1
|
Roman-Campos D, Marin-Neto JA, Santos-Miranda A, Kong N, D’Avila A, Rassi A. Arrhythmogenic Manifestations of Chagas Disease: Perspectives From the Bench to Bedside. Circ Res 2024; 134:1379-1397. [PMID: 38723031 PMCID: PMC11081486 DOI: 10.1161/circresaha.124.324507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Chagas cardiomyopathy caused by infection with the intracellular parasite Trypanosoma cruzi is the most common and severe expression of human Chagas disease. Heart failure, systemic and pulmonary thromboembolism, arrhythmia, and sudden cardiac death are the principal clinical manifestations of Chagas cardiomyopathy. Ventricular arrhythmias contribute significantly to morbidity and mortality and are the major cause of sudden cardiac death. Significant gaps still exist in the understanding of the pathogenesis mechanisms underlying the arrhythmogenic manifestations of Chagas cardiomyopathy. This article will review the data from experimental studies and translate those findings to draw hypotheses about clinical observations. Human- and animal-based studies at molecular, cellular, tissue, and organ levels suggest 5 main pillars of remodeling caused by the interaction of host and parasite: immunologic, electrical, autonomic, microvascular, and contractile. Integrating these 5 remodeling processes will bring insights into the current knowledge in the field, highlighting some key features for future management of this arrhythmogenic disease.
Collapse
Affiliation(s)
- Danilo Roman-Campos
- Departamento de Biofísica, Escola Paulsita de Medicina, Laboratório de Cardiobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil (D.R-C)
| | - José Antonio Marin-Neto
- Unidade de Hemodinâmica e Cardiologia Intervencionista, Escola de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil (J.A.M-N.)
| | - Artur Santos-Miranda
- Departamento de Fisiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil (A.S.-M)
| | - Nathan Kong
- Departamento de Biofísica, Escola Paulsita de Medicina, Laboratório de Cardiobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil (D.R-C)
- Unidade de Hemodinâmica e Cardiologia Intervencionista, Escola de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil (J.A.M-N.)
- Departamento de Fisiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil (A.S.-M)
- Hospital do Coração Anis Rassi, Goiânia, GO, Brazil (A.R.J.)
| | - André D’Avila
- Departamento de Biofísica, Escola Paulsita de Medicina, Laboratório de Cardiobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil (D.R-C)
- Unidade de Hemodinâmica e Cardiologia Intervencionista, Escola de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil (J.A.M-N.)
- Departamento de Fisiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil (A.S.-M)
- Hospital do Coração Anis Rassi, Goiânia, GO, Brazil (A.R.J.)
| | - Anis Rassi
- Hospital do Coração Anis Rassi, Goiânia, GO, Brazil (A.R.J.)
| |
Collapse
|
2
|
Silvestrini MMA, Alessio GD, Frias BED, Sales Júnior PA, Araújo MSS, Silvestrini CMA, Brito Alvim de Melo GE, Martins-Filho OA, Teixeira-Carvalho A, Martins HR. New insights into Trypanosoma cruzi genetic diversity, and its influence on parasite biology and clinical outcomes. Front Immunol 2024; 15:1342431. [PMID: 38655255 PMCID: PMC11035809 DOI: 10.3389/fimmu.2024.1342431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, remains a serious public health problem worldwide. The parasite was subdivided into six distinct genetic groups, called "discrete typing units" (DTUs), from TcI to TcVI. Several studies have indicated that the heterogeneity of T. cruzi species directly affects the diversity of clinical manifestations of Chagas disease, control, diagnosis performance, and susceptibility to treatment. Thus, this review aims to describe how T. cruzi genetic diversity influences the biology of the parasite and/or clinical parameters in humans. Regarding the geographic dispersion of T. cruzi, evident differences were observed in the distribution of DTUs in distinct areas. For example, TcII is the main DTU detected in Brazilian patients from the central and southeastern regions, where there are also registers of TcVI as a secondary T. cruzi DTU. An important aspect observed in previous studies is that the genetic variability of T. cruzi can impact parasite infectivity, reproduction, and differentiation in the vectors. It has been proposed that T. cruzi DTU influences the host immune response and affects disease progression. Genetic aspects of the parasite play an important role in determining which host tissues will be infected, thus heavily influencing Chagas disease's pathogenesis. Several teams have investigated the correlation between T. cruzi DTU and the reactivation of Chagas disease. In agreement with these data, it is reasonable to suppose that the immunological condition of the patient, whether or not associated with the reactivation of the T. cruzi infection and the parasite strain, may have an important role in the pathogenesis of Chagas disease. In this context, understanding the genetics of T. cruzi and its biological and clinical implications will provide new knowledge that may contribute to additional strategies in the diagnosis and clinical outcome follow-up of patients with Chagas disease, in addition to the reactivation of immunocompromised patients infected with T. cruzi.
Collapse
Affiliation(s)
| | - Glaucia Diniz Alessio
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Bruna Estefânia Diniz Frias
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Policarpo Ademar Sales Júnior
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Márcio Sobreira Silva Araújo
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Olindo Assis Martins-Filho
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Andréa Teixeira-Carvalho
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Helen Rodrigues Martins
- Department of Pharmacy, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| |
Collapse
|
3
|
Ralston K, Zaidel E, Acquatella H, Barbosa MM, Narula J, Nakagama Y, Molina GR, Sliwa K, Zamorano JL, Pinto FJ, Piñeiro DJ, Corneli M. WHF Recommendations for the Use of Echocardiography in Chagas Disease. Glob Heart 2023; 18:27. [PMID: 37305068 PMCID: PMC10253240 DOI: 10.5334/gh.1207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Chagas disease (ChD) represents a significant health burden in endemic regions of Latin America and is increasingly being recognized as a global health issue. The cardiac involvement in ChD, known as Chagas cardiomyopathy (ChCM), is the most severe manifestation and a leading cause of heart failure and mortality in affected individuals. Echocardiography, a non-invasive imaging modality, plays a crucial role in the diagnosis, monitoring, and risk stratification of ChCM. This consensus recommendation aims to provide guidance on the appropriate use of echocardiography in ChD. An international panel of experts, including cardiologists, infectious disease specialists, and echocardiography specialists, convened to review the available evidence and provide practical recommendations based on their collective expertise. The consensus addresses key aspects related to echocardiography in ChD, including its role in the initial evaluation, serial monitoring, and risk assessment of patients. It emphasizes the importance of standardized echocardiographic protocols, including the assessment of left ventricular function, chamber dimensions, wall motion abnormalities, valvular involvement, and the presence of ventricular aneurysm. Additionally, the consensus discusses the utility of advanced echocardiographic techniques, such as strain imaging and 3D echocardiography, in assessing myocardial mechanics and ventricular remodeling.
