1
|
Pan L, Xiao S, Xu Z, Li W, Zhao L, Zhang L, Qi R, Wang J, Cai Y. Orexin-A attenuated motion sickness through modulating neural activity in hypothalamus nuclei. Br J Pharmacol 2024; 181:1474-1493. [PMID: 38129941 DOI: 10.1111/bph.16307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND AND PURPOSE We evaluated the hypothesis that central orexin application could counteract motion sickness responses through regulating neural activity in target brain areas. EXPERIMENTAL APPROACH Thec effects of intracerebroventricular (i.c.v.) injection of orexin-A and SB-334867 (OX1 antagonist) on motion sickness-induced anorexia, nausea-like behaviour (conditioned gaping), hypoactivity and hypothermia were investigated in rats subjected to Ferris wheel-like rotation. Orexin-A responsive brain areas were identified using Fos immunolabelling and were verified via motion sickness responses after intranucleus injection of orexin-A, SB-334867 and TCS-OX2-29 (OX2 antagonist). The efficacy of intranasal application of orexin-A versus scopolamine on motion sickness symptoms in cats was also investigated. KEY RESULTS Orexin-A (i.c.v.) dose-dependently attenuated motion sickness-related behavioural responses and hypothermia. Fos expression was inhibited in the ventral part of the dorsomedial hypothalamus (DMV) and the paraventricular nucleus (PVN), but was enhanced in the ventral part of the premammillary nucleus ventral part (PMV) by orexin-A (20 μg) in rotated animals. Motion sickness responses were differentially inhibited by orexin-A injection into the DMV (anorexia and hypoactivity), the PVN (conditioned gaping) and the PMV (hypothermia). SB-334867 and TCS-OX2-29 (i.c.v. and intranucleus injection) inhibited behavioural and thermal effects of orexin-A. Orexin-A (60 μg·kg-1) and scopolamine inhibited rotation-induced emesis and non-retching/vomiting symptoms, while orexin-A also attenuated anorexia with mild salivation in motion sickness cats. CONCLUSION AND IMPLICATIONS Orexin-A might relieve motion sickness through acting on OX1 and OX2 receptors in various hypothalamus nuclei. Intranasal orexin-A could be a potential strategy against motion sickness.
Collapse
Affiliation(s)
- Leilei Pan
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Shuifeng Xiao
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zichao Xu
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wenping Li
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Long Zhao
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Ling Zhang
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Ruirui Qi
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Junqin Wang
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yiling Cai
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
2
|
Jászberényi M, Thurzó B, Bagosi Z, Vécsei L, Tanaka M. The Orexin/Hypocretin System, the Peptidergic Regulator of Vigilance, Orchestrates Adaptation to Stress. Biomedicines 2024; 12:448. [PMID: 38398050 PMCID: PMC10886661 DOI: 10.3390/biomedicines12020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The orexin/hypocretin neuropeptide family has emerged as a focal point of neuroscientific research following the discovery that this family plays a crucial role in a variety of physiological and behavioral processes. These neuropeptides serve as powerful neuromodulators, intricately shaping autonomic, endocrine, and behavioral responses across species. Notably, they serve as master regulators of vigilance and stress responses; however, their roles in food intake, metabolism, and thermoregulation appear complementary and warrant further investigation. This narrative review provides a journey through the evolution of our understanding of the orexin system, from its initial discovery to the promising progress made in developing orexin derivatives. It goes beyond conventional boundaries, striving to synthesize the multifaceted activities of orexins. Special emphasis is placed on domains such as stress response, fear, anxiety, and learning, in which the authors have contributed to the literature with original publications. This paper also overviews the advancement of orexin pharmacology, which has already yielded some promising successes, particularly in the treatment of sleep disorders.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, H-6725 Szeged, Hungary
| | - Zsolt Bagosi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary;
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
3
|
Milbank E, López M. Orexins/Hypocretins: Key Regulators of Energy Homeostasis. Front Endocrinol (Lausanne) 2019; 10:830. [PMID: 31920958 PMCID: PMC6918865 DOI: 10.3389/fendo.2019.00830] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/13/2019] [Indexed: 12/29/2022] Open
Abstract
Originally described to be involved in feeding regulation, orexins/hypocretins are now also considered as major regulatory actors of numerous biological processes, such as pain, sleep, cardiovascular function, neuroendocrine regulation, and energy expenditure. Therefore, they constitute one of the most pleiotropic families of hypothalamic neuropeptides. Although their orexigenic effect is well documented, orexins/hypocretins also exert central effects on energy expenditure, notably on the brown adipose tissue (BAT) thermogenesis. A better comprehension of the underlying mechanisms and potential interactions with other hypothalamic molecular pathways involved in the modulation of food intake and thermogenesis, such as AMP-activated protein kinase (AMPK) and endoplasmic reticulum (ER) stress, is essential to determine the exact implication and pathophysiological relevance of orexins/hypocretins on the control of energy balance. Here, we will review the actions of orexins on energy balance, with special focus on feeding and brown fat function.
