1
|
Pratelli M, Hakimi AM, Thaker A, Jang H, Li HQ, Godavarthi SK, Lim BK, Spitzer NC. Drug-induced change in transmitter identity is a shared mechanism generating cognitive deficits. Nat Commun 2024; 15:8260. [PMID: 39327428 PMCID: PMC11427679 DOI: 10.1038/s41467-024-52451-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Cognitive deficits are long-lasting consequences of drug use, yet the convergent mechanism by which classes of drugs with different pharmacological properties cause similar deficits is unclear. We find that both phencyclidine and methamphetamine, despite differing in their targets in the brain, cause the same glutamatergic neurons in the medial prefrontal cortex of male mice to gain a GABAergic phenotype and decrease expression of their glutamatergic phenotype. Suppressing drug-induced gain of GABA with RNA-interference prevents appearance of memory deficits. Stimulation of dopaminergic neurons in the ventral tegmental area is necessary and sufficient to produce this gain of GABA. Drug-induced prefrontal hyperactivity drives this change in transmitter identity. Returning prefrontal activity to baseline, chemogenetically or with clozapine, reverses the change in transmitter phenotype and rescues the associated memory deficits. This work reveals a shared and reversible mechanism that regulates the appearance of cognitive deficits upon exposure to different drugs.
Collapse
Affiliation(s)
- Marta Pratelli
- Neurobiology Department, School of Biological Sciences and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA, 92093-0955, USA.
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, 92093-0955, USA.
| | - Anna M Hakimi
- Neurobiology Department, School of Biological Sciences and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA, 92093-0955, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, 92093-0955, USA
| | - Arth Thaker
- Neurobiology Department, School of Biological Sciences and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA, 92093-0955, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, 92093-0955, USA
| | - Hyeonseok Jang
- Neurobiology Department, School of Biological Sciences and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA, 92093-0955, USA
| | - Hui-Quan Li
- Neurobiology Department, School of Biological Sciences and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA, 92093-0955, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, 92093-0955, USA
| | - Swetha K Godavarthi
- Neurobiology Department, School of Biological Sciences and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA, 92093-0955, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, 92093-0955, USA
| | - Byung Kook Lim
- Neurobiology Department, School of Biological Sciences and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA, 92093-0955, USA
| | - Nicholas C Spitzer
- Neurobiology Department, School of Biological Sciences and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA, 92093-0955, USA.
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, 92093-0955, USA.
| |
Collapse
|
2
|
Lin X, Chen C, Chen J, Zhu C, Zhang J, Su R, Chen S, Weng S, Chang X, Lin S, Chen Y, Li J, Lin L, Zhou J, Guo Z, Yu G, Shao W, Hu H, Wu S, Zhang Q, Li H, Zheng F. Long Noncoding RNA NR_030777 Alleviates Cobalt Nanoparticles-Induced Neurodegenerative Damage by Promoting Autophagosome-Lysosome Fusion. ACS NANO 2024; 18:24872-24897. [PMID: 39197041 PMCID: PMC11394346 DOI: 10.1021/acsnano.4c05249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Potential exposure to cobalt nanoparticles (CoNPs) occurs in various fields, including hard alloy industrial production, the increasing use of new energy lithium-ion batteries, and millions of patients with metal-on-metal joint prostheses. Evidence from human, animal, and in vitro experiments suggests a close relationship between CoNPs and neurotoxicity. However, a systematic assessment of central nervous system (CNS) impairment due to CoNPs exposure and the underlying molecular mechanisms is lacking. In this study, we found that CoNPs induced neurodegenerative damage both in vivo and in vitro, including cognitive impairment, β-amyloid deposition and Tau hyperphosphorylation. CoNPs promoted the formation of autophagosomes and impeding autophagosomal-lysosomal fusion in vivo and in vitro, leading to toxic protein accumulation. Moreover, CoNPs exposure reduced the level of transcription factor EB (TFEB) and the abundance of lysosome, causing a blockage in autophagosomal-lysosomal fusion. Interestingly, overexpression of long noncoding RNA NR_030777 mitigated CoNPs-induced neurodegenerative damage in both in vivo and in vitro models. Fluorescence in situ hybridization assay revealed that NR_030777 directly binds and stabilizes TFEB mRNA, alleviating the blockage of autophagosomal-lysosomal fusion and ultimately restoring neurodegeneration induced by CoNPs in vivo and in vitro. In summary, our study demonstrates that autophagic dysfunction is the main toxic mechanism of neurodegeneration upon CoNPs exposure and NR_030777 plays a crucial role in CoNPs-induced autophagic dysfunction. Additionally, the proposed adverse outcome pathway contributes to a better understanding of CNS toxicity assessment of CoNPs.
Collapse
Affiliation(s)
- Xinpei Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Cheng Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jinxiang Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Canlin Zhu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jiajun Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Ruiqi Su
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Shujia Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Shucan Weng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Xiangyu Chang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Shengsong Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Yilong Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jiamei Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Ling Lin
- Public Technology Service Center, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jinfu Zhou
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province 350001, China
| | - Zhenkun Guo
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Siying Wu
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, Kentucky 40292, United States
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| |
Collapse
|
3
|
Bakoyiannis I, Ducourneau EG, N'diaye M, Fermigier A, Ducroix-Crepy C, Bosch-Bouju C, Coutureau E, Trifilieff P, Ferreira G. Obesogenic diet induces circuit-specific memory deficits in mice. eLife 2024; 13:e80388. [PMID: 38436653 PMCID: PMC10911750 DOI: 10.7554/elife.80388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Obesity is associated with neurocognitive dysfunction, including memory deficits. This is particularly worrisome when obesity occurs during adolescence, a maturational period for brain structures critical for cognition. In rodent models, we recently reported that memory impairments induced by obesogenic high-fat diet (HFD) intake during the periadolescent period can be reversed by chemogenetic manipulation of the ventral hippocampus (vHPC). Here, we used an intersectional viral approach in HFD-fed male mice to chemogenetically inactivate specific vHPC efferent pathways to nucleus accumbens (NAc) or medial prefrontal cortex (mPFC) during memory tasks. We first demonstrated that HFD enhanced activation of both pathways after training and that our chemogenetic approach was effective in normalizing this activation. Inactivation of the vHPC-NAc pathway rescued HFD-induced deficits in recognition but not location memory. Conversely, inactivation of the vHPC-mPFC pathway restored location but not recognition memory impairments produced by HFD. Either pathway manipulation did not affect exploration or anxiety-like behaviour. These findings suggest that HFD intake throughout adolescence impairs different types of memory through overactivation of specific hippocampal efferent pathways and that targeting these overactive pathways has therapeutic potential.
Collapse
Affiliation(s)
- Ioannis Bakoyiannis
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077BordeauxFrance
| | - Eva Gunnel Ducourneau
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077BordeauxFrance
| | - Mateo N'diaye
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077BordeauxFrance
| | - Alice Fermigier
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077BordeauxFrance
| | - Celine Ducroix-Crepy
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077BordeauxFrance
| | - Clementine Bosch-Bouju
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077BordeauxFrance
| | | | - Pierre Trifilieff
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077BordeauxFrance
| | - Guillaume Ferreira
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077BordeauxFrance
| |
Collapse
|
4
|
Papp M, Gruca P, Litwa E, Lason M, Willner P. Optogenetic stimulation of transmission from prelimbic cortex to nucleus accumbens core overcomes resistance to venlafaxine in an animal model of treatment-resistant depression. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110715. [PMID: 36610613 DOI: 10.1016/j.pnpbp.2023.110715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
BACKGROUND Our earlier study demonstrated that repeated optogenetic stimulation of afferents from ventral hippocampus (vHIP) to the prelimbic region of medial prefrontal cortex (mPFC) overcame resistance to antidepressant treatment in Wistar-Kyoto (WKY) rats. These results suggested that antidepressant resistance may result from an insufficiency of transmission from vHIP to mPFC. Here we examined whether similar effects can be elicited from major output of mPFC; the pathway from to nucleus accumbens core (NAc). METHOD WKY rats were subjected to Chronic Mild Stress and were used in two sets of experiments: 1) they were treated acutely with optogenetic stimulation of afferents to NAc core originating from the mPFC, and 2) they were treated with chronic (5 weeks) venlafaxine (10 mg/kg) and/or repeated (once weekly) optogenetic stimulation of afferents to NAc originating from either mPFC or vHIP. RESULTS Chronic mild stress procedure decreased sucrose intake, open arm entries on elevated plus maze, and novel object recognition test. Acute optogenetic stimulation of the mPFC-NAc and vHIP-NAc pathways had no effect in sucrose or plus maze tests, but increased object recognition. Neither venlafaxine nor mPFC-NAc optogenetic stimulation alone was effective in reversing the effects of CMS, but the combination of chronic antidepressant and repeated optogenetic stimulation improved behaviour on all three measures. CONCLUSIONS The synergism between venlafaxine and mPFC-NAc optogenetic stimulation supports the hypothesis that the mechanisms of non-responsiveness of WKY rats involves a failure of antidepressant treatment to restore transmission in the mPFC-NAc pathway. Together with earlier results, this implicates insufficiency in a vHIP-mPFC-NAc circuit in non-responsiveness to antidepressant drugs.
Collapse
Affiliation(s)
- Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | - Piotr Gruca
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewa Litwa
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Lason
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Paul Willner
- Department of Psychology, Swansea University, Swansea, UK
| |
Collapse
|
5
|
Chao OY, Nikolaus S, Yang YM, Huston JP. Neuronal circuitry for recognition memory of object and place in rodent models. Neurosci Biobehav Rev 2022; 141:104855. [PMID: 36089106 PMCID: PMC10542956 DOI: 10.1016/j.neubiorev.2022.104855] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Rats and mice are used for studying neuronal circuits underlying recognition memory due to their ability to spontaneously remember the occurrence of an object, its place and an association of the object and place in a particular environment. A joint employment of lesions, pharmacological interventions, optogenetics and chemogenetics is constantly expanding our knowledge of the neural basis for recognition memory of object, place, and their association. In this review, we summarize current studies on recognition memory in rodents with a focus on the novel object preference, novel location preference and object-in-place paradigms. The evidence suggests that the medial prefrontal cortex- and hippocampus-connected circuits contribute to recognition memory for object and place. Under certain conditions, the striatum, medial septum, amygdala, locus coeruleus and cerebellum are also involved. We propose that the neuronal circuitry for recognition memory of object and place is hierarchically connected and constructed by different cortical (perirhinal, entorhinal and retrosplenial cortices), thalamic (nucleus reuniens, mediodorsal and anterior thalamic nuclei) and primeval (hypothalamus and interpeduncular nucleus) modules interacting with the medial prefrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Susanne Nikolaus
- Department of Nuclear Medicine, University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
6
|
Offline ventral subiculum-ventral striatum serial communication is required for spatial memory consolidation. Nat Commun 2019; 10:5721. [PMID: 31844154 PMCID: PMC6915753 DOI: 10.1038/s41467-019-13703-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/19/2019] [Indexed: 12/25/2022] Open
Abstract
The hippocampal formation is considered essential for spatial navigation. In particular, subicular projections have been suggested to carry spatial information from the hippocampus to the ventral striatum. However, possible cross-structural communication between these two brain regions in memory formation has thus far been unknown. By selectively silencing the subiculum-ventral striatum pathway we found that its activity after learning is crucial for spatial memory consolidation and learning-induced plasticity. These results provide new insight into the neural circuits underlying memory consolidation and establish a critical role for off-line cross-regional communication between hippocampus and ventral striatum to promote the storage of complex information.