Collapse
Affiliation(s)
| | - Ezequiel Zaidel
- Sanatorio Güemes, Buenos Aires, Argentina
- Pharmacology Department, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Harry Acquatella
- Faculty of Medicine Universidad Central de Venezuela, Hospital Universitario and Centro Medico, Caracas, Venezuela
| | | | - Jagat Narula
- Division of Cardiology, Mount Sinai St. Luke’s Hospital, New York, USA
| | - Yu Nakagama
- Dept of Parasitology, Osaka Metropolitan University, Japan
| | | | - Karen Sliwa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, South Africa
| | | | - Fausto J. Pinto
- Cardiology Department, Centro Hospitalar Universitário Lisboa Norte, CAML, CCUL, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | | | | |
Collapse
|
4
|
Ferreira RR, de Souza EM, Vilar-Pereira G, Degrave WMS, Abreu RDS, Meuser-Batista M, Ferreira NVC, Ledbeter S, Barker RH, Bailly S, Feige JJ, Lannes-Vieira J, de Araújo-Jorge TC, Waghabi MC. In Chagas disease, transforming growth factor beta neutralization reduces Trypanosoma cruzi infection and improves cardiac performance. Front Cell Infect Microbiol 2022; 12:1017040. [PMID: 36530434 PMCID: PMC9748701 DOI: 10.3389/fcimb.2022.1017040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
Chronic Chagasic cardiomyopathy (CCC), a progressive inflammatory and fibrosing disease, is the most prominent clinical form of Chagas disease, a neglected tropical disease caused by Trypanosoma cruzi infection. During CCC, the parasite remains inside the cardiac cells, leading to tissue damage, involving extensive inflammatory response and irregular fibrosis. Among the fibrogenic factors is transforming growth factor-β (TGF-β), a key cytokine controlling extracellular matrix synthesis and degradation. TGF-β is involved in CCC onset and progression, with increased serum levels and activation of its signaling pathways in the cardiac tissue, which crucially contributes to fibrosis. Inhibition of the TGF-β signaling pathway attenuates T. cruzi infection and prevents cardiac damage in an experimental model of acute Chagas disease. The aim of this study was to investigate the effect of TGF-β neutralization on T. cruzi infection in both in vitro and in vivo pre-clinical models, using the 1D11 monoclonal antibody. To this end, primary cultures of cardiac cells were infected with T. cruzi trypomastigote forms and treated with 1D11. For in vivo studies, 1D11 was administered in different schemes for acute and chronic phase models (Swiss mice infected with 104 parasites from the Y strain and C57BL/6 mice infected with 102 parasites from the Colombian strain, respectively). Here we show that the addition of 1D11 to cardiac cells greatly reduces cardiomyocyte invasion by T. cruzi and the number of parasites per infected cell. In both acute and chronic experimental models, T. cruzi infection altered the electrical conduction, decreasing the heart rate, increasing the PR interval and the P wave duration. The treatment with 1D11 reduced cardiac fibrosis and reversed electrical abnormalities improving cardiac performance. Taken together, these data further support the major role of the TGF-β signaling pathways in T. cruzi-infection and their biological consequences on parasite/host interactions. The therapeutic effects of the 1D11 antibody are promising and suggest a new possibility to treat cardiac fibrosis in the chronic phase of Chagas' heart disease by TGF-β neutralization.
Collapse
Affiliation(s)
- Roberto Rodrigues Ferreira
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil,Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil,*Correspondence: Roberto Rodrigues Ferreira, ; Mariana Caldas Waghabi,
| | - Elen Mello de Souza
- Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Glaucia Vilar-Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Wim M. S. Degrave
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Rayane da Silva Abreu
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Marcelo Meuser-Batista
- Departamento de Anatomia Patológica e Citopatologia, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Nilma Valéria Caldeira Ferreira
- Departamento de Anatomia Patológica e Citopatologia, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Steve Ledbeter
- Tissue Protection and Repair, Sanofi-Genzyme R&D Center, Framingham, MA, United States
| | - Robert H. Barker
- Tissue Protection and Repair, Sanofi-Genzyme R&D Center, Framingham, MA, United States
| | - Sabine Bailly
- Laboratory BioSanté, Université Grenoble Alpes, INSERM, CEA, Grenoble, France
| | - Jean-Jacques Feige
- Laboratory BioSanté, Université Grenoble Alpes, INSERM, CEA, Grenoble, France
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Tania C. de Araújo-Jorge
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Mariana Caldas Waghabi
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil,*Correspondence: Roberto Rodrigues Ferreira, ; Mariana Caldas Waghabi,
| |
Collapse
|
5
|
Nemska S, Gassmann M, Bang ML, Frossard N, Tavakoli R. Antagonizing the CX3CR1 Receptor Markedly Reduces Development of Cardiac Hypertrophy After Transverse Aortic Constriction in Mice. J Cardiovasc Pharmacol 2021; 78:792-801. [PMID: 34882111 DOI: 10.1097/fjc.0000000000001130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 08/01/2021] [Indexed: 12/12/2022]
Abstract
ABSTRACT Left-ventricular hypertrophy, characterized by cardiomyocyte hypertrophy, interstitial cell proliferation, and immune cell infiltration, is a high risk factor for heart failure and death. Chemokines interacting with G protein-coupled chemokine receptors probably play a role in left-ventricular hypertrophy development by promoting recruitment of activated leukocytes and modulating left-ventricular remodeling. Using the minimally invasive model of transverse aortic constriction in mice, we demonstrated that a variety of chemokine and chemokine receptor messenger Ribonucleic Acid are overexpressed in the early and late phase of hypertrophy progression. Among the chemokine receptors, Cx3cr1 and Ccr2 were most strongly overexpressed and were significantly upregulated at 3, 7, and 14 days after transverse aortic constriction. Ligands of CX3CR1 (Cx3cl1) and CCR2 (Ccl2, Ccl7, Ccl12) were significantly overexpressed in the left ventricle at the early stages after mechanical pressure overload. Pharmacological inhibition of CX3CR1 signaling using the antagonist AZD8797 led to a significant reduction of hypertrophy, whereas inhibition of CCR2 with the RS504393 antagonist did not show any effect. Furthermore, AZD8797 treatment reduced the expression of the hypertrophic marker genes Nppa and Nppb as well as the profibrotic genes Tgfb1 and Col1a1 at 14 days after transverse aortic constriction. These findings strongly suggest the involvement of the CX3CR1/CX3CL1 pathway in the pathogenesis of left-ventricular hypertrophy.
