1
|
Zoicas I, Licht C, Mühle C, Kornhuber J. Repetitive transcranial magnetic stimulation (rTMS) for depressive-like symptoms in rodent animal models. Neurosci Biobehav Rev 2024; 162:105726. [PMID: 38762128 DOI: 10.1016/j.neubiorev.2024.105726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) emerged as a non-invasive brain stimulation technique in the treatment of psychiatric disorders. Both preclinical and clinical studies as well as systematic reviews provide a heterogeneous picture, particularly concerning the stimulation protocols used in rTMS. Here, we present a review of rTMS effects in rodent models of depressive-like symptoms with the aim to identify the most relevant factors that lead to an increased therapeutic success. The influence of different factors, such as the stimulation parameters (stimulus frequency and intensity, duration of stimulation, shape and positioning of the coil), symptom severity and individual characteristics (age, species and genetic background of the rodents), on the therapeutic success are discussed. Accumulating evidence indicates that rTMS ameliorates a multitude of depressive-like symptoms in rodent models, most effectively at high stimulation frequencies (≥5 Hz) especially in adult rodents with a pronounced pathological phenotype. The therapeutic success of rTMS might be increased in the future by considering these factors and using more standardized stimulation protocols.
Collapse
Affiliation(s)
- Iulia Zoicas
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Psychiatry and Psychotherapy, Schwabachanlage 6, Erlangen 91054, Germany.
| | - Christiane Licht
- Paracelsus Medical University, Department of Psychiatry and Psychotherapy, Prof.-Ernst-Nathan-Str. 1, Nürnberg 90419, Germany
| | - Christiane Mühle
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Psychiatry and Psychotherapy, Schwabachanlage 6, Erlangen 91054, Germany
| | - Johannes Kornhuber
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Psychiatry and Psychotherapy, Schwabachanlage 6, Erlangen 91054, Germany
| |
Collapse
|
2
|
Cruz APM, Castro-Gomes V, Landeira-Fernandez J. An animal model of trait anxiety: Carioca high freezing rats as a model of generalized anxiety disorder. PERSONALITY NEUROSCIENCE 2024; 7:e6. [PMID: 38384665 PMCID: PMC10877273 DOI: 10.1017/pen.2023.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 02/23/2024]
Abstract
Despite being one of the main components of anxiety and playing a pivotal role in how an individual perceives and copes with anxiogenic situations or responds to a given treatment, trait anxiety is paradoxically omitted in most animal models of anxiety. This is problematic and particularly more concerning in models that are used to screen drugs and other treatments for specific anxiety disorders and to investigate their neurobiological mechanisms. Our group has been engaged in the search for specific anxiety-related traits in animal models of anxiety. We developed two new lines of rats with strong phenotypic divergence for high (Carioca High-conditioned Freezing [CHF]) and low (Carioca Low-conditioned Freezing [CLF]) trait anxiety as expressed in the contextual fear conditioning paradigm. Here, we summarize key behavioral, pharmacological, physiological, and neurobiological differences in one these lines, the CHF rat line, relative to randomized-cross controls and discuss how far they represent a valid and reliable animal model of generalized anxiety disorder and so high trait anxiety.
Collapse
Affiliation(s)
- Antonio Pedro Mello Cruz
- Laboratory of Psychobiology and Behavioral Neuroscience, Institute of Psychology, University of Brasilia, Brasilia, Federal District, Brazil
| | - Vitor Castro-Gomes
- Institute of Psychology, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - J. Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Gryksa K, Schmidtner AK, Masís-Calvo M, Rodríguez-Villagra OA, Havasi A, Wirobski G, Maloumby R, Jägle H, Bosch OJ, Slattery DA, Neumann ID. Selective breeding of rats for high (HAB) and low (LAB) anxiety-related behaviour: A unique model for comorbid depression and social dysfunctions. Neurosci Biobehav Rev 2023; 152:105292. [PMID: 37353047 DOI: 10.1016/j.neubiorev.2023.105292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Animal models of selective breeding for extremes in emotionality are a strong experimental approach to model psychopathologies. They became indispensable in order to increase our understanding of neurobiological, genetic, epigenetic, hormonal, and environmental mechanisms contributing to anxiety disorders and their association with depressive symptoms or social deficits. In the present review, we extensively discuss Wistar rats selectively bred for high (HAB) and low (LAB) anxiety-related behaviour on the elevated plus-maze. After 30 years of breeding, we can confirm the prominent differences between HAB and LAB rats in trait anxiety, which are accompanied by consistent differences in depressive-like, social and cognitive behaviours. We can further confirm a single nucleotide polymorphism in the vasopressin promotor of HAB rats causative for neuropeptide overexpression, and show that low (or high) anxiety and fear levels are unlikely due to visual dysfunctions. Thus, HAB and LAB rats continue to exist as a reliable tool to study the multiple facets underlying the pathology of high trait anxiety and its comorbidity with depression-like behaviour and social dysfunctions.
Collapse
Affiliation(s)
- Katharina Gryksa
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Anna K Schmidtner
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Marianella Masís-Calvo
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Odir A Rodríguez-Villagra
- Centro de Investigación en Neurosciencias, Universidad de Costa Rica, San Pedro, San José, Costa Rica.
| | - Andrea Havasi
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Gwendolyn Wirobski
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Rodrigue Maloumby
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Herbert Jägle
- Department of Ophthalmology, University Hospital of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Heinrich-Hoffmann-Straße 10, 60528 Frankfurt am Main, Germany.
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| |
Collapse
|
4
|
Manno FAM, Cheung P, Basnet V, Khan MS, Mao Y, Pan L, Ma V, Cho WC, Tian S, An Z, Feng Y, Cai YL, Pienkowski M, Lau C. Subtle alterations of vestibulomotor functioning in conductive hearing loss. Front Neurosci 2023; 17:1057551. [PMID: 37706156 PMCID: PMC10495589 DOI: 10.3389/fnins.2023.1057551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/08/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction Conductive hearing loss (CHL) attenuates the ability to transmit air conducted sounds to the ear. In humans, severe hearing loss is often accompanied by alterations to other neural systems, such as the vestibular system; however, the inter-relations are not well understood. The overall goal of this study was to assess vestibular-related functioning proxies in a rat CHL model. Methods Male Sprague-Dawley rats (N=134, 250g, 2months old) were used in a CHL model which produced a >20dB threshold shift induced by tympanic membrane puncture. Auditory brainstem response (ABRs) recordings were used to determine threshold depth at different times before and after CHL. ABR threshold depths were assessed both manually and by an automated ABR machine learning algorithm. Vestibular-related functioning proxy assessment was performed using the rotarod, balance beam, elevator vertical motion (EVM) and Ferris-wheel rotation (FWR) assays. Results The Pre-CHL (control) threshold depth was 27.92dB±11.58dB compared to the Post-CHL threshold depth of 50.69dB±13.98dB (mean±SD) across the frequencies tested. The automated ABR machine learning algorithm determined the following threshold depths: Pre-CHL=24.3dB, Post-CHL same day=56dB, Post-CHL 7 days=41.16dB, and Post-CHL 1 month=32.5dB across the frequencies assessed (1, 2, 4, 8, 16, and 32kHz). Rotarod assessment of motor function was not significantly different between pre and post-CHL (~1week) rats for time duration (sec) or speed (RPM), albeit the former had a small effect size difference. Balance beam time to transverse was significantly longer for post-CHL rats, likely indicating a change in motor coordination. Further, failure to cross was only noted for CHL rats. The defection count was significantly reduced for CHL rats compared to control rats following FWR, but not EVM. The total distance traveled during open-field examination after EVM was significantly different between control and CHL rats, but not for FWR. The EVM is associated with linear acceleration (acting in the vertical plane: up-down) stimulating the saccule, while the FWR is associated with angular acceleration (centrifugal rotation about a circular axis) stimulating both otolith organs and semicircular canals; therefore, the difference in results could reflect the specific vestibular-organ functional role. Discussion Less movement (EVM) and increase time to transverse (balance beam) may be associated with anxiety and alterations to defecation patterns (FWR) may result from autonomic disturbances due to the impact of hearing loss. In this regard, vestibulomotor deficits resulting in changes in balance and motion could be attributed to comodulation of auditory and vestibular functioning. Future studies should manipulate vestibular functioning directly in rats with CHL.
Collapse
Affiliation(s)
- Francis A. M. Manno
- Department of Physics, East Carolina University, Greenville, NC, United States
- Department of Biomedical Engineering, Center for Imaging Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Pikting Cheung
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Vardhan Basnet
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | | | - Yuqi Mao
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Leilei Pan
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Victor Ma
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Shile Tian
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Ziqi An
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yi-Ling Cai
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Martin Pienkowski
- Osborne College of Audiology, Salus University, Elkins Park, PA, United States
| | - Condon Lau
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
5
|
Dalto JF, Medina JH. Time-dependent inhibition of Rac1 in the VTA enhances long-term aversive memory: implications in active forgetting mechanisms. Sci Rep 2023; 13:13507. [PMID: 37598223 PMCID: PMC10439914 DOI: 10.1038/s41598-023-40434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023] Open
Abstract
The fate of memories depends mainly on two opposing forces: the mechanisms required for the storage and maintenance of memory and the mechanisms underlying forgetting, being the latter much less understood. Here, we show the effect of inhibiting the small Rho GTPase Rac1 on the fate of inhibitory avoidance memory in male rats. The immediate post-training micro-infusion of the specific Rac1 inhibitor NSC23766 (150 ng/0.5 µl/ side) into the ventral tegmental area (VTA) enhanced long-term memory at 1, 7, and 14 days after a single training. Additionally, an opposed effect occurred when the inhibitor was infused at 12 h after training while no effect was observed immediately after testing animals at 1 day. Control experiments ruled out the possibility that post-training memory enhancement was due to facilitation of memory formation since no effect was found when animals were tested at 1 h after acquisition and no memory enhancement was observed after the formation of a weak memory. Immediate post-training micro-infusion of Rac1 inhibitor into the dorsal hippocampus, or the amygdala did not affect memory. Our findings support the idea of a Rac1-dependent time-specific active forgetting mechanism in the VTA controlling the strength of a long-term aversive memory.
Collapse
Affiliation(s)
- Juliana F Dalto
- Instituto de Biología Celular y Neurociencias "Prof. Eduardo de Robertis", Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155, 3rd Floor, C1121ABG, Buenos Aires, Argentina
| | - Jorge H Medina
- Instituto de Biología Celular y Neurociencias "Prof. Eduardo de Robertis", Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155, 3rd Floor, C1121ABG, Buenos Aires, Argentina.
- Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Corder KM, Hoffman JM, Sogorovic A, Austad SN. Behavioral comparison of the C57BL/6 inbred mouse strain and their CB6F1 siblings. Behav Processes 2023; 207:104836. [PMID: 36720324 PMCID: PMC10184519 DOI: 10.1016/j.beproc.2023.104836] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023]
Abstract
A large portion of basic biomedical research studies are conducted using genetically defined, inbred mouse strains. The C57BL/6 mouse strain is the most widely used genetic background in current rodent research. The rationale for using inbred strains is that all individuals are genetically identical with minimal phenotypic variation, allowing for more statistically powerful analyses. F1 hybrids between two inbred strains are also genetically identical to one another but are heterozygous at every locus at which the parental strains differ rather than homozygous. Both theoretical and empirical evidence suggests that this heterozygosity in F1 hybrids allow for potentially greater resilience in response to the inevitable stresses of laboratory environments. The purpose of this study was to characterize the differences in commonly used tests of physical performance (forelimb grip strength and rotarod) and anxiety-like behavior between the F1 hybrids created from BALB/c females mated to C57BL/6 males (called CB6F1 mice) and one of its parental strains, C57BL/6. We used a natural cross-fostering breeding scheme to minimize maternal care effects and emphasize the effects of genetic differences. We found significant correlations between anxiety-like behavioral measures and physical performance measures which are not traditionally associated with anxiety-like behavior, and which differ between strains. Findings from this study should be taken into consideration when designing behavioral studies and choosing model organisms.
Collapse
Affiliation(s)
- Katelynn M Corder
- University of Alabama at Birmingham, Department of Biology, 1300 University Blvd, Birmingham, AL 35233, USA; Samford University, Department of Biological and Environmental Sciences, 800 Lakeshore Dr, Homewood, AL 35229.
| | - Jessica M Hoffman
- University of Alabama at Birmingham, Department of Biology, 1300 University Blvd, Birmingham, AL 35233, USA.
| | - Anamarija Sogorovic
- University of Alabama at Birmingham, Department of Biology, 1300 University Blvd, Birmingham, AL 35233, USA.
| | - Steven N Austad
- University of Alabama at Birmingham, Department of Biology, 1300 University Blvd, Birmingham, AL 35233, USA.
| |
Collapse
|
7
|
Understanding the complex interplay of persistent and antipersistent regimes in animal movement trajectories as a prominent characteristic of their behavioral pattern profiles: Towards an automated and robust model based quantification of anxiety test data. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
8
|
Aleshin VA, Sibiryakina DA, Kazantsev AV, Graf AV, Bunik VI. Acylation of the Rat Brain Proteins is Affected by the Inhibition of Pyruvate Dehydrogenase in vivo. BIOCHEMISTRY (MOSCOW) 2023; 88:105-118. [PMID: 37068879 DOI: 10.1134/s0006297923010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Organism adaptation to metabolic challenges requires coupling of metabolism to gene expression. In this regard, acylations of histones and metabolic proteins acquire significant interest. We hypothesize that adaptive response to inhibition of a key metabolic process, catalyzed by the acetyl-CoA-generating pyruvate dehydrogenase (PDH) complex, is mediated by changes in the protein acylations. The hypothesis is tested by intranasal administration to animals of PDH-specific inhibitors acetyl(methyl)phosphinate (AcMeP) or acetylphosphonate methyl ester (AcPMe), followed by the assessment of physiological parameters, brain protein acylation, and expression/phosphorylation of PDHA subunit. At the same dose, AcMeP, but not AcPMe, decreases acetylation and increases succinylation of the brain proteins with apparent molecular masses of 15-20 kDa. Regarding the proteins of 30-50 kDa, a strong inhibitor AcMeP affects acetylation only, while a less efficient AcPMe mostly increases succinylation. The unchanged succinylation of the 30-50 kDa proteins after the administration of AcMeP coincides with the upregulation of desuccinylase SIRT5. No significant differences between the levels of brain PDHA expression, PDHA phosphorylation, parameters of behavior or ECG are observed in the studied animal groups. The data indicate that the short-term inhibition of brain PDH affects acetylation and/or succinylation of the brain proteins, that depends on the inhibitor potency, protein molecular mass, and acylation type. The homeostatic nature of these changes is implied by the stability of physiological parameters after the PDH inhibition.
Collapse
Affiliation(s)
- Vasily A Aleshin
- Belozersky Institute of Physico-Chemical Biology, Department of Biokinetics, Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Biochemistry, Sechenov University, Moscow, 119048, Russia
| | - Daria A Sibiryakina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexey V Kazantsev
- Belozersky Institute of Physico-Chemical Biology, Department of Biokinetics, Lomonosov Moscow State University, Moscow, 119234, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anastasia V Graf
- Belozersky Institute of Physico-Chemical Biology, Department of Biokinetics, Lomonosov Moscow State University, Moscow, 119234, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Victoria I Bunik
- Belozersky Institute of Physico-Chemical Biology, Department of Biokinetics, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Department of Biochemistry, Sechenov University, Moscow, 119048, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
9
|
Lages YV, Balthazar L, Krahe TE, Landeira-Fernandez J. Pharmacological and Physiological Correlates of the Bidirectional Fear Phenotype of the Carioca Rats and Other Bidirectionally Selected Lines. Curr Neuropharmacol 2023; 21:1864-1883. [PMID: 36237160 PMCID: PMC10514533 DOI: 10.2174/1570159x20666221012121534] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/08/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
The Carioca rat lines originated from the selective bidirectional breeding of mates displaying extreme defense responses to contextual conditioned fear. After three generations, two distinct populations could be distinguished: the Carioca High- and Low-conditioned Freezing rats, CHF, and CLF, respectively. Later studies identified strong anxiety-like behaviors in the CHF line, while indications of impulsivity and hyperactivity were prominent in the CLF animals. The present review details the physiological and pharmacological-related findings obtained from these lines. The results discussed here point towards a dysfunctional fear circuitry in CHF rats, including alterations in key brain structures and the serotoninergic system. Moreover, data from these animals highlight important alterations in the stress-processing machinery and its associated systems, such as energy metabolism and antioxidative defense. Finally, evidence of an alteration in the dopaminergic pathway in CLF rats is also debated. Thus, accumulating data gathered over the years, place the Carioca lines as significant animal models for the study of psychiatric disorders, especially fear-related ones like anxiety.
Collapse
Affiliation(s)
- Yury V. Lages
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laura Balthazar
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Physiological Sciences, Laboratory of Neurophysiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thomas. E. Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J. Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Armario A, Belda X, Gagliano H, Fuentes S, Molina P, Serrano S, Nadal R. Differential Hypothalamic-pituitary-adrenal Response to Stress among Rat Strains: Methodological Considerations and Relevance for Neuropsychiatric Research. Curr Neuropharmacol 2023; 21:1906-1923. [PMID: 36453492 PMCID: PMC10514526 DOI: 10.2174/1570159x21666221129102852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 12/03/2022] Open
Abstract
The hormones of the hypothalamic-pituitary-adrenal (HPA) axis, particularly glucocorticoids (GCs), play a critical role in the behavioral and physiological consequences of exposure to stress. For this reason, numerous studies have described differences in HPA function between different rodent strains/lines obtained by genetic selection of certain characteristics not directly related to the HPA axis. These studies have demonstrated a complex and poorly understood relationship between HPA function and certain relevant behavioral characteristics. The present review first remarks important methodological considerations regarding the evaluation and interpretation of resting and stress levels of HPA hormones. Then, it presents works in which differences in HPA function between Lewis and Fischer rats were explored as a model for how to approach other strain comparisons. After that, differences in the HPA axis between classical strain pairs (e.g. High and Low anxiety rats, Roman high- and low-avoidance, Wistar Kyoto versus Spontaneously Hypertensive or other strains, Flinder Sensitive and Flinder Resistant lines) are described. Finally, after discussing the relationship between HPA differences and relevant behavioral traits (anxiety-like and depression-like behavior and coping style), an example for main methodological and interpretative concerns and how to test strain differences is offered.
Collapse
Affiliation(s)
- Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Traslational Neuroscience Unit, UAB-Parc Taulí, Sabadell, Spain
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
- CIBERSAM, ISCIII, Madrid, Spain
| | - Xavier Belda
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Humberto Gagliano
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Silvia Fuentes
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychobiology, Faculty of Psychology, Universidad de Granada, Granada, Spain
| | - Patricia Molina
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Sara Serrano
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Roser Nadal
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Traslational Neuroscience Unit, UAB-Parc Taulí, Sabadell, Spain
- CIBERSAM, ISCIII, Madrid, Spain
- Psychobiology Unit, Faculty of Psychology, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Kwarteng F, Wang R, Micov V, Hausknecht KA, Turk M, Ishiwari K, Oubraim S, Wang AL, Richards JB, Haj-Dahmane S, Shen RY. Adolescent chronic unpredictable stress leads to increased anxiety and attention deficit/hyperactivity-like symptoms in adulthood. Psychopharmacology (Berl) 2022; 239:3779-3791. [PMID: 36348027 DOI: 10.1007/s00213-022-06242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Early-life adversities during development (e.g., child abuse and neglect) are linked to multiple behavioral and cognitive dysfunctions, such as attention deficit/hyperactivity disorder (ADHD) and anxiety disorders, which have high comorbidity. However, the impact of adversities during adolescence, a crucial period in early life for these disorders, is understudied. Using a chronic unpredictable stress (CUS) model in rats, we investigated whether adversities in adolescence could lead to increased anxiety and ADHD-like symptoms in adulthood. METHODS Mid- to late-adolescent (5-7-week-old) male and female Sprague-Dawley rats underwent a mild CUS procedure for 2 weeks. Various stressors were applied in an unpredictable way. Rats of both sexes were then trained with a 2-choice reaction time (2-CRT) task during adulthood, which are designed to detect ADHD-like symptoms, including increased impulsivity and lapse of attention. In addition, an open field test was conducted to examine if CUS resulted in a persistent increase in anxiety-like behavior during adulthood. RESULTS Both male and female rats with CUS exposure travelled shorter distances in the open field and spent less time in the center zone, indicating increased anxiety. In the 2-CRT task, rats of both sexes with CUS exposure showed increased impulsivity. Augmented lapses of attention were observed in female but not male rats. CONCLUSION Chronic unpredictable stress during adolescence increases anxiety and leads to ADHD-like symptoms in both male and female rats in adulthood. The deficits are more severe in females than in males. These observations support that adversities during adolescence persistently increase anxiety, which is comorbid with attention deficits.
