are used: pyrophosphate analog of foscarnet and nucleotide cidofovir. Resistance to second-line drugs is due to mutations in the pol-gene and in a number of cases leads to multiresistance, which makes it impossible to use traditional anti-CMV drugs. In addition, the use of all of the above drugs is accompanied by the development of severe side effects. All of the above determines the need to search for new compounds that can effectively inhibit the reproduction of the virus, harmless to the macroorganism, convenient to use, overcoming the drug resistance barrier in viruses.As a result of the search in international databases (PubMed, MedLine, eLIBRARY.RU, ClinicalTrials.gov, etc.), the main trends in the search for new anti-CMV agents were identified. In the first part of the review, we concentrated on compounds that are modifications of known antiviral agents currently used in clinical practice, the most promising for the development of drug anti-CMV drugs.
Collapse
Affiliation(s)
- V L Andronova
- National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russian Federation
| |
Collapse
|
18
|
A Randomized, Double-Blind, Placebo-Controlled Phase 3 Trial of Oral Brincidofovir for Cytomegalovirus Prophylaxis in Allogeneic Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2018; 25:369-381. [PMID: 30292744 PMCID: PMC8196624 DOI: 10.1016/j.bbmt.2018.09.038] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/27/2018] [Indexed: 12/16/2022]
Abstract
Cytomegalovirus (CMV) infection is a common complication of allogeneic hematopoietic cell transplantation (HCT). In this trial, we randomized adult CMV-seropositive HCT recipients without CMV viremia at screening 2:1 to receive brincidofovir or placebo until week 14 post-HCT. Randomization was stratified by center and risk of CMV infection. Patients were assessed weekly through week 15 and every third week thereafter through week 24 post-HCT. Patients who developed clinically significant CMV infection (CS-CMVi; CMV viremia requiring preemptive therapy or CMV disease) discontinued the study drug and began anti-CMV treatment. The primary endpoint was the proportion of patients with CS-CMVi through week 24 post-HCT; patients who discontinued the trial or with missing data were imputed as primary endpoint events. Between August 2013 and June 2015, 452 patients were randomized at a median of 15 days after HCT and received study drug. The proportion of patients who developed CS-CMVi or were imputed as having a primary endpoint event through week 24 was similar between brincidofovir-treated patients and placebo recipients (155 of 303 [51.2%] versus 78 of 149 [52.3%]; odds ratio, .95 [95% confidence interval, .64 to 1.41]; P = .805); fewer brincidofovir recipients developed CMV viremia through week 14 compared with placebo recipients (41.6%; P < .001). Serious adverse events were more frequent among brincidofovir recipients (57.1% versus 37.6%), driven by acute graft-versus-host disease (32.3% versus 6.0%) and diarrhea (6.9% versus 2.7%). Week 24 all-cause mortality was 15.5% among brincidofovir recipients and 10.1% among placebo recipients. Brincidofovir did not reduce CS-CMVi by week 24 post-HCT and was associated with gastrointestinal toxicity.
Collapse
|
19
|
Britt WJ, Prichard MN. New therapies for human cytomegalovirus infections. Antiviral Res 2018; 159:153-174. [PMID: 30227153 DOI: 10.1016/j.antiviral.2018.09.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 02/07/2023]
Abstract
The recent approval of letermovir marks a new era of therapy for human cytomegalovirus (HCMV) infections, particularly for the prevention of HCMV disease in hematopoietic stem cell transplant recipients. For almost 30 years ganciclovir has been the therapy of choice for these infections and by today's standards this drug exhibits only modest antiviral activity that is often insufficient to completely suppress viral replication, and drives the selection of drug-resistant variants that continue to replicate and contribute to disease. While ganciclovir remains the therapy of choice, additional drugs that inhibit novel molecular targets, such as letermovir, will be required as highly effective combination therapies are developed not only for the treatment of immunocompromised hosts, but also for congenitally infected infants. Sustained efforts, largely in the biotech industry and academia, have identified additional highly active lead compounds that have progressed into clinical studies with varying levels of success and at least two have the potential to be approved in the near future. Some of the new drugs in the pipeline inhibit new molecular targets, remain effective against isolates that have developed resistance to existing therapies, and promise to augment existing therapeutic regimens. Here, we will describe some of the unique features of HCMV biology and discuss their effect on therapeutic needs. Existing drugs will also be discussed and some of the more promising candidates will be reviewed with an emphasis on those progressing through clinical studies. The in vitro and in vivo antiviral activity, spectrum of antiviral activity, and mechanism of action of new compounds will be reviewed to provide an update on potential new therapies for HCMV infections that have progressed significantly in recent years.
Collapse
Affiliation(s)
- William J Britt
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham AL 35233-1711, USA
| | - Mark N Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham AL 35233-1711, USA.
| |
Collapse
|
20
|
Sokolova AS, Yarovaya OI, Bormotov NI, Shishkina LN, Salakhutdinov NF. Discovery of a New Class of Inhibitors of Vaccinia Virus Based on (-)-Borneol from Abies sibirica and (+)-Camphor. Chem Biodivers 2018; 15:e1800153. [PMID: 29956885 DOI: 10.1002/cbdv.201800153] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023]
Abstract
A series of the bornyl ester/amide derivatives with N-containing heterocycles were designed and synthesized as vaccinia virus (VV) inhibitors. Bioassay results showed that among the designed compounds, derivatives 6, 13, 14, 34, 36 and 37 showed the best inhibitory activity against VV with the IC50 values of 12.9, 17.9, 3.4, 2.5, 12.5 and 7.5 μm, respectively, and good cytotoxicity. The primary structure-activity relationship (SAR) study suggested that the combination of a saturated N-heterocycle, such as morpholine or 4-methylpiperidine, and a 1,7,7-trimethylbicyclo[2.2.1]heptane scaffold was favorable for antiviral activity.