Collapse
|
7
|
Baazaoui N, Iqbal K. Prevention of Amyloid-β and Tau Pathologies, Associated Neurodegeneration, and Cognitive Deficit by Early Treatment with a Neurotrophic Compound. J Alzheimers Dis 2018; 58:215-230. [PMID: 28387677 DOI: 10.3233/jad-170075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To date, neither any effective treatment nor prevention of Alzheimer's disease (AD), a major dementia causing disorder, are available. Herein, we investigated the secondary prevention of neurodegeneration, amyloid-β (Aβ) and tau pathologies with a neurotrophic compound P021 in 3xTg-AD mice. Previous work found that P021 can rescue at mild to moderate stages Aβ and tau pathologies in 3xTg-AD mice. To determine its potential clinical application, we sought to test the preventive effect of P021 on Aβ and tau pathologies by starting the treatment during the period of synaptic compensation several months before the appearance of any overt pathology in 3xTg-AD mice. We started a continuous treatment with P021 in 3-month-old female animals and followed its effect at 9-, 15- and 18-months post-treatment. Neurodegeneration at the above time points was studied using Fluorojade C staining, and tau and Aβ pathologies both immunohistochemically and by Western blots. Cognitive performance was studied by assessing episodic memory with Novel Object Recognition task at 16-17-months post-treatment. We found that P021 treatment initiated during the synaptic compensation period can prevent neurodegeneration, Aβ and tau pathologies, rescue episodic memory impairment, and markedly reduce mortality rate. These findings for the first time show effective prevention of AD changes with a neurotrophic compound that targets neurogenesis and synaptic plasticity, suggesting that improving the health of the neuronal network can prevent AD.
Collapse
Affiliation(s)
- Narjes Baazaoui
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.,Graduate Program in Biology (Neuroscience), College of Staten Island, City University of New York Graduate Center, New York, NY, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
8
|
Ozdemir AC, Wynn GM, Vester A, Weitzmann MN, Neigh GN, Srinivasan S, Rudd MK. GNB3 overexpression causes obesity and metabolic syndrome. PLoS One 2017; 12:e0188763. [PMID: 29206867 PMCID: PMC5716578 DOI: 10.1371/journal.pone.0188763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 11/13/2017] [Indexed: 11/19/2022] Open
Abstract
The G-protein beta subunit 3 (GNB3) gene has been implicated in obesity risk; however, the molecular mechanism of GNB3-related disease is unknown. GNB3 duplication is responsible for a syndromic form of childhood obesity, and an activating DNA sequence variant (C825T) in GNB3 is also associated with obesity. To test the hypothesis that GNB3 overexpression causes obesity, we created bacterial artificial chromosome (BAC) transgenic mice that carry an extra copy of the human GNB3 risk allele. Here we show that GNB3-T/+ mice have increased adiposity, but not greater food intake or a defect in satiety. GNB3-T/+ mice have elevated fasting plasma glucose, insulin, and C-peptide, as well as glucose intolerance, indicating type 2 diabetes. Fasting plasma leptin, triglycerides, cholesterol and phospholipids are elevated, suggesting metabolic syndrome. Based on a battery of behavioral tests, GNB3-T/+ mice did not exhibit anxiety- or depressive-like phenotypes. GNB3-T/+ and wild-type animals have similar activity levels and heat production; however, GNB3-T/+ mice exhibit dysregulation of acute thermogenesis. Finally, Ucp1 expression is significantly lower in white adipose tissue (WAT) in GNB3-T/+ mice, suggestive of WAT remodeling that could lead to impaired cellular thermogenesis. Taken together, our study provides the first functional link between GNB3 and obesity, and presents insight into novel pathways that could be applied to combat obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Alev Cagla Ozdemir
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Grace M. Wynn
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Aimee Vester
- Department of Environmental Health Sciences, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - M. Neale Weitzmann
- Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, GA, United States of America
- Atlanta VA Medical Center, Decatur, GA, United States of America
| | - Gretchen N. Neigh
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States of America
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Shanthi Srinivasan
- Atlanta VA Medical Center, Decatur, GA, United States of America
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA, United States of America
| | - M. Katharine Rudd
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
9
|
Functional inactivation of dorsal medial striatum alters behavioral flexibility and recognition process in mice. Physiol Behav 2017; 179:467-477. [DOI: 10.1016/j.physbeh.2017.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 12/28/2022]
|
10
|
Chen Y, Dai CL, Wu Z, Iqbal K, Liu F, Zhang B, Gong CX. Intranasal Insulin Prevents Anesthesia-Induced Cognitive Impairment and Chronic Neurobehavioral Changes. Front Aging Neurosci 2017; 9:136. [PMID: 28539885 PMCID: PMC5424543 DOI: 10.3389/fnagi.2017.00136] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/24/2017] [Indexed: 11/26/2022] Open
Abstract
General anesthesia increases the risk for cognitive impairment post operation, especially in the elderly and vulnerable individuals. Recent animal studies on the impact of anesthesia on postoperative cognitive impairment have provided some valuable insights, but much remains to be understood. Here, by using mice of various ages and conditions, we found that anesthesia with propofol and sevoflurane caused significant deficits in spatial learning and memory, as tested using Morris Water Maze (MWM) 2–6 days after anesthesia exposure, in aged (17–18 months old) wild-type (WT) mice and in adult (7–8 months old) 3xTg-AD mice (a triple transgenic mouse model of Alzheimer’s disease (AD)), but not in adult WT mice. Anesthesia resulted in long-term neurobehavioral changes in the fear conditioning task carried out 65 days after exposure to anesthesia in 3xTg-AD mice. Importantly, daily intranasal administration of insulin (1.75 U/mouse/day) for only 3 days prior to anesthesia completely prevented the anesthesia-induced deficits in spatial learning and memory and the long-term neurobehavioral changes tested 65 days after exposure to anesthesia in 3xTg-AD mice. These results indicate that aging and AD-like brain pathology increase the vulnerability to cognitive impairment after anesthesia and that intranasal treatment with insulin can prevent anesthesia-induced cognitive impairment.
Collapse
Affiliation(s)
- Yanxing Chen
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental DisabilitiesNew York, NY, USA
| | - Chun-Ling Dai
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental DisabilitiesNew York, NY, USA
| | - Zhe Wu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental DisabilitiesNew York, NY, USA.,Department of Cell Biology and Genetics, School of Basic Medicine, Hubei University of Science and TechnologyXianning, China
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental DisabilitiesNew York, NY, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental DisabilitiesNew York, NY, USA
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, China
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental DisabilitiesNew York, NY, USA
| |
Collapse
|
11
|
Nasehi M, Ostadi E, Khakpai F, Ebrahimi-Ghiri M, Zarrindast MR. Synergistic effect between D-AP5 and muscimol in the nucleus accumbens shell on memory consolidation deficit in adult male Wistar rats: An isobologram analysis. Neurobiol Learn Mem 2017; 141:134-142. [DOI: 10.1016/j.nlm.2017.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/15/2017] [Accepted: 03/25/2017] [Indexed: 10/19/2022]
|
12
|
Kazim SF, Blanchard J, Bianchi R, Iqbal K. Early neurotrophic pharmacotherapy rescues developmental delay and Alzheimer's-like memory deficits in the Ts65Dn mouse model of Down syndrome. Sci Rep 2017; 7:45561. [PMID: 28368015 PMCID: PMC5377379 DOI: 10.1038/srep45561] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/27/2017] [Indexed: 12/21/2022] Open
Abstract
Down syndrome (DS), caused by trisomy 21, is the most common genetic cause of intellectual disability and is associated with a greatly increased risk of early-onset Alzheimer’s disease (AD). The Ts65Dn mouse model of DS exhibits several key features of the disease including developmental delay and AD-like cognitive impairment. Accumulating evidence suggests that impairments in early brain development caused by trisomy 21 contribute significantly to memory deficits in adult life in DS. Prenatal genetic testing to diagnose DS in utero, provides the novel opportunity to initiate early pharmacological treatment to target this critical period of brain development. Here, we report that prenatal to early postnatal treatment with a ciliary neurotrophic factor (CNTF) small-molecule peptide mimetic, Peptide 021 (P021), rescued developmental delay in pups and AD-like hippocampus-dependent memory impairments in adult life in Ts65Dn mice. Furthermore, this treatment prevented pre-synaptic protein deficit, decreased glycogen synthase kinase-3beta (GSK3β) activity, and increased levels of synaptic plasticity markers including brain derived neurotrophic factor (BNDF) and phosphorylated CREB, both in young (3-week-old) and adult (~ 7-month-old) Ts65Dn mice. These findings provide novel evidence that providing neurotrophic support during early brain development can prevent developmental delay and AD-like memory impairments in a DS mouse model.
