1
|
Olszyński KH, Polowy R, Wardak AD, Łaska IA, Grymanowska AW, Puławski W, Gawryś O, Koliński M, Filipkowski RK. Male rats emit aversive 44-kHz ultrasonic vocalizations during prolonged Pavlovian fear conditioning. eLife 2024; 12:RP88810. [PMID: 39656518 PMCID: PMC11630816 DOI: 10.7554/elife.88810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Rats are believed to communicate their emotional state by emitting two distinct types of ultrasonic vocalizations. The first is long '22-kHz' vocalizations (>300 ms, <32-kHz) with constant frequency, signaling aversive states, and the second is short '50-kHz' calls (<150 ms, >32 kHz), often frequency-modulated, in appetitive situations. Here, we describe aversive vocalizations emitted at a higher pitch by male Wistar and spontaneously hypertensive rats (SHR) in an intensified aversive state - prolonged fear conditioning. These calls, which we named '44-kHz' vocalizations, are long (>150 ms), generally at a constant frequency (usually within 35-50-kHz range) and have an overall spectrographic image similar to 22-kHz calls. Some 44-kHz vocalizations are comprised of both 22-kHz-like and 44-kHz-like elements. Furthermore, two separate clustering methods confirmed that these 44-kHz calls can be separated from other vocalizations. We observed 44-kHz calls to be associated with freezing behavior during fear conditioning training, during which they constituted up to 19.4% of all calls and most of them appeared next to each other forming uniform groups of vocalizations (bouts). We also show that some of rats' responses to the playback of 44-kHz calls were more akin to that of aversive calls, for example, heart rate changes, whereas other responses were at an intermediate level between aversive and appetitive calls. Our results suggest that rats have a wider vocal repertoire than previously believed, and current definitions of major call types may require reevaluation. We hope that future investigations of 44-kHz calls in rat models of human diseases will contribute to expanding our understanding and therapeutic strategies related to human psychiatric conditions.
Collapse
Affiliation(s)
- Krzysztof Hubert Olszyński
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of SciencesWarsawPoland
| | - Rafał Polowy
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of SciencesWarsawPoland
| | - Agnieszka Diana Wardak
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of SciencesWarsawPoland
| | - Izabela Anna Łaska
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of SciencesWarsawPoland
| | - Aneta Wiktoria Grymanowska
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of SciencesWarsawPoland
| | - Wojciech Puławski
- Bioinformatics Laboratory, Mossakowski Medical Research Institute, Polish Academy of SciencesWarsawPoland
| | - Olga Gawryś
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of SciencesWarsawPoland
| | - Michał Koliński
- Bioinformatics Laboratory, Mossakowski Medical Research Institute, Polish Academy of SciencesWarsawPoland
| | - Robert Kuba Filipkowski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of SciencesWarsawPoland
| |
Collapse
|
2
|
Duggins P, Eliasmith C. A scalable spiking amygdala model that explains fear conditioning, extinction, renewal and generalization. Eur J Neurosci 2024; 59:3093-3116. [PMID: 38616566 DOI: 10.1111/ejn.16338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/03/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024]
Abstract
The amygdala (AMY) is widely implicated in fear learning and fear behaviour, but it remains unclear how the many biological components present within AMY interact to achieve these abilities. Building on previous work, we hypothesize that individual AMY nuclei represent different quantities and that fear conditioning arises from error-driven learning on the synapses between AMY nuclei. We present a computational model of AMY that (a) recreates the divisions and connections between AMY nuclei and their constituent pyramidal and inhibitory neurons; (b) accommodates scalable high-dimensional representations of external stimuli; (c) learns to associate complex stimuli with the presence (or absence) of an aversive stimulus; (d) preserves feature information when mapping inputs to salience estimates, such that these estimates generalize to similar stimuli; and (e) induces a diverse profile of neural responses within each nucleus. Our model predicts (1) defensive responses and neural activities in several experimental conditions, (2) the consequence of artificially ablating particular nuclei and (3) the tendency to generalize defensive responses to novel stimuli. We test these predictions by comparing model outputs to neural and behavioural data from animals and humans. Despite the relative simplicity of our model, we find significant overlap between simulated and empirical data, which supports our claim that the model captures many of the neural mechanisms that support fear conditioning. We conclude by comparing our model to other computational models and by characterizing the theoretical relationship between pattern separation and fear generalization in healthy versus anxious individuals.
Collapse
Affiliation(s)
- Peter Duggins
- Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, Ontario, Canada
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Chris Eliasmith
- Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, Ontario, Canada
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
- Department of Philosophy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
3
|
Bao L, Rao J, Yu D, Zheng B, Yin B. Decoding the language of fear: Unveiling objective and subjective indicators in rodent models through a systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 157:105537. [PMID: 38215801 DOI: 10.1016/j.neubiorev.2024.105537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
While rodent models are vital for studying mental disorders, the underestimation of construct validity of fear indicators has led to limitations in translating to effective clinical treatments. Addressing this gap, we systematically reviewed 5054 articles from the 1960 s, understanding underlying theoretical advancement, and selected 68 articles with at least two fear indicators for a three-level meta-analysis. We hypothesized correlations between different indicators would elucidate similar functions, while magnitude differences could reveal distinct neural or behavioral mechanisms. Our findings reveal a shift towards using freezing behavior as the primary fear indicator in rodent models, and strong, moderate, and weak correlations between freezing and conditioned suppression ratios, 22-kHz ultrasonic vocalizations, and autonomic nervous system responses, respectively. Using freezing as a reference, moderator analysis shows treatment types and fear stages significantly influenced differences in magnitudes between two indicators. Our analysis supports a two-system model of fear in rodents, where objective and subjective fears could operate on a threshold-based mechanism.
Collapse
Affiliation(s)
- Lili Bao
- School of Psychology, Fujian Normal University, China; Key Laboratory for Learning and Behavioral Sciences, Fujian Normal University, China
| | - Jiaojiao Rao
- School of Psychology, Fujian Normal University, China; Key Laboratory for Learning and Behavioral Sciences, Fujian Normal University, China
| | - Delin Yu
- School of Psychology, Fujian Normal University, China; Key Laboratory for Learning and Behavioral Sciences, Fujian Normal University, China
| | - Benhuiyuan Zheng
- School of Psychology, Fujian Normal University, China; Key Laboratory for Learning and Behavioral Sciences, Fujian Normal University, China
| | - Bin Yin
- School of Psychology, Fujian Normal University, China; Key Laboratory for Learning and Behavioral Sciences, Fujian Normal University, China.
| |
Collapse
|
4
|
Gonzalez-Palomares E, Boulanger-Bertolus J, Dupin M, Mouly AM, Hechavarria JC. Amplitude modulation pattern of rat distress vocalisations during fear conditioning. Sci Rep 2023; 13:11173. [PMID: 37429931 PMCID: PMC10333300 DOI: 10.1038/s41598-023-38051-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023] Open
Abstract
In humans, screams have strong amplitude modulations (AM) at 30 to 150 Hz. These AM correspond to the acoustic correlate of perceptual roughness. In bats, distress calls can carry AMs, which elicit heart rate increases in playback experiments. Whether amplitude modulation occurs in fearful vocalisations of other animal species beyond humans and bats remains unknown. Here we analysed the AM pattern of rats' 22-kHz ultrasonic vocalisations emitted in a fear conditioning task. We found that the number of vocalisations decreases during the presentation of conditioned stimuli. We also observed that AMs do occur in rat 22-kHz vocalisations. AMs are stronger during the presentation of conditioned stimuli, and during escape behaviour compared to freezing. Our results suggest that the presence of AMs in vocalisations emitted could reflect the animal's internal state of fear related to avoidance behaviour.
Collapse
Affiliation(s)
| | - Julie Boulanger-Bertolus
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Université Claude Bernard Lyon 1, 69500, Bron, France
| | - Maryne Dupin
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Université Claude Bernard Lyon 1, 69500, Bron, France
| | - Anne-Marie Mouly
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Université Claude Bernard Lyon 1, 69500, Bron, France.
| | - Julio C Hechavarria
- Institute for Cell Biology and Neuroscience, Goethe University, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Increased Vocalization of Rats in Response to Ultrasonic Playback as a Sign of Hypervigilance Following Fear Conditioning. Brain Sci 2021; 11:brainsci11080970. [PMID: 34439589 PMCID: PMC8393681 DOI: 10.3390/brainsci11080970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 11/16/2022] Open
Abstract
We investigated the effects of prior stress on rats' responses to 50-kHz (appetitive) and 22-kHz (aversive) ultrasonic playback. Rats were treated with 0, 1, 6 or 10 shocks (1 s, 1.0 mA each) and were exposed to playbacks the following day. Previous findings were confirmed: (i) rats moved faster during 50-kHz playback and slowed down after 22-kHz playback; (ii) they all approached the speaker, which was more pronounced during and following 50-kHz playback than 22-kHz playback; (iii) 50-kHz playback caused heart rate (HR) increase; 22-kHz playback caused HR decrease; (iv) the rats vocalized more often during and following 50-kHz playback than 22-kHz playback. The previous shock affected the rats such that singly-shocked rats showed lower HR throughout the experiment and a smaller HR response to 50-kHz playback compared to controls and other shocked groups. Interestingly, all pre-shocked rats showed higher locomotor activity during 50-kHz playback and a more significant decrease in activity following 22-kHz playback; they vocalized more often, their ultrasonic vocalizations (USV) were longer and at a higher frequency than those of the control animals. These last two observations could point to hypervigilance, a symptom of post-traumatic stress disorder (PTSD) in human patients. Increased vocalization may be a valuable measure of hypervigilance used for PTSD modeling.