Collapse
MESH Headings
- Animals
- Aorta/physiopathology
- Aorta/surgery
- Atrial Natriuretic Factor/genetics
- Atrial Natriuretic Factor/metabolism
- CX3C Chemokine Receptor 1/antagonists & inhibitors
- CX3C Chemokine Receptor 1/genetics
- CX3C Chemokine Receptor 1/metabolism
- Chemokine CX3CL1/genetics
- Chemokine CX3CL1/metabolism
- Collagen Type I, alpha 1 Chain/genetics
- Collagen Type I, alpha 1 Chain/metabolism
- Constriction
- Disease Models, Animal
- Fibrosis
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Male
- Mice, Inbred C57BL
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Natriuretic Peptide, Brain/genetics
- Natriuretic Peptide, Brain/metabolism
- Pyrimidines/pharmacology
- Signal Transduction
- Thiazoles/pharmacology
- Time Factors
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta1/metabolism
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
- Mice
Collapse
Affiliation(s)
- Simona Nemska
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Laboratoire d'Innovation Thérapeutique UMR 7200, LabEx Medalis, CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Max Gassmann
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Marie-Louise Bang
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy; and
- Institute of Genetic and Biomedical Research (IRGB) - National Research Council (CNR), Milan Unit, Milan, Italy
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique UMR 7200, LabEx Medalis, CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Reza Tavakoli
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Azevedo ACA, Barros MVL, Klaboe LG, Edvardsen T, Costa HS, Paixao GMM, Junior ORS, Nunes MCP, Rocha MOC. Association between myocardial mechanical dispersion and ventricular arrhythmogenicity in chagas cardiomyopathy. Int J Cardiovasc Imaging 2021; 37:2727-2734. [PMID: 33881664 DOI: 10.1007/s10554-021-02246-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/14/2021] [Indexed: 11/24/2022]
Abstract
Chagas disease is a major health concern in Latin America. Ventricular arrhythmia (VA) is a hallmark of Chagas cardiomyopathy (CCM), associated with worse prognosis. The present study aimed to verify the association between myocardial mechanical dispersion (MD) and ventricular arrhythmogenicity in CCM. In a cross-sectional study, 77 patients (55.8 ± 10.4 years) with CCM were evaluated. Global longitudinal strain (GLS) and MD were assessed by echocardiography, derived from the speckle tracking technique. Myocardial MD was measured from the onset of the Q/R wave on electrocardiogram to the peak longitudinal strain in 16 segments of the left ventricle. Frequency and complexity of ventricular extrasystoles (VES) were assessed by dynamic electrocardiography. The density and complexity of VES and the presence of non-sustained ventricular tachycardias (NSVTs) increase as MD increases. In logistic regression, MD was the only variable associated with the presence of paired VES and ventricular bigeminy. In addition, both MD and GLS were associated with the presence of NSVT (both, p < 0.01), and MD was independently associated with NSVT (OR 1.04, 95% CI 1.004-1.201, p = 0.031). In CCM, MD is associated with a higher density and complexity of VES, including NSVT.
Collapse
Affiliation(s)
- A C A Azevedo
- Department of Internal Medicine, School of Medicine of the Federal University of Minas Gerais. Av. Professor Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, MG, 30130 100, Brazil
| | - M V L Barros
- Department of Internal Medicine, School of Medicine of the Federal University of Minas Gerais. Av. Professor Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, MG, 30130 100, Brazil.,Faculdade de Saúde E Ecologia Humana, Vespasiano, Brazil
| | - L G Klaboe
- Center for Cardiological Innovation, Oslo, Norway
| | | | - H S Costa
- Department of Internal Medicine, School of Medicine of the Federal University of Minas Gerais. Av. Professor Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, MG, 30130 100, Brazil
| | - G M M Paixao
- Department of Internal Medicine, School of Medicine of the Federal University of Minas Gerais. Av. Professor Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, MG, 30130 100, Brazil
| | - O R Santos Junior
- Department of Internal Medicine, School of Medicine of the Federal University of Minas Gerais. Av. Professor Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, MG, 30130 100, Brazil
| | - M C P Nunes
- Department of Internal Medicine, School of Medicine of the Federal University of Minas Gerais. Av. Professor Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, MG, 30130 100, Brazil
| | - M O C Rocha
- Department of Internal Medicine, School of Medicine of the Federal University of Minas Gerais. Av. Professor Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, MG, 30130 100, Brazil.