Collapse
Affiliation(s)
- Syed Faraz Kazim
- Department of Neurochemistry, and SUNY Downstate/NYSIBR Center for Developmental Neuroscience, New York State Institute for Basic Research (NYSIBR), Staten Island, NY 10314, USA.,The Robert F. Furchgott Center for Neural and Behavioral Science, and Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY 11203, USA.,Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Julie Blanchard
- Department of Neurochemistry, and SUNY Downstate/NYSIBR Center for Developmental Neuroscience, New York State Institute for Basic Research (NYSIBR), Staten Island, NY 10314, USA
| | - Riccardo Bianchi
- The Robert F. Furchgott Center for Neural and Behavioral Science, and Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Khalid Iqbal
- Department of Neurochemistry, and SUNY Downstate/NYSIBR Center for Developmental Neuroscience, New York State Institute for Basic Research (NYSIBR), Staten Island, NY 10314, USA
| |
Collapse
|
13
|
Palmer D, Creighton S, Prado VF, Prado MA, Choleris E, Winters BD. Mice deficient for striatal Vesicular Acetylcholine Transporter (VAChT) display impaired short-term but normal long-term object recognition memory. Behav Brain Res 2016; 311:267-278. [DOI: 10.1016/j.bbr.2016.05.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
|
14
|
Heysieattalab S, Naghdi N, Zarrindast MR, Haghparast A, Mehr SE, Khoshbouei H. The effects of GABAA and NMDA receptors in the shell–accumbens on spatial memory of METH-treated rats. Pharmacol Biochem Behav 2016; 142:23-35. [DOI: 10.1016/j.pbb.2015.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 11/18/2015] [Accepted: 12/14/2015] [Indexed: 01/12/2023]
|
15
|
Mun HS, Saab BJ, Ng E, McGirr A, Lipina TV, Gondo Y, Georgiou J, Roder JC. Self-directed exploration provides a Ncs1-dependent learning bonus. Sci Rep 2015; 5:17697. [PMID: 26639399 PMCID: PMC4671055 DOI: 10.1038/srep17697] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/02/2015] [Indexed: 11/21/2022] Open
Abstract
Understanding the mechanisms of memory formation is fundamental to establishing optimal educational practices and restoring cognitive function in brain disease. Here, we show for the first time in a non-primate species, that spatial learning receives a special bonus from self-directed exploration. In contrast, when exploration is escape-oriented, or when the full repertoire of exploratory behaviors is reduced, no learning bonus occurs. These findings permitted the first molecular and cellular examinations into the coupling of exploration to learning. We found elevated expression of neuronal calcium sensor 1 (Ncs1) and dopamine type-2 receptors upon self-directed exploration, in concert with increased neuronal activity in the hippocampal dentate gyrus and area CA3, as well as the nucleus accumbens. We probed further into the learning bonus by developing a point mutant mouse (Ncs1P144S/P144S) harboring a destabilized NCS-1 protein, and found this line lacked the equivalent self-directed exploration learning bonus. Acute knock-down of Ncs1 in the hippocampus also decoupled exploration from efficient learning. These results are potentially relevant for augmenting learning and memory in health and disease, and provide the basis for further molecular and circuit analyses in this direction.
Collapse
Affiliation(s)
- Ho-Suk Mun
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Bechara J Saab
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Preclinical Laboratory for Translational Research into Affective Disorders, University of Zurich Hospital for Psychiatry, August-Forel-Str 7, CH-8008, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, CH-8057, Switzerland
| | - Enoch Ng
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Alexander McGirr
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Psychiatry, University of British Columbia, Vancouver, BC, V6T 2A1, Canada
| | - Tatiana V Lipina
- Federal State Budgetary Scientific Institution, Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, 630117, Russia
| | - Yoichi Gondo
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba 305-0074, Japan
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - John C Roder
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
16
|
Bacon C, Schneider M, Le Magueresse C, Froehlich H, Sticht C, Gluch C, Monyer H, Rappold GA. Brain-specific Foxp1 deletion impairs neuronal development and causes autistic-like behaviour. Mol Psychiatry 2015; 20:632-9. [PMID: 25266127 PMCID: PMC4419151 DOI: 10.1038/mp.2014.116] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/29/2014] [Accepted: 08/04/2014] [Indexed: 12/20/2022]
Abstract
Neurodevelopmental disorders are multi-faceted and can lead to intellectual disability, autism spectrum disorder and language impairment. Mutations in the Forkhead box FOXP1 gene have been linked to all these disorders, suggesting that it may play a central role in various cognitive and social processes. To understand the role of Foxp1 in the context of neurodevelopment leading to alterations in cognition and behaviour, we generated mice with a brain-specific Foxp1 deletion (Nestin-Cre(Foxp1-/-)mice). The mutant mice were viable and allowed for the first time the analysis of pre- and postnatal neurodevelopmental phenotypes, which included a pronounced disruption of the developing striatum and more subtle alterations in the hippocampus. More detailed analysis in the CA1 region revealed abnormal neuronal morphogenesis that was associated with reduced excitability and an imbalance of excitatory to inhibitory input in CA1 hippocampal neurons in Nestin-Cre(Foxp1-/-) mice. Foxp1 ablation was also associated with various cognitive and social deficits, providing new insights into its behavioural importance.
Collapse
Affiliation(s)
- C Bacon
- Department of Molecular Human Genetics, Medical Faculty of Heidelberg University, Im Neuenheimer Feld 366, Heidelberg, Germany,Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, Germany
| | - M Schneider
- Research Group Developmental Neuropsychopharmacology, Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - C Le Magueresse
- Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, Germany,Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany,INSERM UMR-S 839, University Pierre and Marie Curie, Paris, France
| | - H Froehlich
- Department of Molecular Human Genetics, Medical Faculty of Heidelberg University, Im Neuenheimer Feld 366, Heidelberg, Germany,Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, Germany
| | - C Sticht
- Medical Research Center, University of Heidelberg, Theodor_Kutzer_Ufer 1-3, Mannheim, Germany
| | - C Gluch
- Research Group Developmental Neuropsychopharmacology, Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - H Monyer
- Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, Germany,Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - G A Rappold
- Department of Molecular Human Genetics, Medical Faculty of Heidelberg University, Im Neuenheimer Feld 366, Heidelberg, Germany,Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, Germany,Department of Molecular Human Genetics, University of Heidelberg, Im Neuenheimer Feld 366, Heidelberg 69120, Germany. E-mail:
| |
Collapse
|
17
|
Two weeks of predatory stress induces anxiety-like behavior with co-morbid depressive-like behavior in adult male mice. Behav Brain Res 2014; 275:120-5. [PMID: 25200517 DOI: 10.1016/j.bbr.2014.08.060] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/26/2014] [Accepted: 08/30/2014] [Indexed: 02/06/2023]
Abstract
Psychological stress can have devastating and lasting effects on a variety of behaviors, especially those associated with mental illnesses such as anxiety and depression. Animal models of chronic stress are frequently used to elucidate the mechanisms underlying the relationship between stress and mental health disorders and to develop improved treatment options. The current study expands upon a novel chronic stress paradigm for mice: predatory stress. The predatory stress model incorporates the natural predator-prey relationship that exists among rats and mice and allows for greater interaction between the animals, in turn increasing the extent of the stressful experience. In this study, we evaluated the behavioral effects of exposure to 15 days of predatory stress on an array of behavioral indices. Up to 2 weeks after the end of stress, adult male mice showed an increase of anxiety-like behaviors as measured by the open field and social interaction tests. Animals also expressed an increase in depressive-like behavior in the sucrose preference test. Notably, performance on the novel object recognition task, a memory test, improved after predatory stress. Taken as a whole, our results indicate that 15 exposures to this innovative predatory stress paradigm are sufficient to elicit robust anxiety-like behaviors with evidence of co-morbid depressive-like behavior, as well as changes in cognitive behavior in male mice.
Collapse
|
18
|
Disease modifying effect of chronic oral treatment with a neurotrophic peptidergic compound in a triple transgenic mouse model of Alzheimer's disease. Neurobiol Dis 2014; 71:110-30. [PMID: 25046994 DOI: 10.1016/j.nbd.2014.07.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 05/28/2014] [Accepted: 07/08/2014] [Indexed: 12/16/2022] Open
Abstract
Besides the presence of amyloid beta (Aβ) plaques and neurofibrillary tangles, neurogenesis and synaptic plasticity are markedly impaired in Alzheimer's disease (AD) possibly contributing to cognitive impairment. In this context, neurotrophic factors serve as a promising therapeutic approach via utilization of regenerative capacity of brain to shift the balance from neurodegeneration to neural regeneration. However, besides more conventional "bystander" effect, to what extent can neurotrophic compounds affect underlying AD pathology remains questionable. Here we investigated the effect of chronic oral treatment with a ciliary neurotrophic factor (CNTF) derived peptidergic compound, P021 (Ac-DGGL(A)G-NH2), on disease pathology both at moderate and severe stages in a transgenic mouse model of AD. 3xTg-AD and wild type female mice were treated for 12months with P021 or vehicle diet starting at 9-10months of age. A significant reduction in abnormal hyperphosphorylation and accumulation of tau at known major AD neurofibrillary pathology associated sites was observed. The effect of P021 on Aβ pathology was limited to a significant decrease in soluble Aβ levels and a trend towards reduction in Aβ plaque load in CA1 region of hippocampus, consistent with reduction in Aβ generation and not clearance. This disease modifying effect was probably via increased brain derived neurotrophic factor (BDNF) expression mediated decrease in glycogen synthase kinase-3-β (GSK3β) activity we found in P021 treated 3xTg-AD mice. P021 treatment also rescued deficits in cognition, neurogenesis, and synaptic plasticity in 3xTg-AD mice. These findings demonstrate the potential of the neurotrophic peptide mimetic as a disease modifying therapy for AD.
Collapse
|
19
|
Pitsikas N, Markou A. The metabotropic glutamate 2/3 receptor agonist LY379268 counteracted ketamine-and apomorphine-induced performance deficits in the object recognition task, but not object location task, in rats. Neuropharmacology 2014; 85:27-35. [PMID: 24859609 DOI: 10.1016/j.neuropharm.2014.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/29/2014] [Accepted: 05/03/2014] [Indexed: 10/25/2022]
Abstract
Experimental evidence indicates that the non competitive N-methyl-d-aspartate (NMDA) receptor antagonist ketamine and the mixed dopamine (DA) D1/D2 receptor agonist apomorphine induce schizophrenia-like symptoms in rodents, including cognitive deficits. Activation of Group II metabotropic glutamate 2/3 (mGlu2/3) receptors reduces the excessive glutamate release that is hypothesized to be associated with psychiatric disorders. Thus, mGlu2/3 receptor agonists may reverse deficits induced by excessive glutamate or DA release induced by administration of NMDA receptor antagonists and DA receptor agonists, respectively, and potentially those seen in schizophrenia. LY379268 is a selective mGlu2/3 receptor agonist that has shown to be effective in several animal models of stroke, epilepsy, and drug abuse. The present study investigated whether LY379268 antagonizes non-spatial and spatial recognition memory deficits induced by ketamine and apomorphine administration in rats. To assess the effects of the compounds on non-spatial and spatial recognition memory, the object recognition task and object location task were used. Post-training administration of LY379268 (1-3 mg/kg, i.p.) counteracted ketamine (3 mg/kg, i.p.) and apomorphine (1 mg/kg, i.p.)-induced performance deficits in the object recognition task. In contrast, LY379268 (1-3 mg/kg, i.p.) did not attenuate spatial recognition memory deficits produced by ketamine (3 mg/kg, i.p.) or apomorphine (1 mg/kg, i.p.) in the object location task. The present data show that the mGlu2/3 receptor agonist LY379268 reversed non-spatial, but not spatial, recognition memory deficits induced by NMDA receptor blockade or DA receptor agonism in rodents. Thus, such mGlu2/3 receptor agonists may be efficacious in reversing some memory deficits seen in schizophrenia patients.