Collapse
Affiliation(s)
- Francis Kwarteng
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Ruixiang Wang
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Veronika Micov
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Kathryn A Hausknecht
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Marisa Turk
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Keita Ishiwari
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Saida Oubraim
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - An-Li Wang
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Jerry B Richards
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Roh-Yu Shen
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
12
|
Barroca NCB, Della Santa G, Suchecki D, García-Cairasco N, Umeoka EHDL. Challenges in the use of animal models and perspectives for a translational view of stress and psychopathologies. Neurosci Biobehav Rev 2022; 140:104771. [PMID: 35817171 DOI: 10.1016/j.neubiorev.2022.104771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
The neurobiology and development of treatments for stress-related neuropsychiatric disorders rely heavily on animal models. However, the complexity of these disorders makes it difficult to model them entirely, so only specific features of human psychopathology are emulated and these models should be used with great caution. Importantly, the effects of stress depend on multiple factors, like duration, context of exposure, and individual variability. Here we present a review on pre-clinical studies of stress-related disorders, especially those developed to model posttraumatic stress disorder, major depression, and anxiety. Animal models provide relevant evidence of the underpinnings of these disorders, as long as face, construct, and predictive validities are fulfilled. The translational challenges faced by scholars include reductionism and anthropomorphic/anthropocentric interpretation of the results instead of a more naturalistic and evolutionary understanding of animal behavior that must be overcome to offer a meaningful model. Other limitations are low statistical power of analysis, poor evaluation of individual variability, sex differences, and possible conflicting effects of stressors depending on specific windows in the lifespan.
Collapse
Affiliation(s)
- Nayara Cobra Barreiro Barroca
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Giovanna Della Santa
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Deborah Suchecki
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Norberto García-Cairasco
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; Department of Physiology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Eduardo Henrique de Lima Umeoka
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; School of Medicine, University Center UniCerrado, Goiatuba, GO, Brazil
| |
Collapse
|
13
|
Haller J. Aggression, Aggression-Related Psychopathologies and Their Models. Front Behav Neurosci 2022; 16:936105. [PMID: 35860723 PMCID: PMC9289268 DOI: 10.3389/fnbeh.2022.936105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Neural mechanisms of aggression and violence are often studied in the laboratory by means of animal models. A multitude of such models were developed over the last decades, which, however, were rarely if ever compared systematically from a psychopathological perspective. By overviewing the main models, I show here that the classical ones exploited the natural tendency of animals to defend their territory, to fight for social rank, to defend themselves from imminent dangers and to defend their pups. All these forms of aggression are functional and adaptive; consequently, not necessarily appropriate for modeling non-natural states, e.g., aggression-related psychopathologies. A number of more psychopathology-oriented models were also developed over the last two decades, which were based on the etiological factors of aggression-related mental disorders. When animals were exposed to such factors, their aggressiveness suffered durable changes, which were deviant in the meaning that they broke the evolutionarily conserved rules that minimize the dangers associated with aggression. Changes in aggression were associated with a series of dysfunctions that affected other domains of functioning, like with aggression-related disorders where aggression is just one of the symptoms. The comparative overview of such models suggests that while the approach still suffers from a series of deficits, they hold the important potential of extending our knowledge on aggression control over the pathological domain of this behavior.
Collapse
|
14
|
Clinton SM, Unroe KA, Shupe EA, McCoy CR, Glover ME. Resilience to Stress: Lessons from Rodents about Nature versus Nurture. Neuroscientist 2022; 28:283-298. [PMID: 33567987 PMCID: PMC11092422 DOI: 10.1177/1073858421989357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Individual differences in human temperament influence how we respond to stress and can confer vulnerability (or resilience) to emotional disorders. For example, high levels of behavioral inhibition in children predict increased risk of mood and anxiety disorders in later life. The biological underpinnings of temperament are unknown, although improved understanding can offer insight into the pathogenesis of emotional disorders. Our laboratory has used a rat model of temperamental differences to study neurodevelopmental factors that lead to a highly inhibited, stress vulnerable phenotype. Selective breeding for high versus low behavioral response to novelty created two rat strains that exhibit dramatic behavior differences over multiple domains relevant to emotional disorders. Low novelty responder (bLR) rats exhibit high levels of behavioral inhibition, passive stress coping, anhedonia, decreased sociability and vulnerability to chronic stress compared to high novelty responders (bHRs). On the other hand, bHRs exhibit high levels of behavioral dis-inhibition, active coping, and aggression. This review article summarizes our work with the bHR/bLR model showing the developmental emergence of the bHR/bLR phenotypes, the role the environment plays in shaping it, and the involvement of epigenetic processes such as DNA methylation that mediate differences in emotionality and stress reactivity.
Collapse
Affiliation(s)
- Sarah M. Clinton
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Keaton A. Unroe
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Elizabeth A. Shupe
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Chelsea R. McCoy
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Matthew E. Glover
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| |
Collapse
|
15
|
Bonuti R, Morato S. Bidirectional genetic selection of behaviors involved in social interaction of Wistar rats. Braz J Med Biol Res 2022; 55:e11979. [PMID: 35588527 PMCID: PMC9054031 DOI: 10.1590/1414-431x2022e11979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/23/2022] [Indexed: 11/22/2022] Open
Abstract
Bidirectional selection is a procedure in which an arbitrary characteristic is chosen as a selection criterion and animals exhibiting more of this characteristic are bred in one group and animals exhibiting less are bred in another group. The procedure is repeated along generations until the selected characteristic becomes stable, resulting in two strains that are opposite in relation to the chosen characteristic. The present study aimed at selectively breeding rats exhibiting either a high or a low tendency to socialize by using the proximity test. We tested male and female Wistar rats in a square open field with a communicating birdcage, separated by a grid, containing a co-specific rat and coupled on the outside. Subjects that remained more time in front of the birdcage, interacting with the co-specific rat were bred in a group considered of high sociability (SOC+). Likewise, subjects that remained little time in front of the birdcage, with little interaction with the co-specific rat, were bred in a second group considered of low sociability (SOC-). By the 10th generation, the bidirectional selection resulted in SOC+ rats that spent a large amount of time in front of the cage sniffing and rearing in interaction with the co-specific rat and spent less time in the corners, exploring and grooming. It also resulted in SOC- rats that spent a small amount of time in front of the cage sniffing and rearing in interaction with the co-specific rat and spent more time in the corners and used most of their time grooming.
Collapse
Affiliation(s)
- R. Bonuti
- Laboratório de Comportamento Exploratório, Faculdade de
Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo,
Ribeirão Preto, SP, Brasil
| | - S. Morato
- Laboratório de Comportamento Exploratório, Faculdade de
Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo,
Ribeirão Preto, SP, Brasil
| |
Collapse
|
16
|
Patel H. The role of the lateral septum in neuropsychiatric disease. J Neurosci Res 2022; 100:1422-1437. [PMID: 35443088 DOI: 10.1002/jnr.25052] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/22/2022] [Accepted: 03/23/2022] [Indexed: 12/25/2022]
Abstract
The lateral septum (LS) is a structure in the midline of the brain that is interconnected with areas associated with stress and feeding. This review highlights the role of the LS in anxiety, depression, and eating disorders and their comorbidity. There is a prevailing view that the LS is anxiolytic. This review finds that the LS is both anxiolytic and anxiogenic. Furthermore, the LS can promote and inhibit feeding. Given these shared roles, the LS represents a common site for the comorbidity of neuropsychiatric disorders, and therefore a potential pharmacological target. This is crucial since currently available treatments are not always effective. Corticotrophin-releasing factor 2 antagonists are potential drugs for the treatment of anxiety and anorexia and require further research. Furthermore, other drugs currently in trials for binge eating, such as alpha-adrenergic agonists, may in fact promote food intake. It is hoped that the advancements in chemo- and optogenetic techniques will allow future studies to profile the specific neural connections of the LS and their function. This information could facilitate our understanding of the underlying mechanisms, and therefore pharmacological targets, of these psychiatric conditions.
Collapse
|
17
|
Gardner ST, Appel AG, Mendonça MT. Chasing Cane Toads: Assessing Locomotory Differences in Toads from Core and Edge Populations in Florida. HERPETOLOGICA 2022. [DOI: 10.1655/herpetologica-d-21-00005.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Steven T. Gardner
- Department of Biological Sciences, Auburn University, 331 Funchess Hall, 350 South College Street, Auburn, AL 36849, USA
| | - Arthur G. Appel
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, 350 South College Street, Auburn, AL 36849, USA
| | - Mary T. Mendonça
- Department of Biological Sciences, Auburn University, 331 Funchess Hall, 350 South College Street, Auburn, AL 36849, USA
| |
Collapse
|
18
|
Interspecific differences in sociability, social novelty preference, anxiety- and depression-like behaviors between Brandt's voles and C57BL/6J mice. Behav Processes 2022; 197:104624. [DOI: 10.1016/j.beproc.2022.104624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/24/2022]
|
19
|
Bicakci AO, Sarkar M, Chang YH, Kahl E, Ragazzi L, Moldes-Anaya A, Fendt M. Anxiolytic-like Effects of the Positive GABAB Receptor Modulator GS39783 Correlate with Mice’s Individual Basal Anxiety and Stress Reactivity. Pharmaceuticals (Basel) 2022; 15:ph15020233. [PMID: 35215345 PMCID: PMC8878184 DOI: 10.3390/ph15020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022] Open
Abstract
Positive gamma-aminobutyric acid type B (GABAB) receptor modulators such as GS39783 have showed anxiolytic-like effects in several studies while such effects were absent in other studies. These conflicting findings led us hypothesize that the anxiolytic-like effects of such compounds depend on the individual basal anxiety and/or the anxiogenic properties of the used tests. The present study addresses this hypothesis by testing GS39783 effects on mice’s anxiety-like behavior in a light–dark box. We found that GS39783 had no effects on a whole-group level. However, after grouping the mice for their basal anxiety, GS39783 reduced anxiety-like behavior in the subgroup with highest basal anxiety. Moreover, GS39783 effects correlated with individual basal anxiety. Next, the anxiogenic properties of the light–dark box test were increased by prior stress exposure. Again, GS39783 was not effective on a whole-group level. However, GS39783 had an anxiolytic-like effect in the most stress-responsive subgroup. Moreover, GS39783 effects correlated with individual stress responsiveness. Finally, we show that GS39783 brain levels were within a behaviorally relevant range. Overall, our study demonstrates that GS39783 effects depend on individual basal anxiety and stress responsiveness. This suggests that anxiety tests should generally be designed to capture individual basal anxiety and/or stress responsiveness as well as individual compound effects.
Collapse
Affiliation(s)
- Ahmet Oguzhan Bicakci
- Integrative Neuroscience Master Program, Institute of Biology, Faculty of Natural Sciences, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (A.O.B.); (M.S.); (Y.-H.C.)
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany;
| | - Mousumi Sarkar
- Integrative Neuroscience Master Program, Institute of Biology, Faculty of Natural Sciences, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (A.O.B.); (M.S.); (Y.-H.C.)
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany;
| | - Yu-Hsin Chang
- Integrative Neuroscience Master Program, Institute of Biology, Faculty of Natural Sciences, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (A.O.B.); (M.S.); (Y.-H.C.)