| |
Collapse
|
7
|
Ferreira RR, Abreu RDS, Vilar-Pereira G, Degrave W, Meuser-Batista M, Ferreira NVC, da Cruz Moreira O, da Silva Gomes NL, Mello de Souza E, Ramos IP, Bailly S, Feige JJ, Lannes-Vieira J, de Araújo-Jorge TC, Waghabi MC. TGF-β inhibitor therapy decreases fibrosis and stimulates cardiac improvement in a pre-clinical study of chronic Chagas' heart disease. PLoS Negl Trop Dis 2019; 13:e0007602. [PMID: 31365537 PMCID: PMC6690554 DOI: 10.1371/journal.pntd.0007602] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/12/2019] [Accepted: 07/03/2019] [Indexed: 01/11/2023] Open
Abstract
TGF-β involvement in Chagas disease cardiomyopathy has been clearly demonstrated. The TGF-β signaling pathway is activated in the cardiac tissue of chronic phase patients and is associated with an increase in extracellular matrix protein expression. The aim of this study was to investigate the effect of GW788388, a selective inhibitor of TβR1/ALK5, on cardiac function in an experimental model of chronic Chagas' heart disease. To this end, C57BL/6 mice were infected with Trypanosoma cruzi (102 parasites from the Colombian strain) and treated orally with 3mg/kg GW788388 starting at 120 days post-infection (dpi), when 100% of the infected mice show cardiac damage, and following three distinct treatment schedules: i) single dose; ii) one dose per week; or iii) three doses per week during 30 days. The treatment with GW788388 improved several cardiac parameters: reduced the prolonged PR and QTc intervals, increased heart rate, and reversed sinus arrhythmia, and atrial and atrioventricular conduction disorders. At 180 dpi, 30 days after treatment interruption, the GW3x-treated group remained in a better cardiac functional condition. Further, GW788388 treatment reversed the loss of connexin-43 enriched intercellular plaques and reduced fibrosis of the cardiac tissue. Inhibition of the TGF-β signaling pathway reduced TGF-β/pSmad2/3, increased MMP-9 and Sca-1, reduced TIMP-1/TIMP-2/TIMP-4, and partially restored GATA-6 and Tbox-5 transcription, supporting cardiac recovery. Moreover, GW788388 administration did not modify cardiac parasite load during the infection but reduced the migration of CD3+ cells to the heart tissue. Altogether, our data suggested that the single dose schedule was not as effective as the others and treatment three times per week during 30 days seems to be the most effective strategy. The therapeutic effects of GW788388 are promising and suggest a new possibility to treat cardiac fibrosis in the chronic phase of Chagas' heart disease by TGF-β inhibitors.
Collapse
Affiliation(s)
- Roberto Rodrigues Ferreira
- Laboratório de Genômica Funcional e Bioinformática—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
| | - Rayane da Silva Abreu
- Laboratório de Genômica Funcional e Bioinformática—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
| | - Glaucia Vilar-Pereira
- Laboratório de Biologia das Interações—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
| | - Wim Degrave
- Laboratório de Genômica Funcional e Bioinformática—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
| | - Marcelo Meuser-Batista
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
- Departamento de Anatomia Patológica e Citopatologia, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brasil
| | - Nilma Valéria Caldeira Ferreira
- Departamento de Anatomia Patológica e Citopatologia, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brasil
| | - Otacílio da Cruz Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (FIOCRUZ/RJ), Rio de Janeiro, Brazil
| | - Natália Lins da Silva Gomes
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (FIOCRUZ/RJ), Rio de Janeiro, Brazil
| | - Elen Mello de Souza
- Laboratório de Virologia Molecular—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
| | - Isalira P. Ramos
- UFRJ, Centro Nacional de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Sabine Bailly
- Université Grenoble-Alpes, Inserm, CEA, Biology of Cancer and Infection Laboratory, Grenoble, France
| | - Jean-Jacques Feige
- Université Grenoble-Alpes, Inserm, CEA, Biology of Cancer and Infection Laboratory, Grenoble, France
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
| | - Tania C. de Araújo-Jorge
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
| | - Mariana Caldas Waghabi
- Laboratório de Genômica Funcional e Bioinformática—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
- * E-mail:
| |
Collapse
|
8
|
Bonney KM, Luthringer DJ, Kim SA, Garg NJ, Engman DM. Pathology and Pathogenesis of Chagas Heart Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:421-447. [PMID: 30355152 DOI: 10.1146/annurev-pathol-020117-043711] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chagas heart disease is an inflammatory cardiomyopathy that develops in approximately one-third of people infected with the protozoan parasite Trypanosoma cruzi. One way T. cruzi is transmitted to people is through contact with infected kissing bugs, which are found in much of the Western Hemisphere, including in vast areas of the United States. The epidemiology of T. cruzi and Chagas heart disease and the varied mechanisms leading to myocyte destruction, mononuclear cell infiltration, fibrosis, and edema in the heart have been extensively studied by hundreds of scientists for more than 100 years. Despite this wealth of knowledge, it is still impossible to predict what will happen in an individual infected with T. cruzi because of the tremendous variability in clonal parasite virulence and human susceptibility to infection and the lack of definitive molecular predictors of outcome from either side of the host-parasite equation. Further, while several distinct mechanisms of pathogenesis have been studied in isolation, it is certain that multiple coincident mechanisms combine to determine the ultimate outcome. For these reasons, Chagas disease is best considered a collection of related but distinct illnesses. This review highlights the pathology and pathogenesis of the most common adverse sequela of T. cruzi infection-Chagas heart disease-and concludes with a discussion of key unanswered questions and a view to the future.