Collapse
|
6
|
Totty MS, Warren N, Huddleston I, Ramanathan KR, Ressler RL, Oleksiak CR, Maren S. Behavioral and brain mechanisms mediating conditioned flight behavior in rats. Sci Rep 2021; 11:8215. [PMID: 33859260 PMCID: PMC8050069 DOI: 10.1038/s41598-021-87559-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/31/2021] [Indexed: 11/09/2022] Open
Abstract
Environmental contexts can inform animals of potential threats, though it is currently unknown how context biases the selection of defensive behavior. Here we investigated context-dependent flight responses with a Pavlovian serial-compound stimulus (SCS) paradigm that evokes freeze-to-flight transitions. Similar to previous work in mice, we show that male and female rats display context-dependent flight-like behavior in the SCS paradigm. Flight behavior was dependent on contextual fear insofar as it was only evoked in a shock-associated context and was reduced in the conditioning context after context extinction. Flight behavior was only expressed to white noise regardless of temporal order within the compound. Nonetheless, rats that received unpaired SCS trials did not show flight-like behavior to the SCS, indicating it is associative. Finally, we show that pharmacological inactivation of two brain regions critical to the expression of contextual fear, the central nucleus of the amygdala (CeA) and bed nucleus of the stria terminalis (BNST), attenuates both contextual fear and flight responses. All of these effects were similar in male and female rats. This work demonstrates that contextual fear can summate with cued and innate fear to drive a high fear state and transition from post-encounter to circa-strike defensive modes.
Collapse
Affiliation(s)
- Michael S Totty
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, 301 Old Main Dr., College Station, TX, 77843-3474, USA
| | - Naomi Warren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, 301 Old Main Dr., College Station, TX, 77843-3474, USA
| | - Isabella Huddleston
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, 301 Old Main Dr., College Station, TX, 77843-3474, USA
| | - Karthik R Ramanathan
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, 301 Old Main Dr., College Station, TX, 77843-3474, USA
| | - Reed L Ressler
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, 301 Old Main Dr., College Station, TX, 77843-3474, USA
| | - Cecily R Oleksiak
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, 301 Old Main Dr., College Station, TX, 77843-3474, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, 301 Old Main Dr., College Station, TX, 77843-3474, USA.
| |
Collapse
|
7
|
McDonald RJ, Hong NS, Atwood A, Tyndall AV, Kolb B. An assessment of the functional effects of amphetamine-induced dendritic changes in the nucleus accumbens, medial prefrontal cortex, and hippocampus on different types of learning and memory function. Neurobiol Learn Mem 2021; 180:107408. [PMID: 33609742 DOI: 10.1016/j.nlm.2021.107408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
The present experiments investigated the effects of repeated amphetamine exposure on neural networks mediating different forms of learning and memory. Different components of these networks were assessed using various functional assays. The hypothesis was that abnormal dendritic changes in nucleus accumbens, medial prefrontal cortex, and hippocampus mediated by repeated amphetamine exposure would produce impairments on forms of learning and memory dependent on neural circuits relying on these brain systems, and have little or no effect on other forms of learning not dependent on these networks. Surprisingly, the results showed that many of the dendritic changes normally found in the nucleus accumbens, prefrontal cortex, and hippocampus following repeated amphetamine exposure were reversed back to control levels following extensive multi-domain cognitive training. Learning and memory functions associated with different neural networks also appeared normal except in one case. A neural network that includes, but is not limited to, the basolateral amygdala and nucleus accumbens was dysfunctional in rats repeatedly exposed to amphetamine despite the reversal of the majority of dendritic changes in the nucleus accumbens following cognitive training. Importantly, an increase in spine density that normally occurs in these brain regions following repeated amphetamine exposure remained following extensive cognitive training, particularly in the nucleus accumbens.
Collapse
Affiliation(s)
- Robert J McDonald
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| | - Nancy S Hong
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Ammon Atwood
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Amanda V Tyndall
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Bryan Kolb
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
8
|
Moaddab M, Ray MH, McDannald MA. Ventral pallidum neurons dynamically signal relative threat. Commun Biol 2021; 4:43. [PMID: 33420332 PMCID: PMC7794503 DOI: 10.1038/s42003-020-01554-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
The ventral pallidum (VP) is anatomically poised to contribute to threat behavior. Recent studies report a VP population that scales firing increases to reward but decreases firing to aversive cues. Here, we tested whether firing decreases in VP neurons serve as a neural signal for relative threat. Single-unit activity was recorded while male rats discriminated cues predicting unique foot shock probabilities. Rats' behavior and VP single-unit firing discriminated danger, uncertainty, and safety cues. Two populations of VP neurons dynamically signaled relative threat, decreasing firing according to foot shock probability during early cue presentation, but disproportionately decreasing firing to uncertain threat as foot shock drew near. One relative threat population increased firing to reward, consistent with a bi-directional signal for general value. The second population was unresponsive to reward, revealing a specific signal for relative threat. The results reinforce anatomy to reveal the VP as a neural source of a dynamic, relative threat signal.
Collapse
Affiliation(s)
- Mahsa Moaddab
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue 514 McGuinn Hall, Chestnut Hill, MA, USA.
| | - Madelyn H Ray
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue 514 McGuinn Hall, Chestnut Hill, MA, USA
| | - Michael A McDannald
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue 514 McGuinn Hall, Chestnut Hill, MA, USA.
| |
Collapse
|
9
|
LPS-induced sickness behavior is not affected by selenium but is switched off by psychogenic stress in rats. Vet Res Commun 2019; 43:239-247. [PMID: 31760569 DOI: 10.1007/s11259-019-09766-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/02/2019] [Indexed: 01/03/2023]
Abstract
Sickness behavior (SB) is considered part of the adaptive behavioral and neuroimmune changes that occur in response to inflammatory processes. However, SB is a motivational state modulated by the environmental context. The objective of this study was to evaluate if selenium could ameliorate symptoms of SB and if stress would affect these responses. We induced SB in rats using lipopolysaccharide (LPS). We choose selenium based on our findings of LPS-exposure decreasing selenium levels in rats. We exposed these rats to a psychogenic stress and studied motivational modulation paradigms, such as cure of the organism, preservation of the species, and fight or flight. We studied ultrasonic vocalizations, open-field behaviors, body weight, and IL-1 beta and IFN-gamma serum levels. LPS-induced SB was evidenced by decreased motor/exploratory activity and increased proinflammatory mediators' levels. Selenium treatment did not exert beneficial effects on SB, revealing that probably the selenium deficiency was not related to SB. When analyzed with the stress paradigm, the behavior of rats was differentially affected. LPS did not affect behavior in the presence of stress. SB was abrogated during stressor events to prioritize survival behaviors, such as fight-or-flight. Contrarily, the association of LPS, selenium, and stress induced SB even during stressor events, revealing that this combination induced a cumulative toxic effect.
Collapse
|
10
|
Zhang X, Ye X, Cheng R, Li Q, Xiao Z. An Emergent Discriminative Learning Is Elicited During Multifrequency Testing. Front Neurosci 2019; 13:1244. [PMID: 31824246 PMCID: PMC6881306 DOI: 10.3389/fnins.2019.01244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 11/04/2019] [Indexed: 11/29/2022] Open
Abstract
In auditory-conditioned fear learning, the freezing response is independent of the sound frequencies used, but the frequency of the conditioned sound is considered distinct from those of unrelated sounds based on electrophysiological responses in the auditory system. Whether an emergent discriminative learning underlies auditory fear conditioning and which nuclei and pathways are involved in it remain unclear. Using behavioral and electrophysiological assays, we found that the response of medial prefrontal cortex (mPFC) neurons to a conditioned auditory stimulus (CS) was enhanced relative to the response to unrelated frequencies (UFs) after auditory fear conditioning, and mice could distinguish the CS during multifrequency testing, a phenomenon called emergent discriminative learning. After silencing the mPFC with muscimol, emergent discriminative learning was blocked. In addition, the pure tone responses of mPFC neurons were inhibited after injection of lidocaine in the ipsilateral primary auditory cortex (A1), and the emergent discriminative learning was blocked by silencing both sides of A1 with muscimol. This study, therefore, provides evidence for an emergent discriminative learning mediated by mPFC and A1 neurons after auditory fear conditioning.
Collapse
Affiliation(s)
- Xingui Zhang
- Department of Physiology, School of Basic Medical Sciences, Key Laboratory of Psychiatric Disorders of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Xianhua Ye
- Department of Physiology, School of Basic Medical Sciences, Key Laboratory of Psychiatric Disorders of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Rui Cheng
- Department of Physiology, School of Basic Medical Sciences, Key Laboratory of Psychiatric Disorders of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Qi Li
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhongju Xiao
- Department of Physiology, School of Basic Medical Sciences, Key Laboratory of Psychiatric Disorders of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Comparison of the effects of repeated exposures to predictable or unpredictable stress on the behavioural expression of fear in a discriminative fear conditioning to context task. Physiol Behav 2019; 208:112556. [DOI: 10.1016/j.physbeh.2019.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 04/05/2019] [Accepted: 05/15/2019] [Indexed: 11/17/2022]
|
12
|
Cannizzaro C, Talani G, Brancato A, Mulas G, Spiga S, De Luca MA, Sanna A, Marino RAM, Biggio G, Sanna E, Diana M. Dopamine Restores Limbic Memory Loss, Dendritic Spine Structure, and NMDAR-Dependent LTD in the Nucleus Accumbens of Alcohol-Withdrawn Rats. J Neurosci 2019; 39:929-943. [PMID: 30446531 PMCID: PMC6382989 DOI: 10.1523/jneurosci.1377-18.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/28/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023] Open
Abstract
Alcohol abuse leads to aberrant forms of emotionally salient memory, i.e., limbic memory, that promote escalated alcohol consumption and relapse. Accordingly, activity-dependent structural abnormalities are likely to contribute to synaptic dysfunctions that occur from suddenly ceasing chronic alcohol consumption. Here we show that alcohol-dependent male rats fail to perform an emotional-learning task during abstinence but recover their functioning by l-3,4-dihydroxyphenylalanin (l-DOPA) administration during early withdrawal. l-DOPA also reverses the selective loss of dendritic "long thin" spines observed in medium spiny neurons of the nucleus accumbens (NAc) shell of alcohol-dependent rats during abstinence, as well as the reduction in tyrosine hydroxylase immunostaining and postsynaptic density-95-positive elements. Patch-clamp experiments in NAc slices reveal that both in vivo systemic l-DOPA administration and in vitro exposure to dopamine can restore the loss of long-term depression (LTD) formation, counteract the reduction in NMDAR-mediated synaptic currents and rectify the altered NMDAR/AMPAR ratio observed in alcohol-withdrawn rats. Further, in vivo microdialysis experiments show that blunted dopaminergic signaling is revived after l-DOPA treatment during early withdrawal. These results suggest a key role of an efficient dopamine signaling for maintaining, and restore, neural trophism, NMDA-dependent LTD, and ultimately optimal learning.SIGNIFICANCE STATEMENT Blunted dopamine signaling and altered glutamate connectivity in the nucleus accumbens represent the neuroanatomical basis for the impairment in aversive limbic memory observed during withdrawal in alcohol dependence. Supplying l-DOPA during withdrawal re-establishes synaptic morphology and functional neuroadaptations, suggesting a complete recovery of nucleus accumbens glutamatergic synaptic plasticity when dopamine is revived. Importantly, restoring dopamine transmission allows those synapses to encode emotionally relevant information and rescue flexibility in the neuronal circuits that process limbic memory formation. Under these conditions, drugs capable of selectively boosting the dopaminergic function during the "fluid" and still responsive state of the early withdrawn maladaptive synapses may help in the treatment of alcohol addiction.
