1
|
Impacts of a perinatal exposure to manganese coupled with maternal stress in rats: Tests of untrained behaviors. Neurotoxicol Teratol 2022; 91:107088. [PMID: 35278630 PMCID: PMC9133146 DOI: 10.1016/j.ntt.2022.107088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 11/21/2022]
Abstract
Manganese (Mn), an element that naturally occurs in the environment, has been shown to produce neurotoxic effects on the developing young when levels exceed physiological requirements. To evaluate the effects of this chemical in combination with non-chemical factors pregnant Long-Evans rats were treated with 0, 2, or 4 mg/mL Mn in their drinking water from gestational day (GD) 7 to postnatal day (PND) 22. Half of the dams received a variable stress protocol from GD13 to PND9, that included restraint, small cage with reduced bedding, exposure to predator odor, intermittent intervals of white noise, lights on for 24 h, intermittent intervals of lights on during dark cycle and cages with grid floors and reduced bedding. One male and one female offspring from each litter were tested to assess untrained behavior. Ultrasonic vocalizations (USV) were recorded from PND13 pups while they were isolated from the litter. Locomotor activity (MA) was measured in figure-eight mazes at PND 17, 29, and 79 (different set of rats at each time point). Social approach (SA) was tested at PND48. Acoustic startle response (ASR) and pre-pulse inhibition (PPI) were measured starting at PND58. At PND53 a sweetness preference for a chocolate flavored milk solution was assessed. There were sex related differences on several parameters for the USVs. There was also a Mn by stress by sex interaction with the females from the 4 mg/mL stressed dams having more frequency modulated (FM) call elements than the 4 mg/mL non-stressed group. There was an effect of Mn on motor activity but only at PND29 with the 2 mg/mL group having higher counts than the 0 mg/mL group. The social approach test showed sex differences for both the habituation and test phase. There was an effect of Mn, with the 4 mg/mL males having a greater preference for the stimulus rat than did the 0 mg/mL males. There was also a stress by sex interaction. The ASR and PPI had only a sex effect. Thus, with only the FM call elements having a Mn by stress effect, and the PND29 MA and SA preference index having a Mn effect but at different doses requires further investigation.
Collapse
|
2
|
Pillerová M, Borbélyová V, Pastorek M, Riljak V, Hodosy J, Frick KM, Tóthová L. Molecular actions of sex hormones in the brain and their potential treatment use in anxiety disorders. Front Psychiatry 2022; 13:972158. [PMID: 36159923 PMCID: PMC9492942 DOI: 10.3389/fpsyt.2022.972158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Anxiety disorders are one of the most prevalent mood disorders that can lead to impaired quality of life. Current treatment of anxiety disorders has various adverse effects, safety concerns, or restricted efficacy; therefore, novel therapeutic targets need to be studied. Sex steroid hormones (SSHs) play a crucial role in the formation of brain structures, including regions of the limbic system and prefrontal cortex during perinatal development. In the brain, SSHs have activational and organizational effects mediated by either intracellular or transmembrane G-protein coupled receptors. During perinatal developmental periods, the physiological concentrations of SSHs lead to the normal development of the brain; however, the early hormonal dysregulation could result in various anxiety diorders later in life. Sex differences in the prevalence of anxiety disorders suggest that SSHs might be implicated in their development. In this review, we discuss preclinical and clinical studies regarding the role of dysregulated SSHs signaling during early brain development that modifies the risk for anxiety disorders in a sex-specific manner in adulthood. Moreover, our aim is to summarize potential molecular mechanisms by which the SSHs may affect anxiety disorders in preclinical research. Finally, the potential effects of SSHs in the treatment of anxiety disorders are discussed.
Collapse
Affiliation(s)
- Miriam Pillerová
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Veronika Borbélyová
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Michal Pastorek
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Vladimír Riljak
- First Faculty of Medicine, Institute of Physiology, Charles University, Prague, Czechia
| | - Július Hodosy
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - L'ubomíra Tóthová
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
3
|
Sedative and Anxiolytic Activities of Opuntia ficus indica (L.) Mill.: An Experimental Assessment in Mice. Molecules 2020; 25:molecules25081844. [PMID: 32316321 PMCID: PMC7221559 DOI: 10.3390/molecules25081844] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/07/2020] [Accepted: 04/15/2020] [Indexed: 12/02/2022] Open
Abstract
Ethnobotanical field surveys revealed the use of fruits of Opuntia ficus indica (L.) Mill. for treating diabetes, burns, bronchial asthma, constipation, kidney stones, and rheumatic pains and as a sedative in Turkish folk medicine. This study aimed to verify the efficacy of the fruits of O. ficus indica experimentally and to define components responsible for the activity using bioassay-guided procedures. The crude methanolic extract of the fruits was sequentially fractionated into five subextracts: n-hexane, dichloromethane, ethyl acetate, n-butanol, and water. Further experiments were carried out on the most active subextract, that is, the ethyl acetate (EtOAc) subextract, which was further subjected to fractionation through successive column chromatographic applications on Sephadex LH-20. For activity assessment, each extract or fraction was submitted to bioassay systems; traction test, fireplace test, hole-board test, elevated plus-maze test, and open-field test were used for sedative and anxiolytic effects, and a thiopental-induced sleeping test was used for the hypnotic effect. Among the subextracts obtained from the methanolic extract, the EtOAc subextract showed significant sedative and anxiolytic effects in the bioassay systems. From the EtOAc subextract, major components were isolated, and their structures were determined as isorhamnetin, isorhamnetin 3-O-glucoside, isorhamnetin 3-O-rutinoside, and kaempferol 3-O-rutinoside using spectral techniques. In conclusion, this study confirmed the claimed use of the plant against anxiety in Turkish folk medicine.
Collapse
|
4
|
Perinatal inflammation and adult psychopathology: From preclinical models to humans. Semin Cell Dev Biol 2017; 77:104-114. [PMID: 28890420 DOI: 10.1016/j.semcdb.2017.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/22/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023]
Abstract
Perinatal environment plays a crucial role in brain development and determines its function through life. Epidemiological studies and clinical reports link perinatal exposure to infection and/or immune activation to various psychiatric disorders. In addition, accumulating evidence from animal models shows that perinatal inflammation can affect various behaviors relevant to psychiatric disorders such as schizophrenia, autism, anxiety and depression. Remarkably, the effects on behavior and brain function do not always depend on the type of inflammatory stimulus or the perinatal age targeted, so diverse inflammatory events can have similar consequences on the brain. Moreover, other perinatal environmental factors that affect behavior (e.g. diet and stress) also elicit inflammatory responses. Understanding the interplay between perinatal environment and inflammation on brain development is required to identify the mechanisms through which perinatal inflammation affect brain function in the adult animal. Evidence for the role of the peripheral immune system and glia on perinatal programming of behavior is discussed in this review, along with recent evidence for the role of epigenetic mechanisms affecting gene expression in the brain.