Collapse
Affiliation(s)
- Edward Milbank
- Department of Physiology, CIMUS, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- *Correspondence: Edward Milbank
| | - Miguel López
- Department of Physiology, CIMUS, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Miguel López
| |
Collapse
|
4
|
Lu J, Li S, Li H, Mou T, Zhou L, Huang B, Huang M, Xu Y. Changes In Plasma NPY, IL-1β And Hypocretin In People Who Died By Suicide. Neuropsychiatr Dis Treat 2019; 15:2893-2900. [PMID: 31632037 PMCID: PMC6791488 DOI: 10.2147/ndt.s219962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/12/2019] [Indexed: 12/31/2022] Open
Abstract
PURPOSE There is growing evidence showing that inflammatory cytokines and neuropeptides may be involved in the pathophysiology of suicidal behavior. However, studies have yielded contradictory data, and no biological markers that help predict suicide have been identified. This study aimed to identify biological patterns, such as NPY, IL-1β and hypocretin plasma levels, in people who died by suicide. PATIENTS AND METHODS Twenty-two people who died by suicide compared with 22 controls matched for age and sex were studied. In suicide and control subjects, we estimated the levels of NPY, IL-1β and hypocretin in plasma using enzyme-linked immunosorbent assay. The data are presented as the median (25th-75th percentile). RESULTS We found (1) a significant elevation in plasma NPY levels in suicide subjects versus control subjects (suicide: 11.38 (9.380-16.55); controls: 8.95 (7.590-10.93); P=0.013), and plasma NPY concentrations were approximately 62% higher in suicide subjects than those in control subjects; (2) a significant decrease in plasma IL-1β concentrations between suicide and control subjects (suicide: 121.1 (82.97-143.0); controls: 425.9 (233.1-835.3); P<0.001) as well as a decrease in IL-1β concentrations by almost 80%; and (3) no significant difference in plasma hypocretin levels between suicide and control subjects (suicide: 16.62 (13.62-25.77); controls: 21.63 (14.97-29.72); P=0.356). CONCLUSION Our results suggest that plasma NPY and IL-1β were related with suicide behavior rather than to suicide causes or suicide method. Specific combinations of plasma biomarkers may discriminate between types of suicidal behaviors and indicate increased risk for future suicide attempts.
Collapse
Affiliation(s)
- Jing Lu
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang University Brain Research Institute, Hangzhou, Zhejiang Province, People's Republic of China
| | - Shangda Li
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang University Brain Research Institute, Hangzhou, Zhejiang Province, People's Republic of China
| | - Haimei Li
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang University Brain Research Institute, Hangzhou, Zhejiang Province, People's Republic of China
| | - Tingting Mou
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang University Brain Research Institute, Hangzhou, Zhejiang Province, People's Republic of China
| | - Lihong Zhou
- Institute of Criminal Science and Technology, Hangzhou Public Security Bureau, Hangzhou, Zhejiang Province, People's Republic of China
| | - Bochao Huang
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang University Brain Research Institute, Hangzhou, Zhejiang Province, People's Republic of China
| | - Manli Huang
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang University Brain Research Institute, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yi Xu
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang University Brain Research Institute, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
5
|
Pasban-Aliabadi H, Esmaeili-Mahani S, Abbasnejad M. Orexin-A Protects Human Neuroblastoma SH-SY5Y Cells Against 6-Hydroxydopamine-Induced Neurotoxicity: Involvement of PKC and PI3K Signaling Pathways. Rejuvenation Res 2017; 20:125-133. [PMID: 27814668 DOI: 10.1089/rej.2016.1836] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder that is characterized by progressive and selective death of dopaminergic neurons. Multifunctional neuropeptide orexin-A is involved in many biological events of the body. It has been shown that orexin-A has protective effects in neurodegenerative disease such as PD. However, its cellular mechanisms have not yet been fully clarified. Here, we investigated the intracellular signaling pathway of orexin-A neuroprotection in 6-hydroxydopamine (6-OHDA)-induced SH-SY5H cells damage as an in vitro model of PD. The cells were incubated with 150 μM 6-OHDA, and the viability was examined by 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2-tetrazolium bromide (MTT) assay. Mitochondrial membrane potential and intracellular calcium were measured by fluorescent probes. Western blotting was also used to determine cyclooxygenase type 2 (COX-2), nuclear factor erythroid 2 related factor 2 (Nrf2), and HSP70 protein levels. The data showed that 6-OHDA has decreasing effects on cell viability, Nrf2, and HSP70 protein expression and increases the level of mitochondrial membrane potential, intracellular calcium, and COX-2 protein. Orexin-A (500 pM) significantly attenuated the 6-OHDA-induced cell damage. Furthermore, Orexin-A significantly prevented the mentioned effects of 6-OHDA on SH-SY5Y cells. Orexin 1 receptor antagonist (SB3344867), PKC, and PI3-kinase (PI3K) inhibitors (chelerythrin and LY294002, respectively) could suppress the orexin-A neuroprotective effect. In contrast, blockage of PKA by a selective inhibitor (KT5720) had no effects on the orexin protection. The results suggest that orexin-A protective effects against 6-OHDA-induced neurotoxicity are performed via its receptors, PKC and PI3K signaling pathways.