Collapse
Affiliation(s)
- Anastasiya S Sokolova
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, 9, Lavrent'ev ave, Novosibirsk, 630090, Russian Federation
| | - Olga I Yarovaya
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, 9, Lavrent'ev ave, Novosibirsk, 630090, Russian Federation.,Laboratory of New Medicines, Novosibirsk State University, 2, Pirogova Street, Novosibirsk, 630090, Russian Federation
| | - Nikolay I Bormotov
- Department of Prevention and Treatment of Especially Dangerous Infections, State Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk Region, 630559, Russian Federation
| | - Larisa N Shishkina
- Department of Prevention and Treatment of Especially Dangerous Infections, State Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk Region, 630559, Russian Federation
| | - Nariman F Salakhutdinov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, 9, Lavrent'ev ave, Novosibirsk, 630090, Russian Federation.,Laboratory of New Medicines, Novosibirsk State University, 2, Pirogova Street, Novosibirsk, 630090, Russian Federation
| |
Collapse
|
21
|
Kumaki Y, Woolcott JD, Roth JP, Mclean TZ, Smee DF, Barnard DL, Valiaeva N, Beadle JR, Hostetler KY. Inhibition of adenovirus serotype 14 infection by octadecyloxyethyl esters of (S)-[(3-hydroxy-2-phosphonomethoxy)propyl]- nucleosides in vitro. Antiviral Res 2018; 158:122-126. [PMID: 30096340 DOI: 10.1016/j.antiviral.2018.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 11/25/2022]
Abstract
On September 22, 2008, a physician on Prince of Wales Island, Alaska, notified the Alaska Department of Health and Social Services (ADHSS) of an unusually high number of adult patients with recently diagnosed pneumonia (n = 10), including three persons who required hospitalization and one who died. ADHSS and CDC conducted an investigation to determine the cause and distribution of the outbreak, identify risk factors for hospitalization, and implement control measures. This report summarizes the results of that investigation, which found that the outbreak was caused by adenovirus 14 (Ad14), an emerging adenovirus serotype in the United States that is associated with a higher rate of severe illness compared with other adenoviruses. Among the 46 cases identified in the outbreak from September 1 through October 27, 2008, the most frequently observed characteristics included the following: male (70%), Alaska Native (61%), underlying pulmonary disease (44%), aged > or = 65 years (26%), and current smoker (48%). Patients aged > or = 65 years had a fivefold increased risk for hospitalization. The most commonly reported symptoms were cough (100%), shortness of breath (87%), and fever (74%). Of the 11 hospitalized patients, three required intensive care, and one required mechanical ventilation. One death was reported. Ad14 isolates obtained during the outbreak were identical genetically to those in recent community-acquired outbreaks in the United States which suggests the emergence of a new, and possibly more virulent Ad14 variant. Clinicians should consider Ad14 infection in the differential diagnosis for patients with community-acquired pneumonia, particularly when unexplained clusters of severe respiratory infections are detected.
Collapse
Affiliation(s)
- Yohichi Kumaki
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Science, 5600 Old Main Hill, Utah State University, Logan, UT, 84322-5600, USA.
| | - John D Woolcott
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Science, 5600 Old Main Hill, Utah State University, Logan, UT, 84322-5600, USA
| | - Jason P Roth
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Science, 5600 Old Main Hill, Utah State University, Logan, UT, 84322-5600, USA
| | - Tyler Z Mclean
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Science, 5600 Old Main Hill, Utah State University, Logan, UT, 84322-5600, USA
| | - Donald F Smee
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Science, 5600 Old Main Hill, Utah State University, Logan, UT, 84322-5600, USA
| | - Dale L Barnard
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Science, 5600 Old Main Hill, Utah State University, Logan, UT, 84322-5600, USA
| | - Nadejda Valiaeva
- Department of Medicine, Division of Infectious Disease, University of California, San Diego, La Jolla, CA, 92093, USA
| | - James R Beadle
- Department of Medicine, Division of Infectious Disease, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Karl Y Hostetler
- Department of Medicine, Division of Infectious Disease, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
22
|
Poole CL, James SH. Antiviral Therapies for Herpesviruses: Current Agents and New Directions. Clin Ther 2018; 40:1282-1298. [PMID: 30104016 PMCID: PMC7728158 DOI: 10.1016/j.clinthera.2018.07.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 01/07/2023]
Abstract
PURPOSE The objective of this review was to summarize the recent literature describing the current burden of disease due to herpesviruses in the antiviral and transplant era; describe mechanisms of action of antiviral agents and the development of resistance; summarize the literature of recent antiviral agents brought to market as well as agents under development; and to present literature on future strategies for herpesvirus therapeutics. METHODS An extensive search of the medical literature related to antiherpesviral therapy was conducted to compose this narrative review. Literature searches were performed via PubMed and ultimately 137 articles were included as most relevant to the scope of this article. FINDINGS Herpesviruses are a family of DNA viruses that are ubiquitous throughout human populations and share the feature of establishing lifelong infections in a latent phase with the potential of periodic reactivation. With the exception of herpes simplex virus, varicella zoster virus, and Epstein-Barr virus, which have a significant disease burden in individuals with normal immune function, the morbidity and mortality of the remaining viruses are primarily associated with the immunocompromised host. Over the last half-century, several agents have been tested in large randomized, placebo-controlled trials that have resulted in safe and effective antiviral agents for the treatment of many of these infections. IMPLICATIONS With increasing use of antiherpesviral agents for extended periods, particularly in immunocompromised hosts, the emergence of resistant viruses has necessitated the development of newer agents with novel targets and better side-effect profiles.
Collapse
Affiliation(s)
- Claudette L Poole
- Division of Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Scott H James
- Division of Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
23
|
Toth K, Spencer JF, Ying B, Tollefson AE, Hartline CB, Richard ET, Fan J, Lyu J, Kashemirov BA, Harteg C, Reyna D, Lipka E, Prichard MN, McKenna CE, Wold WSM. USC-087 protects Syrian hamsters against lethal challenge with human species C adenoviruses. Antiviral Res 2018; 153:1-9. [PMID: 29510156 PMCID: PMC5891362 DOI: 10.1016/j.antiviral.2018.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 02/08/2023]
Abstract
Human adenoviruses (AdV) cause generally mild infections of the respiratory and GI tracts as well as some other tissues. However, AdV can cause serious infection in severely immunosuppressed individuals, especially pediatric patients undergoing allogeneic hematopoietic stem cell transplantation, where mortality rates are up to 80% with disseminated disease. Despite the seriousness of AdV disease, there are no drugs approved specifically to treat AdV infections. We report here that USC-087, an N-alkyl tyrosinamide phosphonate ester prodrug of HPMPA, the adenine analog of cidofovir, is highly effective against multiple AdV types in cell culture. USC-087 is also effective against AdV-C6 in our immunosuppressed permissive Syrian hamster model. In this model, hamsters are immunosuppressed by treatment with high dose cyclophosphamide. Injection of AdV-C6 (or AdV-C5) intravenously leads to a disseminated infection that resembles the disease seen in humans, including death. We have tested the efficacy of orally-administered USC-087 against the median lethal dose of intravenously administered AdV-C6. USC-087 completely prevented or significantly decreased mortality when administered up to 4 days post challenge. USC-087 also prevented or significantly decreased liver damage caused by AdV-C6 infection, and suppressed virus replication even when administered 4 days post challenge. These results imply that USC-087 is a promising candidate for drug development against HAdV infections.
