1
|
Wang NQ, Jia WH, Yin L, Li N, Liang MD, Shang JM, Hou BY, Zhang L, Qiang GF, Du GH, Yang XY. Sex difference on fibroblast growth factors (FGFs) expression in skin and wound of streptozotocin(STZ)-induced type 1 diabetic mice. Mol Biol Rep 2023; 50:1981-1991. [PMID: 36536184 DOI: 10.1007/s11033-022-08094-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Fibroblast growth factors (FGFs) are key factors affecting diabetic wound healing. However, the FGF family's expression patterns in skin and wounds influenced by both diabetes and sex are still unknown. METHODS AND RESULTS In this study, normal and Streptozotocin (STZ)-induced type 1 diabetic C57BL/6J male and female mice were used to study the FGF family's expression in non-wound skin and wounds. We found that the expression patterns of Fgfs were affected by sex in both normal and diabetic animals during wound healing. In normal control mice, sex difference had a limited effect on basal skin Fgf expressions. However, it significantly influenced Fgf expressions in wounds. Type 1 diabetes reduced basal and wound-induced skin Fgf expressions. Female mice had far lower wound-induced skin Fgf expressions in diabetic mice. In addition, sex differently influenced Fibroblast growth factors receptor (Fgfr) expression patterns of non-wound skin and wounds in both normal and diabetic mice. Moreover, female mice had a lower relative level of Fibronectin leucine-rich repeat transmembrane protein 2 (FLRT2) - a FGFR activation marker gene - in wound and blood plasma. Correspondingly, the wound areas of female animals were larger than that of male animals in the early stage of wound healing (less than 3-day injury). CONCLUSION Our research shows that the FGF family have different expression patterns in normal and diabetic wound healing in mice of different sex. Additionally, we also provide the signatures of individual FGFs in diabetic wound healing, which deserve further investigation.
Collapse
Affiliation(s)
- Nuo-Qi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Jia 2nd, Nanwei Road, Xicheng district, 100050, Beijing, P.R. China
| | - Wei-Hua Jia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Jia 2nd, Nanwei Road, Xicheng district, 100050, Beijing, P.R. China
| | - Lin Yin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Jia 2nd, Nanwei Road, Xicheng district, 100050, Beijing, P.R. China
| | - Na Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Jia 2nd, Nanwei Road, Xicheng district, 100050, Beijing, P.R. China
| | - Mei-Dai Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Jia 2nd, Nanwei Road, Xicheng district, 100050, Beijing, P.R. China
| | - Jia-Min Shang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Jia 2nd, Nanwei Road, Xicheng district, 100050, Beijing, P.R. China
| | - Bi-Yu Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Jia 2nd, Nanwei Road, Xicheng district, 100050, Beijing, P.R. China
| | - Li Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Jia 2nd, Nanwei Road, Xicheng district, 100050, Beijing, P.R. China
| | - Gui-Fen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Jia 2nd, Nanwei Road, Xicheng district, 100050, Beijing, P.R. China
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Jia 2nd, Nanwei Road, Xicheng district, 100050, Beijing, P.R. China.
| | - Xiu-Ying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Jia 2nd, Nanwei Road, Xicheng district, 100050, Beijing, P.R. China.
