1
|
Clark G, Tripathy MK, Roux SJ. Growth regulation by apyrases: Insights from altering their expression level in different organisms. PLANT PHYSIOLOGY 2024; 194:1323-1335. [PMID: 37947023 PMCID: PMC10904326 DOI: 10.1093/plphys/kiad590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Apyrase (APY) enzymes are nucleoside triphosphate (NTP) diphosphohydrolases that can remove the terminal phosphate from NTPs and nucleoside diphosphates but not from nucleoside monophosphates. They have conserved structures and functions in yeast, plants, and animals. Among the most studied APYs in plants are those in Arabidopsis (Arabidopsis thaliana; AtAPYs) and pea (Pisum sativum; PsAPYs), both of which have been shown to play major roles in regulating plant growth and development. Valuable insights on their functional roles have been gained by transgenically altering their transcript abundance, either by constitutively expressing or suppressing APY genes. This review focuses on recent studies that have provided insights on the mechanisms by which APY activity promotes growth in different organisms. Most of these studies have used transgenic lines that constitutively expressed APY in multiple different plants and in yeast. As APY enzymatic activity can also be changed post-translationally by chemical blockage, this review also briefly covers studies that used inhibitors to suppress APY activity in plants and fungi. It concludes by summarizing some of the main unanswered questions about how APYs regulate plant growth and proposes approaches to answering them.
Collapse
Affiliation(s)
- Greg Clark
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, 100 E 24th Street, TX 78712, USA
| | | | - Stanley J Roux
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, 100 E 24th Street, TX 78712, USA
| |
Collapse
|
2
|
Kansal S, Panwar V, Mutum RD, Raghuvanshi S. Investigations on Regulation of MicroRNAs in Rice Reveal [Ca 2+] cyt Signal Transduction Regulated MicroRNAs. FRONTIERS IN PLANT SCIENCE 2021; 12:720009. [PMID: 34733300 PMCID: PMC8558223 DOI: 10.3389/fpls.2021.720009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
MicroRNAs (miRNAs) are critical components of the multidimensional regulatory networks in eukaryotic systems. Given their diverse spectrum of function, it is apparent that the transcription, processing, and activity of the miRNAs themselves, is very dynamically regulated. One of the most important and universally implicated signaling molecules is [Ca2+]cyt. It is known to regulate a plethora of developmental and metabolic processes in both plants and animals; however, its impact on the regulation of miRNA expression is relatively less explored. The current study employed a combination of internal and external calcium channel inhibitors to establishing that [Ca2+]cyt signatures actively regulate miRNA expression in rice. Involvement of [Ca2+]cyt in the regulation of miRNA expression was further confirmed by treatment with calcimycin, the calcium ionophore. Modulation of the cytosolic calcium levels was also found to regulate the drought-responsive expression as well as ABA-mediated response of miRNA genes in rice seedlings. The study further establishes the role of calmodulins and Calmodulin-binding Transcription Activators (CAMTAs) as important components of the signal transduction schema that regulates miRNA expression. Yeast one-hybrid assay established that OsCAMTA4 & 6 are involved in the transcriptional regulation of miR156a and miR167h. Thus, the study was able to establish that [Ca2+]cyt is actively involved in regulating the expression of miRNA genes both under control and stress conditions.
Collapse
Affiliation(s)
| | | | | | - Saurabh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
3
|
Basu R, Dutta S, Pal A, Sengupta M, Chattopadhyay S. Calmodulin7: recent insights into emerging roles in plant development and stress. PLANT MOLECULAR BIOLOGY 2021; 107:1-20. [PMID: 34398355 DOI: 10.1007/s11103-021-01177-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/27/2021] [Indexed: 05/25/2023]
Abstract
Analyses of the function of Arabidopsis Calmodulin7 (CAM7) in concert with multiple regulatory proteins involved in various signal transduction processes. Calmodulin (CaM) plays various regulatory roles in multiple signaling pathways in eukaryotes. Arabidopsis CALMODULIN 7 (CAM7) is a unique member of the CAM family that works as a transcription factor in light signaling pathways. CAM7 works in concert with CONSTITUTIVE PHOTOMORPHOGENIC 1 and ELONGATED HYPOCOTYL 5, and plays an important role in seedling development. Further, it is involved in the regulation of the activity of various Ca2+-gated channels such as cyclic nucleotide gated channel 6 (CNGC6), CNGC14 and auto-inhibited Ca2+ ATPase 8. Recent studies further indicate that CAM7 is also an integral part of multiple signaling pathways including hormone, immunity and stress. Here, we review the recent advances in understanding the multifaceted role of CAM7. We highlight the open-ended questions, and also discuss the diverse aspects of CAM7 characterization that need to be addressed for comprehensive understanding of its cellular functions.