Collapse
Affiliation(s)
- Hamzeh Pasban-Aliabadi
- 1 Department of Biology, Faculty of Sciences, ShahidBahonar University of Kerman , Kerman, Iran
| | - Saeed Esmaeili-Mahani
- 1 Department of Biology, Faculty of Sciences, ShahidBahonar University of Kerman , Kerman, Iran .,2 Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center (KNRC), Kerman University of Medical Sciences , Kerman, Iran
| | - Mehdi Abbasnejad
- 1 Department of Biology, Faculty of Sciences, ShahidBahonar University of Kerman , Kerman, Iran
| |
Collapse
|
6
|
Flores Á, Julià-Hernández M, Maldonado R, Berrendero F. Involvement of the orexin/hypocretin system in the pharmacological effects induced by Δ(9) -tetrahydrocannabinol. Br J Pharmacol 2016; 173:1381-92. [PMID: 26799708 DOI: 10.1111/bph.13440] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 01/12/2016] [Accepted: 01/17/2016] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Anatomical, biochemical and pharmacological evidence suggest the existence of a crosstalk between the orexinergic and endocannabinoid systems. While the orexin receptor 1 (OX1 receptor) modulates the reinforcing properties of cannabinoids, the participation of orexins in the acute pharmacological effects of Δ(9) -tetrahydrocannabinol (THC) remains unexplored. EXPERIMENTAL APPROACH We assessed the possible role of orexins in THC-induced hypolocomotion, hypothermia, antinociception, anxiolytic- and anxiogenic-like effects and memory impairment. Selective OX1 and OX2 receptor antagonists and OX1 knockout (KO) mice as well as prepro-orexin (PPO) KO mice were used as pharmacological and genetic approaches. CB1 receptor levels in control and PPO KO mice were evaluated by immunoblot analysis. The expression of c-Fos after THC treatment was analysed in several brain areas in wild-type mice and in mice lacking the PPO gene. KEY RESULTS The hypothermia, supraspinal antinociception and anxiolytic-like effects induced by THC were modulated by orexins through OX2 receptor signalling. OX1 receptors did not seem to be involved in these THC responses. No differences in CB1 receptor levels were found between wild-type and PPO KO mice. THC-induced increase in c-Fos expression was reduced in the central amygdala, medial preoptic area and lateral septum in these mutant mice. CONCLUSIONS AND IMPLICATIONS Our results provide new findings to further clarify the interaction between orexins and cannabinoids. OX1 and OX2 receptors are differently implicated in the pharmacological effects of cannabinoids.
Collapse
Affiliation(s)
- África Flores
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Marina Julià-Hernández
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Fernando Berrendero
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| |
Collapse
|
7
|
Abstract
Initially implicated in the regulation of feeding, orexins/hypocretins are now acknowledged to play a major role in the control of a wide variety of biological processes, such as sleep, energy expenditure, pain, cardiovascular function and neuroendocrine regulation, a feature that makes them one of the most pleiotropic families of hypothalamic neuropeptides. While the orexigenic effect of orexins is well described, their central effects on energy expenditure and particularly on brown adipose tissue (BAT) thermogenesis are not totally unraveled. Better understanding of these actions and their possible interrelationship with other hypothalamic systems controlling thermogenesis, such as AMP-activated protein kinase (AMPK) and endoplasmic reticulum (ER) stress, will help to clarify the exact role and pathophysiological relevance of these neuropeptides have on energy balance.