Collapse
Affiliation(s)
- Carla Cannizzaro
- Laboratory of Neuropsychopharmacology, Department ProSaMI G. D'Alessandro, University of Palermo, Via del Vespro 129 90127, Palermo, Italy
| | - Giuseppe Talani
- Institute of Neuroscience, National Research Council, 09042 Monserrato, Cagliari, Italy
| | - Anna Brancato
- Laboratory of Neuropsychopharmacology, Department ProSaMI G. D'Alessandro, University of Palermo, Via del Vespro 129 90127, Palermo, Italy
| | - Giovanna Mulas
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Saturnino Spiga
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Cittadella Universitaria-S.P., 09042 Monserrato, Cagliari, Italy
| | - Angela Sanna
- Department of Medical Science and Public Health, University of Cagliari, Cittadella Universitaria-S.P., 09042 Monserrato, Cagliari, Italy
| | - Rosa Anna Maria Marino
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, and
| | - Giovanni Biggio
- Institute of Neuroscience, National Research Council, 09042 Monserrato, Cagliari, Italy
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Enrico Sanna
- Institute of Neuroscience, National Research Council, 09042 Monserrato, Cagliari, Italy
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Marco Diana
- University of Sassari, G.Minardi Laboratory of Cognitive Neuroscience, Department of Chemistry and Pharmacy Via Muroni, 23 07100 Sassari, Italy
| |
Collapse
|
13
|
Lee JH, Kimm S, Han JS, Choi JS. Chasing as a model of psychogenic stress: characterization of physiological and behavioral responses. Stress 2018; 21:323-332. [PMID: 29577783 DOI: 10.1080/10253890.2018.1455090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Being chased by a predator or a dominant conspecific can induce significant stress. However, only a limited number of laboratory studies have employed chasing by itself as a stressor. In this study, we developed a novel stress paradigm in which rats were chased by a fast-moving object in an inescapable maze. In Experiment 1, defensive behaviors and stress hormone changes induced by chasing stress were measured. During the chasing stress, the chasing-stress group (n = 9) froze and emitted 22-kHz ultrasonic vocalizations (USVs), but the no-chasing control group (n = 10) did not. Plasma corticosterone levels significantly increased following the chasing and were comparable to those of the restraint-stress group (n = 6). In Experiment 2, the long-lasting memory of the chasing event was tested after three weeks. The chasing-stress group (n = 15) showed higher levels of freezing and USV than the no-chasing group (n = 14) when they were presented with the tone associated with the object's chasing action. Subsequently, the rats were subjected to Pavlovian threat conditioning with a tone as a conditioned stimulus and footshock as an unconditioned stimulus. The chasing-stress group showed higher levels of freezing and USV during the conditioning session than the no-chasing group, indicating sensitized defensive reactions in a different threat situation. Taken together, the current results suggest that chasing stress can induce long-lasting memory and sensitization of defensive responses to a new aversive event as well as immediate, significant stress responses.
Collapse
Affiliation(s)
- Ji-Hye Lee
- a Department of Psychology , Korea University , Seoul , South Korea
| | - Sunwhi Kimm
- a Department of Psychology , Korea University , Seoul , South Korea
| | - Jung-Soo Han
- b Department of Biological Sciences , Konkuk University , Seoul , South Korea
| | - June-Seek Choi
- a Department of Psychology , Korea University , Seoul , South Korea
| |
Collapse
|
14
|
McDonald RJ, Balog RJ, Lee JQ, Stuart EE, Carrels BB, Hong NS. Rats with ventral hippocampal damage are impaired at various forms of learning including conditioned inhibition, spatial navigation, and discriminative fear conditioning to similar contexts. Behav Brain Res 2018; 351:138-151. [PMID: 29883593 DOI: 10.1016/j.bbr.2018.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/11/2018] [Accepted: 06/02/2018] [Indexed: 11/19/2022]
Abstract
The ventral hippocampus (vHPC) has been implicated in learning and memory functions that seem to differ from its dorsal counterpart. The goal of this series of experiments was to provide further insight into the functional contributions of the vHPC. Our previous work implicated the vHPC in spatial learning, inhibitory learning, and fear conditioning to context. However, the specific role of vHPC on these different forms of learning are not clear. Accordingly, we assessed the effects of neurotoxic lesions of the ventral hippocampus on retention of a conditioned inhibitory association, early versus late spatial navigation in the water task, and discriminative fear conditioning to context under high ambiguity conditions. The results showed that the vHPC was necessary for the expression of conditioned inhibition, early spatial learning, and discriminative fear conditioning to context when the paired and unpaired contexts have high cue overlap. We argue that this pattern of effects, combined with previous work, suggests a key role for vHPC in the utilization of broad contextual representations for inhibition and discriminative memory in high ambiguity conditions.
Collapse
Affiliation(s)
- Robert J McDonald
- The Canadian Center for Behavioural Neuroscience, The University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.
| | - R J Balog
- The Canadian Center for Behavioural Neuroscience, The University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
| | - Justin Q Lee
- The Canadian Center for Behavioural Neuroscience, The University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
| | - Emily E Stuart
- The Canadian Center for Behavioural Neuroscience, The University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
| | - Brianna B Carrels
- The Canadian Center for Behavioural Neuroscience, The University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
| | - Nancy S Hong
- The Canadian Center for Behavioural Neuroscience, The University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
15
|
Burke CJ, Kisko TM, Euston DR, Pellis SM. Do juvenile rats use specific ultrasonic calls to coordinate their social play? Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
Cameron HA, Schoenfeld TJ. Behavioral and structural adaptations to stress. Front Neuroendocrinol 2018; 49:106-113. [PMID: 29421158 PMCID: PMC5963997 DOI: 10.1016/j.yfrne.2018.02.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/20/2018] [Accepted: 02/03/2018] [Indexed: 10/18/2022]
Abstract
Unpredictable aversive experiences, or stressors, lead to changes in depression- and anxiety-related behavior and to changes in hippocampal structure including decreases in adult neurogenesis, granule cell and pyramidal cell dendritic morphology, and volume. Here we review the relationship between these behavioral and structural changes and discuss the possibility that these changes may be largely adaptive. Specifically, we suggest that new neurons in the dentate gyrus enhance behavioral adaptability to changes in the environment, biasing behavior in novel situations based on previous experience with stress. Conversely, atrophy-like changes in the hippocampus and decreased adult neurogenesis following chronic stress may serve to limit stress responses and stabilize behavior during chronic stress.
Collapse
Affiliation(s)
- Heather A Cameron
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Timothy J Schoenfeld
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Keeley RJ, Bye C, Trow J, McDonald RJ. Adolescent THC exposure does not sensitize conditioned place preferences to subthreshold d-amphetamine in male and female rats. F1000Res 2018; 7:342. [PMID: 29770212 PMCID: PMC5920568 DOI: 10.12688/f1000research.14029.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2018] [Indexed: 12/18/2022] Open
Abstract
The acute effects of marijuana consumption on brain physiology and behaviour are well documented, but the long-term effects of its chronic use are less well known. Chronic marijuana use during adolescence is of increased interest, given that the majority of individuals first use marijuana during this developmental stage , and adolescent marijuana use is thought to increase the susceptibility to abusing other drugs when exposed later in life. It is possible that marijuana use during critical periods in adolescence could lead to increased sensitivity to other drugs of abuse later on. To test this, we chronically administered ∆ 9-tetrahydrocannabinol (THC) to male and female Long-Evans (LER) and Wistar (WR) rats directly after puberty onset. Rats matured to postnatal day 90 before being exposed to a conditioned place preference task (CPP). A subthreshold dose of d-amphetamine, found not to induce place preference in drug naïve rats, was used as the unconditioned stimulus. The effect of d-amphetamine on neural activity was inferred by quantifying cfos expression in the nucleus accumbens and dorsal hippocampus following CPP training. Chronic exposure to THC post-puberty had no potentiating effect on a subthreshold dose of d-amphetamine to induce CPP. No differences in cfos expression were observed. These results show that chronic exposure to THC during puberty did not increase sensitivity to a sub-threshold dose of d-amphetamine in adult LER and WR rats. This supports the concept that THC may not sensitize the response to all drugs of abuse.
Collapse
Affiliation(s)
- Robin J Keeley
- University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
- National Institute on Drug Abuse, 251 Bayview blvd, Suite 200, Baltimore, MD, 21224, USA
| | - Cameron Bye
- University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
| | - Jan Trow
- University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
| | - Robert J McDonald
- University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
18
|
Keeley RJ, Bye C, Trow J, McDonald RJ. Adolescent THC exposure does not sensitize conditioned place preferences to subthreshold d-amphetamine in male and female rats. F1000Res 2018; 7:342. [PMID: 29770212 PMCID: PMC5920568 DOI: 10.12688/f1000research.14029.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/02/2018] [Indexed: 09/29/2023] Open
Abstract
The acute effects of marijuana consumption on brain physiology and behaviour are well documented, but the long-term effects of its chronic use are less well known. Chronic marijuana use during adolescence is of increased interest, given that the majority of individuals first use marijuana during this developmental stage , and adolescent marijuana use is thought to increase the susceptibility to abusing other drugs when exposed later in life. It is possible that marijuana use during critical periods in adolescence could lead to increased sensitivity to other drugs of abuse later on. To test this, we chronically administered ∆ 9-tetrahydrocannabinol (THC) to male and female Long-Evans (LER) and Wistar (WR) rats directly after puberty onset. Rats matured to postnatal day 90 before being exposed to a conditioned place preference task (CPP). A subthreshold dose of d-amphetamine, found not to induce place preference in drug naïve rats, was used as the unconditioned stimulus. The effect of d-amphetamine on neural activity was inferred by quantifying cfos expression in the nucleus accumbens and dorsal hippocampus following CPP training. Chronic exposure to THC post-puberty had no potentiating effect on a subthreshold dose of d-amphetamine to induce CPP. No differences in cfos expression were observed. These results show that chronic exposure to THC during puberty did not increase sensitivity to d-amphetamine in adult LER and WR rats. This supports the concept that THC may not sensitize the response to all drugs of abuse.