Collapse
Affiliation(s)
- Riya Basu
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Siddhartha Dutta
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
- Department of Biotechnology, University of Engineering and Management, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal, 700156, India
| | - Abhideep Pal
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Mandar Sengupta
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
4
|
Aliniaeifard S, Shomali A, Seifikalhor M, Lastochkina O. Calcium Signaling in Plants Under Drought. SALT AND DROUGHT STRESS TOLERANCE IN PLANTS 2020:259-298. [DOI: 10.1007/978-3-030-40277-8_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
|
5
|
Clark G, Roux SJ. Role of Ca 2+ in Mediating Plant Responses to Extracellular ATP and ADP. Int J Mol Sci 2018; 19:E3590. [PMID: 30441766 PMCID: PMC6274673 DOI: 10.3390/ijms19113590] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022] Open
Abstract
Among the most recently discovered chemical regulators of plant growth and development are extracellular nucleotides, especially extracellular ATP (eATP) and extracellular ADP (eADP). Plant cells release ATP into their extracellular matrix under a variety of different circumstances, and this eATP can then function as an agonist that binds to a specific receptor and induces signaling changes, the earliest of which is an increase in the concentration of cytosolic calcium ([Ca2+]cyt). This initial change is then amplified into downstream-signaling changes that include increased levels of reactive oxygen species and nitric oxide, which ultimately lead to major changes in the growth rate, defense responses, and leaf stomatal apertures of plants. This review presents and discusses the evidence that links receptor activation to increased [Ca2+]cyt and, ultimately, to growth and diverse adaptive changes in plant development. It also discusses the evidence that increased [Ca2+]cyt also enhances the activity of apyrase (nucleoside triphosphate diphosphohydrolase) enzymes that function in multiple subcellular locales to hydrolyze ATP and ADP, and thus limit or terminate the effects of these potent regulators.
Collapse
Affiliation(s)
- Greg Clark
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA.
| | - Stanley J Roux
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
6
|
Vilela B, Pagès M, Riera M. Emerging roles of protein kinase CK2 in abscisic acid signaling. FRONTIERS IN PLANT SCIENCE 2015; 6:966. [PMID: 26579189 PMCID: PMC4630567 DOI: 10.3389/fpls.2015.00966] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/22/2015] [Indexed: 05/02/2023]
Abstract
The phytohormone abscisic acid (ABA) regulates many aspects of plant growth and development as well as responses to multiple stresses. Post-translational modifications such as phosphorylation or ubiquitination have pivotal roles in the regulation of ABA signaling. In addition to the positive regulator sucrose non-fermenting-1 related protein kinase 2 (SnRK2), the relevance of the role of other protein kinases, such as CK2, has been recently highlighted. We have recently established that CK2 phosphorylates the maize ortholog of open stomata 1 OST1, ZmOST1, suggesting a role of CK2 phosphorylation in the control of ZmOST1 protein degradation (Vilela et al., 2015). CK2 is a pleiotropic enzyme involved in multiple developmental and stress-responsive pathways. This review summarizes recent advances that taken together suggest a prominent role of protein kinase CK2 in ABA signaling and related processes.