Collapse
|
5
|
Othman H, Ammari M, Sakly M, Abdelmelek H. Effects of prenatal exposure to WIFI signal (2.45GHz) on postnatal development and behavior in rat: Influence of maternal restraint. Behav Brain Res 2017; 326:291-302. [PMID: 28288806 DOI: 10.1016/j.bbr.2017.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 10/20/2022]
Abstract
The present study was carried out to investigate the potential combined influence of maternal restraint stress and 2.45GHz WiFi signal exposure on postnatal development and behavior in the offspring of exposed rats. 24 pregnant albino Wistar rats were randomly assigned to four groups: Control, WiFi-exposed, restrained and both WiFi-exposed and restrained groups. Each of WiFi exposure and restraint occurred 2h/day along gestation till parturition. The pups were evaluated for physical development and neuromotor maturation. Moreover, elevated plus maze test, open field activity and stationary beam test were also determined on postnatal days 28, 30 and 31, respectively. After behavioral tests, the rats were anesthetized and their brains were removed for biochemical analysis. Our main findings showed no detrimental effects on gestation progress and outcomes at delivery in all groups. Subsequently, WiFi and restraint, per se and mainly in concert altered physical development of pups with slight differences between genders. Behaviorally, the gestational WiFi irradiation, restraint and especially the associated treatment affected the neuromotor maturation mainly in male progeny. At adult age, we noticed anxiety, motor deficit and exploratory behavior impairment in male offspring co-exposed to WiFi radiation and restraint, and in female progeny subjected to three treatments. The biochemical investigation showed that, all three treatments produced global oxidative stress in brain of both sexes. As for serum biochemistry, phosphorus, magnesium, glucose, triglycerides and calcium levels were disrupted. Taken together, prenatal WiFi radiation and restraint, alone and combined, provoked several behavioral and biochemical impairments at both juvenile and adult age of the offspring.
Collapse
Affiliation(s)
- Haifa Othman
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, Jarzouna 7021, Tunisia
| | - Mohamed Ammari
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, Jarzouna 7021, Tunisia; University of Tunis El Manar, Higher Institute of Applied Biological Sciences of Tunis, 9, Rue Zouhair Essafi, 1006 Tunis, Tunisia.
| | - Mohsen Sakly
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, Jarzouna 7021, Tunisia
| | - Hafedh Abdelmelek
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, Jarzouna 7021, Tunisia
| |
Collapse
|
6
|
Golubeva AV, Crampton S, Desbonnet L, Edge D, O'Sullivan O, Lomasney KW, Zhdanov AV, Crispie F, Moloney RD, Borre YE, Cotter PD, Hyland NP, O'Halloran KD, Dinan TG, O'Keeffe GW, Cryan JF. Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood. Psychoneuroendocrinology 2015; 60:58-74. [PMID: 26135201 DOI: 10.1016/j.psyneuen.2015.06.002] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/12/2015] [Accepted: 06/08/2015] [Indexed: 12/26/2022]
Abstract
Early-life adverse experiences, including prenatal stress (PNS), are associated with a higher prevalence of neurodevelopmental, cardiovascular and metabolic disorders in affected offspring. Here, in a rat model of chronic PNS, we investigate the impact of late gestational stress on physiological outcomes in adulthood. Sprague-Dawley pregnant dams were subjected to repeated restraint stress from embryonic day 14 to day 20, and their male offspring were assessed at 4 months of age. PNS induced an exaggeration of the hypothalamic-pituitary-adrenal (HPA) axis response to stress, as well as an elevation of blood pressure and impairment of cognitive function. Altered respiratory control was also observed, as demonstrated by increased variability in basal respiratory frequency and abnormal frequency responses to both hypoxic and hypercapnic challenges. PNS also affected gastrointestinal neurodevelopment and function, as measured by a decrease in the innervation density of distal colon and an increase in the colonic secretory response to catecholaminergic stimulation. Finally, PNS induced long lasting alterations in the intestinal microbiota composition. 16S rRNA gene 454 pyrosequencing revealed a strong trend towards decreased numbers of bacteria in the Lactobacillus genus, accompanied by elevated abundance of the Oscillibacter, Anaerotruncus and Peptococcus genera in PNS animals. Strikingly, relative abundance of distinct bacteria genera significantly correlated with certain respiratory parameters and the responsiveness of the HPA axis to stress. Together, these findings provide novel evidence that PNS induces long-term maladaptive alterations in the gastrointestinal and respiratory systems, accompanied by hyper-responsiveness to stress and alterations in the gut microbiota.
Collapse
Affiliation(s)
- Anna V Golubeva
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Sean Crampton
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Lieve Desbonnet
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Deirdre Edge
- Department of Physiology, University College Cork, Cork, Ireland
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Moorepark Fermoy, County Cork, Ireland
| | - Kevin W Lomasney
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Pharmacology & Therapeutics, University College Cork, Cork, Ireland
| | - Alexander V Zhdanov
- School of Biochemistry & Cell Biology, University College Cork, Cork, Ireland
| | - Fiona Crispie
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark Fermoy, County Cork, Ireland
| | - Rachel D Moloney
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Yuliya E Borre
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Paul D Cotter
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark Fermoy, County Cork, Ireland
| | - Niall P Hyland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Pharmacology & Therapeutics, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Psychiatry, University College Cork, Cork, Ireland
| | - Gerard W O'Keeffe
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland; Irish Centre for Foetal and Neonatal Translational Research (INFANT), CUMH, Cork, Ireland.
| | - John F Cryan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
7
|
Said N, Lakehayli S, Battas O, Hakkou F, Tazi A. Effects of prenatal stress on anxiety-like behavior and nociceptive response in rats. J Integr Neurosci 2015; 14:223-34. [PMID: 25873270 DOI: 10.1142/s0219635215500107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We assess the anxiety-like behavior in the open field and elevated plus maze tests and measure the nociceptive response in the tail flick test following prenatal stress exposure in adult male and female Wistar rats. In both behavioral anxiety tests, prenatal stress increased the anxiety-like behavior in male PS rats, but not in females suggesting a strong sex-dependent anxiogenic effect. The tail flick results showed a hypersensitivity to pain in male and female PS rats with a subtle gender difference. These findings suggest that prenatal stress is an important risk factor for multiple mental disorders.