Collapse
Affiliation(s)
- Nikolaos Pitsikas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Panepistimiou 3, Biopolis, 41500 Larissa, Greece.
| | - Athina Markou
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
20
|
Modafinil improves methamphetamine-induced object recognition deficits and restores prefrontal cortex ERK signaling in mice. Neuropharmacology 2014; 87:188-97. [PMID: 24530829 DOI: 10.1016/j.neuropharm.2014.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/29/2014] [Accepted: 02/04/2014] [Indexed: 11/21/2022]
Abstract
Chronic use of methamphetamine (METH) leads to long-lasting cognitive dysfunction in humans and in animal models. Modafinil is a wake-promoting compound approved for the treatment of sleeping disorders. It is also prescribed off label to treat METH dependence. In the present study, we investigated whether modafinil could improve cognitive deficits induced by sub-chronic METH treatment in mice by measuring visual retention in a Novel Object Recognition (NOR) task. After sub-chronic METH treatment (1 mg/kg, once a day for 7 days), mice performed the NOR task, which consisted of habituation to the object recognition arena (5 min a day, 3 consecutive days), training session (2 equal objects, 10 min, day 4), and a retention session (1 novel object, 5 min, day 5). One hour before the training session, mice were given a single dose of modafinil (30 or 90 mg/kg). METH-treated mice showed impairments in visual memory retention, evidenced by equal preference of familiar and novel objects during the retention session. The lower dose of modafinil (30 mg/kg) had no effect on visual retention scores in METH-treated mice, while the higher dose (90 mg/kg) rescued visual memory retention to control values. We also measured extracellular signal-regulated kinase (ERK) phosphorylation in medial prefrontal cortex (mPFC), hippocampus, and nucleus accumbens (NAc) of METH- and vehicle-treated mice that received modafinil 1 h before exposure to novel objects in the training session, compared to mice placed in the arena without objects. Elevated ERK phosphorylation was found in the mPFC of vehicle-treated mice, but not in METH-treated mice, exposed to objects. The lower dose of modafinil had no effect on ERK phosphorylation in METH-treated mice, while 90 mg/kg modafinil treatment restored the ERK phosphorylation induced by novelty in METH-treated mice to values comparable to controls. We found neither a novelty nor treatment effect on ERK phosphorylation in hippocampus or NAc of vehicle- and METH-treated mice receiving acute 90 mg/kg modafinil treatment. Our results showed a palliative role of modafinil against METH-induced visual cognitive impairments, possibly by normalizing ERK signaling pathways in mPFC. Modafinil may be a valuable pharmacological tool for the treatment of cognitive deficits observed in human METH abusers as well as in other neuropsychiatric conditions. This article is part of the Special Issue entitled 'CNS Stimulants'.
Collapse
|
21
|
Chen Y, Liang Z, Tian Z, Blanchard J, Dai CL, Chalbot S, Iqbal K, Liu F, Gong CX. Intracerebroventricular streptozotocin exacerbates Alzheimer-like changes of 3xTg-AD mice. Mol Neurobiol 2013; 49:547-62. [PMID: 23996345 DOI: 10.1007/s12035-013-8539-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/15/2013] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) involves several possible molecular mechanisms, including impaired brain insulin signaling and glucose metabolism. To investigate the role of metabolic insults in AD, we injected streptozotocin (STZ), a diabetogenic compound if used in the periphery, into the lateral ventricle of the 6-month-old 3xTg-AD mice and studied the cognitive function as well as AD-like brain abnormalities, such as tau phosphorylation and Aβ accumulation, 3-6 weeks later. We found that STZ exacerbated impairment of short-term and spatial reference memory in 3xTg-AD mice. We also observed an increase in tau hyperphosphorylation and neuroinflammation, a disturbance of brain insulin signaling, and a decrease in synaptic plasticity and amyloid β peptides in the brain after STZ treatment. The expression of 20 AD-related genes, including those involved in the processing of amyloid precursor protein, cytoskeleton, glucose metabolism, insulin signaling, synaptic function, protein kinases, and apoptosis, was altered, suggesting that STZ disturbs multiple metabolic and cell signaling pathways in the brain. These findings provide experimental evidence of the role of metabolic insult in AD.
Collapse
Affiliation(s)
- Yanxing Chen
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314-6399, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cannabinoids ameliorate impairments induced by chronic stress to synaptic plasticity and short-term memory. Neuropsychopharmacology 2013; 38:1521-34. [PMID: 23426383 PMCID: PMC3682147 DOI: 10.1038/npp.2013.51] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Repeated stress is one of the environmental factors that precipitates and exacerbates mental illnesses like depression and anxiety as well as cognitive impairments. We have previously shown that cannabinoids can prevent the effects of acute stress on learning and memory. Here we aimed to find whether chronic cannabinoid treatment would alleviate the long-term effects of exposure to chronic restraint stress on memory and plasticity as well as on behavioral and neuroendocrine measures of anxiety and depression. Late adolescent rats were exposed to chronic restraint stress for 2 weeks followed each day by systemic treatment with vehicle or with the CB1/2 receptor agonist WIN55,212-2 (1.2 mg/kg). Thirty days after the last exposure to stress, rats demonstrated impaired long-term potentiation (LTP) in the ventral subiculum-nucleus accumbens (NAc) pathway, impaired performance in the prefrontal cortex (PFC)-dependent object-recognition task and the hippocampal-dependent spatial version of this task, increased anxiety levels, and significantly reduced expression of glucocorticoid receptors (GRs) in the amygdala, hippocampus, PFC, and NAc. Chronic WIN55,212-2 administration prevented the stress-induced impairment in LTP levels and in the spatial task, with no effect on stress-induced alterations in unconditioned anxiety levels or GR levels. The CB1 antagonist AM251 (0.3 mg/kg) prevented the ameliorating effects of WIN55,212-2 on LTP and short-term memory. Hence, the beneficial effects of WIN55,212-2 on memory and plasticity are mediated by CB1 receptors and are not mediated by alterations in GR levels in the brain areas tested. Our findings suggest that cannabinoid receptor activation could represent a novel approach to the treatment of cognitive deficits that accompany a variety of stress-related neuropsychiatric disorders.
Collapse
|
23
|
The evaluation of AZ66, an optimized sigma receptor antagonist, against methamphetamine-induced dopaminergic neurotoxicity and memory impairment in mice. Int J Neuropsychopharmacol 2013; 16:1033-44. [PMID: 22932447 DOI: 10.1017/s1461145712000831] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Sigma (σ) receptors have recently been identified as potential targets for the development of novel therapeutics aimed at mitigating the effects of methamphetamine. Particularly, σ receptors are believed to mitigate some of the neurotoxic effects of methamphetamine through modulation of dopamine, dopamine transporters and body temperature. Furthermore, recent evidence suggests that targeting σ receptors may prevent cognitive impairments produced by methamphetamine. In the present study, an optimized σ receptor antagonist, AZ66, was evaluated against methamphetamine-induced neurotoxicity and cognitive dysfunction. AZ66 was found to be highly selective for σ receptors compared to 64 other sites tested. Pretreatment of male, Swiss Webster mice with i.p. dosing of AZ66 significantly attenuated methamphetamine-induced striatal dopamine depletions, striatal dopamine transporter reductions and hyperthermia. Additionally, neurotoxic dosing with methamphetamine caused significant memory impairment in the object recognition test, which was attenuated when animals were pretreated with AZ66; similar trends were observed in the step-through passive avoidance test. Taken together, these results suggest that targeting σ receptors may provide neuroprotection against the neurotoxicity and cognitive impairments produced by methamphetamine.
Collapse
|
24
|
Chen Y, Liang Z, Blanchard J, Dai CL, Sun S, Lee MH, Grundke-Iqbal I, Iqbal K, Liu F, Gong CX. A non-transgenic mouse model (icv-STZ mouse) of Alzheimer's disease: similarities to and differences from the transgenic model (3xTg-AD mouse). Mol Neurobiol 2012; 47:711-25. [PMID: 23150171 DOI: 10.1007/s12035-012-8375-5] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/29/2012] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) can be divided into sporadic AD (SAD) and familial AD (FAD). Most AD cases are sporadic and result from multiple etiologic factors, including environmental, genetic, and metabolic factors, whereas FAD is caused by mutations in the presenilins or amyloid-β (Aβ) precursor protein (APP) genes. A commonly used animal model for AD is the 3xTg-AD transgenic mouse model, which harbors mutated presenilin 1, APP, and tau genes and thus represents a model of FAD. There is an unmet need in the field to characterize animal models representing different AD mechanisms, so that potential drugs for SAD can be evaluated preclinically in these animal models. A mouse model generated by intracerebroventricular (icv) administration of streptozocin (STZ), the icv-STZ mouse, shows many aspects of SAD. In this study, we compared the non-cognitive and cognitive behaviors as well as biochemical and immunohistochemical alterations between the icv-STZ mouse and the 3xTg-AD mouse. We found that both mouse models showed increased exploratory activity as well as impaired learning and spatial memory. Both models also demonstrated neuroinflammation, altered synaptic proteins and insulin/IGF-1 (insulin-like growth factor-1) signaling, and increased hyperphosphorylated tau in the brain. The most prominent brain abnormality in the icv-STZ mouse was neuroinflammation, and in the 3xTg-AD mouse it was elevation of hyperphosphorylated tau. These observations demonstrate the behavioral and neuropathological similarities and differences between the icv-STZ mouse and the 3xTg-AD mouse models and will help guide future studies using these two mouse models for the development of AD drugs.