Collapse
Affiliation(s)
- Karoly Toth
- Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | - Baoling Ying
- Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Ann E Tollefson
- Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | - Eric T Richard
- University of Southern California, Los Angeles, CA 90089, USA
| | - Jiajun Fan
- University of Southern California, Los Angeles, CA 90089, USA
| | - Jinglei Lyu
- University of Southern California, Los Angeles, CA 90089, USA
| | | | - Cheryl Harteg
- Therapeutic Systems Research Laboratories, Inc, Ann Arbor, MI 48108, USA
| | - Dawn Reyna
- Therapeutic Systems Research Laboratories, Inc, Ann Arbor, MI 48108, USA
| | - Elke Lipka
- Therapeutic Systems Research Laboratories, Inc, Ann Arbor, MI 48108, USA
| | - Mark N Prichard
- University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - William S M Wold
- Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
24
|
Abstract
Adenoviridae is a family of double-stranded DNA viruses that are a significant cause of upper respiratory tract infections in children and adults. Less commonly, the adenovirus family can cause a variety of gastrointestinal, ophthalmologic, genitourinary, and neurologic diseases. Most adenovirus infections are self-limited in the immunocompetent host and are treated with supportive measures. Fatal infections can occur in immunocompromised patients and less frequently in the healthy. Adenoviral vectors are being studied for novel biomedical applications including gene therapy and immunization. In this review we will focus on the spectrum of adenoviral infections in humans.
Collapse
Affiliation(s)
- Subrat Khanal
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA.
| | - Pranita Ghimire
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA.
| | - Amit S Dhamoon
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
25
|
Delaune D, Iseni F, Ferrier-Rembert A, Peyrefitte CN, Ferraris O. The French Armed Forces Virology Unit: A Chronological Record of Ongoing Research on Orthopoxvirus. Viruses 2017; 10:E3. [PMID: 29295488 PMCID: PMC5795416 DOI: 10.3390/v10010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 01/04/2023] Open
Abstract
Since the official declaration of smallpox eradication in 1980, the general population vaccination has ceased worldwide. Therefore, people under 40 year old are generally not vaccinated against smallpox and have no cross protection against orthopoxvirus infections. This naïve population may be exposed to natural or intentional orthopoxvirus emergences. The virology unit of the Institut de Recherche Biomédicale des Armées (France) has developed research programs on orthopoxviruses since 2000. Its missions were conceived to improve the diagnosis capabilities, to foster vaccine development, and to develop antivirals targeting specific viral proteins. The role of the virology unit was asserted in 2012 when the responsibility of the National Reference Center for the Orthopoxviruses was given to the unit. This article presents the evolution of the unit activity since 2000, and the past and current research focusing on orthopoxviruses.
Collapse
Affiliation(s)
- Déborah Delaune
- Unité de virologie, Centre National de Référence-Laboratoire Expert Orthopoxvirus, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Frédéric Iseni
- Unité de virologie, Centre National de Référence-Laboratoire Expert Orthopoxvirus, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Audrey Ferrier-Rembert
- Unité de virologie, Centre National de Référence-Laboratoire Expert Orthopoxvirus, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Christophe N Peyrefitte
- Unité de virologie, Centre National de Référence-Laboratoire Expert Orthopoxvirus, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Olivier Ferraris
- Unité de virologie, Centre National de Référence-Laboratoire Expert Orthopoxvirus, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| |
Collapse
|
26
|
Ramsay ID, Attwood C, Irish D, Griffiths PD, Kyriakou C, Lowe DM. Disseminated adenovirus infection after allogeneic stem cell transplant and the potential role of brincidofovir - Case series and 10 year experience of management in an adult transplant cohort. J Clin Virol 2017; 96:73-79. [PMID: 29017084 DOI: 10.1016/j.jcv.2017.09.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/23/2017] [Accepted: 09/30/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Adenovirus infection is a recognized complication following haematopoietic stem cell transplantation. We present a review of our experience of these infections in our transplant cohort over 10 years including 3 patients treated with the novel antiviral brincidofovir. OBJECTIVES We aimed to describe the presentation, response to treatment and outcomes of adult stem cell transplant patients with disseminated adenovirus infection. STUDY DESIGN All adult cases of disseminated adenovirus infection following haematopoietic stem cell transplant in our unit between 2005 and 2015 were identified. Transplant details and data on timing of diagnosis, course of infection, viral co-infection and treatment were collected. RESULTS Of 733 patients transplanted, 10 patients had disseminated infection, including 4 male and 6 female patients with median age of 36.5 (range 19-59) years. 6/10 received an allograft from an unrelated donor. Median post-transplant time to detection of viraemia was 67days (range 20-1140days). Median peak viral load was 3133 copies/ml (352-11,000,000) in survivors received cidofovir alone, one cidofovir then brincidofovir and two brincidofovir alone. 8/10 p and 1,580,000 copies/ml (41,999-3,000.000) in those who died. Five patientsatients had a decrease in viral load following antivirals and/or reduction in immunosuppression including all on brincidofovir. Three died on treatment. CONCLUSIONS Disseminated adenovirus infection is uncommon in adult transplant patients and uncertainties remain surrounding effective treatment. In our cohort, brincidofovir has shown promise in treatment of adenoviral infection. However, randomized controlled studies are required to confirm this impression.
Collapse
Affiliation(s)
| | | | - Dianne Irish
- Department of Virology, Royal Free Hospital London, UK
| | - Paul D Griffiths
- Department of Virology, Royal Free Hospital London, UK; Institute of Immunity and Transplantation, Royal Free Campus, University College London, UK
| | | | - David M Lowe
- Institute of Immunity and Transplantation, Royal Free Campus, University College London, UK; Department of Immunology, Royal Free Hospital London, UK.
| |
Collapse
|
27
|
Veer M, Abdulmassih R, Como J, Min Z, Bhanot N. Adenoviral nephritis in a renal transplant recipient: Case report and literature review. Transpl Infect Dis 2017; 19. [PMID: 28467620 DOI: 10.1111/tid.12716] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/06/2017] [Accepted: 02/06/2017] [Indexed: 11/27/2022]
Abstract
Adenovirus (AdV) infections in transplant recipients may cause invasive disease. We present a case of granulomatous interstitial nephritis secondary to AdV infection in a renal transplant recipient that was initially interpreted as acute graft rejection on histopathology. Specific testing based on clinical suspicion, however, aided in making an accurate diagnosis. We present a retrospective review of all cases of AdV infection in renal transplant recipients to date, and analyze outcomes based on different treatment modalities for this disease.