Collapse
Affiliation(s)
- Kevin M Bonney
- Liberal Studies, Faculty of Arts and Sciences, New York University, New York, NY 10003, USA;
| | - Daniel J Luthringer
- Department of Pathology and Laboratory Medicine and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA; , ,
| | - Stacey A Kim
- Department of Pathology and Laboratory Medicine and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA; , ,
| | - Nisha J Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1070, USA;
| | - David M Engman
- Department of Pathology and Laboratory Medicine and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA; , ,
| |
Collapse
|
9
|
TGF- β Polymorphisms Are a Risk Factor for Chagas Disease. DISEASE MARKERS 2018; 2018:4579198. [PMID: 29670670 PMCID: PMC5835243 DOI: 10.1155/2018/4579198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 01/01/2023]
Abstract
Transforming growth factor β1 (TGF-β1) is an important mediator in Chagas disease. Furthermore, patients with higher TGF-β1 serum levels show a worse clinical outcome. Gene polymorphism may account for differences in cytokine production during infectious diseases. We tested whether TGFB1 polymorphisms could be associated with Chagas disease susceptibility and severity in a Brazilian population. We investigated five single-nucleotide polymorphisms (-800 G>A, -509 C>T, +10 T>C, +25 G>C, and +263 C>T). 152 patients with Chagas disease (53 with the indeterminate form and 99 with the cardiac form) and 48 noninfected subjects were included. Genotypes CT and TT at position -509 of the TGFB1 gene were more frequent in Chagas disease patients than in noninfected subjects. Genotypes TC and CC at codon +10 of the TGFB1 gene were also more frequent in Chagas disease patients than in noninfected subjects. We found no significant differences in the distribution of the studied TGFB1 polymorphisms between patients with the indeterminate or cardiac form of Chagas disease. Therefore, -509 C>T and +10 T>C TGFB1 polymorphisms are associated with Chagas disease susceptibility in a Brazilian population.
Collapse
|
10
|
Abstract
Chronic Chagas cardiomyopathy (CCC) is a late complication of Chagas disease with various manifestations including arrhythmia, heart failure, thromboembolism, and stroke. In a patient with symptoms of heart failure and left ventricular apical aneurysm unexplained by structural heart or coronary vascular abnormalities, CCC should be strongly considered and inquiry made about exposure status. Typical electrocardiographic findings of bundle branch block, complete heart blocks, and ventricular arrhythmia are helpful clues. A positive trypanosomal immunoglobulin G antibody is supportive. Initiation of stage appropriate guideline-recommended heart failure regimen is the goal with careful attention paid to prevention of sudden cardiac death from ventricular arrhythmias.
Collapse
Affiliation(s)
- Mohammed M Taleb
- Department of Cardiology, Mercy St. Vincent Medical Center, Toledo, OH, USA
| |
Collapse
|
11
|
Analysis of Regional Left Ventricular Strain in Patients with Chagas Disease and Normal Left Ventricular Systolic Function. J Am Soc Echocardiogr 2016; 29:679-88. [DOI: 10.1016/j.echo.2016.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Indexed: 12/11/2022]
|
12
|
Bagchi RA, Roche P, Aroutiounova N, Espira L, Abrenica B, Schweitzer R, Czubryt MP. The transcription factor scleraxis is a critical regulator of cardiac fibroblast phenotype. BMC Biol 2016; 14:21. [PMID: 26988708 PMCID: PMC4794909 DOI: 10.1186/s12915-016-0243-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/01/2016] [Indexed: 12/30/2022] Open
Abstract
Background Resident fibroblasts synthesize the cardiac extracellular matrix, and can undergo phenotype conversion to myofibroblasts to augment matrix production, impairing function and contributing to organ failure. A significant gap in our understanding of the transcriptional regulation of these processes exists. Given the key role of this phenotype conversion in fibrotic disease, the identification of such novel transcriptional regulators may yield new targets for therapies for fibrosis. Results Using explanted primary cardiac fibroblasts in gain- and loss-of-function studies, we found that scleraxis critically controls cardiac fibroblast/myofibroblast phenotype by direct transcriptional regulation of myriad genes that effectively define these cells, including extracellular matrix components and α-smooth muscle actin. Scleraxis furthermore potentiated the TGFβ/Smad3 signaling pathway, a key regulator of myofibroblast conversion, by facilitating transcription complex formation. While scleraxis promoted fibroblast to myofibroblast conversion, loss of scleraxis attenuated myofibroblast function and gene expression. These results were confirmed in scleraxis knockout mice, which were cardiac matrix-deficient and lost ~50 % of their complement of cardiac fibroblasts, with evidence of impaired epithelial-to-mesenchymal transition (EMT). Scleraxis directly transactivated several EMT marker genes, and was sufficient to induce mesenchymal/fibroblast phenotype conversion of A549 epithelial cells. Conversely, loss of scleraxis attenuated TGFβ-induced EMT marker expression. Conclusions Our results demonstrate that scleraxis is a novel and potent regulator of cellular progression along the continuum culminating in the cardiac myofibroblast phenotype. Scleraxis was both sufficient to drive conversion, and required for full conversion to occur. Scleraxis fulfills this role by direct transcriptional regulation of key target genes, and by facilitating TGFβ/Smad signaling. Given the key role of fibroblast to myofibroblast conversion in fibrotic diseases in the heart and other tissue types, scleraxis may be an important target for therapeutic development. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0243-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rushita A Bagchi
- Institute of Cardiovascular Sciences, Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, R4008 St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada
| | - Patricia Roche
- Institute of Cardiovascular Sciences, Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, R4008 St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada
| | - Nina Aroutiounova
- Institute of Cardiovascular Sciences, Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, R4008 St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada
| | - Leon Espira
- Institute of Cardiovascular Sciences, Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, R4008 St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada
| | - Bernard Abrenica
- Institute of Cardiovascular Sciences, Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, R4008 St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada
| | - Ronen Schweitzer
- Shriners Hospital for Children, Research Division and Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Michael P Czubryt
- Institute of Cardiovascular Sciences, Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, R4008 St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada.