Collapse
Affiliation(s)
- Yanxing Chen
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, NY 10314, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gourgiotis I, Kampouri NG, Koulouri V, Lempesis IG, Prasinou MD, Georgiadou G, Pitsikas N. Nitric oxide modulates apomorphine-induced recognition memory deficits in rats. Pharmacol Biochem Behav 2012; 102:507-14. [DOI: 10.1016/j.pbb.2012.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/14/2012] [Accepted: 06/18/2012] [Indexed: 02/04/2023]
|
26
|
What pharmacological interventions indicate concerning the role of the perirhinal cortex in recognition memory. Neuropsychologia 2012; 50:3122-40. [PMID: 22841990 PMCID: PMC3500694 DOI: 10.1016/j.neuropsychologia.2012.07.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 06/26/2012] [Accepted: 07/22/2012] [Indexed: 11/23/2022]
Abstract
Findings of pharmacological studies that have investigated the involvement of specific regions of the brain in recognition memory are reviewed. The particular emphasis of the review concerns what such studies indicate concerning the role of the perirhinal cortex in recognition memory. Most of the studies involve rats and most have investigated recognition memory for objects. Pharmacological studies provide a large body of evidence supporting the essential role of the perirhinal cortex in the acquisition, consolidation and retrieval of object recognition memory. Such studies provide increasingly detailed evidence concerning both the neurotransmitter systems and the underlying intracellular mechanisms involved in recognition memory processes. They have provided evidence in support of synaptic weakening as a major synaptic plastic process within perirhinal cortex underlying object recognition memory. They have also supplied confirmatory evidence that that there is more than one synaptic plastic process involved. The demonstrated necessity to long-term recognition memory of intracellular signalling mechanisms related to synaptic modification within perirhinal cortex establishes a central role for the region in the information storage underlying such memory. Perirhinal cortex is thereby established as an information storage site rather than solely a processing station. Pharmacological studies have also supplied new evidence concerning the detailed roles of other regions, including the hippocampus and the medial prefrontal cortex in different types of recognition memory tasks that include a spatial or temporal component. In so doing, they have also further defined the contribution of perirhinal cortex to such tasks. To date it appears that the contribution of perirhinal cortex to associative and temporal order memory reflects that in simple object recognition memory, namely that perirhinal cortex provides information concerning objects and their prior occurrence (novelty/familiarity).
Collapse
|
27
|
Dopamine-glutamate interplay in the ventral striatum modulates spatial learning in a receptor subtype-dependent manner. Neuropsychopharmacology 2012; 37:1122-33. [PMID: 22218092 PMCID: PMC3306874 DOI: 10.1038/npp.2011.296] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ventral striatum (VS) is characterized by a distinctive neural architecture in which multiple corticolimbic glutamatergic (GLUergic) and mesolimbic dopaminergic (DAergic) afferents converge on the same output cell type (the medium-sized spiny neuron, MSN). However, despite the gateway function attributed to VS and its involvement in action selection and spatial navigation, as well as the evidence of physical and functional receptor-receptor interaction between different members of ionotropic GLUergic and DAergic receptors, there is no available knowledge that such reciprocal interaction may be critical in shaping the ability to learn novel spatial and non-spatial arrangement of stimuli. In this study, it was evaluated whether intra-VS bilateral infusion of either N-methyl-D-aspartate (NMDA) or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-selective antagonists may suppress the ability to detect spatial or non-spatial novelty in a non-associative behavioral task. In a second set of experiments, we further examined the hypothesis that VS-mediated spatial information processing may be subserved by some preferential receptor-receptor interactions among specific GLUergic and DAergic receptor subtypes. This was assessed by concomitant intra-VS infusion of the combination between subthreshold doses of either NMDA or AMPA receptor antagonists with individual D1 or D2 receptor blockade. The results of this study highlighted the fact that NMDA or AMPA receptors are differentially involved in processing of spatial and non-spatial novelty, and showed for the first time that preferential NMDA/D1 and AMPA/D2 receptor-receptor functional communication, but not NMDA/D2 and AMPA/D1, is required for enabling learning of novel spatial information in the VS.
Collapse
|
28
|
Schwendt M, Reichel CM, See RE. Extinction-dependent alterations in corticostriatal mGluR2/3 and mGluR7 receptors following chronic methamphetamine self-administration in rats. PLoS One 2012; 7:e34299. [PMID: 22479593 PMCID: PMC3315516 DOI: 10.1371/journal.pone.0034299] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 02/25/2012] [Indexed: 01/12/2023] Open
Abstract
Methamphetamine (meth) is a highly addictive and widely abused psychostimulant. Repeated use of meth can quickly lead to dependence, and may be accompanied by a variety of persistent psychiatric symptoms and cognitive impairments. The neuroadaptations underlying motivational and cognitive deficits produced by chronic meth intake remain poorly understood. Altered glutamate neurotransmission within the prefrontal cortex (PFC) and striatum has been linked to both persistent drug-seeking and cognitive dysfunction. Therefore, the current study investigated changes in presynaptic mGluR receptors within corticostriatal circuitry after extended meth self-administration. Rats self-administered meth (or received yoked-saline) in 1 hr/day sessions for 7 days (short-access) followed by 14 days of 6 hrs/day (long-access). Rats displayed a progressive escalation of daily meth intake up to 6 mg/kg per day. After cessation of meth self-administration, rats underwent daily extinction or abstinence without extinction training for 14 days before being euthanized. Synaptosomes from the medial PFC, nucleus accumbens (NAc), and the dorsal striatum (dSTR) were isolated and labeled with membrane-impermeable biotin in order to measure surface mGluR2/3 and mGluR7 receptors. Extended access to meth self-administration followed by abstinence decreased surface and total levels of mGluR2/3 receptors in the NAc and dSTR, while in the PFC, only a loss of surface mGluR2/3 and mGluR7 receptors was detected. Daily extinction trials reversed the downregulation of mGluR2/3 receptors in the NAc and dSTR and mGluR7 in the PFC, but downregulation of surface mGluR2/3 receptors in the PFC was present regardless of post-meth experience. Thus, extinction learning can selectively restore some populations of downregulated mGluRs after prolonged exposure to meth. The present findings could have implications for our understanding of the persistence (or recovery) of meth-induced motivational and cognitive deficits.
Collapse
Affiliation(s)
- Marek Schwendt
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, United States of America.
| | | | | |
Collapse
|
29
|
Li Z, Chadalapaka G, Ramesh A, Khoshbouei H, Maguire M, Safe S, Rhoades RE, Clark R, Jules G, McCallister M, Aschner M, Hood DB. PAH particles perturb prenatal processes and phenotypes: protection from deficits in object discrimination afforded by dampening of brain oxidoreductase following in utero exposure to inhaled benzo(a)pyrene. Toxicol Sci 2012; 125:233-47. [PMID: 21987461 PMCID: PMC3243744 DOI: 10.1093/toxsci/kfr261] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/22/2011] [Indexed: 02/04/2023] Open
Abstract
The wild-type (WT) Cpr(lox/lox) (cytochrome P(450) oxidoreductase, Cpr) mouse is an ideal model to assess the contribution of P(450) enzymes to the metabolic activation and disposition of environmental xenobiotics. In the present study, we examined the effect of in utero exposure to benzo(a)pyrene [B(a)P] aerosol on Sp4 and N-methyl-D-aspartate (NMDA)-dependent systems as well as a resulting behavioral phenotype (object discrimination) in Cpr offspring. Results from in utero exposure of WT Cpr(lox/lox) mice were compared with in utero exposed brain-Cpr-null offspring mice. Null mice were used as they do not express brain cytochrome P(450)1B1-associated NADPH oxidoreductase (CYP1B1-associated NADPH oxidoreductase), thus reducing their capacity to produce neural B(a)P metabolites. Subsequent to in utero (E14-E17) exposure to B(a)P (100 μg/m(3)), Cpr(lox/lox) offspring exhibited: (1) elevated B(a)P metabolite and F(2)-isoprostane neocortical tissue burdens, (2) elevated concentrations of cortical glutamate, (3) premature developmental expression of Sp4, (4) decreased subunit ratios of NR2B:NR2A, and (5) deficits in a novelty discrimination phenotype monitored to in utero exposed brain-Cpr-null offspring. Collectively, these findings suggest that in situ generation of metabolites by CYP1B1-associated NADPH oxidoreductase promotes negative effects on NMDA-mediated signaling processes during the period when synapses are first forming as well as effects on a subsequent behavioral phenotype.
Collapse
Affiliation(s)
- Zhu Li
- Department of Neuroscience and Pharmacology, Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, Tennessee 37208
| | - Gayathri Chadalapaka
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, Texas 77030-3303
| | | | - Habibeh Khoshbouei
- Department of Physiology, Meharry Medical College, Nashville, Tennessee 37208
| | - Mark Maguire
- Department of Neuroscience and Pharmacology, Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, Tennessee 37208
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, Texas 77030-3303
| | - Raina E. Rhoades
- Department of Neuroscience and Pharmacology, Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, Tennessee 37208
| | - Ryan Clark
- Department of Neuroscience and Pharmacology, Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, Tennessee 37208
| | - George Jules
- Department of Neuroscience and Pharmacology, Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, Tennessee 37208
| | | | - Michael Aschner
- Department of Pediatrics
- Department of Pharmacology, Center in Molecular Toxicology and Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, Tennessee 37212
| | - Darryl B. Hood
- Department of Neuroscience and Pharmacology, Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, Tennessee 37208
| |
Collapse
|
30
|
Takahashi E, Niimi K, Itakura C. Role of CaV2.1-mediated NMDA receptor signaling in the nucleus accumbens in spatial short-term memory. Behav Brain Res 2011; 218:353-6. [DOI: 10.1016/j.bbr.2010.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 12/06/2010] [Accepted: 12/11/2010] [Indexed: 12/24/2022]
|
31
|
Nelson AJD, Thur KE, Marsden CA, Cassaday HJ. Dissociable roles of dopamine within the core and medial shell of the nucleus accumbens in memory for objects and place. Behav Neurosci 2011; 124:789-99. [PMID: 21133535 PMCID: PMC3002220 DOI: 10.1037/a0021114] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is increasing focus on the role of the nucleus accumbens (NAc) in learning and memory, but there is little consensus as to how the core and medial shell subregions of the NAc contribute to these processes. In the current experiments, we used spontaneous object recognition to test rats with 6-hydroxydopamine lesions targeted at the core or medial shell of the NAc on a familiarity discrimination task and a location discrimination task. In the object recognition variant, control animals were able to discriminate the novel object at both 24-hr and 5-min delay. However, in the lesion groups, performance was systematically related to dopamine (DA) levels in the core but not the shell. In the location recognition task, sham-operated animals readily detected the object displacement at test. In the lesion groups, performance impairment was systematically related to DA levels in the shell but not the core. These results suggest that dopamine function within distinct subregions of the NAc plays dissociable roles in the modulation of memory for objects and place.