Collapse
Affiliation(s)
- Johan Fernø
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; Department of Clinical Science, K. G. Jebsen Center for Diabetes Research, University of Bergen, N-5021 Bergen, Norway.
| | - Rosa Señarís
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) 15706, Spain
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) 15706, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, 14004 Córdoba, Spain; FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) 15706, Spain.
| |
Collapse
|
8
|
Palotai M, Telegdy G, Jászberényi M. Orexin A-induced anxiety-like behavior is mediated through GABA-ergic, α- and β-adrenergic neurotransmissions in mice. Peptides 2014; 57:129-34. [PMID: 24874709 DOI: 10.1016/j.peptides.2014.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 11/30/2022]
Abstract
Orexins are hypothalamic neuropeptides, which are involved in several physiological functions of the central nervous system, including anxiety and stress. Several studies provide biochemical and behavioral evidence about the anxiogenic action of orexin A. However, we have little evidence about the underlying neuromodulation. Therefore, the aim of the present study was to investigate the involvement of neurotransmitters in the orexin A-induced anxiety-like behavior in elevated plus maze (EPM) test in mice. Accordingly, mice were pretreated with a non-selective muscarinic cholinergic antagonist, atropine; a γ-aminobutyric acid subunit A (GABA-A) receptor antagonist, bicuculline; a D2, D3, D4 dopamine receptor antagonist, haloperidol; a non-specific nitric oxide synthase (NOS) inhibitor, nitro-l-arginine; a nonselective α-adrenergic receptor antagonist, phenoxybenzamine and a β-adrenergic receptor antagonist, propranolol 30min prior to the intracerebroventricular administration of orexin A. The EPM test started 30min after the i.c.v. injection of the neuropeptide. Our results show that orexin A decreases significantly the time spent in the arms (open/open+closed) and this action is reversed by bicuculline, phenoxybenzamine and propranolol, but not by atropine, haloperidol or nitro-l-arginine. Our results provide evidence for the first time that the orexin A-induced anxiety-like behavior is mediated through GABA-A-ergic, α- and β-adrenergic neurotransmissions, whereas muscarinic cholinergic, dopaminergic and nitrergic neurotransmissions may not be implicated.
Collapse
Affiliation(s)
- Miklós Palotai
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary
| | - Gyula Telegdy
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary; Neuroscience Research Group of the Hungarian Academy of Sciences, Szeged, Hungary.
| | - Miklós Jászberényi
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary
| |
Collapse
|
9
|
The action of orexin B on passive avoidance learning. Involvement of neurotransmitters. Behav Brain Res 2014; 272:1-7. [PMID: 24931796 DOI: 10.1016/j.bbr.2014.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/05/2014] [Accepted: 06/08/2014] [Indexed: 11/22/2022]
Abstract
The extensive projection of orexigenic neurons and the diffuse expression of orexin receptors suggest that endogenous orexins are involved in several physiological functions of the central nervous system, including learning and memory. Our previous study demonstrated that orexin A improves learning, consolidation and retrieval processes, which involves α- and β-adrenergic, cholinergic, dopaminergic, GABA-A-ergic, opiate and nitrergic neurotransmissions. However, we have little evidence about the action of orexin B on memory processes and the underlying neuromodulation. Therefore, the aim of the present study was to investigate the action of orexin B on passive avoidance learning and the involvement of neurotransmitters in this action in rats. Accordingly, rats were pretreated with the selective orexin 2 receptor (OX2R) antagonist, EMPA; the γ-aminobutyric acid subunit A (GABA-A) receptor antagonist, the bicuculline; a D2, D3, D4 dopamine receptor antagonist, haloperidol; the nonselective opioid receptor antagonist, naloxone; the non-specific nitric oxide synthase (NOS) inhibitor, nitro-l-arginine; the nonselective α-adrenergic receptor antagonist, phenoxybenzamine and the β-adrenergic receptor antagonist, propranolol. Our results demonstrate that orexin B can improve learning, consolidation of memory and retrieval. EMPA reversed completely the action of orexin B on memory consolidation. Bicuculline blocked fully; naloxone, nitro-l-arginine, phenoxybenzamine and propranolol attenuated the orexin B-induced memory consolidation, whereas haloperidol was ineffective. These data suggest that orexin B improves memory functions through OX2R and GABA-ergic, opiate, nitrergic, α- and β-adrenergic neurotransmissions are also involved in this action.