| |
Collapse
|
2
|
Mansour MA, Al-Ismaeel H, Al-Rikabi AC, Al-Shabanah OA. Comparison of angiotensin converting enzyme inhibitors and angiotensin II type 1 receptor blockade for the prevention of premalignant changes in the liver. Life Sci 2011; 89:188-94. [PMID: 21699905 DOI: 10.1016/j.lfs.2011.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 05/28/2011] [Accepted: 06/02/2011] [Indexed: 12/20/2022]
Abstract
AIM We investigate and compare the possible antitumor activity of clinically used angiotensin converting enzyme (ACE) inhibitors; captopril, perindopril and angiotensin II type 1 receptor (AT1R) blocker, losartan against hepatocarcinogenesis initiated by diethylnitrosoamines (DENA) and promoted by carbon tetrachloride (CCl(4)). MAIN METHODS Diethylnitrosamine (DENA) (200mg/kgi.p.) initiated and carbon tetrachloride (CCl(4)) (2ml/kgi.p.) promoted hepatocarcinogenesis in male Wistar rats after 8weeks. RESULTS Hepatocarcinogenesis was manifested biochemically by elevation of serum hepatic tumor markers tested; α-feto protein (AFP) and carcinoembryonic antigen (CEA). In addition, hepatic carcinogenesis was further confirmed by a significant increase in hepatic tissue growth factors; vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF). Moreover a marked increase in matrix metalloproteinase-2 and hydroxyproline content were also observed. Hepatocarcinogenesis was further confirmed by a significant decrease in hepatic endostatin and metallothonein level. KEY FINDINGS Long-term administration of the selected drugs for 2weeks before and throughout the experimental period produced a significant protection against hepatic carcinogenesis. The present results claimed that different doses of the selected drugs succeeded in normalization of serum tumor markers. Furthermore, the drugs reduced the elevated level in the hepatic growth factors, matrix metalloproteinase-2 and hydroxyproline induced by the hepatocarcinogen. Moreover, the amelioration was also accompanied by augmentation of hepatic content of metallothionein and endostatin. Histopathological examination of liver tissues of rats treated with DENA-CCl(4) correlated with the biochemical observations. SIGNIFICANCE These findings suggest a similar protective effect of ACE inhibitors; captopril; perindopril and AT1R blocker, losartan against premalignant stages of liver cancer in the DENA initiated and CCl(4) promoted hepatocarcinogenesis model in rats. Therefore, RAS especially angiotensin II (Ang II) and AT1R interaction plays a pivotal role hepatocarcinogenesis development.
Collapse
Affiliation(s)
- Mahmoud A Mansour
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | | | | | | |
Collapse
|
3
|
Mansour MA, Bekheet SA, Al-Rejaie SS, Al-Shabanah OA, Al-Howiriny TA, Al-Rikabi AC, Abdo AA. Ginger ingredients inhibit the development of diethylnitrosoamine induced premalignant phenotype in rat chemical hepatocarcinogenesis model. Biofactors 2010; 36:483-90. [PMID: 20872761 DOI: 10.1002/biof.122] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 07/24/2010] [Indexed: 12/17/2022]
Abstract
To investigate the possible antitumor activity of ginger extract against hepatic carcinogenesis initiated by diethylnitrosoamines (DEN) and promoted by carbon tetrachloride (CCl(4) ). A total of 60 male Wistar albino rats were divided into four groups with 15 animals in each group. Rats in group 1 (control group) received a single intraperitoneal (i.p.) injection of normal saline. Animals in group 2 were given ginger (50 mg/kg/day) in drinking water for 8 weeks. Rats in group 3 (DEN group) were injected with a single dose of DEN (200 mg/kg, i.p.), 2 weeks later received a single dose of CCl(4) (2 mL/kg i.g) by gavage as 1:1 dilution in corn oil. Animals in group 4 (DEN-ginger group) received the same carcinogenesis induction protocol as in group 3 plus ginger (50 mg/kg/day) in drinking water for 2 weeks before induction of hepatocarcinogenesis and continued throughout the experimental period. DEN-initiated and CCl(4) -promoted hepatocarcinogenesis in male Wistar rats was manifested biochemically by elevation of serum hepatic tumor markers tested; α-fetoprotein and carcinoembryonic antigen. In addition, hepatocarcinogenesis was further confirmed by a significant increase in hepatic tissue growth factors; vascular endothelial growth factor, basic fibroblast growth factor, and hydroxyproline content. A marked decrease in endostatin and metallothonein were also observed. Long-term ginger extract administration 2 weeks before induction of hepatocarcinogenesis and throughout the experimental period prevented the decrease of the hepatic content of metallothionein and endostatin and the increase in the growth factors induced by the carcinogen. Moreover, ginger extract normalize serum hepatic tumor markers. Histopathological examination of liver tissue also correlated with the biochemical observations. These findings suggest a protective effect of ginger extract against premalignant stages of liver cancer in the DEN-initiated and CCl(4) -promoted hepatocarcinogenesis model in rats.