Collapse
Affiliation(s)
- Andrew J D Nelson
- School of Psychology, University of Nottingham, Nottingham, England.
| | | | | | | |
Collapse
|
32
|
Blanchard J, Wanka L, Tung YC, Cárdenas-Aguayo MDC, LaFerla FM, Iqbal K, Grundke-Iqbal I. Pharmacologic reversal of neurogenic and neuroplastic abnormalities and cognitive impairments without affecting Aβ and tau pathologies in 3xTg-AD mice. Acta Neuropathol 2010; 120:605-21. [PMID: 20697724 DOI: 10.1007/s00401-010-0734-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 07/27/2010] [Accepted: 07/28/2010] [Indexed: 12/01/2022]
Abstract
In addition to the occurrence of numerous neurofibrillary tangles and Aβ plaques, neurogenesis and neuronal plasticity are markedly altered in Alzheimer disease (AD). Although the most popular therapeutic approach has been to inhibit neurodegeneration, another is to promote neurogenesis and neuronal plasticity by utilizing the regenerative capacity of the brain. Here we show that, in a transgenic mouse model of AD, 3xTg-AD mice, there was a marked deficit in neurogenesis and neuroplasticity, which occurred before the formation of any neurofibrillary tangles or Aβ plaques and was associated with cognitive impairment. Furthermore, peripheral administration of Peptide 6, an 11-mer, which makes an active region of ciliary neurotrophic factor (CNTF, amino acid residues 146-156), restored cognition by enhancing neurogenesis and neuronal plasticity in these mice. Although this treatment had no detectable effect on Aβ and tau pathologies in 9-month animals, it enhanced neurogenesis in dentate gyrus, reduced ectopic birth in the granular cell layer, and increased neuronal plasticity in the hippocampus and cerebral cortex. These findings, for the first time, demonstrate the possibility of therapeutic treatment of AD and related disorders by peripheral administration of a peptide corresponding to a biologically active region of CNTF.
Collapse
Affiliation(s)
- Julie Blanchard
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, 10314, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Rinaldi A, Romeo S, Agustín-Pavón C, Oliverio A, Mele A. Distinct patterns of Fos immunoreactivity in striatum and hippocampus induced by different kinds of novelty in mice. Neurobiol Learn Mem 2010; 94:373-81. [PMID: 20736076 DOI: 10.1016/j.nlm.2010.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 07/29/2010] [Accepted: 08/17/2010] [Indexed: 10/19/2022]
Abstract
In this study the immediate-early gene Fos was used to investigate the response to different novel stimuli in a wide array of brain regions including the hippocampus, the rhinal cortex, the frontal cortex and different components of the striatal complex. Independent groups of CD-1 mice were exposed to three different novelty conditions: (1) novel environment (empty open field); (2) complex novel environment (i.e. open field containing objects); and (3) identity-based detection of novel objects. We observed that a complex novel environment and a knowledge-based novelty modulated Fos levels in both the dorsal and the ventral components of the striatum, while Fos immunoreactivity in the medial temporal lobe was only increased after exposure to novel environments, regardless of their complexity. Finally, we observed a strong increase of Fos levels in the prefrontal cortex in all the three novel conditions examined, indicating a major involvement of this structure in novelty assessment. Overall the present study demonstrates that distinct brain regions are recruited in different kinds of novelty and emphasizes the role of the striatal complex in processing complex novel information.
Collapse
Affiliation(s)
- A Rinaldi
- Dipartimento di Genetica e Biologia Molecolare, Università di Roma La Sapienza, P.le Aldo Moro 5, 00185, Roma, Italy
| | | | | | | | | |
Collapse
|
34
|
Lafenêtre P, Leske O, Ma-Högemeie Z, Haghikia A, Bichler Z, Wahle P, Heumann R. Exercise can rescue recognition memory impairment in a model with reduced adult hippocampal neurogenesis. Front Behav Neurosci 2010; 3:34. [PMID: 20204139 PMCID: PMC2831627 DOI: 10.3389/neuro.08.034.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 09/18/2009] [Indexed: 12/29/2022] Open
Abstract
Running is a potent stimulator of cell proliferation in the adult dentate gyrus and these newly generated hippocampal neurons seem to be implicated in memory functions. Here we have used a mouse model expressing activated Ras under the direction of the neuronal Synapsin I promoter (named synRas mice). These mice develop down-regulated proliferation of adult hippocampal precursor cells and show decreased short-term recognition memory performances. Voluntary physical activity reversed the genetically blocked generation of hippocampal proliferating cells and enhanced the dendritic arborisation of the resulting doublecortin newly generated neurons. Moreover, running improved novelty recognition in both wild type and synRas littermates, compensating their memory deficits. Brain-derived neurotrophic factor (BDNF) has been proposed to be a potential mediator of physical exercise acting in the hippocampus on dentate neurons and their precursors. This was confirmed here by the identification of doublecortin-immunoreactive cells expressing tyrosine receptor kinase B BDNF receptor. While no difference in BDNF levels were detected in basal conditions between the synRas mice and their wild type littermates, running was associated with enhanced BDNF expression levels. Thus increased BDNF signalling is a candidate mechanism to explain the observed effects of running. Our studies demonstrate that voluntary physical activity has a robust beneficial effect even in mice with genetically restricted neurogenesis and cognition.
Collapse
Affiliation(s)
- Pauline Lafenêtre
- Department of Molecular Neurobiochemistry, Faculty for Chemistry and Biochemistry, Ruhr University Bochum Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Deramciclane improves object recognition in rats: Potential role of NMDA receptors. Pharmacol Biochem Behav 2010; 94:570-4. [DOI: 10.1016/j.pbb.2009.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 11/20/2009] [Accepted: 11/26/2009] [Indexed: 01/28/2023]
|
36
|
Goh DPQ, Neo AH, Goh CW, Aw CC, New LS, Chen WS, Atcha Z, Browne ER, Chan ECY. Metabolic Profiling of Rat Brain and Cognitive Behavioral Tasks: Potential Complementary Strategies in Preclinical Cognition Enhancement Research. J Proteome Res 2009; 8:5679-90. [DOI: 10.1021/pr900795g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dilys P. Q. Goh
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, and GlaxoSmithKline R&D China, Centre for Cognition and Neurodegeneration Research, Biopolis at One-North, 11 Biopolis Way, The Helios Building #03-01/02, Singapore 138667
| | - Aveline H. Neo
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, and GlaxoSmithKline R&D China, Centre for Cognition and Neurodegeneration Research, Biopolis at One-North, 11 Biopolis Way, The Helios Building #03-01/02, Singapore 138667
| | - Catherine W. Goh
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, and GlaxoSmithKline R&D China, Centre for Cognition and Neurodegeneration Research, Biopolis at One-North, 11 Biopolis Way, The Helios Building #03-01/02, Singapore 138667
| | - Chiu Cheong Aw
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, and GlaxoSmithKline R&D China, Centre for Cognition and Neurodegeneration Research, Biopolis at One-North, 11 Biopolis Way, The Helios Building #03-01/02, Singapore 138667
| | - Lee Sun New
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, and GlaxoSmithKline R&D China, Centre for Cognition and Neurodegeneration Research, Biopolis at One-North, 11 Biopolis Way, The Helios Building #03-01/02, Singapore 138667
| | - Woei Shin Chen
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, and GlaxoSmithKline R&D China, Centre for Cognition and Neurodegeneration Research, Biopolis at One-North, 11 Biopolis Way, The Helios Building #03-01/02, Singapore 138667
| | - Zeenat Atcha
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, and GlaxoSmithKline R&D China, Centre for Cognition and Neurodegeneration Research, Biopolis at One-North, 11 Biopolis Way, The Helios Building #03-01/02, Singapore 138667
| | - Edward R. Browne
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, and GlaxoSmithKline R&D China, Centre for Cognition and Neurodegeneration Research, Biopolis at One-North, 11 Biopolis Way, The Helios Building #03-01/02, Singapore 138667
| | - Eric C. Y. Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, and GlaxoSmithKline R&D China, Centre for Cognition and Neurodegeneration Research, Biopolis at One-North, 11 Biopolis Way, The Helios Building #03-01/02, Singapore 138667
| |
Collapse
|
37
|
Impairment of novelty detection in mice targeted for the Chl1 gene. Physiol Behav 2009; 97:394-400. [DOI: 10.1016/j.physbeh.2009.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 02/09/2009] [Accepted: 03/11/2009] [Indexed: 01/31/2023]
|
38
|
Nucleus accumbens shell and core involvement in drug context-induced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl) 2008; 200:545-56. [PMID: 18597075 PMCID: PMC2613506 DOI: 10.1007/s00213-008-1234-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 06/09/2008] [Indexed: 12/28/2022]
Abstract
RATIONALE The nucleus accumbens (NAC) is a functionally heterogeneous brain region with respect to its involvement in cocaine-seeking behavior triggered by drug-associated explicit conditioned stimuli, foot shock stress, or cocaine itself in the reinstatement animal model of drug relapse. However, it is not known whether the NAC or its subregions are critical for reinstatement of cocaine-seeking behavior produced by re-exposure to a previously cocaine-paired environmental context. OBJECTIVES The present study was designed to evaluate potentially unique contributions of the NAC core and shell to this behavior. MATERIALS AND METHODS Rats were trained to lever press for unsignaled cocaine infusions (0.15 mg/infusion, intravenous) in a distinct environmental context. Lever responding was then extinguished in a distinctly different environmental context (extinction context) during a minimum of seven daily training sessions. Subsequently, using a counterbalanced testing design, rats were re-exposed to the cocaine-paired context or the extinction context while cocaine seeking (i.e., responding on the previously cocaine-reinforced lever) was assessed. Before each test session, neural activity was inhibited selectively in the NAC core or shell using bilateral microinfusions of the gamma-aminobutyric acid agonists, baclofen and muscimol (0/0 or 1.0/0.1 mM; 0.3 microl per hemisphere). RESULTS Neural inactivation of the NAC shell or core attenuated responding in the cocaine context and, interestingly, increased responding in the extinction context. Control experiments indicated no effects on general activity or food-reinforced instrumental behavior. CONCLUSIONS These findings suggest that both subregions of the NAC may promote context-induced reinstatement by facilitating drug context-induced motivation for cocaine and context discrimination.
Collapse
|
39
|
Briand LA, Gross JP, Robinson TE. Impaired object recognition following prolonged withdrawal from extended-access cocaine self-administration. Neuroscience 2008; 155:1-6. [PMID: 18590801 DOI: 10.1016/j.neuroscience.2008.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 06/02/2008] [Accepted: 06/03/2008] [Indexed: 10/22/2022]
Abstract
Cocaine addicts have a number of cognitive deficits that persist following prolonged abstinence. These include impairments in executive functions dependent on the prefrontal cortex, as well as deficits on learning and memory tasks sensitive to hippocampal function. Recent preclinical studies using non-human animals have demonstrated that cocaine treatment can produce persistent deficits in executive functions, but there is relatively little evidence that treatment with cocaine produces persistent deficits in performance on hippocampal-dependent tasks. We recently demonstrated that extended (but not limited) access to self-administered cocaine is especially effective in producing persistent deficits on a test of cognitive vigilance, and therefore, we used this procedure to examine the effects of limited or extended access to cocaine self-administration on recognition memory performance, which is sensitive to hippocampal function. We found that extended access to cocaine produced deficits in recognition memory in rats that persisted for at least 2 weeks after the cessation of drug use. We conclude that the deficits in learning and memory observed in cocaine addicts may be at least in part due to repeated drug use, rather than just due to a pre-existing condition, and that in studying the neural basis of such deficits procedures involving extended access to self-administered cocaine may be especially useful.