Collapse
Affiliation(s)
- Robin J Keeley
- University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
- National Institute on Drug Abuse, 251 Bayview blvd, Suite 200, Baltimore, MD, 21224, USA
| | - Cameron Bye
- University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
| | - Jan Trow
- University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
| | - Robert J McDonald
- University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
19
|
Burke CJ, Kisko TM, Swiftwolfe H, Pellis SM, Euston DR. Specific 50-kHz vocalizations are tightly linked to particular types of behavior in juvenile rats anticipating play. PLoS One 2017; 12:e0175841. [PMID: 28467436 PMCID: PMC5414981 DOI: 10.1371/journal.pone.0175841] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 04/01/2017] [Indexed: 11/19/2022] Open
Abstract
Rat ultrasonic vocalizations have been suggested to be either a byproduct of physical movement or, in the case of 50-kHz calls, a means to communicate positive affect. Yet there are up to 14 distinct types of 50-kHz calls, raising issues for both explanations. To discriminate between these theories and address the purpose for the numerous 50-kHz call types, we studied single juvenile rats that were waiting to play with a partner, a situation associated with a high number of 50-kHz calls. We used a Monte-Carlo shuffling procedure to identify vocalization-behavior correlations that were statistically different from chance. We found that certain call types ("split", "composite" and "multi-step") were strongly associated with running and jumping while other call types (those involving "trills") were more common during slower movements. Further, non-locomotor states such as resting and rearing were strongly predictive of a lack of vocalizations. We also found that the various sub-types of USVs can be clustered into 3-4 categories based on similarities in the way they are used. We did not find a one-to-one relationship between any movements and specific vocalizations, casting doubt on the motion byproduct theory. On the other hand, the use of specific calls during specific behaviors is problematic for the affect communication hypothesis. Based on our results, we suggest that ultrasonic calls may serve to coordinate moment-to-moment social interactions.
Collapse
Affiliation(s)
- Candace J. Burke
- Dept of Neuroscience, Univ. of Lethbridge, Lethbridge, AB, Canada
| | - Theresa M. Kisko
- Behavioural Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, Marburg, Germany
| | | | - Sergio M. Pellis
- Dept of Neuroscience, Univ. of Lethbridge, Lethbridge, AB, Canada
| | - David R. Euston
- Dept of Neuroscience, Univ. of Lethbridge, Lethbridge, AB, Canada
- * E-mail:
| |
Collapse
|
20
|
Friedel JE, DeHart WB, Odum AL. The effects of 100 dB 1-kHz and 22-kHz tones as punishers on lever pressing in rats. J Exp Anal Behav 2017; 107:354-368. [DOI: 10.1002/jeab.254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 03/06/2017] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Amy L. Odum
- Department of Psychology; Utah State University
| |
Collapse
|
21
|
Brancato A, Lavanco G, Cavallaro A, Plescia F, Cannizzaro C. The use of the Emotional-Object Recognition as an assay to assess learning and memory associated to an aversive stimulus in rodents. J Neurosci Methods 2016; 274:106-115. [DOI: 10.1016/j.jneumeth.2016.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/14/2016] [Accepted: 09/28/2016] [Indexed: 12/25/2022]
|
22
|
Trow JE, Hong NS, Jones AM, Lapointe J, MacPhail JK, McDonald RJ. Evidence of a role for orbital prefrontal cortex in preventing over-generalization to moderate predictors of biologically significant events. Neuroscience 2016; 345:49-63. [PMID: 27746344 DOI: 10.1016/j.neuroscience.2016.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 09/25/2016] [Accepted: 10/04/2016] [Indexed: 11/30/2022]
Abstract
The mammalian brain is specialized to acquire information about environmental predictors of biologically significant events. However, environments contain an array of stimuli from which animals must ascertain which ones are meaningful in the current situation. This kind of uncertainty is inherent in the discriminative fear conditioning to context task (DFCTC) during which rats are trained to associate one context with foot-shock and another distinct context with no event. Although the contexts differ on several dimensions, they also share similarities making some cues perfect predictors, but others moderate predictors. Appropriate responding requires animals to determine which cues are relevant in the current situation and the ability to constrain their responses only to those perfect predictors. The orbital prefrontal cortex (OPFC) is thought to modulate this function as OPFC lesions result in over-generalization during DFCTC. Two experiments were conducted; the first was intended to dissociate the role of the OPFC in acquisition and expression of DFCTC, and the second intended to determine if the OPFC will also function to constrain responses during an appetitive version of DFCTC. We found that inactivation of the OPFC prior to assessment measures resulted in generalized responses on the appetitive and aversive task, however, these effects may be more prominent during the aversive task. Despite generalization during activity testing, rats were able to discriminate between the two contexts during preference. These results point to a broader role for the OPFC constraining responses to perfect predictors of biologically significant events in uncertain contexts.
Collapse
Affiliation(s)
- Jan E Trow
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 4N8, Canada.
| | - Nancy S Hong
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 4N8, Canada.
| | - Ashley M Jones
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 4N8, Canada
| | - Jennifer Lapointe
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 4N8, Canada
| | - Jamie K MacPhail
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 4N8, Canada
| | - Robert J McDonald
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 4N8, Canada.
| |
Collapse
|
23
|
Dietz B, Manahan-Vaughan D. Hippocampal long-term depression is facilitated by the acquisition and updating of memory of spatial auditory content and requires mGlu5 activation. Neuropharmacology 2016; 115:30-41. [PMID: 27055771 DOI: 10.1016/j.neuropharm.2016.02.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/22/2016] [Accepted: 02/22/2016] [Indexed: 12/21/2022]
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are key cellular processes that support memory formation. Whereas increases of synaptic strength by means of LTP may support the creation of a spatial memory 'engram', LTD appears to play an important role in refining and optimising experience-dependent encoding. A differentiation in the role of hippocampal subfields is apparent. For example, LTD in the dentate gyrus (DG) is enabled by novel learning about large visuospatial features, whereas in area CA1, it is enabled by learning about discrete aspects of spatial content, whereby, both discrete visuospatial and olfactospatial cues trigger LTD in CA1. Here, we explored to what extent local audiospatial cues facilitate information encoding in the form of LTD in these subfields. Coupling of low frequency afferent stimulation (LFS) with discretely localised, novel auditory tones in the sonic hearing, or ultrasonic range, facilitated short-term depression (STD) into LTD (>24 h) in CA1, but not DG. Re-exposure to the now familiar audiospatial configuration ca. 1 week later failed to enhance STD. Reconfiguration of the same audiospatial cues resulted anew in LTD when ultrasound, but not non-ultrasound cues were used. LTD facilitation that was triggered by novel exposure to spatially arranged tones, or to spatial reconfiguration of the same tones were both prevented by an antagonism of the metabotropic glutamate receptor, mGlu5. These data indicate that, if behaviourally salient enough, the hippocampus can use audiospatial cues to facilitate LTD that contributes to the encoding and updating of spatial representations. Effects are subfield-specific, and require mGlu5 activation, as is the case for visuospatial information processing. These data reinforce the likelihood that LTD supports the encoding of spatial features, and that this occurs in a qualitative and subfield-specific manner. They also support that mGlu5 is essential for synaptic encoding of spatial experience. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
Affiliation(s)
- Birte Dietz
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, 44780, Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, 44780, Bochum, Germany.
| |
Collapse
|
24
|
Brantsæter M, Nordgreen J, Rodenburg TB, Tahamtani FM, Popova A, Janczak AM. Exposure to Increased Environmental Complexity during Rearing Reduces Fearfulness and Increases Use of Three-Dimensional Space in Laying Hens (Gallus gallus domesticus). Front Vet Sci 2016; 3:14. [PMID: 26973843 PMCID: PMC4770049 DOI: 10.3389/fvets.2016.00014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/09/2016] [Indexed: 11/13/2022] Open
Abstract
The complexity of the rearing environment is important for behavioral development and fearfulness. The aim of this study was to test the hypothesis that laying hens reared in a complex aviary system with exposure to mild intermittent stressors would be less fearful, less sensitive to stress, and would use elevated areas of the pen more often as adults than hens reared in a barren cage environment. Laying hens (N = 160) were housed in the same rearing house; half of the birds (n = 80) in an aviary and the other half (n = 80) in cages. At 16 weeks of age, the birds were transported to the experimental facilities. Their behavior was recorded at 19 and 23 weeks of age and analyzed by analysis of variance on individual scores for a fearfulness-related principal component generated using principal component analysis. The results indicate that aviary-reared birds have lower levels of fearfulness compared with cage-reared birds both at 19 weeks and at 23 weeks of age. When comparing the response induced by initial exposure to a novel object at 19 and 23 weeks of age, more aviary-reared birds tended to fly up at 19 weeks compared to the cage-reared birds, indicating a tendency toward a more active behavioral response in the aviary-reared birds than in cage-reared birds. There was no difference between treatments in the flight response at 23 weeks. The groups did not differ in defecation frequency or the concentration of fecal corticosterone metabolites at either age. At 19 weeks, observation of the spatial distribution in the home pens indicated that more aviary-reared birds spent time on the low perch, the elevated platform, and the upper perch, compared to the cage-reared birds. However, at 23 weeks of age, these differences were no longer detected. The results of this study support the hypothesis that increased environmental complexity during rearing reduces fearfulness of adult laying hens.