Collapse
Affiliation(s)
- N Said
- Department of Pharmacology, Faculty of Medicine and Pharmacy of Casablanca, Casablanca, Morocco 20100, Morocco
| | - S Lakehayli
- Department of Pharmacology, Faculty of Medicine and Pharmacy of Casablanca, Casablanca, Morocco 20100, Morocco
| | - O Battas
- Laboratory of Clinical Neurosciences and Mental Health, Faculty of Medicine and Pharmacy of Casablanca Casablanca, Morocco 20100, Morocco
| | - F Hakkou
- Department of Pharmacology, Faculty of Medicine and Pharmacy of Casablanca, Casablanca, Morocco 20100, Morocco
| | - A Tazi
- Department of Pharmacology, Faculty of Medicine and Pharmacy of Casablanca, Casablanca, Morocco 20100, Morocco
| |
Collapse
|
8
|
Social stress and escalated drug self-administration in mice I. Alcohol and corticosterone. Psychopharmacology (Berl) 2015; 232:991-1001. [PMID: 25242256 PMCID: PMC4339510 DOI: 10.1007/s00213-014-3733-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/26/2014] [Indexed: 12/20/2022]
Abstract
RATIONALE Stress experiences have been shown to be a risk factor for alcohol abuse in humans; however, a reliable mouse model using episodic social stress has yet to be developed. OBJECTIVES The current studies investigated the effects of mild and moderate social defeat protocols on plasma corticosterone, voluntary alcohol drinking, and motivation to drink alcohol. METHODS Outbred Carworth Farms Webster (CFW) mice were socially defeated for 10 days during which the intruder mouse underwent mild (15 bites: mean = 1.5 min) or moderate (30 bites: mean = 3.8 min) stress. Plasma corticosterone was measured on days 1 and 10 of the defeat. Ethanol drinking during continuous access to alcohol was measured 10 days following the defeat or 10 days prior to, during, and 20 days after the defeat. Motivation to drink was determined using a progressive ratio (PR) operant conditioning schedule during intermittent access to alcohol. RESULTS Plasma corticosterone was elevated in both stress groups on days 1 and 10. Ethanol consumption and preference following moderate stress were higher (13.3 g/kg/day intake) than both the mild stress group (8.0 g/kg/day) and controls (7.4 g/kg/day). Mice with previously acquired ethanol drinking showed decreased alcohol consumption during the moderate stress followed by an increase 20 days post-defeat. Moderately stressed mice also showed escalated ethanol intake and self-administration during a schedule of intermittent access to alcohol. CONCLUSION Social defeat experiences of moderate intensity and duration led to increased ethanol drinking and preference in CFW mice. Ongoing work investigates the interaction between glucocorticoids and dopaminergic systems as neural mechanisms for stress-escalated alcohol consumption.
Collapse
|
9
|
Changes induced by prenatal stress in behavior and brain morphology: can they be prevented or reversed? ADVANCES IN NEUROBIOLOGY 2015; 10:3-25. [PMID: 25287533 DOI: 10.1007/978-1-4939-1372-5_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This chapter presents a critical analysis of the behavioral alterations reported in the offspring of women exposed to stress and/or depression during pregnancy and the neurochemical and structural changes underlying them. Among the alterations attributed to prenatal stress in humans and experimental rats of both sexes is impaired regulation of the hypothalamic-pituitary-adrenal (HPA) axis, anxiety and exaggerated fear of novelty, and decreased social interaction. Learning and attention deficits are more prevalent in boys and male rats. Fear of novelty and anxiety are associated with enlargement of the amygdala and its corticotropin-releasing factor content, and decreased socialization, with lower oxytocin activity in the amygdala. Learning deficits are associated with a decrease in neurogenesis, dendritic complexity, and spine number in the dorsal hippocampus. Fostering prenatally stressed (PS) pups onto control mothers prevents the dysregulation of the HPA axis and heightened anxiety, indicating a role for postnatal factors in their etiology. By contrast, learning impairment and decreased socialization are not affected by this fostering procedure and are therefore prenatally mediated.In spite of their widespread use in depressed pregnant women, selective serotonin reuptake inhibitor (SSRI) antidepressants do not normalize the behavior of their children. When administered during gestation to stressed rats, SSRIs do not reduce anxiety or learning deficits in their offspring. Moreover, when given to unstressed mothers, SSRIs induce anxiety in the offspring. The detrimental effect of SSRIs may result from inhibition of the serotonin transporter exposing the brain to excess amounts of 5-hydroxytryptamine (5-HT) at a critical time during fetal development.
Collapse
|
10
|
Influence of diurnal phase on startle response in adult rats exposed to dexamethasone in utero. Physiol Behav 2010; 102:444-52. [PMID: 21172366 DOI: 10.1016/j.physbeh.2010.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 11/19/2010] [Accepted: 12/13/2010] [Indexed: 11/23/2022]
Abstract
Depression and pathological anxiety disorders are among the most prevalent neurological diseases in the world and can be precipitated and exacerbated by stress. Prenatal stress alters both behavioral and endocrine responses to stressful stimuli in later life. We have previously observed increased basal acoustic startle response (ASR) in Wistar rats exposed to stress or dexamethasone (DEX) in utero when tested during the light phase of the circadian rhythm, and decreased prepulse inhibition (PPI) in similar animals tested during the dark phase of the cycle. We speculated that this observation of increased basal startle might be influenced by diurnal phase. In the present study, adult female Sprague Dawley rats, stressed prenatally with DEX (200 μg/kg, gestational days 14-21) and postnatally by blood sampling under restraint, were tested for the ASR during both circadian phases (light and dark). Basal startle was increased in animals tested both during the light and the dark phases of the cycle. We hereby replicated our earlier findings in a new strain and laboratory, thus strengthening the validity of our model regarding prenatal stress effects on ASR in female offspring. Our results indicate that observation of increased basal ASR is not solely dependent on diurnal phase. We found no difference in hippocampal glucocorticoid and mineral corticoid receptor expression between groups.
Collapse
|
11
|
Behavioral evaluation of adult rats exposed in utero to maternal epileptic seizures. Epilepsy Behav 2010; 18:45-9. [PMID: 20460194 DOI: 10.1016/j.yebeh.2010.02.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 11/21/2022]
Abstract
We investigated the effects of exposure to maternal convulsive seizures in utero on the behavior of offspring. An epilepsy model was induced in female rats by administration of pilocarpine. Seizure frequency was evaluated for 60 days. The rats were then allowed to mate, and seizure frequency during pregnancy was recorded and compared with prepregnancy frequency. After birth, placentas of mothers were submitted for histopathological analysis. The behavior of the offspring was evaluated 3 months after birth. There was a decline in seizure frequency even though the placentas from epileptic mothers showed areas of ischemic infarction indicative of fetal hypoxia. Offspring of epileptic mothers manifested deficits in motor coordination in the rotarod test and increased immobility in the open-field test. No changes in anxiety and depression-like behaviors were observed. These results suggest that "in utero" exposure to maternal seizures can produce motor deficits in adult life, perhaps as a result of fetal hypoxia.