Collapse
Affiliation(s)
- Manik Veer
- Department of Internal Medicine, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Rasha Abdulmassih
- Division of Infectious Disease, Allegheny General Hospital, Pittsburgh, PA, USA
| | - James Como
- Division of Infectious Disease, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Zaw Min
- Division of Infectious Disease, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Nitin Bhanot
- Division of Infectious Disease, Allegheny General Hospital, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Anti-adenoviral Artificial MicroRNAs Expressed from AAV9 Vectors Inhibit Human Adenovirus Infection in Immunosuppressed Syrian Hamsters. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:300-316. [PMID: 28918031 PMCID: PMC5537171 DOI: 10.1016/j.omtn.2017.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 12/27/2022]
Abstract
Infections of immunocompromised patients with human adenoviruses (hAd) can develop into life-threatening conditions, whereas drugs with anti-adenoviral efficiency are not clinically approved and have limited efficacy. Small double-stranded RNAs that induce RNAi represent a new class of promising anti-adenoviral therapeutics. However, as yet, their efficiency to treat hAd5 infections has only been investigated in vitro. In this study, we analyzed artificial microRNAs (amiRs) delivered by self-complementary adeno-associated virus (scAAV) vectors for treatment of hAd5 infections in immunosuppressed Syrian hamsters. In vitro evaluation of amiRs targeting the E1A, pTP, IVa2, and hexon genes of hAd5 revealed that two scAAV vectors containing three copies of amiR-pTP and three copies of amiR-E1A, or six copies of amiR-pTP, efficiently inhibited hAd5 replication and improved the viability of hAd5-infected cells. Prophylactic application of amiR-pTP/amiR-E1A- and amiR-pTP-expressing scAAV9 vectors, respectively, to immunosuppressed Syrian hamsters resulted in the reduction of hAd5 levels in the liver of up to two orders of magnitude and in reduction of liver damage. Concomitant application of the vectors also resulted in a decrease of hepatic hAd5 infection. No side effects were observed. These data demonstrate anti-adenoviral RNAi as a promising new approach to combat hAd5 infection.
Collapse
|
29
|
Rzeczycki P, Yoon GS, Keswani RK, Sud S, Stringer KA, Rosania GR. Detecting ordered small molecule drug aggregates in live macrophages: a multi-parameter microscope image data acquisition and analysis strategy. BIOMEDICAL OPTICS EXPRESS 2017; 8:860-872. [PMID: 28270989 PMCID: PMC5330574 DOI: 10.1364/boe.8.000860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/10/2017] [Indexed: 05/03/2023]
Abstract
Following prolonged administration, certain orally bioavailable but poorly soluble small molecule drugs are prone to precipitate out and form crystal-like drug inclusions (CLDIs) within the cells of living organisms. In this research, we present a quantitative multi-parameter imaging platform for measuring the fluorescence and polarization diattenuation signals of cells harboring intracellular CLDIs. To validate the imaging system, the FDA-approved drug clofazimine (CFZ) was used as a model compound. Our results demonstrated that a quantitative multi-parameter microscopy image analysis platform can be used to study drug sequestering macrophages, and to detect the formation of ordered molecular aggregates formed by poorly soluble small molecule drugs in animals.
Collapse
Affiliation(s)
- Phillip Rzeczycki
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, 428 Church Street, Ann Arbor, MI 48109, USA
| | - Gi Sang Yoon
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, 428 Church Street, Ann Arbor, MI 48109, USA
| | - Rahul K. Keswani
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, 428 Church Street, Ann Arbor, MI 48109, USA
| | - Sudha Sud
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, 428 Church Street, Ann Arbor, MI 48109, USA
| | - Kathleen A. Stringer
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, 428 Church Street, Ann Arbor, MI 48109, USA
| | - Gus R. Rosania
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, 428 Church Street, Ann Arbor, MI 48109, USA
| |
Collapse
|
30
|
Brincidofovir for Asymptomatic Adenovirus Viremia in Pediatric and Adult Allogeneic Hematopoietic Cell Transplant Recipients: A Randomized Placebo-Controlled Phase II Trial. Biol Blood Marrow Transplant 2017; 23:512-521. [PMID: 28063938 DOI: 10.1016/j.bbmt.2016.12.621] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 07/07/2016] [Indexed: 11/24/2022]
Abstract
Adenovirus infection in immunocompromised patients contributes to significant morbidity and mortality, especially after allogeneic hematopoietic cell transplantation (HCT). Brincidofovir (BCV, CMX001) is an orally bioavailable lipid conjugate of cidofovir that has in vitro activity against adenoviruses and other double-stranded DNA viruses. This randomized placebo-controlled phase II trial evaluated pre-emptive treatment with BCV for the prevention of adenovirus disease in pediatric and adult allogeneic HCT recipients with asymptomatic adenovirus viremia. Allogeneic HCT recipients with adenovirus viremia were randomized 1:1:1 to receive oral BCV 100 mg (2 mg/kg if <50 kg) twice weekly (BIW), BCV 200 mg (4 mg/kg if <50 kg) once weekly (QW), or placebo for 6 to 12 weeks, followed by 4 weeks of post-treatment follow-up. For randomization, subjects were stratified by screening absolute lymphocyte count (<300 cells/mm3 versus ≥300 cells/mm3). Assignment to BCV or placebo was double blinded; dose frequency was unblinded. The primary endpoint was the proportion of subjects experiencing treatment failure, defined as either progression to probable or definitive adenovirus disease or confirmed increasing adenovirus viremia (≥1 log10 copies/mL) during randomized therapy. Between June 2011 and December 2012, 48 subjects were randomized to the BCV BIW (n = 14), BCV QW (n = 16), or placebo (n = 18) groups. The proportion of subjects with treatment failure in the BCV BIW group was 21% (odds ratio, .53; 95% confidence interval [CI], .11 to 2.71; P = .45), 38% (odds ratio, 1.23; 95% CI, .30 to 5.05, P = .779) in the BCV QW group, and 33% in the placebo group. All-cause mortality was lower in the BCV BIW (14%) and BCV QW groups (31%) relative to the placebo group (39%), but these differences were not statistically significant. After 1 week of therapy, 8 of 12 subjects (67%) randomized to BCV BIW had undetectable adenovirus viremia (<100 copies/mL), compared with 4 of 14 subjects (29%) randomized to BCV QW and 5 of 15 subjects (33%) randomized to placebo. In a post hoc analysis of subjects with viremia ≥1000 copies/mL at baseline, 6 of 7 BCV BIW subjects (86%) achieved undetectable viremia compared with 2 of 8 placebo subjects (25%; P = .04). Early treatment discontinuation because of adverse events was more common in subjects treated with BCV than with placebo. Diarrhea was the most common event in all groups (57% BCV BIW, 38% BCV QW, 28% placebo), but it led to treatment discontinuation in only 1 subject receiving BCV QW. Events diagnosed as acute graft-versus-host disease, primarily of the gastrointestinal tract, were more frequent in the BCV BIW group (50%) than in the BCV QW (25%) and placebo (17%) groups. There was no evidence of myelotoxicity or nephrotoxicity in BCV-treated subjects. The results of this trial confirm the antiviral activity of BCV against adenoviruses. Further investigation is ongoing to define the optimal treatment strategy for HCT recipients with serious adenovirus infection and disease.