Collapse
|
10
|
Shin YO, Lee JB, Min YK, Yang HM. Heat acclimation affects circulating levels of prostaglandin E2, COX-2 and orexin in humans. Neurosci Lett 2013; 542:17-20. [PMID: 23523649 DOI: 10.1016/j.neulet.2013.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 02/07/2013] [Accepted: 03/04/2013] [Indexed: 12/28/2022]
Abstract
We examined serum levels of prostaglandin E2 (PGE2), cyclooxygenase (COX)-2 and orexin before and after heat acclimation (HA) to test the hypothesis that decreased basal body temperature due to HA correlate with circulating levels of these key thermoregulatory molecules. Nine healthy human male volunteers were recruited (age, 21.9±2.7 years). The subjects were exposed to half-body immersion in hot water (42±0.5°C) at the same time of day (2-5p.m.) on alternate days for 3 weeks. The HA protocol included 10 bouts of 30min immersion. All experiments were performed in an automated climate chamber (temperature, 26.0±0.5°C; relative humidity, 60±3.0%; air velocity, <1m/s). Tympanic and skin temperatures were measured, and mean body temperature was calculated. The difference in body weight was used to estimate total sweat loss. Serum levels of PGE2, COX-2 and orexin were analyzed before and after HA. Body temperature decreased significantly (P<0.05) after HA, whereas sweat volume increased significantly (P<0.01). Serum PGE2, COX-2 and orexin concentrations decreased significantly compared to those at pre-acclimation (P<0.001, P<0.01, P<0.01, respectively). Our data suggest that decreased basal body temperature after HA is associated with decreases in thermoregulatory molecules, such as PGE2, COX-2 and orexin.
Collapse
Affiliation(s)
- Young Oh Shin
- Department of Healthcare, Global Graduate School, Soonchunhyang University, 646 Asan, Republic of Korea
| | | | | | | |
Collapse
|
11
|
López M, Tena-Sempere M, Diéguez C. Cross-talk between orexins (hypocretins) and the neuroendocrine axes (hypothalamic-pituitary axes). Front Neuroendocrinol 2010; 31:113-27. [PMID: 19654017 DOI: 10.1016/j.yfrne.2009.07.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 02/06/2023]
Abstract
Lesioning and electrical stimulation experiments carried out during the first half of the twentieth century showed that the lateral hypothalamic area (LHA) is involved in the neuroendocrine control of hormone secretion. However, the molecular basis of this phenomenon remained unclear until fifty years later when in 1998, two different laboratories discovered a new family of hypothalamic neuropeptides, the orexins or hypocretins (OX-A/Hcrt1 and OX-B/Hcrt2). Since then, remarkable evidence has revealed that orexins/hypocretins play a prominent role in regulating virtually all the neuroendocrine axes, acting as pivotal signals in the coordination of endocrine responses with regards to sleep, arousal and energy homeostasis. The clinical relevance of these actions is supported by human data showing impairment of virtually all the neuroendocrine axes in orexin/hypocretin-deficient narcoleptic patients. Here, we summarize more than ten years of knowledge about the orexins/hypocretins with particular focus on their role as neuroendocrine regulators. Understanding this aspect of orexin/hypocretin physiology could open new therapeutic possibilities in the treatment of sleep, energy homeostasis and endocrine pathologies.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, School of Medicine, University of Santiago de Compostela - Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain.
| | | | | |
Collapse
|
12
|
Jinka TR, Carlson ZA, Moore JT, Drew KL. Altered thermoregulation via sensitization of A1 adenosine receptors in dietary-restricted rats. Psychopharmacology (Berl) 2010; 209:217-24. [PMID: 20186398 PMCID: PMC2892230 DOI: 10.1007/s00213-010-1778-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 01/04/2010] [Indexed: 11/30/2022]
Abstract
RATIONALE Evidence links longevity to dietary restriction (DR). A decrease in body temperature (T(b)) is thought to contribute to enhanced longevity because lower T(b) reduces oxidative metabolism and oxidative stress. It is as yet unclear how DR decreases T(b). OBJECTIVE Here, we test the hypothesis that prolonged DR decreases T(b) by sensitizing adenosine A(1) receptors (A(1)AR) and adenosine-induced cooling. METHODS AND RESULTS Sprague-Dawley rats were dietary restricted using an every-other-day feeding protocol. Rats were fed every other day for 27 days and then administered the A(1)AR agonist, N(6)-cyclohexyladenosine (CHA; 0.5 mg/kg, i.p.). Respiratory rate (RR) and subcutaneous T(b) measured using IPTT-300 transponders were monitored every day and after drug administration. DR animals displayed lower RR on day 20 and lower T(b) on day 22 compared to animals fed ad libitum and displayed a larger response to CHA. In all cases, RR declined before T(b). Contrary to previous reports, a higher dose of CHA (5 mg/kg, i.p.) was lethal in both dietary groups. We next tested the hypothesis that sensitization to the effects of CHA was due to increased surface expression of A(1)AR within the hypothalamus. We report that the abundance of A(1)AR in the membrane fraction increases in hypothalamus, but not cortex of DR rats. CONCLUSION These results suggest that every-other-day feeding lowers T(b) via sensitization of thermoregulatory effects of endogenous adenosine by increasing surface expression of A(1)AR. DISCUSSION Evidence that diet can modulate purinergic signaling has implications for the treatment of stroke, brain injury, epilepsy, and aging.