Collapse
Affiliation(s)
- Mahmoud A Mansour
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | | | | | | | | | | | | |
Collapse
|
4
|
Gupta A, Saha P, Descôteaux C, Leblanc V, Asselin E, Bérubé G. Design, synthesis and biological evaluation of estradiol-chlorambucil hybrids as anticancer agents. Bioorg Med Chem Lett 2010; 20:1614-8. [PMID: 20137939 DOI: 10.1016/j.bmcl.2010.01.053] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/12/2010] [Accepted: 01/13/2010] [Indexed: 10/19/2022]
Abstract
A series of estradiol-chlorambucil hybrids was synthesized as anticancer drugs for site-directed chemotherapy of breast cancer. The novel compounds were synthesized in good yields through efficient modifications of estrone at position 16alpha of the steroid nucleus. The newly synthesized compounds were evaluated for their anticancer efficacy in different hormone-dependent and hormone-independent breast cancer cell lines. The novel hybrids showed significant in vitro anticancer activity when compared to chlorambucil. Structure-activity relationship (SAR) reveals the influence of the length of the spacer chain between carrier and drug molecule.
Collapse
Affiliation(s)
- Atul Gupta
- Département de Chimie-Biologie, Groupe de Recherche en Oncologie et Endocrinologie Moléculaires, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, Québec, Canada G9A 5H7
| | | | | | | | | | | |
Collapse
|
5
|
Huang X, Yu C, Jin C, Yang C, Xie R, Cao D, Wang F, McKeehan WL. Forced expression of hepatocyte-specific fibroblast growth factor 21 delays initiation of chemically induced hepatocarcinogenesis. Mol Carcinog 2007; 45:934-42. [PMID: 16929488 DOI: 10.1002/mc.20241] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inappropriate fibroblast growth factor (FGF) signaling is involved in most tissue-specific pathologies including cancer. Previously we showed that inappropriate expression and chronic activity of FGF receptor (FGFR) 1 in hepatocytes accelerated diethylnitrosamine (DEN)-initiated hepatocarcinogenesis. Here we showed that although widely expressed FGF1 and FGF2 are frequently upregulated in hepatocellular carcinoma (HCC), germline deletion of both FGF1 and FGF2 had no effect on DEN-initiated hepatocarcinogenesis. Thus overexpression of FGF1 or FGF2 may be a consequence rather than contributor to hepatoma progression. FGF21 is the first of 22 homologues whose expression has been reported to be preferentially in the liver. We showed that similar to FGF1 and FGF2, FGF21 mRNA was upregulated in neoplastic and regenerating liver after partial hepatectomy (PH) and CCl4 administration. In situ hybridization analysis confirmed that in contrast to FGF1 and FGF2, expression of FGF21 mRNA was limited to hepatocytes. Forced overexpression of FGF21 in hepatocytes by gene targeting had no apparent impact on normal liver development and compensatory response to injury. Surprisingly, overexpression of FGF21 delayed the appearance of DEN-induced liver tumors. At 8 and 10 mo, only 10% and 30% of transgenic mice, respectively, developed adenomas compared to 50% (all adenomas) and 80% (60% adenoma/20% HCC) in the wild-type (WT) mice. However, the incidence and burden of HCC at 10 mo and later was equal in the FGF21 transgenic and WT mice. We propose that FGF21 may delay development of adenomas through activation of resident hepatocyte FGFR4 at early times, but counteracts the delay by acceleration of progression to HCC through interaction with ectopic FGFR1 once it appears in hepatoma cells. This indicates a dual function of FGF21 that may reflect changes in FGFR isotype during progression of differentiated hepatoma cells.
Collapse
MESH Headings
- Animals
- Carbon Tetrachloride/toxicity
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Fibroblast Growth Factor 1/antagonists & inhibitors
- Fibroblast Growth Factor 1/genetics
- Fibroblast Growth Factor 1/physiology
- Fibroblast Growth Factor 2/antagonists & inhibitors
- Fibroblast Growth Factor 2/genetics
- Fibroblast Growth Factor 2/physiology
- Fibroblast Growth Factors/antagonists & inhibitors
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/physiology
- Gene Targeting
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Liver Neoplasms/chemically induced
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Mice
- Mice, Transgenic
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Receptor, Fibroblast Growth Factor, Type 4/agonists
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- Xinqiang Huang
- Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Toillon RA, Descamps S, Adriaenssens E, Ricort JM, Bernard D, Boilly B, Le Bourhis X. Normal breast epithelial cells induce apoptosis of breast cancer cells via Fas signaling. Exp Cell Res 2002; 275:31-43. [PMID: 11925103 DOI: 10.1006/excr.2002.5490] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fas/Fas ligand (Fas L) death pathway is an important mediator of apoptosis. Deregulation of Fas pathway is reported to be involved in the immune escape of breast cancer and the resistance to anti-cancer drugs. In this study, we demonstrated that conditioned medium by normal breast epithelial cells (NBEC-CM) induced apoptosis of MCF-7 and T-47D Fas-sensitive cells but had no effect on MDA-MB-231 Fas-resistant cells. Inhibition of PI3 kinase or NF-kappaB by specific inhibitors or transient transfections restored the sensitivity of MDA-MB-231 cells to NBEC-induced apoptosis. Moreover, the constitutive activation of NF-kappaB was controlled by PI3 kinase because inhibition of PI3 kinase reduced NF-kappaB activity. Inducible activation of NF-kappaB rendered MCF-7 cells resistant to NBEC-CM- and Fas agonist antibody-triggered apoptosis. Therefore, constitutive or inducible activation of PI3 kinase and/or NF-kappaB in breast cancer cells rendered them resistant to NBEC-triggered apoptosis. In addition, Fas neutralizing antibody and dominant negative Fas abolished NBEC-triggered apoptosis. Western blot and confocal microscopy analysis showed an increase of membrane Fas/Fas L when cells were induced into apoptotis by NBEC-CM. Taken together, these data show that NBEC induced apoptosis in breast cancer cells via Fas signaling.