Collapse
Affiliation(s)
- L A Briand
- Neuroscience Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
40
|
da Cunha IC, Lopes APF, Steffens SM, Ferraz A, Vargas JC, de Lima TCM, Marino Neto J, Paschoalini MA, Faria MS. The microinjection of AMPA receptor antagonist into the accumbens shell, but not into the accumbens core, induces anxiolysis in an animal model of anxiety. Behav Brain Res 2007; 188:91-9. [PMID: 18054805 DOI: 10.1016/j.bbr.2007.10.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 10/22/2007] [Accepted: 10/25/2007] [Indexed: 11/15/2022]
Abstract
This study investigated the effect of the AMPA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) microinjected into the core and shell sub-regions of the accumbens nucleus (Acb), on the level of fear/anxiety and emotional learning, in female rats submitted to the elevated plus-maze (EPM), an animal model of anxiety. Bilateral microinjections of DNQX (330 and 660 ng) into the Acb shell (AP, +1.08 to +2.16) induced an anxiolytic-like effect in relation to rats microinjected with vehicle, since there was an increased percentage of entries in the open arms of the maze. The 660 ng DNQX microinjection into the Acb shell also increased the percentage of entries into the open arms in relation to 660 ng DNQX microinjection into the Acb core. Prior DNQX microinjections in both core and shell sub-regions of the Acb failed to impair the emotional learning, since the animals exhibited an increase of the open arm avoidance on EPM Trial 2 in relation to EPM trial 1. DNQX microinjections into both sub-regions of the Acb did not change the number of entries into the enclosed arms, either in the EPM Trial 1 or in the EPM Trial 2, which indicates an absence of drug-induced locomotor impairment. Similarly, DNQX microinjections into both sub-regions of the Acb failed to alter the total arm entries, rearing, grooming and head-dipping frequency. The anxiolytic-like effect induced by DNQX suggests that the AMPA receptor in the Acb shell, but not in the Acb core, may underlie anxiety regulation in the EPM.
Collapse
Affiliation(s)
- Isabel Cristina da Cunha
- Department of Physiological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina, 88.040-900 Florianópolis, SC, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pitsikas N, Sakellaridis N. Memantine and recognition memory: Possible facilitation of its behavioral effects by the nitric oxide (NO) donor molsidomine. Eur J Pharmacol 2007; 571:174-9. [PMID: 17628527 DOI: 10.1016/j.ejphar.2007.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 06/04/2007] [Accepted: 06/07/2007] [Indexed: 10/23/2022]
Abstract
The effects of the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist memantine on recognition memory were investigated in the rat by using the object recognition task. In addition, a possible interaction between memantine and the nitric oxide (NO) donor molsidomine in antagonizing extinction of recognition memory was also evaluated utilizing the same behavioral procedure. In a first dose-response study, post-training administration of memantine (10 and 20, but not 3 mg/kg) antagonized recognition memory deficits in the rat, suggesting that memantine modulates storage and/or retrieval of information. In a subsequent study, combination of sub-threshold doses of memantine (3 mg/kg) and the NO donor molsidomine (1 mg/kg) counteracted delay-dependent impairments in the same task. Neither memantine (3 mg/kg) nor molsidomine (1 mg/kg) alone reduced object recognition performance deficits. The present findings indicate a) that memantine is involved in recognition memory and b) support a functional interaction between memantine and molsidomine on recognition memory mechanisms.
Collapse
Affiliation(s)
- Nikolaos Pitsikas
- Department of Pharmacology, School of Medicine, University of Thessaly, 22, Papakiriazi str., 412-22 Larissa, Greece.
| | | |
Collapse
|
42
|
Nilsson M, Hansson S, Carlsson A, Carlsson ML. Differential effects of the N-methyl-d-aspartate receptor antagonist MK-801 on different stages of object recognition memory in mice. Neuroscience 2007; 149:123-30. [PMID: 17826918 DOI: 10.1016/j.neuroscience.2007.07.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 07/05/2007] [Accepted: 08/09/2007] [Indexed: 10/23/2022]
Abstract
The aim of the present study was to evaluate the effects of systemic administration of the N-methyl-d-aspartate (NMDA) receptor antagonist MK-801 on different stages of non-spatial object recognition memory processing in mice. To this end we used the object recognition test, where the animal is tested for its ability to discriminate between an old, familiar, and a novel object. MK-801 (0.1 or 0.2 mg/kg) or saline was administered 1) 30 min before or 2) directly after the first, introductory, session or 3) 30 min before the recognition session. Memory retention was evaluated 1.5 h after the introductory session. MK-801 appeared to decrease memory retention when given prior to the introductory session, but not when given directly after the introductory session or before the recognition session, where MK-801 instead induced an increased interest for the novel object. These results suggest that activation of NMDA receptors is a requisite for encoding of recognition memory in mice but not for consolidation and retrieval processes. The increased interest for the novel object showing up when MK-801 was given directly after the introductory session or before the recognition session may reflect a facilitation of retention. Alternatively, the phencyclidine-like, psychotogenic properties of MK-801 could result in an amplification of the perceived salience of the novel object, and/or anxiolytic mechanisms could result in neophilic effects.
Collapse
Affiliation(s)
- M Nilsson
- Institute of Neuroscience and Physiology, Göteborg University, Medicinaregatan 11, SE-405 30 Göteborg, Sweden.
| | | | | | | |
Collapse
|
43
|
Dornelles A, de Lima MNM, Grazziotin M, Presti-Torres J, Garcia VA, Scalco FS, Roesler R, Schröder N. Adrenergic enhancement of consolidation of object recognition memory. Neurobiol Learn Mem 2007; 88:137-42. [PMID: 17368053 DOI: 10.1016/j.nlm.2007.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 01/18/2007] [Accepted: 01/22/2007] [Indexed: 11/16/2022]
Abstract
Extensive evidence indicates that epinephrine (EPI) modulates memory consolidation for emotionally arousing tasks in animals and human subjects. However, previous studies have not examined the effects of EPI on consolidation of recognition memory. Here we report that systemic administration of EPI enhances consolidation of memory for a novel object recognition (NOR) task under different training conditions. Control male rats given a systemic injection of saline (0.9% NaCl) immediately after NOR training showed significant memory retention when tested at 1.5 or 24, but not 96h after training. In contrast, rats given a post-training injection of EPI showed significant retention of NOR at all delays. In a second experiment using a different training condition, rats treated with EPI, but not SAL-treated animals, showed significant NOR retention at both 1.5 and 24-h delays. We next showed that the EPI-induced enhancement of retention tested at 96h after training was prevented by pretraining systemic administration of the beta-adrenoceptor antagonist propranolol. The findings suggest that, as previously observed in experiments using aversively motivated tasks, epinephrine modulates consolidation of recognition memory and that the effects require activation of beta-adrenoceptors.
Collapse
Affiliation(s)
- Arethuza Dornelles
- Neurobiology and Developmental Biology, Laboratory and Graduate Program in Cellular and Molecular Biology, Faculty of Biosciences, Pontifical Catholic University, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Pilo Boyl P, Di Nardo A, Mulle C, Sassoè-Pognetto M, Panzanelli P, Mele A, Kneussel M, Costantini V, Perlas E, Massimi M, Vara H, Giustetto M, Witke W. Profilin2 contributes to synaptic vesicle exocytosis, neuronal excitability, and novelty-seeking behavior. EMBO J 2007; 26:2991-3002. [PMID: 17541406 PMCID: PMC1894775 DOI: 10.1038/sj.emboj.7601737] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 05/03/2007] [Indexed: 11/08/2022] Open
Abstract
Profilins are actin binding proteins essential for regulating cytoskeletal dynamics, however, their function in the mammalian nervous system is unknown. Here, we provide evidence that in mouse brain profilin1 and profilin2 have distinct roles in regulating synaptic actin polymerization with profilin2 preferring a WAVE-complex-mediated pathway. Mice lacking profilin2 show a block in synaptic actin polymerization in response to depolarization, which is accompanied by increased synaptic excitability of glutamatergic neurons due to higher vesicle exocytosis. These alterations in neurotransmitter release correlate with a hyperactivation of the striatum and enhanced novelty-seeking behavior in profilin2 mutant mice. Our results highlight a novel, profilin2-dependent pathway, regulating synaptic physiology, neuronal excitability, and complex behavior.
Collapse
Affiliation(s)
| | | | - Christophe Mulle
- UMR CNRS 5091, Institut François Magendie, Physiologie Cellulaire de la Synapse, Bordeaux, France
| | - Marco Sassoè-Pognetto
- Department of Anatomy, Pharmacology and Forensic Medicine and Istituto Nazionale di Neuroscienze, University of Turin, Torino, Italy
| | - Patrizia Panzanelli
- Department of Anatomy, Pharmacology and Forensic Medicine and Istituto Nazionale di Neuroscienze, University of Turin, Torino, Italy
| | - Andrea Mele
- Università di Roma ‘La Sapienza', Laboratorio di Psicobiologia, Dipart. di Genetica e Biologia Molecolare, Roma, Italy
| | - Matthias Kneussel
- Centre for Molecular Neurobiology, ZMNH, University of Hamburg, Hamburg, Germany
| | - Vivian Costantini
- Università di Roma ‘La Sapienza', Laboratorio di Psicobiologia, Dipart. di Genetica e Biologia Molecolare, Roma, Italy
| | | | | | - Hugo Vara
- Department of Anatomy, Pharmacology and Forensic Medicine and Istituto Nazionale di Neuroscienze, University of Turin, Torino, Italy
| | - Maurizio Giustetto
- Department of Anatomy, Pharmacology and Forensic Medicine and Istituto Nazionale di Neuroscienze, University of Turin, Torino, Italy
| | - Walter Witke
- EMBL, Mouse Biology Unit, Monterotondo, Italy
- EMBL, Mouse Biology Unit, Adriano Buzzati-Traverso Campus, Via Ramarini 32, 00015 Monterotondo, Italy. Tel.: +0039 06 90091 268; Fax: +0039 06 90091 272; E-mail:
| |
Collapse
|
45
|
Dere E, Huston JP, De Souza Silva MA. The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci Biobehav Rev 2007; 31:673-704. [PMID: 17368764 DOI: 10.1016/j.neubiorev.2007.01.005] [Citation(s) in RCA: 530] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 01/08/2007] [Accepted: 01/18/2007] [Indexed: 01/31/2023]
Abstract
Rats and mice are attracted by novel objects. They readily approach novel objects and explore them with their vibrissae, nose and forepaws. It is assumed that such a single explorative episode leaves a lasting and complex memory trace, which includes information about the features of the object explored, as well as where and even when the object was encountered. Indeed, it has been shown that rodents are able to discriminate a novel from a familiar object (one-trial object recognition), can detect a mismatch between the past and present location of a familiar object (one-trial object-place recognition), and can discriminate different objects in terms of their relative recency (temporal order memory), i.e., which one of two objects has been encountered earlier. Since the novelty-preference paradigm is very versatile and has some advantages compared to several other memory tasks, such as the water maze, it has become a powerful tool in current neurophamacological, neuroanatomical and neurogenetical memory research using both rats and mice. This review is intended to provide a comprehensive summary on key findings delineating the brain structures, neurotransmitters, molecular mechanisms and genes involved in encoding, consolidation, storage and retrieval of different forms of one-trial object memory in rats and mice.