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany;
| | - Evelyn Kahl
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany;
| | - Lorenzo Ragazzi
- Neurobiology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Angel Moldes-Anaya
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, 9037 Tromsø, Norway;
- Cyclotron and Radiochemistry Unit, The PET Imaging Center, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany;
- Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Correspondence: ; Tel.: +49-391-67-21982
| |
Collapse
|
20
|
Ferreira JS, Leite Junior JB, de Mello Bastos JM, Samuels RI, Carey RJ, Carrera MP. A new method to study learning and memory using spontaneous locomotor activity in an open-field arena. J Neurosci Methods 2022; 366:109429. [PMID: 34852253 DOI: 10.1016/j.jneumeth.2021.109429] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/25/2021] [Accepted: 11/24/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Reduced locomotion with repeated exposure to a novel environment is often used as a measure of the basic adaptive learning process of habituation. While this is a well-established and reliable measure of habituation, it is not useful for the investigation of neurobiological changes before and after habituation because of the uncontrolled differential activity levels in a novel versus habituated environment. In this study we report a behavioral method that uses spontaneous locomotion to measure habituation, in which the total spontaneous locomotion in an initially novel environment does not change with repeated testing but, the ratio of central to peripheral activity does change and is indicative of habituation. The test sessions are brief (5 min) and the locomotion is measured in 2 separate zones. The peripheral zone comprises 8/9 of the test arena and the central zone 1/9 of the arena. RESULTS/COMPARISON WITH EXISTING METHODS In contrast to methods that use between-session reductions in locomotion to assess habituation, this method employs brief test sessions in which overall activity between sessions does not change, but the distribution of locomotion in the periphery versus the central zone of the arena does change. The brevity of the test session also enables us to utilize post-trial drug treatment protocols to impact memory consolidation. CONCLUSIONS The progressive change in the central/peripheral activity ratio with repeated testing can be determined independently of total activity and provides a habituation acquisition function that permits the measurement of neurobiological changes without the complication of effects related to changes in locomotor activity per se. The present report also presents evidence that this method can be used with post-trial drug treatment protocols to study the learning and memory effects of the post-trial treatments without the use of explicit rewards and punishments.
Collapse
Affiliation(s)
- Jaise Silva Ferreira
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Joaquim Barbosa Leite Junior
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - João Marcos de Mello Bastos
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Richard Ian Samuels
- Department of Entomology and Plant Pathology, State University of North Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Robert J Carey
- Department of Psychiatry SUNY Upstate Medical University, 800 Irving Avenue, Syracuse, NY 13210, USA
| | - Marinete Pinheiro Carrera
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil.
| |
Collapse
|
21
|
Lages YV, Maisonnette SS, Marinho B, Rosseti FP, Krahe TE, Landeira-Fernandez J. Behavioral effects of chronic stress in Carioca high- and low-conditioned freezing rats. Stress 2021; 24:602-611. [PMID: 34030584 DOI: 10.1080/10253890.2021.1934445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Chronic unpredictable mild stress (CUMS) is a widely used model to study stress-coping strategies in rodents. Different factors have been shown to influence whether animals adopt passive or active coping responses to CUMS. Individual adaptation and susceptibility to the environment seem to play a critical role in this process. To further investigate this relationship, we examined the effects of CUMS on Carioca high- and low-conditioned freezing rats (CHF and CLF, respectively), bidirectional lines of animals selected for high and low freezing in response to contextual cues that were previously associated with footshocks. For this purpose, the behavior of CHF and CLF animals was evaluated in the contextual fear conditioning, open field, elevated T maze, and forced swimming tests before and after 21 days of CUMS. For all tests, CHF rats were more susceptible to the effects of CUMS compared to CLF. CHF animals exposed to CUMS displayed a reduction in freezing behavior, decreased number of entries and time spent in the center of the open field, greater latencies to become immobile, and increased avoidance and escaping behaviors in the elevated T maze. Overall, these findings support the hypothesis that a heightened susceptibility to the environment exerts a strong influence on coping responses to chronic stress.
Collapse
Affiliation(s)
- Yury V Lages
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvia S Maisonnette
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Beatriz Marinho
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávia P Rosseti
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thomas E Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Vázquez-León P, Miranda-Páez A, Marichal-Cancino BA. Experimental protocol for detecting higher alcohol consumers from a conventional rat line based on basal anxiety. MethodsX 2021; 8:101444. [PMID: 34434856 PMCID: PMC8374696 DOI: 10.1016/j.mex.2021.101444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/04/2021] [Indexed: 11/25/2022] Open
Abstract
Predisposition for a high alcohol intake and the impact of alcohol-abstinence-relapse may be reliable experimentally performed in conventional adult rat lines if animals received juvenile exposure to alcohol (e.g., by forced consumption) and selecting those individuals with high basal anxiety levels during juvenile periods. Importantly, a forced alcohol consumption phase must be followed by an imposed withdrawal period to form an exposure-abstinence cycle (at least two cycles are required) which allow to obtain animals with notorious alcohol relapses. The easier way to test alcohol relapses is through voluntary ethanol intake models. On the other hand, the anxiety classification may be performance by classical paradigms such as an elevated plus maze test, defensive burying behavior test or any other. Here, we provide a step-by-step protocol description to detect higher alcohol consumers animals from male Wistar rats. This protocol should be especially useful for those interested in studying the participation of specific brain nucleus [e.g., periaqueductal gray (PAG)] and/or the neurotransmitters involved [e.g., neuropeptide Y (NPY)] in the alcohol intake phenomena if it is combined with stereotaxic surgery. However, every administration route of treatments or experimental design is appropriate; the limit is the own imagination, and the resources.
Collapse
Affiliation(s)
- Priscila Vázquez-León
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags., México
| | - Abraham Miranda-Páez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo CP: 07738; Alc. Gustavo A. Madero, México City, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags., México
| |
Collapse
|
23
|
Aleshin VA, Graf AV, Artiukhov AV, Boyko AI, Ksenofontov AL, Maslova MV, Nogués I, di Salvo ML, Bunik VI. Physiological and Biochemical Markers of the Sex-Specific Sensitivity to Epileptogenic Factors, Delayed Consequences of Seizures and Their Response to Vitamins B1 and B6 in a Rat Model. Pharmaceuticals (Basel) 2021; 14:ph14080737. [PMID: 34451834 PMCID: PMC8400147 DOI: 10.3390/ph14080737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 01/28/2023] Open
Abstract
The disturbed metabolism of vitamins B1 or B6, which are essential for neurotransmitters homeostasis, may cause seizures. Our study aims at revealing therapeutic potential of vitamins B1 and B6 by estimating the short- and long-term effects of their combined administration with the seizure inductor pentylenetetrazole (PTZ). The PTZ dose dependence of a seizure and its parameters according to modified Racine’s scale, along with delayed physiological and biochemical consequences the next day after the seizure are assessed regarding sexual dimorphism in epilepsy. PTZ sensitivity is stronger in the female than the male rats. The next day after a seizure, sex differences in behavior and brain biochemistry arise. The induced sex differences in anxiety and locomotor activity correspond to the disappearance of sex differences in the brain aspartate and alanine, with appearance of those in glutamate and glutamine. PTZ decreases the brain malate dehydrogenase activity and urea in the males and the phenylalanine in the females. The administration of vitamins B1 and B6 24 h before PTZ delays a seizure in female rats only. This desensitization is not observed at short intervals (0.5–2 h) between the administration of the vitamins and PTZ. With the increasing interval, the pyridoxal kinase (PLK) activity in the female brain decreases, suggesting that the PLK downregulation by vitamins contributes to the desensitization. The delayed effects of vitamins and/or PTZ are mostly sex-specific and interacting. Our findings on the sex differences in sensitivity to epileptogenic factors, action of vitamins B1/B6 and associated biochemical events have medical implications.
Collapse
Affiliation(s)
- Vasily A. Aleshin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.A.); (A.V.A.); (A.I.B.)
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.G.); (A.L.K.)
| | - Anastasia V. Graf
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.G.); (A.L.K.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Faculty of Nano-, Bio-, Informational, Cognitive and Socio-Humanistic Sciences and Technologies at Moscow Institute of Physics and Technology, 123098 Moscow, Russia
| | - Artem V. Artiukhov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.A.); (A.V.A.); (A.I.B.)
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.G.); (A.L.K.)
| | - Alexandra I. Boyko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.A.); (A.V.A.); (A.I.B.)
| | - Alexander L. Ksenofontov
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.G.); (A.L.K.)
| | - Maria V. Maslova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Isabel Nogués
- Research Institute of Terrestrial Ecosystems, National Research Council, Via Salaria km 29.300, Monterotondo, 00015 Rome, Italy;
| | - Martino L. di Salvo
- Department of Biological Sciences A. Rossi Fanelli, Sapienza University, 00185 Rome, Italy;
| | - Victoria I. Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.A.); (A.V.A.); (A.I.B.)
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.G.); (A.L.K.)
- Department of Biochemistry, Sechenov University, Trubetskaya, 8, bld. 2, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
24
|
Hernandez CM, Orsini CA, Blaes SL, Bizon JL, Febo M, Bruijnzeel AW, Setlow B. Effects of repeated adolescent exposure to cannabis smoke on cognitive outcomes in adulthood. J Psychopharmacol 2021; 35:848-863. [PMID: 33295231 PMCID: PMC8187454 DOI: 10.1177/0269881120965931] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cannabis (marijuana) is the most widely used illicit drug in the USA, and consumption among adolescents is rising. Some animal studies show that adolescent exposure to delta 9-tetrahydrocannabinol or synthetic cannabinoid receptor 1 agonists causes alterations in affect and cognition that can persist into adulthood. It is less clear, however, whether similar alterations result from exposure to cannabis via smoke inhalation, which remains the most frequent route of administration in humans. AIMS To begin to address these questions, a rat model was used to determine how cannabis smoke exposure during adolescence affects behavioral and cognitive outcomes in adulthood. METHODS Adolescent male Long-Evans rats were assigned to clean air, placebo smoke, or cannabis smoke groups. Clean air or smoke exposure sessions were conducted daily during adolescence (from P29-P49 days of age ) for a total of 21 days, and behavioral testing began on P70. RESULTS Compared to clean air and placebo smoke conditions, cannabis smoke significantly attenuated the normal developmental increase in body weight, but had no effects on several measures of either affect/motivation (open field activity, elevated plus maze, instrumental responding under a progressive ratio schedule of reinforcement) or cognition (set shifting, reversal learning, intertemporal choice). Surprisingly, however, in comparison to clean air controls rats exposed to either cannabis or placebo smoke in adolescence exhibited enhanced performance on a delayed response working memory task. CONCLUSIONS These findings are consistent with a growing body of evidence for limited long-term adverse cognitive and affective consequences of adolescent exposure to relatively low levels of cannabinoids.