Collapse
|
12
|
Prenatal and adult stress interplay — behavioral implications. Brain Res 2010; 1320:106-13. [DOI: 10.1016/j.brainres.2010.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 12/16/2009] [Accepted: 01/05/2010] [Indexed: 02/02/2023]
|
13
|
Effects of gestational stress: 2. Evaluation of male and female adult offspring. Brain Res 2009; 1302:194-204. [DOI: 10.1016/j.brainres.2009.09.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 08/26/2009] [Accepted: 09/06/2009] [Indexed: 11/18/2022]
|
14
|
Agren G, Lund I, Thiblin I, Lundeberg T. Tail skin temperatures reflect coping styles in rats. Physiol Behav 2008; 96:374-82. [PMID: 19041659 DOI: 10.1016/j.physbeh.2008.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 10/30/2008] [Accepted: 11/05/2008] [Indexed: 11/25/2022]
Abstract
This study was carried out to elucidate the predictive value of tail skin temperatures (TSTs) assessed in naïve rats as a non-invasive pre-experimental method of classification of coping style. Male Lewis rats were classified according to tail skin temperatures (TST), and relative size within cage-groups. TSTs were monitored over two-hour periods following exposure to physical and emotional stressors. Bodyweight-shifts associated to the experiments were analysed. Six organs of neuroendocrine relevance to allostasis were weighed. Challenge-specific TST-profiles were size-related and consistent with proactive or reactive coping. Pro-active (A) rats showed a more pronounced TST-response to unknown conspecifics, but reactive (B) rats to environmental novelties. B-rats showed challenge-specific weight-losses while A-rats gained more after experiments. Second size males showed rapidly decreased TSTs (vasoconstriction) after nociceptive stimulation. Males that showed the highest basal TSTs and weight-loss in emotionality tests had lost a first rank position during a pre-experimental period, suggesting long-lasting effects of social defeat. Pre-experimental growth correlated positively to adiposisity post-experimentally, but negatively to testes relative weight in B-rats. Scaling effects explained heart-size in B-rats and pituitary-size in A-rats. The overall patterns that emerged, in factor analyses including organ sizes, were consistent with pro-active coping in A-rats and reactive in B-rats. Our results, controlling for rank-effects, suggest that non-invasively assessed TSTs may predict individual stress-coping phenotypes pre-experimentally in rats housed in groups.
Collapse
Affiliation(s)
- Greta Agren
- Department of Forensic Medicine, RMV, Box 1024, SE 751 40, Uppsala, Sweden.
| | | | | | | |
Collapse
|
15
|
Kohman RA, Tarr AJ, Day CE, McLinden KA, Boehm GW. Influence of prenatal stress on behavioral, endocrine, and cytokine responses to adulthood bacterial endotoxin exposure. Behav Brain Res 2008; 193:257-68. [DOI: 10.1016/j.bbr.2008.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 05/27/2008] [Accepted: 06/05/2008] [Indexed: 12/13/2022]
|
16
|
Influence of low level maternal Pb exposure and prenatal stress on offspring stress challenge responsivity. Neurotoxicology 2008; 29:928-39. [PMID: 18951918 DOI: 10.1016/j.neuro.2008.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/19/2008] [Accepted: 09/19/2008] [Indexed: 11/20/2022]
Abstract
We previously demonstrated potentiated effects of maternal Pb exposure producing blood Pb(PbB) levels averaging 39microg/dl combined with prenatal restraint stress (PS) on stress challenge responsivity of female offspring as adults. The present study sought to determine if: (1) such interactions occurred at lower PbBs, (2) exhibited gender specificity, and (3) corticosterone and neurochemical changes contributed to behavioral outcomes. Rat dams were exposed to 0, 50 or 150ppm Pb acetate drinking water solutions from 2 mos prior to breeding through lactation (pup exposure ended at weaning; mean PbBs of dams at weaning were <1, 11 and 31microg/dl, respectively); a subset in each Pb group underwent prenatal restraint stress (PS) on gestational days 16-17. The effects of variable intermittent stress challenge (restraint, cold, novelty) on Fixed Interval (FI) schedule controlled behavior and corticosterone were examined in offspring when they were adults. Corticosterone changes were also measured in non-behaviorally tested (NFI) littermates. PS alone was associated with FI rate suppression in females and FI rate enhancement in males; Pb exposure blunted these effects in both genders, particularly following restraint stress. PS alone produced modest corticosterone elevation following restraint stress in adult females, but robust enhancements in males following all challenges. Pb exposure blunted these corticosterone changes in females, but further enhanced levels in males. Pb-associated changes showed linear concentration dependence in females, but non-linearity in males, with stronger or selective changes at 50ppm. Statistically, FI performance was associated with corticosterone changes in females, but with frontal cortical dopaminergic and serotonergic changes in males. Corticosterone changes differed markedly in FI vs. NFI groups in both genders, demonstrating a critical role for behavioral history and raising caution about extrapolating biochemical markers across such conditions. These findings demonstrate that maternal Pb interacts with prenatal stress to further modify both behavioral and corticosterone responses to stress challenge, thereby suggesting that studies of Pb in isolation from other disease risk factors will not reveal the extent of its adverse effects. These findings also underscore the critical need to extend screening programs for elevated Pb exposure, now restricted to young children, to pregnant, at risk, women.
Collapse
|
17
|
Weinstock M. The long-term behavioural consequences of prenatal stress. Neurosci Biobehav Rev 2008; 32:1073-86. [PMID: 18423592 DOI: 10.1016/j.neubiorev.2008.03.002] [Citation(s) in RCA: 697] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 02/11/2008] [Accepted: 02/11/2008] [Indexed: 12/28/2022]
Abstract
UNLABELLED Maternal distress during pregnancy increases plasma levels of cortisol and corticotrophin releasing hormone in the mother and foetus. These may contribute to insulin resistance and behaviour disorders in their offspring that include attention and learning deficits, generalized anxiety and depression. The changes in behaviour, with or independent of alterations in the function of the hypothalamic pituitary adrenal (HPA) axis, can be induced by prenatal stress in laboratory rodents and non-human primates. The appearance of such changes depends on the timing of the maternal stress, its intensity and duration, gender of the offspring and is associated with structural changes in the hippocampus, frontal cortex, amygdala and nucleus accumbens. The dysregulation of the HPA axis and behaviour changes can be prevented by maternal adrenalectomy. However, only the increased anxiety and alterations in HPA axis are re-instated by maternal injection of corticosterone. CONCLUSION Excess circulating maternal stress hormones alter the programming of foetal neurons, and together with genetic factors, the postnatal environment and quality of maternal attention, determine the behaviour of the offspring.