Collapse
|
13
|
Prepro-orexin and feeding-related peptide receptor expression in dehydration-induced anorexia. ACTA ACUST UNITED AC 2010; 159:54-60. [PMID: 19800927 DOI: 10.1016/j.regpep.2009.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 09/14/2009] [Accepted: 09/24/2009] [Indexed: 11/22/2022]
Abstract
Food-restricted animals present metabolic adaptations that facilitate food-seeking behavior and decelerate energy utilization by reducing the hypothalamus-pituitary-thyroid (HPT) axis function. Stress by dehydration induces an anorexic behavior in rats, loss of weight and reduced food intake when compared to ad libitum fed animals, however these alterations are accompanied by HPT axis changes such as increased serum thyrotropin levels and enhanced expression of thyrotropin-releasing hormone (TRH) in the paraventricular nucleus of the hypothalamus, which is considered as anorexigenic peptide. In contrast, a pair-fed group conformed by forced-food-restricted animals (FFR) (eating the exact same amount of food as dehydration-induced anorexic rats--DIA rats) present decreased TRH mRNA levels. NPY synthesis in the arcuate nucleus and orexin-expressing neurons from the lateral hypothalamic area (LHA) are activated during food restriction. These brain structures project into PVN, suggesting that NPY and orexins are possible factors involved in TRHergic neuron activation in DIA rats. Leptin signaling is another likely factor to be involved in TRH differential expression. Therefore, to gain more insight into the regulation of the feeding behavior in the experimental models, we analyzed Y1, Y5, Ox1-R and Ob-R(b) mRNA levels in PVN and prepro-orexin in LHA, since their signaling to the PVN might be altering TRH synthesis and feeding in DIA animals. Prepro-orexinergic cells were activated in FFR animals; Ox1-R and Y1 expression was reduced in FFR vs. controls or DIA group. Compensatory changes in PVN receptor expression of some feeding-related peptides in anorexic rats may alter TRHergic neural response to energy demands.
Collapse
|
14
|
Conti B, Sanchez-Alavez M, Winsky-Sommerer R, Morale MC, Lucero J, Brownell S, Fabre V, Huitron-Resendiz S, Henriksen S, Zorrilla EP, de Lecea L, Bartfai T. Transgenic mice with a reduced core body temperature have an increased life span. Science 2006; 314:825-8. [PMID: 17082459 DOI: 10.1126/science.1132191] [Citation(s) in RCA: 274] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Reduction of core body temperature has been proposed to contribute to the increased life span and the antiaging effects conferred by calorie restriction (CR). Validation of this hypothesis has been difficult in homeotherms, primarily due to a lack of experimental models. We report that transgenic mice engineered to overexpress the uncoupling protein 2 in hypocretin neurons (Hcrt-UCP2) have elevated hypothalamic temperature. The effects of local temperature elevation on the central thermostat resulted in a 0.3 degrees to 0.5 degrees C reduction of the core body temperature. Fed ad libitum, Hcrt-UCP2 transgenic mice had the same caloric intake as their wild-type littermates but had increased energy efficiency and a greater median life span (12% increase in males; 20% increase in females). Thus, modest, sustained reduction of core body temperature prolonged life span independent of altered diet or CR.