Collapse
Affiliation(s)
- Caesar M Hernandez
- Department of Neuroscience, University of Florida, Gainesville, USA,Department of Psychiatry, University of Florida, Gainesville, USA,Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, USA
| | - Caitlin A Orsini
- Department of Psychiatry, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA,Department of Psychology, The University of Texas at Austin, Austin, USA
| | - Shelby L Blaes
- Department of Psychiatry, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA
| |
Collapse
|
25
|
Adolescent nicotine treatment causes robust locomotor sensitization during adolescence but impedes the spontaneous acquisition of nicotine intake in adult female Wistar rats. Pharmacol Biochem Behav 2021; 207:173224. [PMID: 34197844 DOI: 10.1016/j.pbb.2021.173224] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/20/2022]
Abstract
Very few people are able to quit smoking, and therefore it is essential to know which factors contribute to the development of compulsive nicotine use. These studies aimed to investigate if early-adolescent nicotine exposure causes locomotor sensitization and affects anxiety-like behavior and the spontaneous acquisition of intravenous nicotine self-administration. Early-adolescent male and female rats were treated with nicotine from postnatal (P) days 24 to 42, and anxiety-like behavior and locomotor activity were investigated one day after the cessation of nicotine treatment and in adulthood (>P75). The spontaneous acquisition of nicotine self-administration was also investigated in adulthood. The rats self-administered 0.03 mg/kg/infusion of nicotine for six days under a fixed-ratio (FR) 1 schedule and four days under an FR2 schedule (3-h sessions). Repeated nicotine administration increased locomotor activity, rearing, and stereotypies in a small open field in adolescent male and female rats. One day after the last nicotine injection, the percentage of open arm entries in the elevated plus-maze test was decreased in the males and increased in the females. However, locomotor activity in the small open field was unaffected. Adolescent nicotine treatment did not affect anxiety-like behavior and locomotor activity in adulthood. During the 10-day nicotine self-administration period, the females had a higher level of nicotine intake than the males. Adolescent nicotine treatment decreased nicotine intake in the females. In conclusion, these findings indicate that repeated nicotine administration during adolescence causes robust behavioral sensitization and leads to lower nicotine intake in females throughout the acquisition period in adulthood in rats.
Collapse
|
26
|
Armario A. The forced swim test: Historical, conceptual and methodological considerations and its relationship with individual behavioral traits. Neurosci Biobehav Rev 2021; 128:74-86. [PMID: 34118295 DOI: 10.1016/j.neubiorev.2021.06.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/13/2021] [Accepted: 06/06/2021] [Indexed: 01/14/2023]
Abstract
The forced swim test (FST), developed by Porsolt and collaborators in 1977 to evaluate antidepressant (AD) treatments in rodents, has become extensively used for this purpose and to evaluate depression-like states. Despite its popularity, studies have raised important concerns regarding its theoretical and predictive validity. In my view and that of others, the FST mainly evaluates coping strategies in an inescapable situation. Although it is reasonable to assume that ADs act favoring active coping whereas negative affective states would favor passive coping, this does not mean that only ADs should enhance active coping or that a depression state has developed, respectively. Given its simplicity, proper interpretation of the FST behavior is critically dependent on how FST behavior relates to other behavioral traits. Unfortunately, this issue has been poorly discussed previously. Then, the present review, using a historical perspective, offers information needed to better understand the meaning and limitations of the FST, discusses critical methodological aspects and analyzes the relationship of FST behavior with classical behavioral traits in rodents.
Collapse
Affiliation(s)
- Antonio Armario
- Institut de Neurociències, Animal Physiology Unit (Department of Cellular Biology, Physiology and Immunology), Faculty of Biosciences, Universitat Autònoma de Barcelona, CIBERSAM, Campus Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.
| |
Collapse
|
27
|
Sex differences in the elevated plus-maze test and large open field test in adult Wistar rats. Pharmacol Biochem Behav 2021; 204:173168. [PMID: 33684454 DOI: 10.1016/j.pbb.2021.173168] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/21/2022]
Abstract
There is a growing need for a better understanding of sex differences in animal models of psychiatric disorders. The elevated plus-maze (EPM) test and large open field (LOF) test are widely used to study anxiety-like behavior in rodents. Our studies explored sex differences in anxiety and activity parameters in the LOF and EPM and determined whether these parameters correlate within and between tests. Drug naïve adult male and female Wistar rats (n = 47/sex) were used for the studies, and the rats were tested for 5 min in the EPM and 10 min in the LOF. The females spent more time on the open arms of the EPM and made more open arms entries than the males. The females also spent more time in the center zone of the LOF and made more center zone entries. The females traveled a greater distance in the LOF and EPM. There was a moderate positive correlation between time on the open arms of the EPM and time in the center zone of the LOF. There was also a moderate positive correlation between open arms entries in the EPM and center zone entries in the LOF. A hierarchical cluster analysis revealed one cluster with LOF parameters, one cluster with EPM parameters, and one cluster with parameters related to the avoidance of open spaces. In conclusion, these findings indicate that female rats display less anxiety-like behavior in the EPM and LOF. Furthermore, there are sex differences for almost all behavioral parameters in these anxiety tests.
Collapse
|
28
|
Clinton SM, Shupe EA, Glover ME, Unroe KA, McCoy CR, Cohen JL, Kerman IA. Modeling heritability of temperamental differences, stress reactivity, and risk for anxiety and depression: Relevance to research domain criteria (RDoC). Eur J Neurosci 2021; 55:2076-2107. [PMID: 33629390 PMCID: PMC8382785 DOI: 10.1111/ejn.15158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/29/2021] [Accepted: 02/20/2021] [Indexed: 01/04/2023]
Abstract
Animal models provide important tools to study biological and environmental factors that shape brain function and behavior. These models can be effectively leveraged by drawing on concepts from the National Institute of Mental Health Research Domain Criteria (RDoC) Initiative, which aims to delineate molecular pathways and neural circuits that underpin behavioral anomalies that transcend psychiatric conditions. To study factors that contribute to individual differences in emotionality and stress reactivity, our laboratory utilized Sprague-Dawley rats that were selectively bred for differences in novelty exploration. Selective breeding for low versus high locomotor response to novelty produced rat lines that differ in behavioral domains relevant to anxiety and depression, particularly the RDoC Negative Valence domains, including acute threat, potential threat, and loss. Bred Low Novelty Responder (LR) rats, relative to their High Responder (HR) counterparts, display high levels of behavioral inhibition, conditioned and unconditioned fear, avoidance, passive stress coping, anhedonia, and psychomotor retardation. The HR/LR traits are heritable, emerge in the first weeks of life, and appear to be driven by alterations in the developing amygdala and hippocampus. Epigenomic and transcriptomic profiling in the developing and adult HR/LR brain suggest that DNA methylation and microRNAs, as well as differences in monoaminergic transmission (dopamine and serotonin in particular), contribute to their distinct behavioral phenotypes. This work exemplifies ways that animal models such as the HR/LR rats can be effectively used to study neural and molecular factors driving emotional behavior, which may pave the way toward improved understanding the neurobiological mechanisms involved in emotional disorders.
Collapse
Affiliation(s)
- Sarah M Clinton
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Elizabeth A Shupe
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Matthew E Glover
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Keaton A Unroe
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Chelsea R McCoy
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Joshua L Cohen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Ilan A Kerman
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,Behavioral Health Service Line, Veterans Affairs Pittsburgh Health System, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Bezerra-Karounis MA, Krahe TE, Maisonnette S, Landeira-Fernandez J. Alcohol intake in Carioca High- and Low-conditioned Freezing rats. Pharmacol Biochem Behav 2020; 197:173019. [PMID: 32827503 DOI: 10.1016/j.pbb.2020.173019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 11/28/2022]
Abstract
Evidence from clinical and epidemiological studies point towards an association between generalized anxiety disorder (GAD) and alcohol abuse. In the present study we investigated whether a similar relationship could be observed in an animal model of GAD. Specifically, we evaluated the alcohol intake of Carioca High- and Low-conditioned Freezing rats (CHF and CLF, respectively). Sex differences in alcohol drinking behavior were also studied. Male and female rats from randomized crossbreeding populations served as controls (CTL). Free- and forced-choice protocols were used to measure alcohol consumption, and quinine and saccharin were used as taste control solutions. Our results indicate that CHF rats consumed more alcohol than CLF and CTL ones in both the free-choice (6 and 10% concentrations) and the forced-choice (10% concentration) conditions. CHF female rats exhibited the highest amount of alcohol intake in the forced-choice condition. CHF females also consumed more quinine than CHF male rats. Finally, CHF rats exhibited lower saccharin consumption compared to CLF and CTL animals. Altogether, these results support the hypothesis that there is a positive relationship between anxiety and alcohol intake, and provide further evidence for the use of CHF rats as a model of GAD.
Collapse
Affiliation(s)
| | - Thomas E Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvia Maisonnette
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
30
|
Chellian R, Behnood-Rod A, Wilson R, Wilks I, Knight P, Febo M, Bruijnzeel AW. Exposure to smoke from high- but not low-nicotine cigarettes leads to signs of dependence in male rats and potentiates the effects of nicotine in female rats. Pharmacol Biochem Behav 2020; 196:172998. [PMID: 32681850 DOI: 10.1016/j.pbb.2020.172998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/03/2023]
Abstract
Nicotine is only mildly rewarding, but after becoming dependent, it is difficult to quit smoking. The goal of these studies was to determine if low-nicotine cigarettes are less likely to cause dependence and enhance the reinforcing effects of nicotine than regular high-nicotine cigarettes. Male and female rats were exposed to tobacco smoke with a low or high nicotine level for 35 days. It was investigated if smoke exposure affects the development of dependence, anxiety- and depressive-like behavior, and nicotine-induced behavioral sensitization. Smoke exposure did not affect locomotor activity in a small open field or sucrose preference. Mecamylamine precipitated somatic withdrawal signs in male rats exposed to smoke with a high level of nicotine, but not in male rats exposed to smoke with a low level of nicotine or in females. After cessation of smoke exposure, there was a small decrease in sucrose preference in the male rats, which was not observed in the females. Cessation of smoke exposure did not affect anxiety-like behavior in the large open field or the elevated plus maze test. Female rats displayed less anxiety-like behavior in both these tests. Repeated treatment with nicotine increased locomotor activity, rearing, and stereotypies. Prior exposure to smoke with a high level of nicotine increased nicotine-induced rearing in the females. These findings indicate that exposure to smoke with a low level of nicotine does not lead to dependence and does not potentiate the effects of nicotine. Exposure to smoke with a high level of nicotine differently affects males and females.