Collapse
Affiliation(s)
- Robert-Alain Toillon
- Laboratoire de Biologie du Développement (UPRES, EA 1033), Equipe Facteurs de Croissance, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, 59655, France
| | | | | | | | | | | | | |
Collapse
|
7
|
Toillon RA, Chopin V, Jouy N, Fauquette W, Boilly B, Le Bourhis X. Normal breast epithelial cells induce p53-dependent apoptosis and p53-independent cell cycle arrest of breast cancer cells. Breast Cancer Res Treat 2002; 71:269-80. [PMID: 12002345 DOI: 10.1023/a:1014422101452] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cancer development depends not only on the nature of cancerous cells themselves, but also on the regulatory effects of various normal cells. The present study was performed to investigate the effect of normal breast epithelial cells (NBEC) on the growth of breast cancer cells under various conditions. We demonstrated that NBEC-conditioned medium (NBEC-CM) inhibited growth of breast cancer cell lines in monolayer culture and three-dimensional collagen gel culture, as well as in soft agar. In MCF-7 and T-47D cells which have a functional p53, NBEC-CM induced apoptosis without modifying cell cycle progression. In MDA-MB-231 and BT-20 cells that have a non-functional p53, NBEC-CM did not induce apoptosis, although a slight G1 blokage was observed in MDA-MB-231 cells. Transient transfections of MCF-7 and T-47D cells demonstrated that NBEC-triggered apoptosis was mediated by endogenous p53. Moreover, pifithrin-alpha which specifically inhibits the transcriptional activity of p53, completely abolished NBEC-induced apoptosis in both MCF-7 and T-47D cells, indicating that p53 mediated apoptosis via its transcriptional activity. Finally, orthovanadate, a protein tyrosine phosphatase inhibitor, completely inhibited NBEC-triggered apoptosis, indicating that NBEC-triggered apoptosis was regulated by tyrosine phosphatases.
Collapse
Affiliation(s)
- Rober-Alain Toillon
- Laboratoire de Biologie du Développement, Equipe facteurs de croissance (UPRES 1033), Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | | | | | | | | | | |
Collapse
|
8
|
Lobenhofer EK, Marks JR. Estrogen-induced mitogenesis of MCF-7 cells does not require the induction of mitogen-activated protein kinase activity. J Steroid Biochem Mol Biol 2000; 75:11-20. [PMID: 11179904 DOI: 10.1016/s0960-0760(00)00132-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Estrogen mediates the transcription of responsive genes via its interaction with the estrogen receptor (ER). This ligand-dependent transcriptional activity has been the mechanistic basis for understanding estrogen-induced proliferation. However, recent reports suggest that estrogen stimulation results in activation of the mitogen-activated protein kinase (MAPK) cascade in an ER-dependent manner suggesting that mitogenesis may be mediated through this cytoplasmic signaling cascade. In this study, we demonstrate that estrogen stimulation of MCF-7 cells does not activate MAPK regardless of hormone concentration, serum concentration, or cell density. We also excluded the activation of MAPK through autocrine effects after estrogen treatment. Finally, concentrations required for estrogen-induced mitogenesis and estrogen-mediated transcription were shown to be the same. These results support transcriptional activation as the primary mechanism for estrogen-mediated mitogenesis.