Collapse
|
7
|
Clark GB, Morgan RO, Fernandez MP, Salmi ML, Roux SJ. Breakthroughs spotlighting roles for extracellular nucleotides and apyrases in stress responses and growth and development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 225:107-116. [PMID: 25017166 DOI: 10.1016/j.plantsci.2014.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/31/2014] [Accepted: 06/02/2014] [Indexed: 06/03/2023]
Abstract
Animal and plant cells release nucleotides into their extracellular matrix when touched, wounded, and when their plasma membranes are stretched during delivery of secretory vesicles and growth. These released nucleotides then function as signaling agents that induce rapid increases in the concentration of cytosolic calcium, nitric oxide and superoxide. These, in turn, are transduced into downstream physiological changes. These changes in plants include changes in the growth of diverse tissues, in gravitropism, and in the opening and closing of stomates. The concentration of extracellular nucleotides is controlled by various phosphatases, prominent among which are apyrases EC 3.6.1.5 (nucleoside triphosphate diphosphohydrolases, NTPDases). This review provides phylogenetic and pHMM analyses of plant apyrases as well as analysis of predicted post-translational modifications for Arabidopsis apyrases. This review also summarizes and discusses recent advances in research on the roles of apyrases and extracellular nucleotides in controlling plant growth and development. These include new findings that document how apyrases and extracellular nucleotides control auxin transport, modulate stomatal aperture, and mediate biotic and abiotic stress responses, and on how apyrase suppression leads to growth inhibition.
Collapse
Affiliation(s)
- Greg B Clark
- Department of Molecular Biosciences, University of Texas, Austin, TX 78713, USA
| | - Reginald O Morgan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and University Institute of Biotechnology of Asturias, University of Oviedo, E-33006 Oviedo, Spain
| | - Maria-Pilar Fernandez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and University Institute of Biotechnology of Asturias, University of Oviedo, E-33006 Oviedo, Spain
| | - Mari L Salmi
- Department of Molecular Biosciences, University of Texas, Austin, TX 78713, USA
| | - Stanley J Roux
- Department of Molecular Biosciences, University of Texas, Austin, TX 78713, USA.
| |
Collapse
|
8
|
Mulekar JJ, Huq E. Expanding roles of protein kinase CK2 in regulating plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2883-93. [PMID: 24307718 DOI: 10.1093/jxb/ert401] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Protein kinase CK2 (formerly known as casein kinase II) is a ubiquitious Ser/Thr kinase present in all eukaryotes. The α (catalytic) and β (regulatory) subunits of CK2 exist both as a tetrameric holoenzyme and as monomers in eukaryotic cells. CK2 has been implicated in multiple developmental and stress-responsive pathways including light signalling and circadian clock in plants. Recent studies using CK2 knockout and dominant negative mutants in Arabidopsis have uncovered new roles for this enzyme. CK2 substrates that have been identified so far are primarily transcription factors or regulatory proteins. CK2-mediated phosphorylation of these factors often results in alteration of the protein function including changes in the DNA-binding affinity, dimerization, stability, protein-protein interactions, and subcellular localization. CK2 has evolved as an essential housekeeping kinase in plants that modifies protein function in a dynamic way. This review summarizes the current knowledge of the role of CK2 in plant development.
Collapse
Affiliation(s)
- Jidnyasa Jayant Mulekar
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Enamul Huq
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
9
|
|
10
|
Poovaiah B, Du L, Wang H, Yang T. Recent advances in calcium/calmodulin-mediated signaling with an emphasis on plant-microbe interactions. PLANT PHYSIOLOGY 2013; 163:531-42. [PMID: 24014576 PMCID: PMC3793035 DOI: 10.1104/pp.113.220780] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/28/2013] [Indexed: 05/18/2023]
Abstract
Calcium/calmodulin-mediated signaling contributes in diverse roles in plant growth, development, and response to environmental stimuli .
Collapse
Affiliation(s)
| | | | - Huizhong Wang
- Department of Horticulture, Washington State University, Pullman, Washington 99164–6414 (B.W.P., L.D.)
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, People’s Republic of China (L.D., H.W.); and
- Food Quality Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Beltsville, Maryland 20705 (T.Y.)
| | - Tianbao Yang
- Department of Horticulture, Washington State University, Pullman, Washington 99164–6414 (B.W.P., L.D.)