Collapse
Affiliation(s)
- Marta Weinstock
- Department of Pharmacology, Hebrew University, Medical Centre, Ein Kerem, Jerusalem 91120, Israel.
| |
Collapse
|
18
|
Clinton S, Miller S, Watson SJ, Akil H. Prenatal stress does not alter innate novelty-seeking behavioral traits, but differentially affects individual differences in neuroendocrine stress responsivity. Psychoneuroendocrinology 2008; 33:162-77. [PMID: 18077099 PMCID: PMC2430412 DOI: 10.1016/j.psyneuen.2007.10.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 10/24/2007] [Accepted: 10/31/2007] [Indexed: 12/18/2022]
Abstract
Exposure to stress during prenatal or early postnatal life can dramatically impact adult behavior and neuroendocrine function. We recently began to selectively breed Sprague-Dawley rats for high (high responder, HR) and low (low responder, LR) novelty-seeking behavior, a trait that predicts a variety of differences in emotional reactivity, including differences in neuroendocrine stress response, fear- and anxiety-like behavior, aggression, and propensity to self-administer drugs of abuse. We evaluated genetic-early environment interactions by exposing HR- and LR-bred animals to prenatal stress (PS) from pregnancy day 3-20, hypothesizing that PS exposure would differentially impact HR versus LR behavior and neuroendocrine reactivity. We evaluated novelty-induced locomotion, anxiety-like behavior, and corticosterone stress response in weanling (25-day-old) and adult HR-LR stressed and control males. Exposure to PS did not alter HR-LR differences in locomotion, but did impact anxiety-like behavior, specifically in LR animals. Surprisingly, LR animals exposed to PS exhibited less anxiety than LR controls. HR rats were not affected by PS, with both stress and control groups showing low levels of anxiety. PS differentially impacted neuroendocrine stress reactivity in young versus adult HR-LR animals, leading to an exaggerated corticosterone response in LR pups compared to LR controls, while HRs pups were unaffected. In contrast, exposure to PS produced an exaggerated stress response in HR adults, compared to HR controls, while LR animals were not significantly affected. These findings highlight how genetic predisposition may shape individual's response to early life stressors, and furthermore, show that a history of early life stress may differentially impact an organism at different points in life. Future work will explore neural mechanisms which underlie the different behavioral and neuroendocrine consequences of PS in HR versus LR animals.
Collapse
Affiliation(s)
- Sarah Clinton
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Place, Ann Arbor, MI 48109-0720, USA.
| | | | | | | |
Collapse
|
19
|
Mairesse J, Viltart O, Salomé N, Giuliani A, Catalani A, Casolini P, Morley-Fletcher S, Nicoletti F, Maccari S. Prenatal stress alters the negative correlation between neuronal activation in limbic regions and behavioral responses in rats exposed to high and low anxiogenic environments. Psychoneuroendocrinology 2007; 32:765-76. [PMID: 17666188 DOI: 10.1016/j.psyneuen.2007.03.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 03/25/2007] [Accepted: 03/29/2007] [Indexed: 11/27/2022]
Abstract
Behavioral adaptation to an anxiogenic environment involves the activity of various interconnected limbic regions, such as the amygdala, hippocampus and prefrontal cortex. Prenatal stress (PS) in rats affects the ability to cope with environmental challenges and alters brain plasticity, leading to long-lasting behavioral and neurobiological alterations. We examined in PS and control animals whether behavioral reactivity was correlated to neuronal activation by assessing Fos protein expression in limbic regions of rats exposed to a low or high anxiogenic environment (the closed and open arms of an elevated plus maze, respectively). A negative correlation was found between behavioral and neuronal activation, with a lower behavioral reactivity and a higher neuronal response observed in rats exposed to the more anxiogenic environment (the open arm) with respect to the less anxiogenic environment (the closed arm). Interestingly, the variation in the neurobehavioral response between the two arms of the maze was less pronounced in rats that had been subjected to PS. This study provides a remarkable example of how long-lasting changes in brain plasticity induced by PS affect the ability of limbic neurons to cope with anxiogenic stimuli of different strength.
Collapse
Affiliation(s)
- Jérôme Mairesse
- Neuroscience/Perinatal Stress Team, Univ. Lille 1, 59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Weinstock M. Gender differences in the effects of prenatal stress on brain development and behaviour. Neurochem Res 2007; 32:1730-40. [PMID: 17406975 DOI: 10.1007/s11064-007-9339-4] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 03/16/2007] [Indexed: 11/30/2022]
Abstract
An increased incidence of anxiety, depression and attention deficits in children has been linked to psychological stress during pregnancy. Subjection of a pregnant rat to stress at a time when the foetal limbic and hypothalamic pituitary adrenal (HPA) axes develop results in anxiogenic and depressive behaviour and learning and attention deficits in the offspring, which depend on its gender, intensity and timing of the maternal stress and behaviour being tested. Maternal stress increases corticosterone levels in the foetal brain, decreases foetal testosterone and brain aromatase activity in males, and alters brain catecholamine activity to that in females. Learning deficits, reductions in hippocampal neurogenesis, LTP and dendritic spine density in the prefrontal cortex are more readily seen in prenatally-stressed males, while anxiety, depression and increased response of the HPA axis to stress are more prevalent in females. Genders may differ in the sensitivity of developing brain areas to stress hormones.
Collapse
Affiliation(s)
- Marta Weinstock
- Department of Pharmacology, Hebrew University Medical Centre, Ein Kerem, Jerusalem, 91120, Israel.
| |
Collapse
|
21
|
Barros VG, Rodríguez P, Martijena ID, Pérez A, Molina VA, Antonelli MC. Prenatal stress and early adoption effects on benzodiazepine receptors and anxiogenic behavior in the adult rat brain. Synapse 2007; 60:609-18. [PMID: 17019679 DOI: 10.1002/syn.20336] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chronic maternal stress during pregnancy has been associated with behavioral alterations that persist into adulthood. Moreover, adoption procedures performed immediately after birth can reverse these alterations. In this study, we examined the effects of prenatal restraint stress and adoption at birth (cross-fostering) on the behavioral response to an anxiety-provoking situation and on the adult male offspring expression of benzodiazepine (BDZ) receptors in selected brain areas. Adult offspring of rats stressed during the last week of pregnancy exhibited higher levels of anxiety than control rats. The anxiogenic behavior found at the elevated plus maze (EPM) has been related to the reduced levels of BDZ receptor levels in specific brain areas. Adult offspring of rats stressed during pregnancy exhibited a decrease in the number of BDZ receptors binding sites in the central amygdaloid nucleus (Ce), CA1, CA3, and the dentate gyrus regions of the hippocampus when compared to controls. Regarding the adoption procedure, control pups raised by a foster gestationally stressed mother showed similar levels of anxiety as stressed groups. Stressed offspring raised by a foster control mother showed reduced anxiety levels compared to that of the control groups. Adoption per se showed no difference in time spent, neither in the open arms of the plus maze nor in BDZ receptor levels, when compared to the corresponding control and stressed groups. Stressed offspring raised by a foster control mother reverted BDZ receptor levels to control values. However, control pups raised by a gestationally stressed foster mother showed similar values compared to the control offspring in hippocampus, in spite of showing an anxiogenic behavior in the EPM. We found a significant increase of Ce BDZ receptor levels in control offspring raised by a foster stressed mother that could be explained as a compensatory effect to a GABA receptor desensitization. In summary, the behavioral outcome of the adult offspring is vulnerable both to the stress experience during the late prenatal period as well as to possible variations in care during lactation by mothers subjected to chronic stress during gestation. There seems to be a direct correlation between anxiety state and BDZ receptor levels in the adult offspring raised by their biological mothers. However, the mechanism of BDZ regulation leading to an anxious behavior might be different if the insult is received only postnatally as opposed to both pre and postnatally.