| |
Collapse
|
13
|
Aljaroudi WA, Flamm SD, Saliba W, Wilkoff BL, Kwon D. Role of CMR imaging in risk stratification for sudden cardiac death. JACC Cardiovasc Imaging 2013; 6:392-406. [PMID: 23473115 DOI: 10.1016/j.jcmg.2012.11.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 11/19/2012] [Accepted: 11/26/2012] [Indexed: 12/28/2022]
Abstract
Left ventricular ejection fraction as determined by echocardiography has a limited sensitivity in predicting risk for sudden cardiac death (SCD). Subsequent efforts to improve cost-effectiveness of device implantation and identify a better risk-stratifying tool have been quite desirable. The presence of scar and myocardial tissue heterogeneity has been linked to ventricular arrhythmia, which is believed to be the major cause of SCD. Cardiac magnetic resonance is a noninvasive imaging modality that visualizes and quantifies scar, with growing evidence delineating its additive value in identifying patients at higher risk for SCD.
Collapse
MESH Headings
- Arrhythmias, Cardiac/diagnosis
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/pathology
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/therapy
- Cardiomyopathies/complications
- Cardiomyopathies/diagnosis
- Cardiomyopathies/pathology
- Cardiomyopathies/physiopathology
- Death, Sudden, Cardiac/etiology
- Death, Sudden, Cardiac/prevention & control
- Defibrillators, Implantable
- Electric Countershock/instrumentation
- Humans
- Magnetic Resonance Imaging
- Myocardium/pathology
- Predictive Value of Tests
- Prognosis
- Risk Assessment
- Risk Factors
- Stroke Volume
- Ventricular Function, Left
Collapse
Affiliation(s)
- Wael A Aljaroudi
- Heart and Vascular Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA.
| | | | | | | | | |
Collapse
|
14
|
Rosa FA, Leite JHAC, Braga ET, Moreira PRR, Baltazar FH, Biondo AW, Padua PPM, Vasconcelos RO, Camacho AA, Ferreira WL, Machado GF, Marcondes M. Cardiac Lesions in 30 Dogs Naturally Infected With Leishmania infantum chagasi. Vet Pathol 2013; 51:603-6. [DOI: 10.1177/0300985813493914] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The hearts of 30 dogs naturally infected with Leishmania infantum chagasi were evaluated histologically and immunohistochemically. Myocardial lesions were detected in all dogs, including lymphoplasmacytic myocarditis (27/30), myonecrosis (24/30), increased interstitial collagen (22/30), lepromatous-type granulomatous myocarditis (7/30), fibrinoid vascular change (3/30), and vasculitis (1/30). The parasite was detected in the hearts of 20 of 30 dogs. The number of parasitized cells correlated with the intensity of the inflammation and with the number of granulomas. The results indicate that cardiac lesions are prevalent in dogs with naturally occurring leishmaniasis even in the absence of clinical signs of cardiac disease.
Collapse
Affiliation(s)
- F. A. Rosa
- Department of Veterinary Clinics, Surgery and Reproduction, São Paulo State University, Araçatuba, São Paulo, Brazil
| | - J. H. A. C. Leite
- Department of Veterinary Clinics and Surgery, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - E. T. Braga
- Department of Veterinary Clinics, Surgery and Reproduction, São Paulo State University, Araçatuba, São Paulo, Brazil
| | - P. R. R. Moreira
- Department of Veterinary Pathology, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - F. H. Baltazar
- Department of Veterinary Clinics, Surgery and Reproduction, São Paulo State University, Araçatuba, São Paulo, Brazil
| | - A. W. Biondo
- Department of Veterinary Medicine, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- Department of Veterinary Pathobiology, University of Illinois, Urbana, IL, USA
| | - P. P. M. Padua
- Department of Veterinary Clinics and Surgery, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - R. O. Vasconcelos
- Department of Veterinary Pathology, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - A. A. Camacho
- Department of Veterinary Clinics and Surgery, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - W. L. Ferreira
- Department of Veterinary Clinics, Surgery and Reproduction, São Paulo State University, Araçatuba, São Paulo, Brazil
| | - G. F. Machado
- Department of Veterinary Clinics, Surgery and Reproduction, São Paulo State University, Araçatuba, São Paulo, Brazil
| | - M. Marcondes
- Department of Veterinary Clinics, Surgery and Reproduction, São Paulo State University, Araçatuba, São Paulo, Brazil
| |
Collapse
|
15
|
Novaes RD, Penitente AR, Gonçalves RV, Talvani A, Peluzio MCG, Neves CA, Natali AJ, Maldonado IRSC. Trypanosoma cruzi infection induces morphological reorganization of the myocardium parenchyma and stroma, and modifies the mechanical properties of atrial and ventricular cardiomyocytes in rats. Cardiovasc Pathol 2013; 22:270-9. [PMID: 23541389 DOI: 10.1016/j.carpath.2012.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/01/2012] [Accepted: 12/05/2012] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND This study investigates morphofunctional adaptations of the heart stroma and parenchyma in rats that are chronically infected with Trypanosoma cruzi. METHODS Four-month-old male Wistar rats were randomized into control (n=14) and infected (n=14) groups. Infected animals were inoculated with T. cruzi Y strain. After 9 weeks, the animals were euthanized, and the right atrium (RA) and left ventricle (LV) were removed for biochemical, stereological, and cardiomyocyte mechanical analyses. RESULTS Infected animals presented cardiomyocyte atrophy and myocardial fibrosis. For these animals, the total volume, length, surface area, and cross-sectional area of cardiomyocytes were significantly reduced, and the total interstitial and collagen volumes were significantly increased in the RA and LV compared to the controls. The total volume and length of blood vessels were significantly increased in the LV, and the total blood vessel surface area was significantly higher in the RA of infected animals. RA and LV cardiomyocytes from infected animals exhibited a significant reduction in cell shortening (43.02% and 24.98%, respectively), prolongation of the time to the peak of contraction (17.09%) and the time to half relaxation (23.68%) compared to non-infected animals. Lipid hydroperoxides, but not mineral concentrations, were significantly increased in the RA and LV from infected animals, showing an inverse correlation with cell shortening. CONCLUSIONS T. cruzi infection induces global structural remodeling of the RA and LV in rats. This remodeling coexists with cardiomyocyte contractility dysfunction, which is possibly related to the abnormal organization of the myocardial stroma and increased cellular lipid peroxidation.