Collapse
Affiliation(s)
| | - Azin Behnood-Rod
- Department of Psychiatry, University of Florida, Gainesville, FL 32610, USA
| | - Ryann Wilson
- Department of Psychiatry, University of Florida, Gainesville, FL 32610, USA
| | - Isaac Wilks
- Department of Psychiatry, University of Florida, Gainesville, FL 32610, USA
| | - Parker Knight
- Department of Psychiatry, University of Florida, Gainesville, FL 32610, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL 32610, USA; Center for Addiction Research and Education, University of Florida, Gainesville, FL 32610, USA
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, FL 32610, USA; Center for Addiction Research and Education, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
31
|
Zoicas I, Mühle C, Schmidtner AK, Gulbins E, Neumann ID, Kornhuber J. Anxiety and Depression Are Related to Higher Activity of Sphingolipid Metabolizing Enzymes in the Rat Brain. Cells 2020; 9:cells9051239. [PMID: 32429522 PMCID: PMC7290887 DOI: 10.3390/cells9051239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
Changes in sphingolipid metabolism have been suggested to contribute to the pathophysiology of major depression. In this study, we investigated the activity of acid and neutral sphingomyelinases (ASM, NSM) and ceramidases (AC, NC), respectively, in twelve brain regions of female rats selectively bred for high (HAB) versus low (LAB) anxiety-like behavior. Concomitant with their highly anxious and depressive-like phenotype, HAB rats showed increased activity of ASM and NSM as well as of AC and NC in multiple brain regions associated with anxiety- and depressive-like behavior, including the lateral septum, hypothalamus, ventral hippocampus, ventral and dorsal mesencephalon. Strong correlations between anxiety-like behavior and ASM activity were found in female HAB rats in the amygdala, ventral hippocampus and dorsal mesencephalon, whereas NSM activity correlated with anxiety levels in the dorsal mesencephalon. These results provide novel information about the sphingolipid metabolism, especially about the sphingomyelinases and ceramidases, in major depression and comorbid anxiety.
Collapse
Affiliation(s)
- Iulia Zoicas
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.M.); (J.K.)
- Correspondence: ; Tel.: +49-9131-85-46005; Fax: +49-9131-85-36381
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.M.); (J.K.)
| | - Anna K. Schmidtner
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, 93040 Regensburg, Germany; (A.K.S.); (I.D.N.)
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, 93040 Regensburg, Germany; (A.K.S.); (I.D.N.)
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.M.); (J.K.)
| |
Collapse
|
32
|
Niedzielak T, Ravenelle R, Joseph M, Calhoun C, Plotkin B, Jones R, Herrera M, Tiffany Donaldson S. 5-HT1A and α2 adrenergic receptor levels are associated with high anxiety-like patterns and impulsivity in selectively bred Long Evans rats. Behav Brain Res 2020; 383:112522. [PMID: 32007493 DOI: 10.1016/j.bbr.2020.112522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 11/27/2022]
Abstract
Impulsivity and anxiety are psychological traits involved in many aspects of the drug addiction cycle. However, few preclinical models exist for examining both impulsive and anxiety patterns. In the current study, we investigated whether 6th generation rats selectively bred for high anxiety (HAn)-like behavior would display amphetamine (AMPH) hyperactivity. In the same generational line, we also determined if HAn animals would display impulsivity in an operant task. Filial 5 male Long Evans rats phenotyped as HAn and low anxiety (LAn) were tested on the elevated plus maze (EPM) and in locomotor chambers following a low dose of AMPH (0.5 mg/kg, IP). Next, a separate group of F5 animals was exposed to a differential reinforcement of low rate of responding (DRL: 30 s) operant schedule to assess impulsivity. Postmortem, 5-HT1A and α2 adrenergic receptor protein levels were measured in the medial prefrontal cortex (mPFC), nucleus accumbens (NAc) core and shell, and α2 adrenergic counts were assessed in the locus coeruleus (LC), and the paraventricular nucleus (PVN) of the hypothalamus. F5 outbred HAn rats had decreased percent open arm time and entries on the EPM and elevated AMPH-induced locomotion. In the DRL, HAn rats displayed an impulsive profile, they attained fewer total rewards, had more inter-response times, and showed greater burst ratios. We found that HAn rats had a higher number of 5-HT1A receptor immunostained cells in the mPFC but were not different than LAn in NAc core or shell. By contrast, levels of the α2 adrenergic receptor protein were no different in the mPFC while HAn rats had greater levels in the LC and lower levels in the PVN. Overall, these data further validate our outbred trait anxiety rats: HAn males show anxiety-like behavior, AMPH hypersensitivity, greater impulsivity, and varying levels of limbic and midbrain 5-HT1A and α2 adrenergic receptor proteins.
Collapse
Affiliation(s)
- Tim Niedzielak
- Broward Health Medical Center, 3100 SW 62nd Avenue, Miami, FL, 33155, USA
| | - Rebecca Ravenelle
- City University of New York, CUNY Neuroscience Collaborative, The Graduate Center, 365 Fifth Ave., New York, NY, 10016, USA
| | - Marie Joseph
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA, 02125, USA
| | - Corey Calhoun
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA, 02125, USA
| | - Brooke Plotkin
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA, 02125, USA
| | - Raquel Jones
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA, 02125, USA
| | - Maria Herrera
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA, 02125, USA
| | - S Tiffany Donaldson
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA, 02125, USA.
| |
Collapse
|
33
|
Macêdo-Souza C, Maisonnette SS, Filgueiras CC, Landeira-Fernandez J, Krahe TE. Cued Fear Conditioning in Carioca High- and Low-Conditioned Freezing Rats. Front Behav Neurosci 2020; 13:285. [PMID: 32038188 PMCID: PMC6992609 DOI: 10.3389/fnbeh.2019.00285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 12/12/2019] [Indexed: 02/03/2023] Open
Abstract
Anxiety disorders (AD) comprise a broad range of psychiatric conditions, including general anxiety (GAD) and specific phobias. For the last decades, the use of animal models of anxiety has offered important insights into the understanding of the association between these psychopathologies. Here, we investigate whether Carioca high- and low-conditioned freezing rats (CHF and CLF, respectively), a GAD animal model of anxiety, show similar high- and low-freezing behavioral phenotypes for cued auditory fear conditioning. Adult CHF (n = 16), CLF (n = 16) and normal age-matched Wistar rats (control, CTL, n = 16) were tested in a classical auditory-cued fear conditioning paradigm over 3 days (Tone + Shock and Tone only groups, n = 8 per treatment). Freezing responses were measured and used as evidence of fear conditioning. Overall, both CHF and CLF rats, as well as CTL animals displayed fear conditioning to the auditory CS. However, CLF animals showed a rapid extinction to the auditory conditioned stimulus compared to CHF and CTL rats. We discuss these findings in the context of the behavioral and neuronal differences observed in rodent lines of high and low anxiety traits.
Collapse
Affiliation(s)
- Carolina Macêdo-Souza
- Laboratório de Neurociência do Comportamento, Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvia S Maisonnette
- Laboratório de Neurociência do Comportamento, Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudio C Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - J Landeira-Fernandez
- Laboratório de Neurociência do Comportamento, Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thomas E Krahe
- Laboratório de Neurociência do Comportamento, Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Cavaliere DR, Maisonnette S, Krahe TE, Landeira-Fernandez J, Cruz APM. High- and Low-conditioned Behavioral effects of midazolam in Carioca high- and low-conditioned freezing rats in an ethologically based test. Neurosci Lett 2020; 715:134632. [PMID: 31790719 DOI: 10.1016/j.neulet.2019.134632] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022]
Abstract
The selective breeding of laboratory rodents with different anxiety-related traits is the subject of growing interest. The present study compared the effects of the benzodiazepine midazolam in the elevated plus maze (EPM) test of anxiety in two lines of Wistar rats that were selectively bred in our laboratory for either high or low anxiety-like traits based on a contextual freezing conditioning paradigm. After phenotyping anxiety-like traits (i.e., conditioned freezing behavior), Carioca High-Freezing [CHF], Carioca Low-Freezing [CLF]) and control rats were intraperitoneally injected (1.0 ml/kg) with .9 % saline or midazolam (.25, .5, .75, and 1.0 mg/kg) and subjected to the EPM 30 min later. After the saline injection, the CHF and CLF groups exhibited lower and higher open-arm exploration in the EPM, respectively, compared with control rats. These results indicate that anxiety-related traits previously selected from an associative learning paradigm can also be phenotypically expressed in an ethologically based animal model of anxiety. All midazolam doses significantly increased open-arm exploration in both CHF and control animals, but this anxiolytic-like effect in CLF rats was only observed at the lowest dose tested (.25 mg/kg). The present findings indicate that these two breeding lines of rats are a useful model for studying anxiety, and the anxiolytic effect of midazolam depends on genetic variability that is associated with basal reactions to threatening situations.
Collapse
Affiliation(s)
| | - Silvia Maisonnette
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thomas E Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Antonio Pedro Mello Cruz
- Laboratory of Psychobiology and Neuroscience, Institute of Psychology, University of Brasilia, Brasilia, Federal District, Brazil
| |
Collapse
|
35
|
Gururajan A, Reif A, Cryan JF, Slattery DA. The future of rodent models in depression research. Nat Rev Neurosci 2019; 20:686-701. [DOI: 10.1038/s41583-019-0221-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2019] [Indexed: 12/15/2022]
|
36
|
Kalinichenko LS, Kornhuber J, Müller CP. Individual differences in inflammatory and oxidative mechanisms of stress-related mood disorders. Front Neuroendocrinol 2019; 55:100783. [PMID: 31415777 DOI: 10.1016/j.yfrne.2019.100783] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 12/16/2022]
Abstract
Emotional stress leads to the development of peripheral disorders and is recognized as a modifiable risk factor for psychiatric disorders, particularly depression and anxiety. However, not all individuals develop the negative consequences of emotional stress due to different stress coping strategies and resilience to stressful stimuli. In this review, we discuss individual differences in coping styles and the potential mechanisms that contribute to individual vulnerability to stress, such as parameters of the immune system and oxidative state. Initial differences in inflammatory and oxidative processes determine resistance to stress and stress-related disorders via the alteration of neurotransmitter content in the brain and biological fluids. Differences in coping styles may serve as possible predictors of resistance to stress and stress-related disorders, even before stressful conditions. The investigation of natural variabilities in stress resilience may allow the development of new methods for preventive medicine and the personalized treatment of stress-related conditions.