Collapse
|
31
|
Abad CL, Razonable RR. Treatment of alpha and beta herpesvirus infections in solid organ transplant recipients. Expert Rev Anti Infect Ther 2016; 15:93-110. [PMID: 27911112 DOI: 10.1080/14787210.2017.1266253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Human herpesviruses frequently cause infections in solid organ transplant (SOT) recipients. Areas covered: We provide an overview of the clinical impact of alpha and beta herpesviruses and highlight the mechanisms of action, pharmacokinetics, clinical indications, and adverse effects of antiviral drugs for the management of herpes simplex virus, varicella zoster virus and cytomegalovirus. We comprehensively evaluated key clinical trials that led to drug approval, and served as the foundation for management guidelines. We further provide an update on investigational antiviral agents for alpha and beta herpesvirus infections after SOT. Expert commentary: The therapeutic armamentarium for herpes infections is limited by the emergence of drug resistance. There have been major efforts for discovery of new drugs against these viruses, but the results of early-phase clinical trials have been less than encouraging. We believe, however, that more antiviral drug options are needed given the adverse side effects associated with current antiviral agents, and the emergence of drug-resistant virus populations in SOT recipients. Likewise, optimized use and strategies are needed for existing and novel antiviral drugs against alpha and beta-herpesviruses in SOT recipients.
Collapse
Affiliation(s)
- C L Abad
- a Division of Infectious Diseases, Department of Medicine , Mayo Clinic , Rochester , MN , USA.,b Department of Medicine, Section of Infectious Diseases , University of the Philippines - Philippine General Hospital , Manila , Philippines
| | - R R Razonable
- a Division of Infectious Diseases, Department of Medicine , Mayo Clinic , Rochester , MN , USA.,c The William J. Von Liebig Center for Transplantation and Clinical Regeneration , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
32
|
Thornton PJ, Kadri H, Miccoli A, Mehellou Y. Nucleoside Phosphate and Phosphonate Prodrug Clinical Candidates. J Med Chem 2016; 59:10400-10410. [DOI: 10.1021/acs.jmedchem.6b00523] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Peter J. Thornton
- School
of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
- School
of Chemistry, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Hachemi Kadri
- School
of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Ageo Miccoli
- School
of Chemistry, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Youcef Mehellou
- School
of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
- School
of Chemistry, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
33
|
Taskar P, Tatke A, Majumdar S. Advances in the use of prodrugs for drug delivery to the eye. Expert Opin Drug Deliv 2016; 14:49-63. [PMID: 27441817 DOI: 10.1080/17425247.2016.1208649] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Ocular drug delivery is presented with many challenges, taking into account the distinctive structure of the eye. The prodrug approach has been, and is being, employed to overcome such barriers for some drug molecules, utilizing a chemical modification approach rather than a formulation-based approach. A prodrug strategy involves modification of the active moiety into various derivatives in a fashion that imparts some advantage, such as membrane permeability, site specificity, transporter targeting and improved aqueous solubility, over the parent compound. Areas covered: The following review is a comprehensive summary of various novel methodologies and strategies reported over the past few years in the area of ocular drug delivery. Some of the strategies discussed involve polymer and lipid conjugation with the drug moiety to impart hydrophilicity or lipophilicity, or to target nutrient transporters by conjugation with transporter-specific moieties and retrometabolic drug design. Expert opinion: The application of prodrug strategies provides an option for enhancing drug penetration into the ocular tissues, and overall ocular bioavailability, with minimum disruption of the ocular diffusion barriers. Although success of the prodrug strategy is contingent on various factors, such as the chemical structure of the parent molecule, aqueous solubility and solution stability, capacity of targeted transporters and bioreversion characteristics, this approach has been successfully utilized, commercially and therapeutically, in several cases.
Collapse
Affiliation(s)
- Pranjal Taskar
- a Department of Pharmaceutics and Drug Delivery , University of Mississippi , University , MS , USA.,b Research Institute of Pharmaceutical Sciences , University of Mississippi , University , MS , USA
| | - Akshaya Tatke
- a Department of Pharmaceutics and Drug Delivery , University of Mississippi , University , MS , USA.,b Research Institute of Pharmaceutical Sciences , University of Mississippi , University , MS , USA
| | - Soumyajit Majumdar
- a Department of Pharmaceutics and Drug Delivery , University of Mississippi , University , MS , USA.,b Research Institute of Pharmaceutical Sciences , University of Mississippi , University , MS , USA
| |
Collapse
|
34
|
Ruiz JC, Aldern KA, Beadle JR, Hartline CB, Kern ER, Hostetler KY. Synthesis and Antiviral Evaluation of Alkoxyalkyl Esters of Phosphonopropoxymethyl-Guanine and Phosphonopropoxymethyl-Diaminopurine. ACTA ACUST UNITED AC 2016; 17:89-95. [PMID: 17042330 DOI: 10.1177/095632020601700204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphonopropoxymethyl-guanine is the methylene phosphonate analogue of acyclovir. Although not highly active against HSV, 4–38 µM of phosphonopropoxymethyl-guanine has been reported to be active against human and murine cytomegalovirus. Recently we found that cido-fovir, when esterified with alkoxyalkyl moieties, showed greatly increased antiviral activity against cytomegalovirus, herpes simplex virus and orthopoxviruses, in vitro. The alkoxyalkyl esters of cidofovir are orally active in murine models of human and murine cytomegalovirus and orthopoxviruses in vivo. To see if the antiviral activity of phosphonopropoxymethyl-guanine, phosphonopropoxymethyl-diaminopurine and phosphonopropoxymethyl-N6-cyclopropyl-diaminopurine could be increased by this approach, we synthesized their hexadecyloxypropyl-and octadecyloxyethyl- esters and evaluated antiviral activity and cytotoxicity in cells infected with HSV-1 and HCMV, in vitro. Marked increases in antiviral activity were noted in the alkoxyalkyl esters of phosphonopropoxymethyl-guanine. Alkoxyalkyl esters of diaminop-urine and N6-cyclopropyl-diaminopurine showed slight increases in activity against HSV-1 and marked increases in activity against HCMV. The results suggest that esterification with alkoxyalkyl moieties may be a generally useful way to increase antiviral activity of nucleoside phosphonates.
Collapse
Affiliation(s)
- Jacqueline C Ruiz
- Department of Medicine, Division of Infectious Disease, University of California, San Diego, CA, USA
| | | | | | | | | | | |
Collapse
|
35
|
Papanicolaou GA, Lee YJ, Young JW, Seshan SV, Boruchov AM, Chittick G, Momméja-Marin H, Glezerman IG. Brincidofovir for polyomavirus-associated nephropathy after allogeneic hematopoietic stem cell transplantation. Am J Kidney Dis 2015; 65:780-4. [PMID: 25600489 DOI: 10.1053/j.ajkd.2014.11.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 11/03/2014] [Indexed: 12/16/2022]
Abstract
Polyomavirus-associated nephropathy (PVAN) is common in patients who have undergone kidney transplantation and has been reported in hematopoietic stem cell (HSC) transplant recipients. Aside from reduction of immunosuppression, few therapeutic options exist for treatment of PVAN. We report a case of PVAN in a severely immunocompromised allogeneic HSC transplant recipient that was treated with brincidofovir without reduction of immunosuppression. We review our institutional experience of PVAN in HSC transplantation and discuss the potential use of brincidofovir for treatment.