Collapse
Affiliation(s)
- Margrethe Brantsæter
- Animal Welfare Research Group, Department of Production Animal Clinical Science, NMBU School of Veterinary Science, Oslo, Norway
| | - Janicke Nordgreen
- Animal Welfare Research Group, Department of Production Animal Clinical Science, NMBU School of Veterinary Science, Oslo, Norway
| | - T. Bas Rodenburg
- Behavioural Ecology Group, Wageningen University, Wageningen, Netherlands
| | - Fernanda M. Tahamtani
- Animal Welfare Research Group, Department of Production Animal Clinical Science, NMBU School of Veterinary Science, Oslo, Norway
| | - Anastasija Popova
- Animal Welfare Research Group, Department of Production Animal Clinical Science, NMBU School of Veterinary Science, Oslo, Norway
| | - Andrew M. Janczak
- Animal Welfare Research Group, Department of Production Animal Clinical Science, NMBU School of Veterinary Science, Oslo, Norway
| |
Collapse
|
25
|
Kim N, Kong MS, Jo KI, Kim EJ, Choi JS. Increased tone-offset response in the lateral nucleus of the amygdala underlies trace fear conditioning. Neurobiol Learn Mem 2015; 126:7-17. [PMID: 26524504 DOI: 10.1016/j.nlm.2015.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 10/22/2022]
Abstract
Accumulating evidence suggests that the lateral nucleus of the amygdala (LA) stores associative memory in the form of enhanced neural response to the sensory input following classical fear conditioning in which the conditioned stimulus (CS) and the unconditioned stimulus (US) are presented in a temporally continuous manner. However, little is known about the role of the LA in trace fear conditioning where the CS and the US are separated by a temporal gap. Single-unit recordings of LA neurons before and after trace fear conditioning revealed that the short-latency activity to the CS offset, but not that to the onset, increased significantly and accompanied the conditioned fear response. The increased short-latency activity was evident in two aspects: the number of offset-responsive neurons was increased and the latency of the neuronal response to the CS offset was shortened. On the contrary, changes in the firing rate to either the onset or the offset were negligible following unpaired presentations of the CS and US. In sum, our results suggest that increased synaptic efficacy in the CS offset pathway in the LA might underlie the association between temporally distant stimuli in trace fear conditioning.
Collapse
Affiliation(s)
- Namsoo Kim
- Department of Psychology, Korea University, 5-1, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea; Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Mi-Seon Kong
- Department of Psychology, Korea University, 5-1, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea; Department of Psychology, University of Washington, Seattle, WA, USA
| | - Kyeong Im Jo
- Department of Psychology, Korea University, 5-1, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Eun Joo Kim
- Department of Psychology, Korea University, 5-1, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea; Department of Psychology, University of Washington, Seattle, WA, USA
| | - June-Seek Choi
- Department of Psychology, Korea University, 5-1, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Gidyk DC, Deibel SH, Hong NS, McDonald RJ. Barriers to developing a valid rodent model of Alzheimer's disease: from behavioral analysis to etiological mechanisms. Front Neurosci 2015; 9:245. [PMID: 26283893 PMCID: PMC4518326 DOI: 10.3389/fnins.2015.00245] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/29/2015] [Indexed: 12/30/2022] Open
Abstract
Sporadic Alzheimer's disease (AD) is the most prevalent form of age-related dementia. As such, great effort has been put forth to investigate the etiology, progression, and underlying mechanisms of the disease. Countless studies have been conducted, however, the details of this disease remain largely unknown. Rodent models provide opportunities to investigate certain aspects of AD that cannot be studied in humans. These animal models vary from study to study and have provided some insight, but no real advancements in the prevention or treatment of the disease. In this Hypothesis and Theory paper, we discuss what we perceive as barriers to impactful discovery in rodent AD research and we offer potential solutions for moving forward. Although no single model of AD is capable of providing the solution to the growing epidemic of the disease, we encourage a comprehensive approach that acknowledges the complex etiology of AD with the goal of enhancing the bidirectional translatability from bench to bedside and vice versa.
Collapse
Affiliation(s)
- Darryl C. Gidyk
- *Correspondence: Darryl C. Gidyk, Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 6W4, Canada
| | | | | | | |
Collapse
|
27
|
Keeley R, Bye C, Trow J, McDonald R. Strain and sex differences in brain and behaviour of adult rats: Learning and memory, anxiety and volumetric estimates. Behav Brain Res 2015; 288:118-31. [DOI: 10.1016/j.bbr.2014.10.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 12/13/2022]
|
28
|
Kirsten TB, Galvão MC, Reis-Silva TM, Queiroz-Hazarbassanov N, Bernardi MM. Zinc prevents sickness behavior induced by lipopolysaccharides after a stress challenge in rats. PLoS One 2015; 10:e0120263. [PMID: 25775356 PMCID: PMC4361539 DOI: 10.1371/journal.pone.0120263] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/21/2015] [Indexed: 02/06/2023] Open
Abstract
Sickness behavior is considered part of the specific beneficial adaptive behavioral and neuroimmune changes that occur in individuals in response to infectious/inflammatory processes. However, in dangerous and stressful situations, sickness behavior should be momentarily abrogated to prioritize survival behaviors, such as fight or flight. Taking this assumption into account, we experimentally induced sickness behavior in rats using lipopolysaccharides (LPS), an endotoxin that mimics infection by gram-negative bacteria, and then exposed these rats to a restraint stress challenge. Zinc has been shown to play a regulatory role in the immune and nervous systems. Therefore, the objective of this study was to examine the effects of zinc treatment on the sickness response of stress-challenged rats. We evaluated 22-kHz ultrasonic vocalizations, open-field behavior, tumor necrosis factor α (TNF-α), corticosterone, and brain-derived neurotrophic factor (BDNF) plasma levels. LPS administration induced sickness behavior in rats compared to controls, i.e., decreases in the distance traveled, average velocity, rearing frequency, self-grooming, and number of vocalizations, as well as an increase in the plasma levels of TNF-α, compared with controls after a stressor challenge. LPS also decreased BDNF expression but did not influence anxiety parameters. Zinc treatment was able to prevent sickness behavior in LPS-exposed rats after the stress challenge, restoring exploratory/motor behaviors, communication, and TNF-α levels similar to those of the control group. Thus, zinc treatment appears to be beneficial for sick animals when they are facing risky/stressful situations.
Collapse
Affiliation(s)
- Thiago B. Kirsten
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
- Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Marcella C. Galvão
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Thiago M. Reis-Silva
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Maria M. Bernardi
- Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| |
Collapse
|
29
|
Wehmann HN, Gustav D, Kirkerud NH, Galizia CG. The sound and the fury--bees hiss when expecting danger. PLoS One 2015; 10:e0118708. [PMID: 25747702 PMCID: PMC4351880 DOI: 10.1371/journal.pone.0118708] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/22/2015] [Indexed: 12/02/2022] Open
Abstract
Honey bees are important model systems for the investigation of learning and memory and for a better understanding of the neuronal basics of brain function. Honey bees also possess a rich repertoire of tones and sounds, from queen piping and quacking to worker hissing and buzzing. In this study, we tested whether the worker bees' sounds can be used as a measure of learning. We therefore conditioned honey bees aversively to odours in a walking arena and recorded both their sound production and their movement. Bees were presented with two odours, one of which was paired with an electric shock. Initially, the bees did not produce any sound upon odour presentation, but responded to the electric shock with a strong hissing response. After learning, many bees hissed at the presentation of the learned odour, while fewer bees hissed upon presentation of another odour. We also found that hissing and movement away from the conditioned odour are independent behaviours that can co-occur but do not necessarily do so. Our data suggest that hissing can be used as a readout for learning after olfactory conditioning, but that there are large individual differences between bees concerning their hissing reaction. The basis for this variability and the possible ecological relevance of the bees' hissing remain to be investigated.
Collapse
Affiliation(s)
| | - David Gustav
- Neurobiology, Universität Konstanz, Konstanz, Germany
| | - Nicholas H. Kirkerud
- Neurobiology, Universität Konstanz, Konstanz, Germany
- International Max-Planck Research School for Organismal Biology, Universität Konstanz, Konstanz, Germany
| | | |
Collapse
|
30
|
Keeley R, Hong N, Fisher A, McDonald R. Co-morbid beta-amyloid toxicity and stroke produce impairments in an ambiguous context task in rats without any impairment in spatial working memory. Neurobiol Learn Mem 2015; 119:42-51. [DOI: 10.1016/j.nlm.2015.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 01/02/2015] [Accepted: 01/05/2015] [Indexed: 01/28/2023]
|
31
|
Opiol H, Pavlovski I, Michalik M, Mistlberger RE. Ultrasonic vocalizations in rats anticipating circadian feeding schedules. Behav Brain Res 2015; 284:42-50. [PMID: 25677650 DOI: 10.1016/j.bbr.2015.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/23/2015] [Accepted: 02/02/2015] [Indexed: 11/19/2022]
Abstract
Rats readily learn to anticipate a reward signaled by an external stimulus. Anticipatory behaviors evoked by conditioned stimuli include 50 kHz ultrasonic vocalizations (USVs), a proposed behavioral correlate of positive affect and activation of midbrain dopamine pathways. Rats can also anticipate a reward, such as food, provided once daily, without external cueing. Anticipation of a daily reward exhibits formal properties of a circadian rhythm. The neural circuits that regulate the timing and amplitude of these rhythms remain an open question, but evidence suggests a role for dopamine. To gain further insight into the neural and affective correlates of circadian food anticipatory rhythms, we made 2h and 24h USV recordings in rats fed 2h/day in the light period, a procedure that induces robust anticipation 2-3h before mealtime. Potential interactions between internal and external time cues in USV production were evaluated by inclusion of a 3 kHz tone 15 min before mealtime. Prior to scheduled feeding, spontaneous 50 kHz USVs were rare during the light period. During scheduled feeding, flat and frequency modulated (FM) 50kHz USVs occurred prior to and during mealtime. FM USVs were more closely related to anticipation, while flat USVs were more dependent on food access. USVs also occurred during spontaneous waking at other times of day. The tone did not evoke USVs but did modulate activity. Behavioral anticipation of a daily meal is accompanied by USVs consistent with a positive affective state and elevated dopamine transmission.