Collapse
Affiliation(s)
- L S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| | - J Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - C P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| |
Collapse
|
37
|
Minocycline alters behavior, microglia and the gut microbiome in a trait-anxiety-dependent manner. Transl Psychiatry 2019; 9:223. [PMID: 31519869 PMCID: PMC6744405 DOI: 10.1038/s41398-019-0556-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/23/2019] [Indexed: 12/26/2022] Open
Abstract
Major depressive disorder is the main cause of disability worldwide with imperfect treatment options. However, novel therapeutic approaches are currently discussed, from augmentation strategies to novel treatments targeting the immune system or the microbiome-gut-brain axis. Therefore, we examined the potential beneficial effects of minocycline, a tetracycline antibiotic with pleiotropic, immunomodulatory action, alone or as augmentation of escitalopram on behavior, prefrontal microglial density, and the gut microbiome in rats selectively bred for high anxiety-like behavior (HAB). We show that concomitant with their high innate anxiety and depression, HABs have lower microglial numbers in the infralimbic and prelimbic prefrontal cortex and an altered gut microbiota composition compared with controls. Three weeks of minocycline treatment alleviated the depressive-like phenotype, further reduced microglial density, exclusively in male HAB rats, and reduced plasma concentrations of pro-inflammatory cytokines. However, coadministration of escitalopram, which had no effect alone, prevented these minocycline-induced effects. Moreover, minocycline led to a robust shift in cecal microbial composition in both HABs and rats non-selected for anxiety-like behavior. Minocycline markedly increased relative abundance of Lachnospiraceae and Clostridiales Family XIII, families known for their butyrate production, with a corresponding increase and positive correlation in plasma 3-OH-butyrate levels in a trait-dependent manner. Thus, our data suggest that the antidepressant effect of minocycline is sex- and trait-dependent, associated with a reduced microglial number in the prefrontal cortex, and with changes in microbial composition and their metabolites. These results further support the microbiome-gut-brain axis as potential target in the treatment of depression.
Collapse
|
38
|
Tan S, Xue S, Behnood-Rod A, Chellian R, Wilson R, Knight P, Panunzio S, Lyons H, Febo M, Bruijnzeel AW. Sex differences in the reward deficit and somatic signs associated with precipitated nicotine withdrawal in rats. Neuropharmacology 2019; 160:107756. [PMID: 31487496 DOI: 10.1016/j.neuropharm.2019.107756] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 01/27/2023]
Abstract
Female smokers are more likely to relapse than male smokers, but little is known about sex differences in nicotine withdrawal. Therefore, male and female rats were prepared with minipumps that contained nicotine or saline and sex differences in precipitated and spontaneous nicotine withdrawal were investigated. The intracranial self-stimulation (ICSS) procedure was used to assess mood states. Elevations in brain reward thresholds reflect a deficit in reward function. Anxiety-like behavior was investigated after the acute nicotine withdrawal phase in a large open field and the elevated plus maze test. The nicotinic receptor antagonist mecamylamine elevated the brain reward thresholds of the nicotine-treated rats but did not affect those of the saline-treated control rats. A low dose of mecamylamine elevated the brain reward thresholds of the nicotine-treated male rats but not those of the females. Mecamylamine also precipitated more somatic withdrawal signs in the nicotine-treated male than female rats. Minipump removal elevated the brain reward thresholds of the nicotine-treated rats for about 36 h but did not affect those of the saline-treated rats. There was no sex difference in the reward deficit during spontaneous nicotine withdrawal. In addition, the nicotine-treated male and female rats did not display increased anxiety-like behavior three to four days after minipump removal. In conclusion, these studies suggest that relatively low doses of a nicotinic receptor antagonist induce a greater reward deficit and more somatic withdrawal signs in male than female rats, but there is no sex difference in the reward deficit during spontaneous withdrawal.
Collapse
Affiliation(s)
- Sijie Tan
- Department of Psychiatry, University of Florida, Gainesville, FL, USA; Department of Histology and Embryology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Song Xue
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Azin Behnood-Rod
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | | | - Ryann Wilson
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Parker Knight
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Stefany Panunzio
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Hannah Lyons
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, FL, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
39
|
Bruijnzeel AW, Knight P, Panunzio S, Xue S, Bruner MM, Wall SC, Pompilus M, Febo M, Setlow B. Effects in rats of adolescent exposure to cannabis smoke or THC on emotional behavior and cognitive function in adulthood. Psychopharmacology (Berl) 2019; 236:2773-2784. [PMID: 31044291 PMCID: PMC6752736 DOI: 10.1007/s00213-019-05255-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/22/2019] [Indexed: 12/26/2022]
Abstract
RATIONALE Cannabis use is common among adolescents and some research suggests that adolescent cannabis use increases the risk for depression, anxiety, and cognitive impairments in adulthood. In human studies, however, confounds may affect the association between cannabis use and the development of brain disorders. OBJECTIVES These experiments investigated the effects of adolescent exposure to either cannabis smoke or THC on anxiety- and depressive-like behavior and cognitive performance in adulthood in Long-Evans rats. METHODS Adolescent rats of both sexes were exposed to either cannabis smoke from postnatal days (P) 29-49 or ascending doses of THC from P35-45. When the rats reached adulthood (P70), anxiety-like behavior was investigated in the large open field and elevated plus maze, depressive-like behavior in the sucrose preference and forced swim tests, and cognitive function in the novel object recognition test. RESULTS Despite sex differences on some measures in the open field, elevated plus maze, forced swim, and novel object recognition tests, there were no effects of either adolescent cannabis smoke or THC exposure, and only relatively subtle interactions between exposure conditions and sex, such that sex differences on some performance measures were slightly attenuated. CONCLUSION Neither cannabis smoke nor THC exposure during adolescence produced robust alterations in adult behavior after a period of abstinence, suggesting that adverse effects associated with adolescent cannabis use might be due to non-cannabinoid concomitants of cannabis use.
Collapse
Affiliation(s)
- Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA.
| | - Parker Knight
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Stefany Panunzio
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Song Xue
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Matthew M Bruner
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Shannon C Wall
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Marjory Pompilus
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| |
Collapse
|
40
|
Widman AJ, Cohen JL, McCoy CR, Unroe KA, Glover ME, Khan AU, Bredemann T, McMahon LL, Clinton SM. Rats bred for high anxiety exhibit distinct fear-related coping behavior, hippocampal physiology, and synaptic plasticity-related gene expression. Hippocampus 2019; 29:939-956. [PMID: 30994250 DOI: 10.1002/hipo.23092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/24/2019] [Accepted: 04/01/2019] [Indexed: 12/29/2022]
Abstract
The hippocampus is essential for learning and memory but also regulates emotional behavior. We previously identified the hippocampus as a major brain region that differs in rats bred for emotionality differences. Rats bred for low novelty response (LRs) exhibit high levels of anxiety- and depression-like behavior compared to high novelty responder (HR) rats. Manipulating the hippocampus of high-anxiety LR rats improves their behavior, although no work to date has examined possible HR/LR differences in hippocampal synaptic physiology. Thus, the current study examined hippocampal slice electrophysiology, dendritic spine density, and transcriptome profiling in HR/LR hippocampus, and compared performance on three hippocampus-dependent tasks: The Morris water maze, contextual fear conditioning, and active avoidance. Our physiology experiments revealed increased long-term potentiation (LTP) at CA3-CA1 synapses in HR versus LR hippocampus, and Golgi analysis found an increased number of dendritic spines in basal layer of CA1 pyramidal cells in HR versus LR rats. Transcriptome data revealed glutamate neurotransmission as the top functional pathway differing in the HR/LR hippocampus. Our behavioral experiments showed that HR/LR rats exhibit similar learning and memory capability in the Morris water maze, although the groups differed in fear-related tasks. LR rats displayed greater freezing behavior in the fear-conditioning task, and HR/LR rats adopted distinct behavioral strategies in the active avoidance task. In the active avoidance task, HRs avoided footshock stress by pressing a lever when presented with a warning cue; LR rats, on the other hand, waited until footshocks began before pressing the lever to stop them. Taken together, these findings concur with prior observations of HR rats generally exhibiting active stress coping behavior while LRs exhibit reactive coping. Overall, our current findings coupled with previous work suggest that HR/LR differences in stress reactivity and stress coping may derive, at least in part, from differences in the developing and adult hippocampus.
Collapse
Affiliation(s)
- Allie J Widman
- Department of Cellular, Developmental and Integrative Biology, University of Alabama, Birmingham, Alabama
| | - Joshua L Cohen
- Medical Scientist Training Program (MSTP), University of Alabama, Birmingham, Alabama
| | - Chelsea R McCoy
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Keaton A Unroe
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia
| | - Matthew E Glover
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Anas U Khan
- Department of Cellular, Developmental and Integrative Biology, University of Alabama, Birmingham, Alabama
| | - Teruko Bredemann
- Department of Cellular, Developmental and Integrative Biology, University of Alabama, Birmingham, Alabama
| | - Lori L McMahon
- Department of Cellular, Developmental and Integrative Biology, University of Alabama, Birmingham, Alabama
| | - Sarah M Clinton
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
41
|
Neumann ID, Landgraf R. Tracking oxytocin functions in the rodent brain during the last 30 years: From push-pull perfusion to chemogenetic silencing. J Neuroendocrinol 2019; 31:e12695. [PMID: 30748037 DOI: 10.1111/jne.12695] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/22/2022]
Abstract
A short overview is provided of the last 30 years of oxytocin (and vasopressin) research performed in our laboratories, starting with attempts to monitor the release of this nonapeptide in the rodent brain during physiological conditions such as suckling in the lactating animal. Using push-pull perfusion and microdialysis approaches, release patterns in hypothalamic and limbic brain regions could be characterised to occur from intact neuronal structures, to be independent of peripheral secretion into blood, and to respond differentially to various stimuli, particularly those related to reproduction and stress. Parallel efforts focused on the functional impact of central oxytocin release, including neuroendocrine and behavioural effects mediated by nonapeptide receptor interactions and subsequent intraneuronal signalling cascades. The use of a variety of sophisticated behavioural paradigms to manipulate central oxytocin release, along with pharmacological, genetic and pharmacogenetic approaches, revealed multiple consequences on social behaviours, particularly social fear.