Collapse
Affiliation(s)
- Bruno Conti
- Harold L. Dorris Neurological Research Center, Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Fang Q, Guo J, He F, Peng YL, Chang M, Wang R. In vivo inhibition of neuropeptide FF agonism by BIBP3226, an NPY Y1 receptor antagonist. Peptides 2006; 27:2207-13. [PMID: 16762456 DOI: 10.1016/j.peptides.2006.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 04/03/2006] [Accepted: 04/04/2006] [Indexed: 12/21/2022]
Abstract
BIBP3226 {(R)-N2-(diphenylacetyl)-N-[(4-hydroxyphenyl)-methyl]-argininamide} was recently shown to display relatively high affinities for neuropeptide FF (NPFF) receptors and exhibit antagonist activities towards NPFF receptors in vitro. The present study was undertaken to investigate the antagonistic effects of BIBP3226 on several in vivo pharmacologic profiles induced by exogenous NPFF and NPVF. (1) BIBP3226 (5 nmol) injected into the third ventricle completely antagonized the hypothermic effects of NPFF (30 nmol) and NPVF (30 nmol) after cerebral administration in mice; (2) BIBP3226 (5 nmol, i.c.v.) prevented the anti-morphine actions of NPFF (10 nmol, i.c.v.) in the mouse tail-flick assay; (3) in urethane-anaesthetized rats, both NPFF (200 nmol/kg, i.v.) and NPVF (200 nmol/kg, i.v.) increased the mean arterial blood pressure, which were significantly reduced by pretreatment with BIBP3226 (500 nmol/kg, i.v.). Collectively, these data suggest that BIBP3226, a mixed antagonist of NPY Y1 and NPFF receptors, shows in vivo antagonistic effects on NPFF receptors. In addition, it seems to be clear that the in vivo pharmacological profiles of NPFF are mediated directly by NPFF receptors.
Collapse
Affiliation(s)
- Quan Fang
- Department of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, PR China
| | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Lawrence AJ, Cowen MS, Yang HJ, Chen F, Oldfield B. The orexin system regulates alcohol-seeking in rats. Br J Pharmacol 2006; 148:752-9. [PMID: 16751790 PMCID: PMC1617074 DOI: 10.1038/sj.bjp.0706789] [Citation(s) in RCA: 313] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Orexin-containing neurons have been implicated in feeding, sleep-wake cycles and more recently in drug-seeking behaviour. 2. Pretreatment of alcohol-preferring (iP) rats with an orexin1 receptor antagonist (SB-334867, 20 mg kg(-1), intraperitoneally) completely abolished an olfactory cue-induced reinstatement of alcohol-seeking behaviour, and also attenuated alcohol responding under an operant fixed ratio regimen without affecting water responding. 3. The mRNA encoding orexin within the hypothalamus was expressed at a similar density in iP and non-preferring (NP) rats; chronic consumption of ethanol in iP rats did not significantly regulate the density of this expression, but did increase the area of expression within the lateral, but not medial, hypothalamus. 4. These data indicate that while orexin may not be implicated in the development of an alcohol preference, re-exposure of cues previously associated with alcohol availability is sufficient and adequate to activate orexin-containing neurons and drive reinstatement of alcohol-seeking.
Collapse
Affiliation(s)
- Andrew J Lawrence
- Brain Injury & Repair Group, Howard Florey Institute, University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
18
|
Yasuda T, Masaki T, Kakuma T, Hara M, Nawata T, Katsuragi I, Yoshimatsu H. Dual regulatory effects of orexins on sympathetic nerve activity innervating brown adipose tissue in rats. Endocrinology 2005; 146:2744-8. [PMID: 15746258 DOI: 10.1210/en.2004-1226] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study examined how orexin regulates the activity of the sympathetic nerves that innervate brown adipose tissue (BAT) in rats. Infusion of orexin A at a dose of 0.3 nmol into the third cerebral ventricle decreased BAT sympathetic nerve activity, compared with the effect of PBS (P < 0.05), whereas infusion of orexin B at the same dose caused a significant increase (P < 0.05). Pretreatment with a third cerebral ventricle injection of 2.24 micromol/kg alpha-fluoromethylhistidine, an irreversible inhibitor of the histamine-synthesizing enzyme histidine decarboxylase, attenuated the orexin B-induced response of BAT sympathetic nerve activity, but not that induced by orexin A. These results indicate that orexins may regulate both BAT energy expenditure and thermogenesis through their dual effects on sympathetic nerve activity. In particular, orexin B regulates BAT sympathetic nerve activity via neuronal histamine in the hypothalamus.