Collapse
Affiliation(s)
- Hanna Opiol
- Department of Psychology, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Ilya Pavlovski
- Department of Psychology, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Mateusz Michalik
- Department of Psychology, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Ralph E Mistlberger
- Department of Psychology, Simon Fraser University, Burnaby, BC, Canada V5A 1S6.
| |
Collapse
|
32
|
Keeley RJ, Trow J, Bye C, McDonald RJ. Part II: Strain- and sex-specific effects of adolescent exposure to THC on adult brain and behaviour: Variants of learning, anxiety and volumetric estimates. Behav Brain Res 2015; 288:132-52. [PMID: 25591471 DOI: 10.1016/j.bbr.2015.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 12/20/2022]
Abstract
Marijuana is one of the most highly used psychoactive substances in the world, and its use typically begins during adolescence, a period of substantial brain development. Females across species appear to be more susceptible to the long-term consequences of marijuana use. Despite the identification of inherent differences between rat strains including measures of anatomy, genetics and behaviour, no studies to our knowledge have examined the long-term consequences of adolescent exposure to marijuana or its main psychoactive component, Δ(9)-tetrahydrocannabinol (THC), in males and females of two widely used rat strains: Long-Evans hooded (LER) and Wistar (WR) rats. THC was administered for 14 consecutive days following puberty onset, and once they reached adulthood, changes in behaviour and in the volume of associated brain areas were quantified. Rats were assessed in behavioural tests of motor, spatial and contextual learning, and anxiety. Some tasks showed effects of injection, since handled and vehicle groups were included as controls. Performance on all tasks, except motor learning, and the volume of associated brain areas were altered with injection or THC administration, although these effects varied by strain and sex group. Finally, analysis revealed treatment-specific correlations between performance and brain volumes. This study is the first of its kind to directly compare males and females of two rat strains for the long-term consequences of adolescent THC exposure. It highlights the importance of considering strain and identifies certain rat strains as susceptible or resilient to the effects of THC.
Collapse
Affiliation(s)
- R J Keeley
- University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 4N8, Canada.
| | - J Trow
- University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 4N8, Canada
| | - C Bye
- University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 4N8, Canada
| | - R J McDonald
- University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 4N8, Canada
| |
Collapse
|
33
|
Galvão MC, Chaves-Kirsten GP, Queiroz-Hazarbassanov N, Carvalho VM, Bernardi MM, Kirsten TB. Prenatal zinc reduces stress response in adult rat offspring exposed to lipopolysaccharide during gestation. Life Sci 2015; 120:54-60. [DOI: 10.1016/j.lfs.2014.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 12/31/2022]
|
34
|
Draycott B, Loureiro M, Ahmad T, Tan H, Zunder J, Laviolette SR. Cannabinoid transmission in the prefrontal cortex bi-phasically controls emotional memory formation via functional interactions with the ventral tegmental area. J Neurosci 2014; 34:13096-109. [PMID: 25253856 PMCID: PMC6608340 DOI: 10.1523/jneurosci.1297-14.2014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 08/15/2014] [Accepted: 08/15/2014] [Indexed: 01/01/2023] Open
Abstract
Disturbances in cortical cannabinoid CB1 receptor signaling are well established correlates of various neuropsychiatric disorders, including depression and schizophrenia. Importantly, the ability of cannabinoid transmission to modulate emotional processing is functionally linked to interactions with subcortical DA systems. While considerable evidence demonstrates that CB1 receptor-mediated modulation of emotional processing and related behaviors follows a biphasic functional curve, little is known regarding how CB1 signaling within cortical networks may interact with subcortical DAergic systems involved in emotional behavior regulation. Using a combination of in vivo electrophysiological recordings and behavioral pharmacology in rats, we investigated the relationship between mPFC cannabinoid transmission, fear memory formation, and subcortical DA neuron activity patterns. We report that direct intra-mPFC CB1 activation biphasically modulates spontaneous, subcortical VTA DA neuron activity in a dose-dependent fashion; while lower doses of a CB1 receptor agonist, WIN 55,212-2, significantly increased spontaneous firing and bursting rates of VTA DA neurons, higher doses strongly inhibited spontaneous DA neuron activity. Remarkably, this same dose-related functional difference was observed with the regulation of fear-related emotional memory formation. Thus, lower levels of CB1 activation potentiated the emotional salience of normally subthreshold fear memory, whereas higher levels completely blocked fear memory acquisition. Furthermore, while the potentiation of subthreshold fear memory salience was blocked by DA receptor antagonism, CB1-mediated blunting of suprathreshold fear memory was rescued by intra-VTA administration of a GABAB receptor antagonist, demonstrating that reversal of GABAergic inhibitory mechanisms in the VTA can reverse the inhibitory influence of intra-PFC CB1 transmission on mesolimbic DA activity.
Collapse
Affiliation(s)
| | - Michael Loureiro
- Addiction Research Group, Departments of Anatomy and Cell Biology
| | - Tasha Ahmad
- Addiction Research Group, Departments of Anatomy and Cell Biology
| | - Huibing Tan
- Addiction Research Group, Departments of Anatomy and Cell Biology
| | - Jordan Zunder
- Addiction Research Group, Departments of Anatomy and Cell Biology
| | - Steven R Laviolette
- Addiction Research Group, Departments of Anatomy and Cell Biology, Department of Psychiatry, and Department of Psychology, Schulich School of Medicine and Dentistry. University of Western Ontario, London, Ontario, Canada N6A 5C1
| |
Collapse
|
35
|
McDonald RJ, Hong NS. How does a specific learning and memory system in the mammalian brain gain control of behavior? Hippocampus 2014; 23:1084-102. [PMID: 23929795 DOI: 10.1002/hipo.22177] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2013] [Indexed: 11/06/2022]
Abstract
This review addresses a fundamental, yet poorly understood set of issues in systems neuroscience. The issues revolve around conceptualizations of the organization of learning and memory in the mammalian brain. One intriguing, and somewhat popular, conceptualization is the idea that there are multiple learning and memory systems in the mammalian brain and they interact in different ways to influence and/or control behavior. This approach has generated interesting empirical and theoretical work supporting this view. One issue that needs to be addressed is how these systems influence or gain control of voluntary behavior. To address this issue, we clearly specify what we mean by a learning and memory system. We then review two types of processes that might influence which memory system gains control of behavior. One set of processes are external factors that can affect which system controls behavior in a given situation including task parameters like the kind of information available to the subject, types of training experience, and amount of training. The second set of processes are brain mechanisms that might influence what memory system controls behavior in a given situation including executive functions mediated by the prefrontal cortex; switching mechanisms mediated by ascending neurotransmitter systems, the unique role of the hippocampus during learning. The issue of trait differences in control of different learning and memory systems will also be considered in which trait differences in learning and memory function are thought to potentially emerge from differences in level of prefrontal influence, differences in plasticity processes, differences in ascending neurotransmitter control, differential access to effector systems like motivational and motor systems. Finally, we present scenarios in which different mechanisms might interact. This review was conceived to become a jumping off point for new work directed at understanding these issues. The outcome of this work, in combination with other approaches, might improve understanding of the mechanisms of volition in human and non-human animals.
Collapse
Affiliation(s)
- Robert J McDonald
- Department of Neuroscience, Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | | |
Collapse
|
36
|
Deibel SH, Hong NS, Himmler SM, McDonald RJ. The effects of chronic photoperiod shifting on the physiology of female Long-Evans rats. Brain Res Bull 2014; 103:72-81. [DOI: 10.1016/j.brainresbull.2014.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/16/2014] [Accepted: 03/03/2014] [Indexed: 12/18/2022]
|
37
|
Whittaker AL, Howarth GS. Use of spontaneous behaviour measures to assess pain in laboratory rats and mice: How are we progressing? Appl Anim Behav Sci 2014. [DOI: 10.1016/j.applanim.2013.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Chen X, Li S, Kirouac GJ. Blocking of corticotrophin releasing factor receptor-1 during footshock attenuates context fear but not the upregulation of prepro-orexin mRNA in rats. Pharmacol Biochem Behav 2014; 120:1-6. [PMID: 24491435 DOI: 10.1016/j.pbb.2014.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 01/21/2014] [Accepted: 01/26/2014] [Indexed: 10/25/2022]
Abstract
Hypothalamic neuropeptides called orexins (hypocretins) are well known for their roles in promoting arousal. Orexins have also been shown to play a role in fear and anxiety produced by the exposure of rats to an acute episode of moderately intense footshocks. Recent evidence indicates that stress activates orexin neurons through a corticotropin releasing factor (CRF) mechanism. In this study, we examined the effect of a CRF receptor-1 (CRF-R1) antagonist antalarmin (20mg/kg, i.p.) given before shock exposure on subsequent expression of contextual fear and the levels of prepro-orexin (ppOX) mRNA in the hypothalamus. Antalarmin decreased fear and ultrasonic vocalization expression to the shock context at 2 and 10 days after shock exposure. However, antalarmin did not prevent the increases in ppOX mRNA produced by the shock experience. This study provides evidence that blocking of CRF-R1 at the time of footshocks attenuates contextual fear. While an increase in the activity of the orexin system may contribute to fear, this activation does not appear to be sufficient for fear expression.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sa Li
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gilbert J Kirouac
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Psychiatry, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
39
|
Keeley RJ, Zelinski EL, Fehr L, McDonald RJ. The effect of exercise on carbohydrate preference in female rats. Brain Res Bull 2014; 101:45-50. [PMID: 24406468 DOI: 10.1016/j.brainresbull.2013.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/19/2013] [Accepted: 12/22/2013] [Indexed: 11/29/2022]
Abstract
Exercise has a myriad of health benefits, including positive effects against heart disease, diabetes, and dementia. Cognitive performance improves following chronic exercise, both in animal models and humans. Studies have examined the effect of exercise on feeding, demonstrating a preference towards increased food consumption. Further, sex differences exist such that females tend to prefer carbohydrates over other macronutrients following exercise. However, no clear effect of exercise on macronutrient or carbohydrate selection has been described in animal or human studies. This research project sought to determine the effect of voluntary exercise on carbohydrate selection in female rats. Preference for a complex (starch) versus a simple (dextrose) carbohydrate was assessed using a discriminative preference to context paradigm in non-exercising and voluntarily exercising female rats. In addition, fasting blood glucose and performance in the Morris water task was examined in order to verify the effects of exercise on performance in this task. Female rats given access to running wheels preferred a context previously associated with starch, whereas females with no running wheel access preferred a context previously associated with dextrose. No changes in blood glucose were observed. However, cognitive differences in the Morris water task were observed such that voluntary exercise allowed rats to find a new location of a hidden platform following 4 days of training to an old platform location. These results suggest that voluntary exercise may decrease preservative behaviors in a spatial navigation task through the facilitation of plasticity mechanisms. This study is the first of its kind to demonstrate the influence of exercise on taste preference for complex and simple carbohydrates with this context conditioning paradigm.