Collapse
Affiliation(s)
- Rômulo D Novaes
- Department of General Biology, Federal University of Viçosa, MG, 36570-000, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Regueiro A, García-Álvarez A, Sitges M, Ortiz-Pérez JT, De Caralt MT, Pinazo MJ, Posada E, Heras M, Gascón J, Sanz G. Myocardial involvement in Chagas disease: insights from cardiac magnetic resonance. Int J Cardiol 2011; 165:107-12. [PMID: 21907431 DOI: 10.1016/j.ijcard.2011.07.089] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 07/19/2011] [Accepted: 07/27/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND Chagas' disease is becoming a public health problem in Europe because of migratory movements. Cardiac magnetic resonance (CMR) has emerged as a non-invasive tool to assess cardiac tissue characteristics. There is scarce data available on CMR in patients with Chagas' disease. OBJECTIVE To describe CMR findings in patients with Chagas' disease living in a non-endemic area focusing on differentiation from other cardiomyopathies and relation with clinical status. METHODS AND RESULTS Sixty-seven Chagas' disease patients divided into 3 groups-group 1 (indeterminate form: positive serology without ECG or 2D-echocardiographic abnormalities; N = 27), group 2 (ECG abnormalities of Chagas' disease but normal 2D-echocardiography; N = 19), and group 3 (regional wall motion abnormalities, LV end-diastolic diameter >55 mm or LV ejection fraction <50% on echocardiography; N = 21)--were studied. The presence of wall motion abnormalities and delayed enhancement (DE) by CMR was more frequent in the inferolateral and apical segments. DE distribution in the myocardial wall was heterogeneous (subendocardial 26.8%, midwall 14.0%, subepicardial 22.6%, and transmural 36.0% of total segments with DE) and related to larger cardiac chambers and worse systolic function. CONCLUSION Pattern of DE in Chagas' disease may mimic that of both ischemic and nonischemic cardiomyopathies, with especial predilection for the apical and inferolateral segments of the left ventricle. These findings support that myocardial involvement in chronic Chagas' cardiomyopathy (CCC) may be due to both microvascular disturbances and chronic myocarditis and may favor CCC in the differential diagnosis of patients with compatible epidemiological history and heart failure of uncertain etiology.
Collapse
Affiliation(s)
- Ander Regueiro
- Thorax Institute, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Martinelli PM, da Costa Rocha MO, Teixeira AL, do Carmo Pereira Nunes M, da Silva Camargos ER. Brain-derived neurotrophic factor is up regulated in chronic Chagas disease. Int J Cardiol 2011; 149:277-278. [DOI: 10.1016/j.ijcard.2011.02.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 02/25/2011] [Indexed: 02/02/2023]
|
18
|
Rossi MA, Tanowitz HB, Malvestio LM, Celes MR, Campos EC, Blefari V, Prado CM. Coronary microvascular disease in chronic Chagas cardiomyopathy including an overview on history, pathology, and other proposed pathogenic mechanisms. PLoS Negl Trop Dis 2010; 4:e674. [PMID: 20824217 PMCID: PMC2930857 DOI: 10.1371/journal.pntd.0000674] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This review focuses on the short and bewildered history of Brazilian scientist Carlos Chagas's discovery and subsequent developments, the anatomopathological features of chronic Chagas cardiomyopathy (CCC), an overview on the controversies surrounding theories concerning its pathogenesis, and studies that support the microvascular hypothesis to further explain the pathological features and clinical course of CCC. It is our belief that knowledge of this particular and remarkable cardiomyopathy will shed light not only on the microvascular involvement of its pathogenesis, but also on the pathogenetic processes of other cardiomyopathies, which will hopefully provide a better understanding of the various changes that may lead to an end-stage heart disease with similar features. This review is written to celebrate the 100th anniversary of the discovery of Chagas disease.
Collapse
Affiliation(s)
- Marcos A Rossi
- Department of Pathology, Laboratory of Cellular and Molecular Cardiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
19
|
Rocha MOC, Nunes MCP, Ribeiro AL. Morbidity and prognostic factors in chronic chagasic cardiopathy. Mem Inst Oswaldo Cruz 2010; 104 Suppl 1:159-66. [PMID: 19753471 DOI: 10.1590/s0074-02762009000900022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 06/03/2009] [Indexed: 01/05/2023] Open
Abstract
Chagas disease is a pleomorphic clinical entity that has several unique features. The aim of this study is to summarise some of the recent contributions from our research group to knowledge of the morbidity and prognostic factors in Chagas heart disease. A retrospective study suggested that ischaemic stroke associated with left ventricular (LV) apical thrombi is the first clinical manifestation of Chagas disease observed in a large proportion of patients. LV function and left atrial volume (LAV) are independent risk factors for ischaemic cerebrovascular events during follow-up of Chagas heart disease patients. Pulmonary congestion in Chagas-related dilated cardiomyopathy is common but usually mild. Although early right ventricular (RV) involvement has been described, we have shown by Doppler echocardiography that RV dysfunction is evident almost exclusively when it is associated with left ventricle dilatation and functional impairment. In addition, RV dysfunction is a powerful predictor of survival in patients with heart failure secondary to Chagas disease. We have also demonstrated that LAV provides incremental prognostic information independent of clinical data and conventional echocardiographic parameters that predict survival.