Collapse
Affiliation(s)
- Virginia G Barros
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
22
|
Götz AA, Stefanski V. Psychosocial maternal stress during pregnancy affects serum corticosterone, blood immune parameters and anxiety behaviour in adult male rat offspring. Physiol Behav 2007; 90:108-15. [PMID: 17067641 DOI: 10.1016/j.physbeh.2006.09.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 09/05/2006] [Accepted: 09/08/2006] [Indexed: 11/28/2022]
Abstract
Exposure to prenatal stress can impair the behavioural and hormonal development in mammals. However, the consequences for the immune system are rarely investigated and there is only limited evidence that naturalistic prenatal stressors do also have the potential to affect the offspring. Thus, by using a social conflict model in female Long-Evans rats, we investigated the effects of prenatal social stress on several behavioural, hormonal and immunological parameters. Offspring from stressed and non-stressed pregnant females were housed in pairs after weaning, and tested at an age of 4-6 months. Prenatally stressed (PS) males were more active in the elevated plus-maze test as indicated by significantly more frequent entries into the open arms compared to prenatal control males (PC). In addition, PS males had significantly lower serum corticosterone concentrations under basal conditions as well as after ACTH-challenge. The basal number of total leukocytes was significantly lower in the PS group due to significantly lower lymphocyte counts. In particular, the CD4+ T-helper cell subset was affected. The lymphocyte proliferation to pokeweed mitogen was lower in PS males. Because some of the present findings do not correspond to previous studies using conventional stressors, we assume that the nature of the stressor plays an important role for pregnancy outcome and behaviour and physiology of the offspring in later life.
Collapse
Affiliation(s)
- Alexander A Götz
- Department of Animal Physiology, University of Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany.
| | | |
Collapse
|
23
|
Koenig JI. Schizophrenia: a unique translational opportunity in behavioral neuroendocrinology. Horm Behav 2006; 50:602-11. [PMID: 16870188 DOI: 10.1016/j.yhbeh.2006.06.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 06/23/2006] [Accepted: 06/25/2006] [Indexed: 12/19/2022]
Abstract
Schizophrenia is a complex and debilitating neuropsychiatric disease in which both environmental and genetic factors contribute to the pathophysiology of the disease. Epidemiological data point to the importance of the prenatal period in the genesis of schizophrenia and suggest that environmental factors, such as stress and hormones of the hypothalamic-pituitary-adrenal axis, may establish a vulnerability to the disease. Unfortunately, the exact cause of this neurodevelopmental disease is unclear. In this review, data on the importance of gestational stress exposure to the etiology of schizophrenia-like behavioral, endocrine and molecular phenotypes will be presented and differences will be highlighted between the preparations that are commonly used in most laboratory investigations.
Collapse
Affiliation(s)
- James I Koenig
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD 21228, USA.
| |
Collapse
|
24
|
Abstract
The amygdala plays a critical role in generating the emotion of fear, and alterations in amygdala fear processing are thought to underlie the acquisition and maintenance of anxiety disorders. The prenatally stressed (PS) rat displays hormonal, behavioral and brain anatomical similarities to anxious humans and is useful to study the neurobiological underpinnings of pathological anxiety. We studied PS and control male rats at postnatal days 7 (P7), P25, P45 and P60. Using unbiased stereological analyses we examined the volumes, anterior-posterior lengths and total numbers of neurons and glia of the basolateral (BL), central (Ce) and lateral (La) amygdalar nuclei. We found prenatal stress-associated differences in the developmental trajectories of each nucleus. These were apparent in some measures as early as P7, most extensive at P25 and resolved by P45, at least as seen by Nissl staining. These changes were not a result of differential brain growth. This early divergence in developmental trajectories seen here may be the harbinger of PS rat amygdalas that ultimately function very differently in adulthood.
Collapse
Affiliation(s)
- Michał Kraszpulski
- Medical University of Gdańsk, Laboratory of Electron Microscopy, Gdańsk, Poland
| | | | | |
Collapse
|
25
|
Estanislau C, Morato S. Behavior ontogeny in the elevated plus‐maze: prenatal stress effects. Int J Dev Neurosci 2006; 24:255-62. [PMID: 16698220 DOI: 10.1016/j.ijdevneu.2006.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 02/24/2006] [Accepted: 03/02/2006] [Indexed: 11/16/2022] Open
Abstract
Prenatal stress is a putative model for studying some psychopathological disorders. Indeed, submitting pregnant animals to stress leads to enhanced anxiety in the adult offspring. However, little is known about how prenatal stress effects interacts with anxiety throughout development. To study this issue, prenatally stressed rats were tested in the elevated plus-maze at different ages. During pregnancy female rats were submitted to uncontrollable electric foot shock sessions every other day or kept undisturbed (controls). After delivery, litters from control and stressed dams were left undisturbed from the 3rd to the 14th postnatal days. Male and female rats were tested in the elevated plus-maze at the ages of 30, 45 or 60 days. The following measures were taken in the elevated plus-maze: number of entries and time spent in the arms (or their extremities) and frequency and time spent in naturalistic behaviors (stretching, rearing, end exploring, grooming and head dipping). Decreases in the percentage of entries into and in the time spent (only females) in the open arms were shown by 60-day-old prenatally stressed rats, but not by 30- and 45-day old. Increased open arm ends exploration was shown by 45-day-old prenatally stressed males. Rearing behavior was found to increase with age, a phenomenon more pronounced in females. Additionally, at the younger ages prenatally stressed rats were heavier than controls, an effect which disappeared at young adulthood. In conclusion, anxiogenic prenatal stress effects in the elevated plus-maze could only be detected at early adulthood, not before. Nonetheless, at late adolescence (45 days of age) prenatal stress leaded to an anxiolytic-like effect which can be interpreted as increased risk-taking behavior.