Collapse
Affiliation(s)
- Ekrem Dere
- Institute of Physiological Psychology, and Center for Biological and Medical Research, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany.
| | | | | |
Collapse
|
46
|
Ferretti V, Sargolini F, Oliverio A, Mele A, Roullet P. Effects of intra-accumbens NMDA and AMPA receptor antagonists on short-term spatial learning in the Morris water maze task. Behav Brain Res 2007; 179:43-9. [PMID: 17289166 DOI: 10.1016/j.bbr.2007.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 01/04/2007] [Accepted: 01/09/2007] [Indexed: 11/30/2022]
Abstract
Glutamatergic transmission within the nucleus accumbens (Nac) is considered to subserve the transfer of different types of information from the cortical and limbic regions. In particular, it has been suggested that glutamatergic afferences from the hippocampus and the prefrontal cortex provide the main source of contextual information to the Nac. Accordingly, several authors have demonstrated that the blockade of glutamate receptors within the Nac impairs various spatial tasks. However, the exact role of the different classes of glutamate receptors within the Nac in short-term spatial memory is still not clear. In this study we investigated the involvement of two major classes of glutamate receptors, NMDA and AMPA receptors, within the Nac in the acquisition of spatial information, using the Morris water maze task. Focal injections of the NMDA antagonist, AP-5 (0.1 and 0.15 microg/side), and the AMPA antagonist, DNQX (0.005, 0.01 microg/side), were performed before a massed training phase, and mice were tested for retention immediately after. NMDA and AMPA receptor blockade induced no effect during training. On the contrary, injection of the two glutamatergic antagonists impaired spatial localization during the probe test. These data demonstrate an involvement of the Nac in short-term spatial learning. Moreover, they prove that within this structure the short-term processing of spatial information needs the activation of both NMDA and AMPA receptors.
Collapse
Affiliation(s)
- Valentina Ferretti
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier, CNRS-UMR 5169, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | | | | | | | | |
Collapse
|
47
|
Schiapparelli L, Simón AM, Del Río J, Frechilla D. Opposing effects of AMPA and 5-HT1A receptor blockade on passive avoidance and object recognition performance: correlation with AMPA receptor subunit expression in rat hippocampus. Neuropharmacology 2006; 50:897-907. [PMID: 16620883 DOI: 10.1016/j.neuropharm.2006.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 01/26/2006] [Accepted: 02/10/2006] [Indexed: 11/26/2022]
Abstract
It has been suggested that antagonists at serotonin 5-HT1A receptors may exert a procognitive effect by facilitating glutamatergic neurotransmission. Here we further explored this issue by looking for the ability of a 5-HT1A antagonist to prevent the learning deficit induced by AMPA receptor blockade in two behavioural procedures in rats, and for concomitant molecular changes presumably involved in memory formation in the hippocampus. Pretraining administration of the competitive AMPA receptor antagonist, NBQX, produced a dose-related retention impairment in a passive avoidance task 24h later, and also impaired retention in a novel object recognition test when an intertrial interval of 3h was selected. Pretreatment with the selective 5-HT1A receptor antagonist, WAY-100635, prevented the learning deficit induced by NBQX in the two behavioural procedures. In biochemical studies performed on rat hippocampus after the retention tests, we found that learning increased the membrane levels of AMPA receptor GluR1 and GluR2/3 subunits, as well as the phosphorylated forms of GluR1, effects that were abolished by NBQX administration before the training session. Pretreatment with WAY-100635 counteracted the NBQX effects and restored the initial learning-specific increase in Ca2+/calmodulin-dependent protein kinase II (CaMKII) function and the later increase in GluR2/3 and phosphorylated GluR1 surface expression. Moreover, administration of WAY-100635 before object recognition training improved recognition memory 24h later and potentiated the learning-associated increase in AMPA receptor subunits. The results support the proposed utility of 5-HT1A antagonists in the treatment of cognitive disorders.
Collapse
Affiliation(s)
- L Schiapparelli
- Division of Neurosciences, Center for Applied Medical Research, University of Navarra, Av. Pio XII, 55, 31080-Pamplona, Spain
| | | | | | | |
Collapse
|
48
|
Brooks SP, Pask T, Jones L, Dunnett SB. Behavioural profiles of inbred mouse strains used as transgenic backgrounds. II: cognitive tests. GENES BRAIN AND BEHAVIOR 2005; 4:307-17. [PMID: 16011577 DOI: 10.1111/j.1601-183x.2004.00109.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the characteristic manifestations of several neurodegenerative diseases is the progressive decline in cognitive ability. In order to determine the suitability of six mouse strains (129S2/Sv, BALB/c, C3H/He, C57BL/6j, CBA/Ca and DBA/2) as transgenic background strains, we investigated the performance on a variety of tasks designed to identify subtle changes in cognition. In addition, a test of exploratory behaviour was used to probe the level of underlying anxiety in these mouse strains, as anxiety can be a confounding factor on behavioural performance generally. The C3H/He mice exhibited the least anxiogenic behavioural profile spending most time on the open arms of the maze, in contrast to the 129S2/Sv mice which spent the least amount of time in this location and were the quickest to move into a closed arm. The C3H/He mouse strain failed to acquire a visual discrimination task and failed to demonstrate learning on a water maze spatial learning task, in contrast to the CBA/Ca, DBA/2 and C57BL/6j strains which demonstrated a degree of learning in both tasks. No significant strain differences were identified on the object recognition task. These data, taken together, suggest that care must be taken when choosing cognitive tasks to be used with particular mouse strains and that task sensitivity must be considered as a critical element to research protocols with regard to these mouse strains.
Collapse
Affiliation(s)
- S P Brooks
- School of Biosciences, Cardiff University, and UWCM, Cardiff, UK.
| | | | | | | |
Collapse
|
49
|
Ferretti V, Florian C, Costantini VJA, Roullet P, Rinaldi A, De Leonibus E, Oliverio A, Mele A. Co-activation of glutamate and dopamine receptors within the nucleus accumbens is required for spatial memory consolidation in mice. Psychopharmacology (Berl) 2005; 179:108-16. [PMID: 15682297 DOI: 10.1007/s00213-005-2144-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Accepted: 12/22/2004] [Indexed: 10/25/2022]
Abstract
RATIONALE The nucleus accumbens receives glutamatergic and dopaminergic inputs converging onto common dendrites. Recent behavioral data demonstrated that intra-accumbens administrations of either glutamate or dopamine (DA) antagonist impair spatial memory consolidation. Thus, also based on the biochemical and molecular findings demonstrating interactions among the different receptors subtypes for glutamate and dopamine, it is conceivable that memory consolidation within this structure might be modulated by glutamate-dopamine receptor interactions. OBJECTIVES The purpose of this study was to examine the effects of intra-accumbens co-administrations of glutamate and DA antagonists on the consolidation of spatial information. METHODS On day 1, CD1 male mice were placed in an open field containing five different objects and immediately after three sessions of habituation the animals were injected intra-accumbens with either vehicle or low doses of the N-methyl-D: -aspartate (NMDA; AP-5 50 ng/side), the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA; DNQX 5 ng/side), the D1 (SCH23390 12.5 ng/side) and the D2 (sulpiride 25 ng/side) antagonists that were ineffective alone in disrupting object displacement. Separate groups were then focally injected with a combination of one of the glutamate antagonists with one of the dopamine antagonists. Twenty-four hours later, the ability of mice to discriminate object displacement was assessed. RESULTS Controls and mice injected with ineffective doses of the NMDA, the AMPA, the D1 or the D2 antagonists were always able to react to the object displacement. On the contrary, the groups administered with the different combinations (AP-5 and SCH23390, AP-5 and sulpiride, DNQX and SCH23390, DNQX and sulpiride) of glutamate and dopamine antagonists did not discriminate the spatial change. CONCLUSIONS These results demonstrate that glutamate-dopamine receptor interactions within the accumbens are essential for the consolidation process of spatial information.
Collapse
Affiliation(s)
- Valentina Ferretti
- Dipartimento di Genetica e Biologia Molecolare, Università di Roma La Sapienza, 00185 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Sik A, van Nieuwehuyzen P, Prickaerts J, Blokland A. Performance of different mouse strains in an object recognition task. Behav Brain Res 2004; 147:49-54. [PMID: 14659569 DOI: 10.1016/s0166-4328(03)00117-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the present study, we tested the memory performance of different mouse strains (129/Sv, BALB/c, C57BL and Swiss) in an object recognition task. In this one-trial learning task, mice showed a good object memory performance when a 1-h delay was interposed between the first and second trial. However, when a 24-h delay was used, the mice did not discriminate between the novel and the familiar object in the second trial, indicating that the mice did not remember the object, which was presented in the first trial. Using a 4-h delay, the discrimination performance was at an intermediate level, suggesting a delay-dependent forgetting in this task. Although strain differences were found in the absolute level of exploration activity, no strain differences were found on the relative discrimination index (d2). The present data show that object memory can be assessed in mice and, in contrast to other memory tasks, appears to be less strain-dependent. The reliability of the discrimination measures is discussed.
Collapse
Affiliation(s)
- Ayhan Sik
- Department of Psychiatry and Neuropsychology, Brain and Behaviour Institute, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | | | | | |
Collapse
|