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, People’s Republic of China (L.D., H.W.); and
- Food Quality Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Beltsville, Maryland 20705 (T.Y.)
| |
Collapse
|
11
|
Chiu TY, Christiansen K, Moreno I, Lao J, Loqué D, Orellana A, Heazlewood JL, Clark G, Roux SJ. AtAPY1 and AtAPY2 function as Golgi-localized nucleoside diphosphatases in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2012; 53:1913-25. [PMID: 23034877 DOI: 10.1093/pcp/pcs131] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nucleoside triphosphate diphosphohydrolases (NTPDases; apyrases) (EC 3.6.1.5) hydrolyze di- and triphosphate nucleotides, but not monophosphate nucleotides. They are categorized as E-type ATPases, have a broad divalent cation (Mg(2+), Ca(2+)) requirement for activation and are insensitive to inhibitors of F-type, P-type and V-type ATPases. Among the seven NTPDases identified in Arabidopsis, only APYRASE 1 (AtAPY1) and APYRASE 2 (AtAPY2) have been previously characterized. In this work, either AtAPY1 or AtAPY2 tagged with C-terminal green fluorescent protein (GFP) driven by their respective native promoter can rescue the apy1 apy2 double knockout (apy1 apy2 dKO) successfully, and confocal microscopy reveals that these two Arabidopsis apyrases reside in the Golgi apparatus. In Saccharomyces cerevisiae, both AtAPY1 and AtAPY2 can complement the Golgi-localized GDA1 mutant, rescuing its aberrant protein glycosylation phenotype. In Arabidopsis, microsomes of the wild type show higher substrate preferences toward UDP compared with other NDP substrates. Loss-of-function Arabidopsis AtAPY1 mutants exhibit reduced microsomal UDPase activity, and this activity is even more significantly reduced in the loss-of-function AtAPY2 mutant and in the AtAPY1/AtAPY2 RNA interference (RNAi) technology repressor lines. Microsomes from wild-type plants also have detectable GDPase activity, which is significantly reduced in apy2 but not apy1 mutants. The GFP-tagged AtAPY1 or AtAPY2 constructs in the apy1 apy2 dKO plants can restore microsomal UDP/GDPase activity, confirming that they both also have functional competency. The cell walls of apy1, apy2 and the RNAi-silenced lines all have an increased composition of galactose, but the transport efficiency of UDP-galactose across microsomal membranes was not altered. Taken together, these results reveal that AtAPY1 and AtAPY2 are Golgi-localized nucleotide diphosphatases and are likely to have roles in regulating UDP/GDP concentrations in the Golgi lumen.
Collapse
Affiliation(s)
- Tsan-Yu Chiu
- Section of Molecular Cell and Developmental Biology, University of Texas, Austin, TX 78712, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Vidal D, Alvarez-Flórez F, Simón E. Casein kinase activity in etiolated Cucumis sativus cotyledons. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:134-144. [PMID: 20653896 DOI: 10.1111/j.1438-8677.2009.00212.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Two calcium- and light-dependent protein kinases have been reported in etiolated Cucumis sativus cotyledons (Vidal et al. 2007). In the present work, we studied casein kinase (CK) activity in etiolated cucumber cotyledons of in-gel and in vitro kinase assays, using specific CK inhibitors, and ATP and GTP as phosphate donors. Two proteins with CK activity were detected in both casein gels and autophosphorylation assays. One of them, with a molecular mass of approximately 36 kDa, showed biochemical CK1 characteristics: it was inhibited by specific CK1 inhibitors and only used ATP as phosphate donor. The second, with a molecular mass of approximately 38 kDa, had CK2 characteristics; it used both ATP and GTP as phosphate donors, was inhibited by all specific CK2 inhibitors, and was recognized by a polyclonal antibody directed against the alpha catalytic subunit of a CK2 from tobacco. The kinase activity of the CK2 detected in etiolated cucumber cotyledons showed circadian rhythmicity in both in vitro and in-gel casein phosphorylation and in autophosphorylation assays. Thus, our results suggest that the CK2 of approximately 38 kDa could be related to the circadian oscillator of C. sativus cotyledons.