Collapse
Affiliation(s)
- Celio Estanislau
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14040-901 Ribeirão Preto-SP, Brazil
| | | |
Collapse
|
26
|
Jarvis S, Moinard C, Robson SK, Baxter E, Ormandy E, Douglas AJ, Seckl JR, Russell JA, Lawrence AB. Programming the offspring of the pig by prenatal social stress: neuroendocrine activity and behaviour. Horm Behav 2006; 49:68-80. [PMID: 15961089 DOI: 10.1016/j.yhbeh.2005.05.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 04/29/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
This study provides evidence in the pig that stress experienced during gestation has long-lasting effects on offspring daughters, including their maternal behaviour. Thirty-six primiparous sows were divided into control and two groups that were stressed (by social mixing) during either the second (Mix 2) or third (Mix 3) trimester of pregnancy. We found detrimental effects of mixing on the mothers' growth, body lesions, and cortisol secretion, but did not observe any significant effects on reproductive parameters including birth weight. At 60 days of age, 48 daughters were randomly selected from the three treatments: half were challenged using a restraint and isolation test. Then, all were culled and brain tissue was collected. In situ hybridisation measurements showed increased expression of CRH mRNA in the PVN in unrestrained Mix 2 and in the amygdala of Mix 2 and Mix 3 daughters. At 67 days, 24 further daughters were mixed to measure their responses to this social stress. All showed increased salivary cortisol secretion, but Mix 2 and Mix 3 daughters showed a greater and longer response than controls. Finally, all 24 were inseminated and at parturition maternal behaviour was measured. Mix 2 and Mix 3 daughters were more restless and more responsive to piglets that approached the head of the sow, traits which previously have been shown to be a component of abnormal maternal behaviour. Indeed, Mix 2 and Mix 3 daughters also tended to bite at their piglets more than control daughters.
Collapse
Affiliation(s)
- Susan Jarvis
- Animal Behaviour and Welfare, Sustainable Livestock Systems, Scottish Agricultural College, Edinburgh, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Estanislau C, Morato S. Prenatal stress produces more behavioral alterations than maternal separation in the elevated plus-maze and in the elevated T-maze. Behav Brain Res 2005; 163:70-7. [PMID: 15941599 DOI: 10.1016/j.bbr.2005.04.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 04/11/2005] [Accepted: 04/12/2005] [Indexed: 11/22/2022]
Abstract
Prenatal stress and maternal separation are used in a large number of studies on early adversity consequences and present some similarities in their effects. The present work investigates the behavioral effects of these two procedures on two models of anxiety: the elevated plus-maze and the elevated T-maze. During pregnancy, female rats were submitted to uncontrollable electric foot shock sessions every other day or kept undisturbed. After delivery, litters from undisturbed dams were submitted to either 180-min daily periods of maternal separations from the 3-14th postnatal days or maintained with the dams all the time. Litters from the stressed dams were left undisturbed from the 3-14th postnatal days. Only males were tested. In adulthood, rats were tested in the elevated T-maze or in the elevated plus-maze. In the latter procedure half the subjects were submitted to a 60-min period of restraint immediately before being tested. The following measures were taken in the elevated plus-maze: frequency and time spent in entries into the arms, stretching, rearing, grooming and head dipping. In the T-maze measures of avoidance and escape latencies were used. Our data indicated that prenatal stress had more pronounced anxiogenic effects than maternal separation, as judged by reduced exploration of the open arms of the elevated plus-maze, but mainly after the restraint stress, and increase in avoidance latencies in the elevated T-maze. The other measures not directly involved in the elevated plus-maze arm exploration yielded similar results. Our data indicate that prenatal stress causes more anxiogenic effects in adulthood than maternal separation but, in the elevated plus-maze, these anxiogenic effects are better seen immediately after an acute stress.
Collapse
Affiliation(s)
- Celio Estanislau
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14040-901 Ribeirão Preto-SP, Brazil
| | | |
Collapse
|
28
|
Hougaard KS, Andersen MB, Kjaer SL, Hansen AM, Werge T, Lund SP. Prenatal stress may increase vulnerability to life events: comparison with the effects of prenatal dexamethasone. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 159:55-63. [PMID: 16085319 DOI: 10.1016/j.devbrainres.2005.06.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 06/24/2005] [Accepted: 06/27/2005] [Indexed: 11/18/2022]
Abstract
Prenatal stress has been associated with a variety of alterations in the offspring. The presented observations suggest that rather than causing changes in the offspring per se, prenatal stress may increase the organism's vulnerability to aversive life events. Offspring of rat dams stressed gestationally by chronic mild stress (CMS, a variable schedule of different stressors) or dexamethasone (DEX, a synthetic glucocorticoid, i.e., a pharmacological stressor) was tested for reactivity by testing their acoustic startle response (ASR). Two subsets of offspring were tested. One was experimentally naïve at the time of ASR testing, whereas the other had been through blood sampling for assessment of the hormonal stress response to restraint, 3 months previously. Both prenatal CMS and dexamethasone increased ASR in the offspring compared to controls, but only in prenatally stressed offspring that had been blood sampled 3 months previously. In conclusion, similarity of the effects of maternal gestational exposure to a regular stress schedule and of exposure to a synthetic glucocorticoid suggests that maternal glucocorticoids may be a determining factor for changes in the regulatory mechanisms of the acoustic startle response. Further, a single aversive life event showed capable of changing the reactivity of prenatally stressed offspring, whereas offspring of dams going through a less stressful gestation was largely unaffected by this event. This suggests that circumstances dating back to the very beginning of life affect the individual's sensitivity towards experiences in life after birth. The prenatal environment may thus form part of the explanation of the considerable individual variation in the development of psychopathology.
Collapse
Affiliation(s)
- Karin S Hougaard
- National Institute of Occupational Health, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
29
|
Tazumi T, Hori E, Uwano T, Umeno K, Tanebe K, Tabuchi E, Ono T, Nishijo H. Effects of prenatal maternal stress by repeated cold environment on behavioral and emotional development in the rat offspring. Behav Brain Res 2005; 162:153-60. [PMID: 15885819 DOI: 10.1016/j.bbr.2005.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 03/12/2005] [Accepted: 03/18/2005] [Indexed: 10/25/2022]
Abstract
It has been reported that many types of stresses, which caused physiological and psychological alterations in dams as prenatal maternal stress, affected behavioral and emotional traits of their offspring. However, effects of environmental temperature changes, which induce various stress responses in both animals and humans, have not been assessed as prenatal maternal stress. Repeated cold stress (RCS) is a type of chronic cold stress in which environmental temperature changes rapidly and frequently several times within a day. In the present study, to investigate effects of chronic maternal stress by the RCS on behavioral and emotional development of the rat offspring (prenatal RCS rats), the RCS stress was loaded to pregnant rats between day 9 and 19 after fertilization. The prenatal RCS rats showed similar locomotor activity in an open field to control rats that were borne by non-stressed pregnant rats. On the other hand, the prenatal RCS rats showed significantly higher startle responses than the control rats in a light enhanced startle paradigm. However, treatment of diazepam decreased the startle responses in the prenatal RCS rats to the same degree as those in the control rats. The results indicated that prenatal RCS affected emotional development of the rat offspring, but not locomotor activity. Comparison of the present results with the previous studies suggests that there might be unknown common mechanisms among different prenatal maternal stresses that induce similar behavioral developmental alteration.