Collapse
Affiliation(s)
- Tohru Yasuda
- Department of Internal Medicine I, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Oita 879-5593, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Sakamoto F, Yamada S, Ueta Y. Centrally administered orexin-A activates corticotropin-releasing factor-containing neurons in the hypothalamic paraventricular nucleus and central amygdaloid nucleus of rats: possible involvement of central orexins on stress-activated central CRF neurons. ACTA ACUST UNITED AC 2005; 118:183-91. [PMID: 15003835 DOI: 10.1016/j.regpep.2003.12.014] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2003] [Revised: 12/16/2003] [Accepted: 12/23/2003] [Indexed: 10/26/2022]
Abstract
We examined the effects of centrally administered orexin-A on corticotropin-releasing factor (CRF)-containing neurons in the hypothalamic paraventricular nucleus (PVN) and the central amygdaloid nucleus (CeA) of rats, using dual immunostaining for CRF and Fos. Ninety minutes after intracerebroventricular administration of orexin-A, approximately 96% and 45% of CRF-containing neurons expressed Fos-like immunoreactivity (LI) in the PVN and the CeA, respectively. We also examined the effects of immobilized stress and cold exposure on orexin-A-containing neurons in the rat hypothalamus using dual immunostaining for orexin-A and Fos. After immobilized stress for 20 min and cold exposure at 4 degrees C for 30 min, approximately 24% and 15% of orexin-A-containing neurons expressed Fos-LI, respectively. These results suggest that orexins in the central nervous system may be involved in the activation of central CRF neurons induced by stress.
Collapse
Affiliation(s)
- Fumihiko Sakamoto
- Department of Occupational Health, Matsushita Science Center of Industrial Hygiene, 7-6 Tonoshima-cho, Kadoma 571-0045, Japan
| | | | | |
Collapse
|
20
|
Volkoff H, Eykelbosh AJ, Peter RE. Role of leptin in the control of feeding of goldfish Carassius auratus: interactions with cholecystokinin, neuropeptide Y and orexin A, and modulation by fasting. Brain Res 2003; 972:90-109. [PMID: 12711082 DOI: 10.1016/s0006-8993(03)02507-1] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To assess the role of leptin on food intake regulation in goldfish, we examined the effects of central (intracerebroventricular, ICV) and peripheral (intraperitoneal, IP) injections of recombinant murine leptin on feeding behavior. Centrally (100 ng/g) and peripherally (300 ng/g) injected leptin both caused a significant decrease in food intake, compared to the saline-treated controls. To test the hypothesis that leptin influenced orexigenic neuropeptide systems in goldfish, fish were co-injected with neuropeptide Y (NPY) or orexin A and leptin. Both NPY (5 ng/g) and orexin A (10 ng/g) significantly increased food intake. Fish co-injected ICV with NPY (5 ng/g) or orexin A (10 ng/g) and leptin (1 or 10 ng/g) had a food intake lower than that of fish treated with NPY or orexin A alone. NPY mRNA expression in goldfish brain was reduced 2 and 6 h following central injection of leptin. To test the hypothesis that the cholecystokinin (CCK) mediates the effects of leptin in goldfish, fish were simultaneously injected ICV with an ineffective dose of leptin (10 ng/g) and either ICV or IP with an ineffective doses of CCK (1 ng/g ICV or 25 ng/g IP). These fish had a food intake lower than vehicle-treated fish, suggesting that leptin potentiates the satiety actions of CCK. CCK hypothalamic mRNA expression was increased 2 h following central treatment with leptin. The CCK receptor antagonist proglumide blocked both central and peripheral CCK satiety effects. Blockade of CCK brain receptors by proglumide resulted in an inhibition of the leptin-induced decrease in food intake and an attenuation of the inhibiting action of leptin on both NPY- and orexin A-induced feeding. These data suggests that CCK has a role in mediating the effects of leptin on food intake. Fasting potentiated the actions of leptin and attenuated the effects of CCK. Whereas fasting had no effects on the brain mRNA expression of CCK, it increased the brain mRNA expression of NPY and decreased the expression of CART. These changes in neuropeptide expression were partially reversed when fish were treated ICV with leptin. These results provide strong evidence that, in goldfish, leptin influences food intake, in part by modulating the orexigenic effects of NPY and orexin and that its actions are mediated, at least in part, by CCK.
Collapse
Affiliation(s)
- Helene Volkoff
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | |
Collapse
|
21
|
Abstract
Energy homeostasis is controlled by a complex neuroendocrine system consisting of peripheral signals like leptin and central signals, in particular, neuropeptides. Several neuropeptides with anorexigenic (POMC, CART, and CRH) as well as orexigenic (NPY, AgRP, and MCH) actions are involved in this complex (partly redundant) controlling system. Starvation as well as overfeeding lead to changes in expression levels of these neuropeptides, which act downstream of leptin, resulting in a physiological response. In this review the role of several anorexigenic and orexigenic (hypothalamic) neuropeptides on food intake and body weight regulation is summarized.
Collapse
Affiliation(s)
- J J G Hillebrand
- Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | |
Collapse
|