Collapse
Affiliation(s)
- R J Keeley
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4.
| | - E L Zelinski
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4
| | - L Fehr
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4
| | - R J McDonald
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4
| |
Collapse
|
40
|
Schneider AM, Simson PE, Daimon CM, Mrozewski J, Vogt NM, Keefe J, Kirby LG. Stress-dependent opioid and adrenergic modulation of newly retrieved fear memory. Neurobiol Learn Mem 2013; 109:1-6. [PMID: 24291724 DOI: 10.1016/j.nlm.2013.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/18/2013] [Accepted: 11/21/2013] [Indexed: 11/24/2022]
Abstract
Recent studies on the effect of stress on modulation of fear memory in our laboratory have uncovered endogenous opioid and adrenergic based modulation systems, working in concert, that limit the strengthening or weakening of newly acquired fear memory during consolidation under conditions of mild or intense stress, respectively. The present study sought to determine if similar stress-dependent modulation, mediated by endogenous opioid and adrenergic systems, occurs during reconsolidation of newly retrieved fear memory. Rats underwent contextual fear conditioning followed 24h later by reactivation of fear memory; a retention test was administered the next day. Stress was manipulated by varying duration of recall of fear memory during reactivation. In the first experiment, vehicle or the opioid-receptor blocker naloxone was administered immediately after varied durations (30 or 120 s) of reactivation. The results indicate that (1) reactivation, in the absence of drug, has a marked effect on freezing behavior-as duration of reactivation increases from 30 to 120 s, freezing behavior and presumably fear-induced stress increases and (2) naloxone, administered immediately after 30 s (mild stress) or 120 s (intense stress) of reactivation, enhances or impairs retention, respectively, the next day. In the second experiment, naloxone and the ß-adrenergic blocker propranolol were administered either separately or in combination immediately after 120 s (intense stress) reactivation. The results indicate that separate administration of propranolol and naloxone impairs retention, while the combined administration fails to do so. Taken together the results of the two experiments are consistent with a protective mechanism, mediated by endogenous opioid and adrenergic systems working in concert, that limits enhancement and impairment of newly retrieved fear memory during reactivation in a stress-dependent manner.
Collapse
Affiliation(s)
- Allen M Schneider
- Department of Psychology, Swarthmore College, Swarthmore, PA 19081, USA.
| | - Peter E Simson
- Department of Psychology and Center for Neuroscience, Miami University, Oxford, OH 45056, USA.
| | - Caitlin M Daimon
- Department of Psychology, Swarthmore College, Swarthmore, PA 19081, USA.
| | - Jakob Mrozewski
- Department of Psychology, Swarthmore College, Swarthmore, PA 19081, USA.
| | - Nicholas M Vogt
- Department of Psychology, Swarthmore College, Swarthmore, PA 19081, USA.
| | - John Keefe
- Department of Psychology, Swarthmore College, Swarthmore, PA 19081, USA.
| | - Lynn G Kirby
- Department of Anatomy & Cell Biology, Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
41
|
Chisholm J, De Rantere D, Fernandez NJ, Krajacic A, Pang DSJ. Carbon dioxide, but not isoflurane, elicits ultrasonic vocalizations in female rats. Lab Anim 2013; 47:324-7. [PMID: 23828852 DOI: 10.1177/0023677213493410] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gradual filling of a chamber with carbon dioxide is currently listed by the Canadian Council on Animal Care guidelines as a conditionally acceptable method of euthanasia for rats. Behavioural evidence suggests, however, that exposure to carbon dioxide gas is aversive. Isoflurane is less aversive than carbon dioxide and may be a viable alternative, though objective data are lacking for the period leading up to loss of consciousness. It has been shown that during negative states, such as pain and distress, rats produce ultrasonic vocalizations. The objective of this study was to detect ultrasonic vocalizations during exposure to carbon dioxide gas or isoflurane as an indicator of a negative state. Specialized recording equipment, with a frequency detection range of 10 to 200 kHz, was used to register these calls during administration of each agent. Nine female Sprague-Dawley rats were exposed to either carbon dioxide or isoflurane on two different occasions. All rats vocalized in the ultrasonic range (30 to 70 kHz) during exposure to carbon dioxide. When exposed to isoflurane, no calls were detected from any of the animals. The frequent occurrence of ultrasonic vocalizations during carbon dioxide exposure suggests that the common practice of carbon dioxide euthanasia is aversive to rats and that isoflurane may be a preferable alternative.
Collapse
Affiliation(s)
- J Chisholm
- Hotchkiss Brain Institute, University of Calgary, Canada
| | | | | | | | | |
Collapse
|
42
|
D(1)-like receptors in the nucleus accumbens shell regulate the expression of contextual fear conditioning and activity of the anterior cingulate cortex in rats. Int J Neuropsychopharmacol 2013; 16:1045-57. [PMID: 22964037 DOI: 10.1017/s146114571200082x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Although dopamine-related circuits are best known for their roles in appetitive motivation, consistent data have implicated this catecholamine in some forms of response to stressful situations. In fact, projection areas of the ventral tegmental area, such as the amygdala and hippocampus, are well established to be involved in the acquisition and expression of fear conditioning, while less is known about the role of the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) in these processes. In the present study, we initially investigated the involvement of the mPFC and NAc in the expression of conditioned fear, assessing freezing behaviour and Fos protein expression in the brains of rats exposed to a context, light or tone previously paired with footshocks. Contextual and cued stimuli were able to increase the time of the freezing response while only the contextual fear promoted a significant increase in Fos protein expression in the mPFC and caudal NAc. We then examined the effects of specific dopaminergic agonists and antagonists injected bilaterally into the posterior medioventral shell subregion of the NAc (NAcSh) on the expression of contextual fear. SKF38393, quinpirole and sulpiride induced no behavioural changes, but the D1-like receptor antagonist SCH23390 increased the freezing response of the rats and selectively reduced Fos protein expression in the anterior cingulate cortex and rostral NAcSh. These findings confirm the involvement of the NAcSh in the expression of contextual fear memories and indicate the selective role of NAcSh D1-like receptors and anterior cingulate cortex in this process.
Collapse
|
43
|
Borelli KG, Albrechet-Souza L, Fedoce AG, Fabri DS, Resstel LB, Brandão ML. Conditioned fear is modulated by CRF mechanisms in the periaqueductal gray columns. Horm Behav 2013; 63:791-9. [PMID: 23603480 DOI: 10.1016/j.yhbeh.2013.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 04/05/2013] [Accepted: 04/10/2013] [Indexed: 12/27/2022]
Abstract
The periaqueductal gray (PAG) columns have been implicated in controlling stress responses through corticotropin-releasing factor (CRF), which is a neuropeptide with a prominent role in the etiology of fear- and anxiety-related psychopathologies. Several studies have investigated the involvement of dorsal PAG (dPAG) CRF mechanisms in models of unconditioned fear. However, less is known about the role of this neurotransmission in the expression of conditioned fear memories in the dPAG and ventrolateral PAG (vlPAG) columns. We assessed the effects of ovine CRF (oCRF 0.25 and 1.0 μg/0.2 μL) locally administered into the dPAG and vlPAG on behavioral (fear-potentiated startle and freezing) and autonomic (arterial pressure and heart rate) responses in rats subjected to contextual fear conditioning. The lower dose injected into the columns promoted proaversive effects, enhanced contextual freezing, increased the blood pressure and heart rate and decreased tail temperature. The lower dose of oCRF into the vlPAG, but not into the dPAG, produced a pronounced enhancement of the fear-potentiated startle response. The results imply that the PAG is a heterogeneous structure that is involved in the coordination of distinct behaviors and autonomic control, suggest PAG involvement in the expression of contextual fear memory as well as implicate the CRF as an important modulator of the neural substrates of fear in the PAG.
Collapse
Affiliation(s)
- Karina G Borelli
- Instituto de Neurociências e Comportamento, Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
44
|
Hott SC, Gomes FV, Fabri DRS, Reis DG, Crestani CC, Côrrea FMA, Resstel LBM. Both α1- and β1-adrenoceptors in the bed nucleus of the stria terminalis are involved in the expression of conditioned contextual fear. Br J Pharmacol 2013; 167:207-21. [PMID: 22506532 DOI: 10.1111/j.1476-5381.2012.01985.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The bed nucleus of the stria terminalis (BNST) is a limbic structure that is involved in the expression of conditioned contextual fear. Among the numerous neural inputs to the BNST, noradrenergic synaptic terminals are prominent and some evidence suggests an activation of this noradrenergic neurotransmission in the BNST during aversive situations. Here, we have investigated the involvement of the BNST noradrenergic system in the modulation of behavioural and autonomic responses induced by conditioned contextual fear in rats. EXPERIMENTAL APPROACH Male Wistar rats with cannulae bilaterally implanted into the BNST were submitted to a 10 min conditioning session (6 footshocks, 1.5 ma/ 3 s). Twenty-four hours later freezing and autonomic responses (mean arterial pressure, heart rate and cutaneous temperature) to the conditioning box were measured for 10 min. The adrenoceptor antagonists were administered 10 min before the re-exposure to the aversive context. KEY RESULTS L-propranolol, a non-selective β-adrenoceptor antagonist, and phentolamine, a non-selective α-adrenoceptor antagonist, reduced both freezing and autonomic responses induced by aversive context. Similar results were observed with CGP20712, a selective β(1) -adrenoceptor antagonist, and WB4101, a selective α(1) -antagonist, but not with ICI118,551, a selective β(2) -adrenoceptor antagonist or RX821002, a selective α(2) -antagonist. CONCLUSIONS AND IMPLICATIONS These findings support the idea that noradrenergic neurotransmission in the BNST via α(1) - and β(1) -adrenoceptors is involved in the expression of conditioned contextual fear.