Collapse
Affiliation(s)
- D Vidal
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
13
|
Govindarajulu M, Kim SY, Libault M, Berg RH, Tanaka K, Stacey G, Taylor CG. GS52 ecto-apyrase plays a critical role during soybean nodulation. PLANT PHYSIOLOGY 2009; 149:994-1004. [PMID: 19036836 PMCID: PMC2633840 DOI: 10.1104/pp.108.128728] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 11/15/2008] [Indexed: 05/20/2023]
Abstract
Apyrases are non-energy-coupled nucleotide phosphohydrolases that hydrolyze nucleoside triphosphates and nucleoside diphosphates to nucleoside monophosphates and orthophosphates. GS52, a soybean (Glycine soja) ecto-apyrase, was previously shown to be induced very early in response to inoculation with the symbiotic bacterium Bradyrhizobium japonicum. Overexpression of the GS52 ecto-apyrase in Lotus japonicus increased the level of rhizobial infection and enhanced nodulation. These data suggest a critical role for the GS52 ecto-apyrase during nodulation. To further investigate the role of GS52 during nodulation, we used RNA interference to silence GS52 expression in soybean (Glycine max) roots using Agrobacterium rhizogenes-mediated root transformation. Transcript levels of GS52 were significantly reduced in GS52 silenced roots and these roots exhibited reduced numbers of mature nodules. Development of the nodule primordium and subsequent nodule maturation was significantly suppressed in GS52 silenced roots. Transmission electron micrographs of GS52 silenced root nodules showed that early senescence and infected cortical cells were devoid of symbiosome-containing bacteroids. Application of exogenous adenosine diphosphate to silenced GS52 roots restored nodule development. Restored nodules contained bacteroids, thus indicating that extracellular adenosine diphosphate is important during nodulation. These results clearly suggest that GS52 ecto-apyrase catalytic activity is critical for the early B. japonicum infection process, initiation of nodule primordium development, and subsequent nodule organogenesis in soybean.
Collapse
|
14
|
Riewe D, Grosman L, Fernie AR, Wucke C, Geigenberger P. The potato-specific apyrase is apoplastically localized and has influence on gene expression, growth, and development. PLANT PHYSIOLOGY 2008; 147:1092-109. [PMID: 18480378 PMCID: PMC2442552 DOI: 10.1104/pp.108.117564] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 05/12/2008] [Indexed: 05/18/2023]
Abstract
Apyrases hydrolyze nucleoside triphosphates and diphosphates and are found in all eukaryotes and a few prokaryotes. Although their enzymatic properties have been well characterized, relatively little is known regarding their subcellular localization and physiological function in plants. In this study, we used reverse genetic and biochemical approaches to investigate the role of potato (Solanum tuberosum)-specific apyrase. Silencing of the apyrase gene family with RNA interference constructs under the control of the constitutive 35S promoter led to a strong decrease in apyrase activity to below 10% of the wild-type level. This decreased activity led to phenotypic changes in the transgenic lines, including a general retardation in growth, an increase in tuber number per plant, and differences in tuber morphology. Silencing of apyrase under the control of a tuber-specific promoter led to similar changes in tuber morphology; however, there were no direct effects of apyrase inhibition on tuber metabolism. DNA microarrays revealed that decreased expression of apyrase leads to increased levels of transcripts coding for cell wall proteins involved in growth and genes involved in energy transfer and starch synthesis. To place these results in context, we determined the subcellular localization of the potato-specific apyrase. Using a combination of approaches, we were able to demonstrate that this enzyme is localized to the apoplast. We describe the evidence that underlies both this fact and that potato-specific apyrase has a crucial role in regulating growth and development.
Collapse
Affiliation(s)
- David Riewe
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | | | | | | |
Collapse
|
15
|
Kettlun AM, Espinosa V, García L, Valenzuela MA. Potato tuber isoapyrases: substrate specificity, affinity labeling, and proteolytic susceptibility. PHYTOCHEMISTRY 2005; 66:975-82. [PMID: 15896365 DOI: 10.1016/j.phytochem.2005.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2004] [Revised: 12/10/2004] [Indexed: 05/02/2023]
Abstract
Apyrase/ATP-diphosphohydrolase hydrolyzes di- and triphosphorylated nucleosides in the presence of a bivalent ion with sequential release of orthophosphate. We performed studies of substrate specificity on homogeneous isoapyrases from two potato tuber clonal varieties: Desiree (low ATPase/ADPase ratio) and Pimpernel (high ATPase/ADPase ratio) by measuring the kinetic parameters K(m) and k(cat) on deoxyribonucleotides and fluorescent analogues of ATP and ADP. Both isoapyrases showed a broad specificity towards dATP, dGTP, dTTP, dCTP, thio-dATP, fluorescent nucleotides (MANT-; TNP-; ethene-derivatives of ATP and ADP). The hydrolytic activity on the triphosphorylated compounds was always higher for the Pimpernel apyrase. Modifications either on the base or the ribose moieties did not increase K(m) values, suggesting that the introduction of large groups (MANT- and TNP-) in the ribose does not produce steric hindrance on substrate binding. However, the presence of these bulky groups caused, in general, a reduction in k(cat), indicating an important effect on the catalytic step. Substantial differences were observed between potato apyrases and enzymes from various animal tissues, concerning affinity labeling with azido-nucleotides and FSBA (5'-p-fluorosulfonylbenzoyl adenosine). PLP-nucleotide derivatives were unable to produce inactivation of potato apyrase. The lack of sensitivity of both potato enzymes towards these nucleotide analogues rules out the proximity or adequate orientation of sulfhydryl, hydroxyl or amino-groups to the modifying groups. Both apyrases were different in the proteolytic susceptibility towards trypsin, chymotrypsin and Glu-C.