Collapse
Affiliation(s)
- Genovefa A Papanicolaou
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Yeon Joo Lee
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - James W Young
- Department of Medicine, Weill Cornell Medical College, New York, NY; Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Surya V Seshan
- Department of Pathology, Weill Cornell Medical College, New York, NY
| | - Adam M Boruchov
- Saint Francis Hospital and Medical Center and University of Connecticut School of Medicine, Hartford, CT
| | | | | | - Ilya G Glezerman
- Department of Medicine, Weill Cornell Medical College, New York, NY; Renal Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
36
|
Postchallenge administration of brincidofovir protects healthy and immune-deficient mice reconstituted with limited numbers of T cells from lethal challenge with IHD-J-Luc vaccinia virus. J Virol 2015; 89:3295-307. [PMID: 25589648 DOI: 10.1128/jvi.03340-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Protection from lethality by postchallenge administration of brincidofovir (BCV, CMX001) was studied in normal and immune-deficient (nude, nu/nu) BALB/c mice infected with vaccinia virus (VACV). Whole-body bioluminescence imaging was used to record total fluxes in the nasal cavity, lungs, spleen, and liver and to enumerate pox lesions on tails of mice infected via the intranasal route with 10(5) PFU of recombinant IHD-J-Luc VACV expressing luciferase. Areas under the flux curve (AUCs) were calculated for individual mice to assess viral loads. A three-dose regimen of 20 mg/kg BCV administered every 48 h starting either on day 1 or day 2 postchallenge protected 100% of mice. Initiating BCV treatment earlier was more efficient in reducing viral loads and in providing protection from pox lesion development. All BCV-treated mice that survived challenge were also protected from rechallenge with IHD-J-Luc or WRvFire VACV without additional treatment. In immune-deficient mice, BCV protected animals from lethality and reduced viral loads while animals were on the drug. Viral recrudescence occurred within 4 to 9 days, and mice succumbed ∼10 to 20 days after treatment termination. Nude mice reconstituted with 10(5) T cells prior to challenge with 10(4) PFU of IHD-J-Luc and treated with BCV postchallenge survived the infection, cleared the virus from all organs, and survived rechallenge with 10(5) PFU of IHD-J-Luc VACV without additional BCV treatment. Together, these data suggest that BCV protects immunocompetent and partially T cell-reconstituted immune-deficient mice from lethality, reduces viral dissemination in organs, prevents pox lesion development, and permits generation of VACV-specific memory. IMPORTANCE Mass vaccination is the primary element of the public health response to a smallpox outbreak. In addition to vaccination, however, antiviral drugs are required for individuals with uncertain exposure status to smallpox or for whom vaccination is contraindicated. Whole-body bioluminescence imaging was used to study the effect of brincidofovir (BCV) in normal and immune-deficient (nu/nu) mice infected with vaccinia virus, a model of smallpox. Postchallenge administration of 20 mg/kg BCV rescued normal and immune-deficient mice partially reconstituted with T cells from lethality and significantly reduced viral loads in organs. All BCV-treated mice that survived infection were protected from rechallenge without additional treatment. In immune-deficient mice, BCV extended survival. The data show that BCV controls viral replication at the site of challenge and reduces viral dissemination to internal organs, thus providing a shield for the developing adaptive immunity that clears the host of virus and builds virus-specific immunological memory.
Collapse
|
37
|
Abstract
A substantial portion of metabolism involves transformation of phosphate esters, including pathways leading to nucleotides and oligonucleotides, carbohydrates, isoprenoids and steroids, and phosphorylated proteins. Because the natural substrates bear one or more negative charges, drugs that target these enzymes generally must be charged as well, but small charged molecules can have difficulty traversing the cell membrane by means other than endocytosis. The resulting dichotomy has stimulated a great deal of effort to develop effective prodrugs, compounds that carry little or no charge to enable them to transit biological membranes, but able to release the parent drug once inside the target cell. This chapter presents recent studies on advances in prodrug forms, along with representative examples of their application to marketed and developmental drugs.
Collapse
Affiliation(s)
- Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | | |
Collapse
|
38
|
Pradere U, Garnier-Amblard E, Coats SJ, Amblard F, Schinazi RF. Synthesis of nucleoside phosphate and phosphonate prodrugs. Chem Rev 2014; 114:9154-218. [PMID: 25144792 PMCID: PMC4173794 DOI: 10.1021/cr5002035] [Citation(s) in RCA: 391] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Ugo Pradere
- Center
for AIDS Research, Laboratory of Biochemical Pharmacology, Department
of Pediatrics, Emory University School of
Medicine, and Veterans Affairs Medical Center, Atlanta, Georgia 30322, United States
| | | | | | - Franck Amblard
- Center
for AIDS Research, Laboratory of Biochemical Pharmacology, Department
of Pediatrics, Emory University School of
Medicine, and Veterans Affairs Medical Center, Atlanta, Georgia 30322, United States
| | - Raymond F. Schinazi
- Center
for AIDS Research, Laboratory of Biochemical Pharmacology, Department
of Pediatrics, Emory University School of
Medicine, and Veterans Affairs Medical Center, Atlanta, Georgia 30322, United States
| |
Collapse
|
39
|
Doak B, Over B, Giordanetto F, Kihlberg J. Oral Druggable Space beyond the Rule of 5: Insights from Drugs and Clinical Candidates. ACTA ACUST UNITED AC 2014; 21:1115-42. [DOI: 10.1016/j.chembiol.2014.08.013] [Citation(s) in RCA: 282] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Florescu DF, Keck MA. Development of CMX001 (Brincidofovir) for the treatment of serious diseases or conditions caused by dsDNA viruses. Expert Rev Anti Infect Ther 2014; 12:1171-8. [DOI: 10.1586/14787210.2014.948847] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Parker S, Crump R, Foster S, Hartzler H, Hembrador E, Lanier ER, Painter G, Schriewer J, Trost LC, Buller RM. Co-administration of the broad-spectrum antiviral, brincidofovir (CMX001), with smallpox vaccine does not compromise vaccine protection in mice challenged with ectromelia virus. Antiviral Res 2014; 111:42-52. [PMID: 25128688 PMCID: PMC9533899 DOI: 10.1016/j.antiviral.2014.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 12/02/2022]
Abstract
Natural orthopoxvirus outbreaks such as vaccinia, cowpox, cattlepox and buffalopox continue to cause morbidity in the human population. Monkeypox virus remains a significant agent of morbidity and mortality in Africa. Furthermore, monkeypox virus’s broad host-range and expanding environs make it of particular concern as an emerging human pathogen. Monkeypox virus and variola virus (the etiological agent of smallpox) are both potential agents of bioterrorism. The first line response to orthopoxvirus disease is through vaccination with first-generation and second-generation vaccines, such as Dryvax and ACAM2000. Although these vaccines provide excellent protection, their widespread use is impeded by the high level of adverse events associated with vaccination using live, attenuated virus. It is possible that vaccines could be used in combination with antiviral drugs to reduce the incidence and severity of vaccine-associated adverse events, or as a preventive in individuals with uncertain exposure status or contraindication to vaccination. We have used the intranasal mousepox (ectromelia) model to evaluate the efficacy of vaccination with Dryvax or ACAM2000 in conjunction with treatment using the broad spectrum antiviral, brincidofovir (BCV, CMX001). We found that co-treatment with BCV reduced the severity of vaccination-associated lesion development. Although the immune response to vaccination was quantifiably attenuated, vaccination combined with BCV treatment did not alter the development of full protective immunity, even when administered two days following ectromelia challenge. Studies with a non-replicating vaccine, ACAM3000 (MVA), confirmed that BCV’s mechanism of attenuating the immune response following vaccination with live virus was, as expected, by limiting viral replication and not through inhibition of the immune system. These studies suggest that, in the setting of post-exposure prophylaxis, co-administration of BCV with vaccination should be considered a first response to a smallpox emergency in subjects of uncertain exposure status or as a means of reduction of the incidence and severity of vaccine-associated adverse events.