Collapse
Affiliation(s)
- Sara C Hott
- Department of Pharmacology, School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
45
|
Daviu N, Delgado-Morales R, Nadal R, Armario A. Not all stressors are equal: behavioral and endocrine evidence for development of contextual fear conditioning after a single session of footshocks but not of immobilization. Front Behav Neurosci 2012; 6:69. [PMID: 23112767 PMCID: PMC3483012 DOI: 10.3389/fnbeh.2012.00069] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 10/09/2012] [Indexed: 12/22/2022] Open
Abstract
Exposure of animals to footshocks (FS) in absence of any specific cue results in the development of fear to the compartment where shocks were given (contextual fear conditioning), and this is usually evaluated by time spent freezing. However, the extent to which contextual fear conditioning always develops when animals are exposed to other stressors is not known. In the present work we firstly demonstrated, using freezing, that exposure of adult rats to a single session of FS resulted in short-term and long-term contextual fear conditioning (freezing) that was paralleled by increased hypothalamic-pituitary-adrenal (HPA) activation. In contrast, using a similar design, no HPA or behavioral evidence for such conditioning was found after exposure to immobilization on boards (IMO), despite this stressor being of similar severity as FS on the basis of standard physiological measures of stress, including HPA activation. In a final experiment we directly compared the exposure to the two stressors in the same type of context and tested for the development of conditioning to the context and to a specific cue for IMO (the board). We observed the expected high levels of freezing and the conditioned HPA activation after FS, but not after IMO, regardless of the presence of the board during testing. Therefore, it can be concluded that development of fear conditioning to context or particular cues, as evaluated by either behavioral or endocrine measures, appears to be dependent on the nature of the aversive stimuli, likely to be related to biologically preparedness to establish specific associations.
Collapse
Affiliation(s)
- Núria Daviu
- Institut de Neurociències, Universitat Autònoma de BarcelonaBellaterra, Barcelona, Spain
- Red de trastornos adictivos (RTA), Instituto de Salud Carlos IIIMadrid, Spain
- Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de BarcelonaBellaterra, Barcelona, Spain
| | - Raúl Delgado-Morales
- Institut de Neurociències, Universitat Autònoma de BarcelonaBellaterra, Barcelona, Spain
- Red de trastornos adictivos (RTA), Instituto de Salud Carlos IIIMadrid, Spain
- Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de BarcelonaBellaterra, Barcelona, Spain
| | - Roser Nadal
- Institut de Neurociències, Universitat Autònoma de BarcelonaBellaterra, Barcelona, Spain
- Red de trastornos adictivos (RTA), Instituto de Salud Carlos IIIMadrid, Spain
- Unitat de Psicobiologia (Facultat de Psicologia), Universitat Autònoma de BarcelonaBellaterra, Barcelona, Spain
| | - Antonio Armario
- Institut de Neurociències, Universitat Autònoma de BarcelonaBellaterra, Barcelona, Spain
- Red de trastornos adictivos (RTA), Instituto de Salud Carlos IIIMadrid, Spain
- Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de BarcelonaBellaterra, Barcelona, Spain
| |
Collapse
|
46
|
Dimatelis J, Stein D, Russell V. Behavioral changes after maternal separation are reversed by chronic constant light treatment. Brain Res 2012; 1480:61-71. [DOI: 10.1016/j.brainres.2012.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/06/2012] [Accepted: 07/08/2012] [Indexed: 12/11/2022]
|
47
|
Yee N, Schwarting RKW, Fuchs E, Wöhr M. Juvenile stress potentiates aversive 22-kHz ultrasonic vocalizations and freezing during auditory fear conditioning in adult male rats. Stress 2012; 15:533-44. [PMID: 22150360 DOI: 10.3109/10253890.2011.646348] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Traumatic experiences that occur during adolescence can render individuals vulnerable to mood and anxiety disorders. A model in juvenile rats (age: 27-29 days) was developed previously to study the long-term effects of adolescent stress exposure on behaviour and physiology. This paradigm, termed juvenile stress, involves subjecting juvenile rats to different stressors on consecutive days over a 3-day period. Here, we investigated the effects of the juvenile stress paradigm on freezing behaviour and aversive 22-kHz ultrasonic vocalizations (USVs) during auditory fear conditioning in adult male rats (age: 68-90 days). We found that rats previously subjected to juvenile stress increased aversive 22-kHz USVs (total calls and time spent calling) compared with controls during fear-conditioning training. The acoustic USV parameters between control and juvenile stress rats were largely equivalent, including duration, peak frequency and amplitude. While rats did not differ in freezing behaviour during fear conditioning, juvenile stress rats exhibited greater cue-conditioned freezing upon testing 24 h later. Our results show that juvenile stress elicited different long-term changes in freezing and aversive USVs during fear conditioning. Furthermore, they highlight the importance of assessing USVs to detect experience-dependent differences between control and stress-exposed animals which are not detectable by measuring visible behaviour.
Collapse
Affiliation(s)
- Nicole Yee
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen 37077, Germany.
| | | | | | | |
Collapse
|
48
|
Schwarting RKW, Wöhr M. On the relationships between ultrasonic calling and anxiety-related behavior in rats. Braz J Med Biol Res 2012; 45:337-48. [PMID: 22437483 PMCID: PMC3854164 DOI: 10.1590/s0100-879x2012007500038] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/08/2012] [Indexed: 11/22/2022] Open
Abstract
In the present review, the phenomenon of ultrasonic vocalization in rats will be outlined, including the three classes of vocalizations, namely 40-kHz calls of pups, and 22- and 50-kHz calls of juvenile and adult rats, their general relevance to behavioral neuroscience, and their special relevance to research on anxiety, fear, and defense mechanisms. Here, the emphasis will be placed on 40- and 22-kHz calls, since they are typical for various situations with aversive properties. Among other topics, we will discuss whether such behavioral signals can index a certain affective state, and how these signals can be used in social neuroscience, especially with respect to communication. Furthermore, we will address the phenomenon of inter-individual variability in ultrasonic calling and what we currently know about the mechanisms, which may determine such variability. Finally, we will address the current knowledge on the neural and pharmacological mechanisms underlying 22-kHz ultrasonic vocalization, which show a substantial overlap with mechanisms known from other research on fear and anxiety, such as those involving the periaqueductal gray or the amygdala.
Collapse
Affiliation(s)
- R K W Schwarting
- Experimental and Physiological Psychology, Philipps-University of Marburg, Germany.
| | | |
Collapse
|
49
|
Pevzner A, Miyashita T, Schiffman AJ, Guzowski JF. Temporal dynamics of Arc gene induction in hippocampus: relationship to context memory formation. Neurobiol Learn Mem 2012; 97:313-20. [PMID: 22390855 DOI: 10.1016/j.nlm.2012.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/14/2012] [Accepted: 02/16/2012] [Indexed: 11/26/2022]
Abstract
Past studies have proposed a role for the hippocampus in the rapid encoding of context memories. Despite this, there is little data regarding the molecular processes underlying the stable formation of a context representation that occurs in the time window established through such behavioral studies. One task that is useful for investigating the rapid encoding of context is contextual fear conditioning (CFC). Behavioral studies demonstrate that animals require approximately 30 s of exploration prior to a footshock to form a contextual representation supporting CFC. Thus, any potential molecular process required for the stabilization of the cellular representation for context must be activated within this narrow and behaviorally defined time window. Detection of the immediate-early gene Arc presents an ideal method to assess the activation of specific neuronal ensembles, given past studies showing the context specific expression of Arc in CA3 and CA1 subfields and the role of Arc in hippocampal long-term synaptic plasticity. Therefore, we examined the temporal dynamics of Arc induction within the hippocampus after brief context exposure to determine whether experience-dependent Arc expression could be involved in the rapid encoding of incidental context memories. We found that the duration of context exposure differentially activated Arc expression in hippocampal subfields, with CA3 showing rapid engagement within as little as 3 s of exposure. By contrast, Arc induction in CA1 required 30 s of context exposure to reach maximal levels. A parallel behavioral experiment revealed that 30 s, but not 3 s, exposure to a context resulted in strong conditioned freezing 24 h later, consistent with past studies from other laboratories. The current study is the first to examine the rapid temporal dynamics of Arc induction in hippocampus in a well-defined context memory paradigm. These studies demonstrate within 30 s of context exposure Arc is fully activated in CA3 and CA1, suggesting that the engagement of plastic processes requiring Arc function (such as long-term potentiation) occurs within the same temporal domain as that required for behavioral conditioning.
Collapse
Affiliation(s)
- Aleksandr Pevzner
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, USA
| | | | | | | |
Collapse
|
50
|
Gomes FV, Reis DG, Alves FHF, Corrêa FMA, Guimarães FS, Resstel LBM. Cannabidiol injected into the bed nucleus of the stria terminalis reduces the expression of contextual fear conditioning via 5-HT1A receptors. J Psychopharmacol 2012; 26:104-13. [PMID: 21148020 DOI: 10.1177/0269881110389095] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Systemic administration of cannabidiol (CBD) attenuates cardiovascular and behavioral changes induced by re-exposure to a context that had been previously paired with footshocks. Previous results from our group using cFos immunohistochemistry suggested that the bed nucleus of the stria terminalis (BNST) is involved in this effect. The mechanisms of CBD effects are still poorly understood, but could involve 5-HT(1A) receptor activation. Thus, the present work investigated if CBD administration into the BNST would attenuate the expression of contextual fear conditioning and if this effect would involve the activation of 5-HT(1A) receptors. Male Wistar rats with cannulae bilaterally implanted into the BNST were submitted to a 10 min conditioning session (six footshocks, 1.5 mA/3 s). Twenty-four hours later freezing and cardiovascular responses (mean arterial pressure and heart rate) to the conditioning box were measured for 10 min. CBD (15, 30 or 60 nmol) or vehicle was administered 10 min before the re-exposure to the aversive context. The second experiment was similar to the first one except that animals received microinjections of the 5-HT(1A) receptor antagonist WAY100635 (0.37 nmol) 5 min before CBD (30 nmol) treatment. The results showed that CBD (30 and 60 nmol) treatment significantly reduced the freezing and attenuated the cardiovascular responses induced by re-exposure to the aversive context. Moreover, WAY100635 by itself did not change the cardiovascular and behavioral response to context, but blocked the CBD effects. These results suggest that CBD can act in the BNST to attenuate aversive conditioning responses and this effect seems to involve 5-HT(1A) receptor-mediated neurotransmission.
Collapse
Affiliation(s)
- Felipe V Gomes
- Department of Pharmacology, School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|