Collapse
Affiliation(s)
- A M Kettlun
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Correo 1, Santiago, Chile
| | | | | | | |
Collapse
|
16
|
Bouché N, Yellin A, Snedden WA, Fromm H. Plant-specific calmodulin-binding proteins. ANNUAL REVIEW OF PLANT BIOLOGY 2005; 56:435-66. [PMID: 15862103 DOI: 10.1146/annurev.arplant.56.032604.144224] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Calmodulin CaM is the most prominent Ca2+ transducer in eukaryotic cells, regulating the activity of numerous proteins with diverse cellular functions. Many features of CaM and its downstream targets are similar in plants and other eukaryotes. However, plants possess a unique set of CaM-related proteins, and several unique CaM target proteins. This review discusses recent progress in identifying plant-specific CaM-binding proteins and their roles in response to biotic and abiotic stresses and development. The review also addresses aspects emerging from recent structural studies of CaM interactions with target proteins relevant to plants.
Collapse
Affiliation(s)
- Nicolas Bouché
- Institut National de la Recherche Agronomique, Institut Jean-Pierre Bourgin, Laboratoire de Biologie Cellulaire, 78026 Versailles, France.
| | | | | | | |
Collapse
|
17
|
Abstract
Various extracellular stimuli elicit specific calcium signatures that can be recognized by different calcium sensors. Calmodulin, the predominant calcium receptor, is one of the best-characterized calcium sensors in eukaryotes. In recent years, completion of the Arabidopsis genome project and advances in functional genomics have helped to identify and characterize numerous calmodulin-binding proteins in plants. There are some similarities in Ca(2+)/calmodulin-mediated signaling in plants and animals. However, plants possess multiple calmodulin genes and many calmodulin target proteins, including unique protein kinases and transcription factors. Some of these proteins are likely to act as "hubs" during calcium signal transduction. Hence, a better understanding of the function of these calmodulin target proteins should help in deciphering the Ca(2+)/calmodulin-mediated signal network and its role in plant growth, development and response to environmental stimuli.
Collapse
Affiliation(s)
- Tianbao Yang
- Center for Integrated Biotechnology and Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | | |
Collapse
|
18
|
Espinosa V, Kettlun AM, Zanocco A, Cardemil E, Valenzuela MA. Differences in nucleotide-binding site of isoapyrases deduced from tryptophan fluorescence. PHYTOCHEMISTRY 2003; 63:7-14. [PMID: 12657291 DOI: 10.1016/s0031-9422(02)00672-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Comparative studies of intrinsic and extrinsic fluorescence of apyrases purified from two potato tuber varieties (Pimpernel and Desirée) were performed to determine differences in the microenvironment of the nucleotide binding site. The dissociation constants (K(d)) of Pimpernel apyrase for the binding of different fluorescent substrate analogs: methylanthranoyl (MANT-), trinitrophenyl (TNP-), and epsilon -derivatives of ATP and ADP were determined from the quenching of Trp fluorescence, and compared with K(d) values previously reported for Desirée enzyme. Binding of non-fluorescent substrate analogues decreased the Trp emission of both isoapyrases, indicating conformational changes in the vicinity of these residues. Similar effect was observed with fluorescent derivatives where, in the quenching effect, the transfer of energy from tryptophan residues to the fluorophore moiety could be additionally involved. The existence of energy transfer between Trp residues in the Pimpernel enzyme was demonstrated with epsilon -analogues, similar to our previous observations with the Desirée. From these results we deduced that tryptophan residues are close to or in the nucleotide binding site in both enzymes. Experiments with quenchers like acrylamide, Cs(+) and I(-), both in the presence and absence of nucleotide analogues, suggest the existence of differences in the nucleotide binding site of the two enzymes. From the results obtained in this work, we can conclude that the differences found in the microenvironment of the nucleotide binding site can explain, at least in part, the kinetic behaviour of both isoenzymes.