Collapse
Affiliation(s)
- Scott Parker
- Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, United States
| | - Ryan Crump
- Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, United States
| | - Scott Foster
- Chimerix Inc., 2505 Meridian Parkway, Suite 340, Durham, NC 27713, United States
| | - Hollyce Hartzler
- Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, United States
| | - Ed Hembrador
- Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, United States
| | - E Randall Lanier
- Chimerix Inc., 2505 Meridian Parkway, Suite 340, Durham, NC 27713, United States
| | - George Painter
- Chimerix Inc., 2505 Meridian Parkway, Suite 340, Durham, NC 27713, United States
| | - Jill Schriewer
- Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, United States
| | - Lawrence C Trost
- Chimerix Inc., 2505 Meridian Parkway, Suite 340, Durham, NC 27713, United States
| | - R Mark Buller
- Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, United States.
| |
Collapse
|
42
|
James SH, Prichard MN. Current and future therapies for herpes simplex virus infections: mechanism of action and drug resistance. Curr Opin Virol 2014; 8:54-61. [PMID: 25036916 DOI: 10.1016/j.coviro.2014.06.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 01/09/2023]
Abstract
Forty years after the discovery of acyclovir (ACV), it remains the mainstay of therapy for herpes simplex virus (HSV) infections. Since then, other antiviral agents have also been added to the armamentarium for these infections but ACV remains the therapy of choice. As the efficacy of ACV is reassessed, however, it is apparent that a therapy with increased efficacy, reduced potential for resistance, and improved pharmacokinetics would improve clinical outcome, particularly in high risk patients. Inhibitors of viral targets other than the DNA polymerase, such as the helicase primase complex, are of particular interest and will be valuable as new therapeutic approaches are conceived. This review focuses on currently approved HSV therapies as well as new systemic therapies in development.
Collapse
Affiliation(s)
- Scott H James
- Division of Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mark N Prichard
- Division of Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
43
|
|
44
|
|
45
|
De Clercq E. Dancing with chemical formulae of antivirals: A panoramic view (Part 2). Biochem Pharmacol 2013; 86:1397-410. [DOI: 10.1016/j.bcp.2013.09.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/12/2013] [Accepted: 09/12/2013] [Indexed: 12/11/2022]
|
46
|
Marty FM, Winston DJ, Rowley SD, Vance E, Papanicolaou GA, Mullane KM, Brundage TM, Robertson AT, Godkin S, Momméja-Marin H, Boeckh M. CMX001 to prevent cytomegalovirus disease in hematopoietic-cell transplantation. N Engl J Med 2013; 369:1227-36. [PMID: 24066743 DOI: 10.1056/nejmoa1303688] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The use of available antiviral agents for the prevention of cytomegalovirus (CMV) disease is limited by frequent toxic effects and the emergence of resistance. CMX001 has potent in vitro activity against CMV and other double-stranded DNA viruses. We evaluated the safety and anti-CMV activity of CMX001 in patients who had undergone allogeneic hematopoietic-cell transplantation. METHODS From December 2009 through June 2011, a total of 230 patients with data that could be evaluated were enrolled in the study. We randomly assigned these adult CMV-seropositive transplant recipients from 27 centers to oral administration of CMX001 or placebo. Patients were assigned in a 3:1 ratio to five sequential study cohorts according to a dose-escalating, double-blind design. Randomization was stratified according to the presence or absence of acute graft-versus-host disease and CMV DNA in plasma. Patients received the study drug after engraftment for 9 to 11 weeks, until week 13 after transplantation. Polymerase-chain-reaction analysis of CMV DNA in plasma was performed weekly. Patients in whom CMV DNA was detected at a level that required treatment discontinued the study drug and received preemptive treatment against CMV infection. The primary end point was a CMV event, defined as CMV disease or a plasma CMV DNA level greater than 200 copies per milliliter when the study drug was discontinued. The analysis was conducted in the intention-to-treat population. RESULTS The incidence of CMV events was significantly lower among patients who received CMX001 at a dose of 100 mg twice weekly than among patients who received placebo (10% vs. 37%; risk difference, -27 percentage points; 95% confidence interval, -42 to -12; P=0.002). Diarrhea was the most common adverse event in patients receiving CMX001 at doses of 200 mg weekly or higher and was dose-limiting at 200 mg twice weekly. Myelosuppression and nephrotoxicity were not observed. CONCLUSIONS Treatment with oral CMX001 at a dose of 100 mg twice weekly significantly reduced the incidence of CMV events in recipients of hematopoietic-cell transplants. Diarrhea was dose-limiting in this population at a dose of 200 mg twice weekly. (Funded by Chimerix; CMX001-201 ClinicalTrials.gov number, NCT00942305.).