Collapse
Affiliation(s)
- E K Lobenhofer
- Program in Cell and Molecular Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
9
|
Malamitsi-Puchner A, Tziotis J, Tsonou A, Protonotariou E, Sarandakou A, Creatsas G. Basic fibroblast growth factor: serum levels in the female. Growth Factors 2000; 17:215-20. [PMID: 10705579 DOI: 10.3109/08977190009001070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study investigated serum levels of basic fibroblast growth factor (b FGF), a potent angiogenic factor, during distinct periods of the female life and compared them with corresponding levels in age-matched males. Healthy females (n = 59) and males (n = 53) were included in the study, divided into six groups: fetuses (cord blood), neonates, children, adults (females in proliferative and secretory phase), pregnant and "elderly" men and women. Serum b FGF levels were measured by an enzyme immunoassay. No statistically significant difference was found between both genders. Blood levels in fetuses and neonates were significantly increased as compared to adults (p = 0.01, p = 0.02, respectively). Restricting the analysis to females, all age groups, but fetuses (p = 0.05), demonstrated no difference when compared to proliferative phase adults. In conclusion, b FGF serum levels do not differ between males and females and are elevated in fetal and neonatal life, when growth and development are enhanced.
Collapse
Affiliation(s)
- A Malamitsi-Puchner
- Second Department of Obstetrics and Gynecology, University of Athens, Greece
| | | | | | | | | | | |
Collapse
|
10
|
Adriaenssens E, Lottin S, Dugimont T, Fauquette W, Coll J, Dupouy JP, Boilly B, Curgy JJ. Steroid hormones modulate H19 gene expression in both mammary gland and uterus. Oncogene 1999; 18:4460-73. [PMID: 10442637 DOI: 10.1038/sj.onc.1202819] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
H19 is an imprinted and developmentally regulated gene whose product remains apparently untranslated. In a previous study on breast adenocarcinomas, we reported that overexpression of the H19 gene was significantly correlated with the presence of steroid receptors, suggesting the putative role of hormones in H19 transcription. To determine the mode of steroid action, we have detected levels of H19 RNA synthesis during mammary gland development by in situ hybridization (ISH): two peaks of H19 transcription occur during puberty and pregnancy. Furthermore, we demonstrated by ISH that in the uterus H19 RNA synthesis is high during estrus and metestrus phases. To test steroid control of H19 transcription, ovariectomized and adrenalectomized mice were supplemented, 1 week after surgery, with 17-beta-estradiol (E2, 20 microg/kg/day), progesterone (P, 1 mg/kg/day) or corticosterone (B, 0.3 mg/ kg/day) for 2 weeks. According to ISH data, E2 and to a lesser extent B stimulated H19 transcription in the uterus, whereas P inhibited it. To confirm the in vivo results, in vitro experiments were performed using cultures of MCF-7 cells (a hormone-sensitive mammary cell line). E2 stimulated the endogenous H19 gene of this cell line and tamoxifen inhibited this effect. Furthermore, we performed transient cotransfections in MCF-7, in HBL-100 (another hormone-sensitive mammary cell line) and in BT-20 (a hormone-insensitive mammary cell line) with various constructs of ERalpha (WT or mutated) and PR-A, in presence or absence of steroid hormones. We demonstrated that ERalpha up-regulated the H19 promoter in MCF-7 and in HBL-100, whereas PR-A did not have any effect per se. Moreover, in MCF-7, PR-A antagonized clearly the ERalpha-mediated promoter enhancement, but in HBL-100 this counteracting effect on the ERalpha up-regulation was not found. Interestingly, the same experiments performed in BT-20 cell line provided very similar results as those obtained in MCF-7 cells, with a clear down-regulation mediated by PR-A on the H19 promoter. All these in vitro data are in agreement with in vivo results. In addition, data obtained with ERalpha mutants indicate that H19 promoter activation is both ligand-dependent and ligand-independent. We have thus demonstrated that H19 gene expression is controlled by steroid hormones; furthermore, this gene is highly expressed in hormone-sensitive organs when the hormonal stimulation is accompanied with a morphological repair.
Collapse
Affiliation(s)
- E Adriaenssens
- Laboratoire de Biologie du Dévelppement, UPRES EA 1033, Lille, France
| | | | | | | | | | | | | | | |
Collapse
|