Collapse
Affiliation(s)
- V Espinosa
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
19
|
Abstract
CK2 (formerly termed "casein kinase 2") is a ubiquitous, highly pleiotropic and constitutively active Ser/Thr protein kinase whose implication in neoplasia, cell survival, and virus infection is supported by an increasing number of arguments. Here an updated inventory of 307 CK2 protein substrates is presented. More than one-third of these are implicated in gene expression and protein synthesis as being either transcriptional factors (60) or effectors of DNA/RNA structure (50) or translational elements. Also numerous are signaling proteins and proteins of viral origin or essential to virus life cycle. In comparison, only a minority of CK2 targets (a dozen or so) are classical metabolic enzymes. An analysis of 308 sites phosphorylated by CK2 highlights the paramount relevance of negatively charged side chains that are (by far) predominant over any other residues at positions n+3 (the most crucial one), n+1, and n+2. Based on this signature, it is predictable that proteins phosphorylated by CK2 are much more numerous than those identified to date, and it is possible that CK2 alone contributes to the generation of the eukaryotic phosphoproteome more so than any other individual protein kinase. The possibility that CK2 phosphosites play some global role, e.g., by destabilizing alpha helices, counteracting caspase cleavage, and generating adhesive motifs, will be discussed.
Collapse
Affiliation(s)
- Flavio Meggio
- Dipartimento di Chimica Biologica and Istituto di Neuroscienze del CNR, Università di Padova and Venetian Institute for Molecular Medicine (VIMM), Padova, Italy
| | | |
Collapse
|
20
|
Snedden WA, Fromm H. Calmodulin as a versatile calcium signal transducer in plants. THE NEW PHYTOLOGIST 2001; 151:35-66. [PMID: 33873389 DOI: 10.1046/j.1469-8137.2001.00154.x] [Citation(s) in RCA: 264] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The complexity of Ca2+ patterns observed in eukaryotic cells, including plants, has led to the hypothesis that specific patterns of Ca2+ propagation, termed Ca2+ signatures, encode information and relay it to downstream elements (effectors) for translation into appropriate cellular responses. Ca2+ -binding proteins (sensors) play a key role in decoding Ca2+ signatures and transducing signals by activating specific targets and pathways. Calmodulin is a Ca2+ sensor known to modulate the activity of many mammalian proteins, whose targets in plants are now being actively characterized. Plants possess an interesting and rapidly growing list of calmodulin targets with a variety of cellular roles. Nevertheless, many targets appear to be unique to plants and remain uncharacterized, calling for a concerted effort to elucidate their functions. Moreover, the extended family of calmodulin-related proteins in plants consists of evolutionarily divergent members, mostly of unknown function, although some have recently been implicated in stress responses. It is hoped that advances in functional genomics, and the research tools it generates, will help to explain themultiplicity of calmodulin genes in plants, and to identify their downstream effectors. This review summarizes current knowledge of the Ca2+ -calmodulin messenger system in plants and presents suggestions for future areas of research. Contents I. Introduction 36 II. CaM isoforms and CaM-like proteins 37 III. CaM-target proteins 42 IV. CaM and nuclear functions 46 V. Regulation of ion transport 49 VI. CaM and plant responses to environmental stimuli 52 VII. Conclusions and future studies 58 Acknowledgements 59 References 59.
Collapse
Affiliation(s)
- Wayne A Snedden
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Hillel Fromm
- Centre for Plant Sciences, Leeds Institute for Biotechnology and Agriculture (LIBA), School of Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|