Collapse
Affiliation(s)
- Francisco M Marty
- Division of Infectious Diseases, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Smee DF. Orthopoxvirus inhibitors that are active in animal models: an update from 2008 to 2012. Future Virol 2013; 8:891-901. [PMID: 24563659 PMCID: PMC3929309 DOI: 10.2217/fvl.13.76] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antiviral agents are being sought as countermeasures for the potential deliberate release of smallpox (variola) and monkeypox viruses, for the treatment of naturally acquired monkeypox virus infections, and as therapy for complications due to smallpox (live-attenuated vaccinia virus) vaccination or accidental infection after exposure to vaccinated persons. Reviews of the scientific literature spanning 1950-2008 have documented the progress made in developing small-animal models of poxvirus infection and identifying novel antiviral agents. Compounds of considerable interest include cidofovir, CMX001 and ST-246® (tecovirimat; SIGA Technologies, NY, USA). New inhibitors have been identified since 2008, most of which do not exhibit the kind of potency and selectivity required for drug development. Two promising agents include 4'-thioidoxuridine (a nucleoside analog) and mDEF201 (an adenovirus-vectored interferon). Compounds that have been effectively used in combination studies include vaccinia immune globulin, cidofovir, ST-246 and CMX001. In the future there may be an increase in experimental work using active compounds in combination.
Collapse
Affiliation(s)
- Donald F Smee
- Institute for Antiviral Research, Department of Animal, Dairy & Veterinary Sciences, Utah State University, Logan, UT, 84322-5600, USA, Tel.: +1 435 797 2897, ,
| |
Collapse
|
48
|
James SH, Price NB, Hartline CB, Lanier ER, Prichard MN. Selection and recombinant phenotyping of a novel CMX001 and cidofovir resistance mutation in human cytomegalovirus. Antimicrob Agents Chemother 2013; 57:3321-5. [PMID: 23650158 PMCID: PMC3697342 DOI: 10.1128/aac.00062-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/26/2013] [Indexed: 02/07/2023] Open
Abstract
CMX001 is an orally available lipid acyclic nucleotide phosphonate that delivers high intracellular levels of cidofovir (CDV)-diphosphate and exhibits enhanced in vitro antiviral activity against a wide range of double-stranded DNA viruses, including cytomegalovirus (CMV). Mutations in the DNA polymerase of CMV that impart resistance to CDV also render the virus resistant to CMX001. Here, we report a novel resistance mutation that arose under the selective pressure of CMX001. The wild-type CMV strain AD169 was propagated in human foreskin fibroblasts under increasing concentrations of CMX001 over 10 months, and the resulting strain (named CMX001(R)) was less susceptible to CDV and CMX001 in a plaque reduction assay. Genotypic analysis of virus strain CMX001(R) via conventional sequencing of the genes encoding the CMV DNA polymerase (UL54) and UL97 kinase (UL97) demonstrated one mutation that changed the wild-type aspartate to glutamate at position 542 in UL54. A recombinant virus with this novel D542E mutation was generated via bacterial artificial chromosome-mediated marker transfer experiments. Subsequent phenotypic resistance analysis of the D542E mutant demonstrated reductions in susceptibility of greater than 10-fold to CMX001 and CDV, but no resistance to foscarnet (FOS) or ganciclovir (GCV). Analysis of replicative fitness showed that both strain CMX001(R) and the D542E mutant viruses demonstrated a smaller plaque phenotype and slower replication kinetics than their respective parent viruses. These data describe the first resistance mutation generated under the selective pressure of CMX001 and suggest that CMX001 may have a unique resistance profile associated with reduced viral replication and maintenance of sensitivity to FOS and GCV.
Collapse
Affiliation(s)
- Scott H. James
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nathan B. Price
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | |
Collapse
|
49
|
Vadlapudi AD, Vadlapatla RK, Mitra AK. Current and emerging antivirals for the treatment of cytomegalovirus (CMV) retinitis: an update on recent patents. ACTA ACUST UNITED AC 2013; 7:8-18. [PMID: 22044356 DOI: 10.2174/157489112799829765] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 09/30/2011] [Accepted: 10/04/2011] [Indexed: 12/17/2022]
Abstract
Cytomegalovirus (CMV) retinitis is the most common ocular opportunistic complication and a serious cause of vision loss in immunocompromised patients. Even though, a rise in human immunodeficiency virus (HIV) infected individuals seems to be a major factor responsible for the prevalence of CMV retinitis, the introduction of highly active antiretroviral therapy (HAART) significantly reduced the incidence and severity of CMV retinitis. Thorough evaluation of the patient's immune status and an exact classification of the retinal lesions may provide better understanding of the disease etiology, which would be necessary for optimizing the treatment conditions. Current drugs such as ganciclovir, valganciclovir, cidofovir and foscarnet have been highly active against CMV, but prolonged therapy with these approved drugs is associated with dose-limiting toxicities thus limiting their utility. Moreover development of drug-resistant mutants has been observed particularly in patients with acquired immunodeficiency syndrome (AIDS). Continuous efforts by researchers in the industry and academia have led to the development of newer candidates with enhanced antiviral efficacy and apparently minimal side effects. These novel compounds can suppress viral replication and prevent reactivation in the target population. Though some of the novel therapeutics possess potent viral inhibitory activity, these compounds are still in stages of clinical development and yet to be approved. This review provides an overview of disease etiology, existing anti-CMV drugs, advances in emerging therapeutics in clinical development and related recent patents for the treatment of CMV retinitis.
Collapse
Affiliation(s)
- Aswani D Vadlapudi
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108-2718, USA
| | | | | |
Collapse
|
50
|
Andrei G, Snoeck R. Advances in the treatment of varicella-zoster virus infections. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 67:107-68. [PMID: 23886000 DOI: 10.1016/b978-0-12-405880-4.00004-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Varicella-zoster virus (VZV) causes two distinct diseases, varicella (chickenpox) and shingles (herpes zoster). Chickenpox occurs subsequent to primary infection, while herpes zoster (usually associated with aging and immunosuppression) appears as a consequence of reactivation of latent virus. The major complication of shingles is postherpetic neuralgia. Vaccination strategies to prevent varicella or shingles and the current status of antivirals against VZV will be discussed in this chapter. Varivax®, a live-attenuated vaccine, is available for pediatric varicella. Zostavax® is used to boost VZV-specific cell-mediated immunity in adults older than 50 years, which results in a decrease in the burden of herpes zoster and pain related to postherpetic neuralgia. Regardless of the availability of a vaccine, new antiviral agents are necessary for treatment of VZV infections. Current drugs approved for therapy of VZV infections include nucleoside analogues that target the viral DNA polymerase and depend on the viral thymidine kinase for their activation. Novel anti-VZV drugs have recently been evaluated in clinical trials, including the bicyclic nucleoside analogue FV-100, the helicase-primase inhibitor ASP2151, and valomaciclovir (prodrug of the acyclic guanosine derivative H2G). Different candidate VZV drugs have been described in recent years. New anti-VZV drugs should be as safe as and more effective than current gold standards for the treatment of VZV, that is, acyclovir and its prodrug valacyclovir.
Collapse
Affiliation(s)
- G Andrei
- Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | |
Collapse
|