Collapse
Affiliation(s)
- Tooru Tazumi
- System Emotional Science, Graduate School of Medicine, Toyama Medical and Pharmaceutical University, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Roussel S, Boissy A, Montigny D, Hemsworth PH, Duvaux-Ponter C. Gender-specific effects of prenatal stress on emotional reactivity and stress physiology of goat kids. Horm Behav 2005; 47:256-66. [PMID: 15708753 DOI: 10.1016/j.yhbeh.2004.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 07/07/2004] [Accepted: 09/21/2004] [Indexed: 11/22/2022]
Abstract
The aims of this study were to investigate the effects of maternal stress during pregnancy on the emotional reactivity, the hypothalamo-pituitary-adrenocortical (HPA) axis, and the sympatho-adrenomedullary (SAM) system of goat offspring according to their gender, and to investigate the role of maternal cortisol in prenatal stress effects. Goats were exposed to ten transports in isolation or ten ACTH injections (0.125 IU/kg body weight) during the last third of pregnancy. Control goats remained undisturbed. No effect of repeated transport during the last third of pregnancy was found on basal cortisol concentrations of the offspring. However, an increase in phenylethanolamine N-methyl transferase activity in the adrenals was observed in prenatally stressed kids compared to control kids (P = 0.031). In the presence of novelty, prenatally stressed female kids were more active (P = 0.049) than control females; they also showed more signs of arousal (P = 0.039) and tended to explore more of their environment (P = 0.053) in reaction to a startling stimulus. On the contrary, prenatally stressed male kids tended to be less active (P = 0.051) than control male kids but showed more signs of distress (P = 0.047) in the presence of novelty. Intermediate effects were found on the emotional reactivity to novelty of kids born from dams given injections of ACTH. In conclusion, transport stress in pregnant goats affects the sympatho-adrenomedullary system and the emotional reactivity of their offspring in a gender-specific manner. Moreover, the effects of prenatal transport and ACTH injections showed some similarities but differed in some critical details.
Collapse
Affiliation(s)
- S Roussel
- UMR INRA INA P-G, Physiologie de la Nutrition et Alimentation, Institut National Agronomique Paris-Grignon, 16 rue Claude Bernard, 75231 Paris Cedex 05, France.
| | | | | | | | | |
Collapse
|
31
|
Brandewiede J, Schachner M, Morellini F. Ethological analysis of the senescence-accelerated P/8 mouse. Behav Brain Res 2005; 158:109-21. [PMID: 15680199 DOI: 10.1016/j.bbr.2004.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 08/13/2004] [Accepted: 08/18/2004] [Indexed: 11/18/2022]
Abstract
Behaviour of senescence-accelerated (P/8) and resistant (R/1) mice was assessed using an ethological approach in a longitudinal study for exploratory and anxiety related behaviours (home cage activity, open field, elevated plus-maze and new object tests), cognitive abilities (step-down and step-through passive avoidance and water maze tests) and visual acuity (visible cliff test). Overall, P/8 mice showed higher activity induced by new environmental stimuli, higher anxiety and lower novelty seeking behaviour in the new object test than R/1 mice. P/8 mice showed an impaired performance as compared to R/1 mice in two passive avoidance tasks. Behavioural alterations of P/8 mice were already apparent at the age of 10-12 weeks. Factor analyses indicated that the impairment of P/8 mice in passive avoidance tasks relates to their altered exploratory and anxiety-related behaviour rather than to cognitive impairments. In the water maze, both strains performed badly in the visible platform task, suggesting poor visual abilities in both strains as supported by the visible cliff test. We conclude that, for a better interpretation of cognitive abilities of P/8 mice, tests not based on novelty-induced behaviour, visual acuity and good motor skills should be used. Finally, we question whether P/8 mice could be a model of some forms of neuropsychiatric disorders resulting from developmental abnormalities rather than aging.
Collapse
Affiliation(s)
- Joerg Brandewiede
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Martinistr. 52, D-20246 Hamburg, Germany
| | | | | |
Collapse
|
32
|
Holmes A, le Guisquet AM, Vogel E, Millstein RA, Leman S, Belzung C. Early life genetic, epigenetic and environmental factors shaping emotionality in rodents. Neurosci Biobehav Rev 2005; 29:1335-46. [PMID: 16095695 DOI: 10.1016/j.neubiorev.2005.04.012] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2004] [Revised: 03/31/2005] [Accepted: 04/01/2005] [Indexed: 01/06/2023]
Abstract
Childhood trauma is known to increase risk for emotional disorders and addiction. However, little is currently understood about the neurodevelopmental basis of these effects, or how genetic and epigenetic factors interact with the environment to shape the systems subserving emotionality. In this review, we discuss the use of rodent models of early life emotional experience to study these issues in the laboratory and present some of our pertinent findings. In rats, postnatal maternal separation can produce lasting increases in emotional behavior and stressor-reactivity, together with alterations in various brain neurotransmitter systems implicated in emotionality, including corticotropin-releasing factor, serotonin, norepinephrine, and glutamate. Genetic differences between inbred mouse strains have been exploited to further study how maternal behavior affects emotional development using techniques such as cross-fostering and generation of inter-strain hybrids. Together with our own recent data, the findings of these studies demonstrate the pervasive influence of maternal and social environments during sensitive developmental periods and reveal how genetic factors determine how these early life experiences can shape brain and behavior throughout life.
Collapse
Affiliation(s)
- Andrew Holmes
- Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, MD 20892-1256, Rockville, MD 20852, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Boksa P. Animal models of obstetric complications in relation to schizophrenia. ACTA ACUST UNITED AC 2004; 45:1-17. [PMID: 15063096 DOI: 10.1016/j.brainresrev.2004.01.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2004] [Indexed: 12/16/2022]
Abstract
Epidemiological studies have provided strong evidence that exposure to obstetric complications is associated with an increased risk for later development of schizophrenia. These human studies have now begun to tease out which specific pregnancy, labor/delivery or neonatal complications might confer greatest risk for schizophrenia. Animal modeling can be a useful tool to directly ask if a particular obstetric complication can actually cause changes in brain function or behavior resembling changes in schizophrenia. This review describes currently available animal models for some of the obstetric complications with greatest effect size for schizophrenia, including maternal diabetes, preeclampsia, infection and stress during pregnancy, intrauterine growth retardation and fetal/neonatal hypoxia. Where available, evidence that these types of obstetric complications in animals produce alterations in CNS function or behavior, related to features of schizophrenic pathology, is presented. Animal models might provide insights into the mechanisms by which specific obstetric complications have long-term influence on brain development leading to increased risk for schizophrenia. Factors common to several obstetric complications associated with schizophrenia may also be discerned. In this way, animal modeling may provide the framework for human studies to ask further more refined questions concerning the role of specific obstetric factors contributing to schizophrenia, and may provide clues to prevention.
Collapse
Affiliation(s)
- Patricia Boksa
- Department of Psychiatry, McGill University, Douglas Hospital Research Centre, 6875 LaSalle Boulevard, Montreal, Quebec, Canada H4H 1R3.
| |
Collapse
|