Collapse
Affiliation(s)
- Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Centre of Neurosciences, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
42
|
Bayerl DS, Bosch OJ. Brain vasopressin signaling modulates aspects of maternal behavior in lactating rats. GENES BRAIN AND BEHAVIOR 2018; 18:e12517. [DOI: 10.1111/gbb.12517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/22/2018] [Accepted: 09/11/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Doris S. Bayerl
- Department of Behavioural and Molecular Neurobiology; Regensburg Center of Neuroscience, University of Regensburg; Regensburg Germany
| | - Oliver J. Bosch
- Department of Behavioural and Molecular Neurobiology; Regensburg Center of Neuroscience, University of Regensburg; Regensburg Germany
| |
Collapse
|
43
|
Animals, anxiety, and anxiety disorders: How to measure anxiety in rodents and why. Behav Brain Res 2018; 352:81-93. [DOI: 10.1016/j.bbr.2017.10.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 12/31/2022]
|
44
|
Büki A, Horvath G, Benedek G, Ducza E, Kekesi G. Impaired GAD1 expression in schizophrenia‐related WISKET rat model with sex‐dependent aggressive behavior and motivational deficit. GENES BRAIN AND BEHAVIOR 2018; 18:e12507. [DOI: 10.1111/gbb.12507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 01/10/2023]
Affiliation(s)
- A. Büki
- Department of Physiology, Faculty of MedicineUniversity of Szeged Szeged Hungary
| | - G. Horvath
- Department of Physiology, Faculty of MedicineUniversity of Szeged Szeged Hungary
| | - G. Benedek
- Department of Physiology, Faculty of MedicineUniversity of Szeged Szeged Hungary
| | - E. Ducza
- Department of Pharmacodynamics and BiopharmacyFaculty of Pharmacy, University of Szeged Szeged Hungary
| | - G. Kekesi
- Department of Physiology, Faculty of MedicineUniversity of Szeged Szeged Hungary
| |
Collapse
|
45
|
Walker SE, Papilloud A, Huzard D, Sandi C. The link between aberrant hypothalamic–pituitary–adrenal axis activity during development and the emergence of aggression—Animal studies. Neurosci Biobehav Rev 2018; 91:138-152. [DOI: 10.1016/j.neubiorev.2016.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 10/09/2016] [Accepted: 10/12/2016] [Indexed: 11/29/2022]
|
46
|
Prefrontal cortex-dependent innate behaviors are altered by selective knockdown of Gad1 in neuropeptide Y interneurons. PLoS One 2018; 13:e0200809. [PMID: 30024942 PMCID: PMC6053188 DOI: 10.1371/journal.pone.0200809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 06/09/2018] [Indexed: 12/23/2022] Open
Abstract
GABAergic dysfunction has been implicated in a variety of neurological and psychiatric disorders, including anxiety disorders. Anxiety disorders are the most common type of psychiatric disorder during adolescence. There is a deficiency of GABAergic transmission in anxiety, and enhancement of GABA transmission through pharmacological means reduces anxiety behaviors. GAD67—the enzyme responsible for GABA production–has been linked to anxiety disorders. One class of GABAergic interneurons, Neuropeptide Y (NPY) expressing cells, is abundantly found in brain regions associated with anxiety and fear learning, including prefrontal cortex, hippocampus and amygdala. Additionally, NPY itself has been shown to have anxiolytic effects, and loss of NPY+ interneurons enhances anxiety behaviors. A previous study showed that knockdown of Gad1 from NPY+ cells led to reduced anxiety behaviors in adult mice. However, the role of GABA release from NPY+ interneurons in adolescent anxiety is unclear. Here we used a transgenic mouse that reduces GAD67 in NPY+ cells (NPYGAD1-TG) through Gad1 knockdown and tested for effects on behavior in adolescent mice. Adolescent NPYGAD1-TG mice showed enhanced anxiety-like behavior and sex-dependent changes in locomotor activity. We also found enhancement in two other innate behavioral tasks, nesting construction and social dominance. In contrast, fear learning was unchanged. Because we saw changes in behavioral tasks dependent upon prefrontal cortex and hippocampus, we investigated the extent of GAD67 knockdown in these regions. Immunohistochemistry revealed a 40% decrease in GAD67 in NPY+ cells in prefrontal cortex, indicating a significant but incomplete knockdown of GAD67. In contrast, there was no decrease in GAD67 in NPY+ cells in hippocampus. Consistent with this, there was no change in inhibitory synaptic transmission in hippocampus. Our results show the behavioral impact of cell-specific interneuron dysfunction and suggest that GABA release by NPY+ cells is important for regulating innate prefrontal cortex-dependent behavior in adolescents.
Collapse
|
47
|
Role of dopamine D3 receptor in alleviating behavioural deficits in animal models of post-traumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:190-200. [PMID: 29510167 DOI: 10.1016/j.pnpbp.2018.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 01/06/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a complicated psychiatric disorder, which occurs after exposure to a traumatic event. The main clinical manifestation of PTSD includes fear and stress dysregulation. In both animals and humans, dysregulation of dopamine function appears to be related to conditioned fear responses. Previous studies show that the dopamine D3 receptor (D3R) is involved in schizophrenia, autism, and substance use disorders and is related to emotional disorders. However, few studies have investigated the role of the D3R in the pathogenesis and aetiology of PTSD. In the current study, we have reported that D3R knockout (D3R-/-) mice displayed decreased freezing time of contextual fearing and anxiolytic effects following training sessions consisting of exposure to inescapable electric foot-shocks. Similarly, highly selective blockade of D3Rs by YQA14, a novel D3R antagonist, significantly ameliorated freezing and anxiogenic-like behaviours in the single-prolonged stress (SPS) model of PTSD in rats. And more, YQA14 selectively alleviated the symptoms of PTSD in WT mice but not in D3R-/- mice. In summary, this study demonstrates the anti-PTSD effects of blockade or knockout of the D3R, suggesting that the D3R might play an important role in the pathogenesis and aetiology of PTSD, and might be a potential target for the clinical management of PTSD.
Collapse
|
48
|
Perry CJ, Baciadonna L. Studying emotion in invertebrates: what has been done, what can be measured and what they can provide. ACTA ACUST UNITED AC 2018; 220:3856-3868. [PMID: 29093185 DOI: 10.1242/jeb.151308] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Until recently, whether invertebrates might exhibit emotions was unknown. This possibility has traditionally been dismissed by many as emotions are frequently defined with reference to human subjective experience, and invertebrates are often not considered to have the neural requirements for such sophisticated abilities. However, emotions are understood in humans and other vertebrates to be multifaceted brain states, comprising dissociable subjective, cognitive, behavioural and physiological components. In addition, accumulating literature is providing evidence of the impressive cognitive capacities and behavioural flexibility of invertebrates. Alongside these, within the past few years, a number of studies have adapted methods for assessing emotions in humans and other animals, to invertebrates, with intriguing results. Sea slugs, bees, crayfish, snails, crabs, flies and ants have all been shown to display various cognitive, behavioural and/or physiological phenomena that indicate internal states reminiscent of what we consider to be emotions. Given the limited neural architecture of many invertebrates, and the powerful tools available within invertebrate research, these results provide new opportunities for unveiling the neural mechanisms behind emotions and open new avenues towards the pharmacological manipulation of emotion and its genetic dissection, with advantages for disease research and therapeutic drug discovery. Here, we review the increasing evidence that invertebrates display some form of emotion, discuss the various methods used for assessing emotions in invertebrates and consider what can be garnered from further emotion research on invertebrates in terms of the evolution and underlying neural basis of emotion in a comparative context.
Collapse
Affiliation(s)
- Clint J Perry
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Luigi Baciadonna
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
49
|
Brancato A, Castelli V, Cavallaro A, Lavanco G, Plescia F, Cannizzaro C. Pre-conceptional and Peri-Gestational Maternal Binge Alcohol Drinking Produces Inheritance of Mood Disturbances and Alcohol Vulnerability in the Adolescent Offspring. Front Psychiatry 2018; 9:150. [PMID: 29743872 PMCID: PMC5930268 DOI: 10.3389/fpsyt.2018.00150] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/04/2018] [Indexed: 12/28/2022] Open
Abstract
Although binge drinking is on the rise in women of reproductive age and during pregnancy, the consequences in the offspring, in particular the inheritance of alcohol-related mood disturbances and alcohol abuse vulnerability, are still poorly investigated. In this study, we modeled both Habitual- and Binge Alcohol Drinking (HAD and BAD) in female rats by employing a two-bottle choice paradigm, with 20% alcohol and water. The exposure started 12 weeks before pregnancy and continued during gestation and lactation. The consequences induced by the two alcohol drinking patterns in female rats were assessed before conception in terms of behavioral reactivity, anxiety- and depressive-like behavior. Afterwards, from adolescence to young-adulthood, male offspring was assessed for behavioral phenotype and alcohol abuse vulnerability. At pre-conceptional time BAD female rats showed higher mean alcohol intake and preference than HAD group; differences in drinking trajectories were attenuated during pregnancy and lactation. Pre-conceptional BAD induced a prevalent depressive/anhedonic-like behavior in female rats, rather than an increase in anxiety-like behavior, as observed in HAD rats. In the adolescent offspring, peri-gestational BAD did not affect behavioral reactivity in the open field and anxiety-like behavior in the elevated plus maze. Rather, BAD dams offspring displayed higher despair-behavior and lower social interaction with respect to control- and HAD dams progeny. Notably, only binge drinking exposure increased offspring vulnerability to alcohol abuse and relapse following forced abstinence. This is the first report showing that binge-like alcohol consumption from pre-conceptional until weaning induces relevant consequences in the affective phenotype of both the mothers and the offspring, and that such effects include heightened alcohol abuse vulnerability in the offspring. These findings highlight the need for more incisive public education campaigns about detrimental consequences of peri-gestational alcohol exposure.
Collapse
Affiliation(s)
- Anna Brancato
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Valentina Castelli
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Angela Cavallaro
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Gianluca Lavanco
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Fulvio Plescia
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Carla Cannizzaro
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
50
|
Walker SE, Zanoletti O, Guillot de Suduiraut I, Sandi C. Constitutive differences in glucocorticoid responsiveness to stress are related to variation in aggression and anxiety-related behaviors. Psychoneuroendocrinology 2017. [PMID: 28647673 DOI: 10.1016/j.psyneuen.2017.06.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glucocorticoids coordinate responses that enable an individual to cope with stressful challenges and, additionally, mediate adaptation following cessation of a stressor. There are important individual differences in the magnitude of glucocorticoid responsiveness to stressors. However, whether individual differences in glucocorticoid responsiveness to stress are linked to different behavioral strategies in coping with social and non-social challenges is not easily studied, owing to the lack of appropriate animal models. To address this, we generated three lines of Wistar rats selectively bred for the magnitude of their glucocorticoid responses following exposure to a variety of stressors over three consecutive days at juvenility. Here, we present findings following observations of a high level of variation in glucocorticoid responsiveness to stress in outbred Wistar rats, and the strong response to selection for this trait over a few generations. When challenged with different stressful challenges, rats from the three lines differed in their coping behaviors. Strikingly, the line with high glucocorticoid responsiveness to stress displayed enhanced aggression and anxiety-like behaviors. In addition, these rats also showed alterations in the expression of genes within both central and peripheral nodes of the hypothalamic-pituitary-adrenal (HPA) axis and enhanced reactivity to acute stress exposure. Together, these findings strongly link differences in glucocorticoid responsiveness to stress with marked differences in coping styles. The developed rat lines are thus a promising model with which to examine the relationship between variation in reactivity of the HPA axis and stress-related pathophysiology and could be employed to assess the therapeutic potential of treatments modulating stress habituation to ameliorate psychopathology.
Collapse
Affiliation(s)
- Sophie E Walker
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Olivia Zanoletti
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Isabelle Guillot de Suduiraut
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
| |
Collapse
|