Collapse
Affiliation(s)
- Manoel Otávio C Rocha
- Programa de Pós-Graduação em Ciências da Saúde, Infectologia e Medicina Tropical, Departamento de Clínica Médica, Hospital das Clínicas, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.
| | | | | |
Collapse
|
20
|
Rocha L, Silva R, Olegário J, Corrêa R, Teixeira V, Cavellani C. Esophageal epithelium of women with AIDS: thickness and local immunity. Pathol Res Pract 2010; 206:248-52. [PMID: 20097482 DOI: 10.1016/j.prp.2009.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 11/24/2009] [Accepted: 12/09/2009] [Indexed: 10/19/2022]
Abstract
The aim of this study was to evaluate the morphological characteristics of the esophageal epithelium (EE) and its local immunity. Esophageal fragments of autopsied women were collected from 1980 to 2008, and two groups were analyzed: with AIDS (n=17) and without AIDS (n=12). The measurement of the esophageal epithelium was carried out through the image analysis software ImageJ, and the immunostaining of Langerhans cells (LCs) was carried out using anti-S100 antibody. Women with AIDS, when compared with women without AIDS, had significantly thinner EE (220.6 versus 243.5 microm), a less number of LCs (6.2 versus 18.8 LCs/mm(2)), and a higher percentage of immature or morphologically altered LCs (66.6 versus 40.0%). The malnourished women, when compared with normonourished women, regardless of AIDS, had significantly thinner EE (227.1 versus 238.0 microm) and a less number of LCs (6.2 versus 12.5 LCs/mm(2)). The percentage of immature or morphologically altered LCs was the same in both groups. Additionally, the women with AIDS (7.0 versus 2.8%) and the malnourished women (5.8 versus 3.1%) presented a significantly higher percentage of fibrosis. We concluded that AIDS and malnutrition contribute to the decrease in esophagus local immunity and, therefore, to a possible increase in local opportunistic infections.
Collapse
Affiliation(s)
- Laura Rocha
- General Pathology Division, Triângulo Mineiro Federal University, Uberaba, Minas Gerais, Brazil
| | | | | | | | | | | |
Collapse
|
21
|
Soares MBP, Garcia S, Campos de Carvalho AC, Ribeiro dos Santos R. Cellular therapy in Chagas' disease: potential applications in patients with chronic cardiomyopathy. Regen Med 2007; 2:257-64. [PMID: 17511562 DOI: 10.2217/17460751.2.3.257] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Nearly a century after its discovery, Chagas' disease, caused by the protozoan Trypanosoma cruzi, remains a major health problem in Latin America. Although efforts in transmission control have contributed to a decrease in the number of new cases, approximately a third of chronic Chagasic individuals have or will develop the symptomatic forms of the disease, mainly cardiomyopathy. Chagas' disease is a progressively debilitating disease, which, at the final stages, there are no currently available treatments other than heart transplantation. In this scenario, cellular therapy is being tested as an alternative for millions of patients with heart dysfunction due to Chagas' disease. In this article, we review the studies of cellular therapy in animal models and in patients with Chagasic cardiomyopathy and the possible mechanisms by which cellular therapy may act in this disease.
Collapse
Affiliation(s)
- Milena B P Soares
- Centro de Pesquisas Gonçalo Moniz, FIOCRUZ. Rua Waldemar Falcão, 121 Candeal, Salvador, BA, 40296-710, Brazil
| | | | | | | |
Collapse
|
22
|
Alvarez BV, Kieller DM, Quon AL, Robertson M, Casey JR. Cardiac hypertrophy in anion exchanger 1-null mutant mice with severe hemolytic anemia. Am J Physiol Heart Circ Physiol 2006; 292:H1301-12. [PMID: 17056673 DOI: 10.1152/ajpheart.00449.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Anion exchanger 1 (AE1; SLC4A1), the plasma membrane Cl(-)/HCO(3)(-) exchanger of erythrocytes, is also expressed in heart. The aim of this study was to assess the role of AE1 in heart function through study of AE1-null (AE1(-/-)) mice, which manifest severe hemolytic anemia resulting from erythrocyte fragility. Heart weight-to-body weight ratios were significantly higher in the AE1(-/-) mice than in wild-type (AE1(+/+)) littermates at both 1-3 days postnatal (3.01 +/- 0.38 vs. 1.45 +/- 0.04) and at 7 days postnatal (9.45 +/- 0.53 vs. 4.13 +/- 0.41), indicating that loss of AE1 led to cardiac hypertrophy. Heterozygous (AE1(+/-)) mice had no signs of cardiac hypertrophy. Morphology of the adult AE1(-/-) mutant heart revealed an increased left ventricular mass, accompanied by increased collagen deposition and fibrosis. M-mode echocardiography revealed dysfunction of the AE1(-/-) hearts, including dilated left ventricle end diastole and systole and expanded left ventricular mass compared with AE1(+/+) hearts. Expression of intracellular pH-regulatory mechanisms in the hypertrophic myocardium of neonate AE1(-/-) mutant mice was indistinguishable from AE1(+/-) and AE1(+/+) mice, as assessed by quantitative real-time RT-PCR. Confocal immunofluorescence revealed that, in normal mouse myocardium, AE1 is sarcolemmal, whereas AE3 and slc26a6 are found both at the sarcolemma and in internal membranes (T tubules and sarcoplasmic reticulum). These results indicate that AE1(-/-) mice, which suffer from severe hemolytic anemia and spherocytosis, display cardiac hypertrophy and impaired cardiac function, reminiscent of findings in patients with hereditary abnormalities of red blood cells. No essential role for AE1 in heart function was found.
Collapse
Affiliation(s)
- Bernardo V Alvarez
- Dept of Physiology, CIHR Membrane Protein Research Group, Univ of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
23
|
Petibois C, Gouspillou G, Wehbe K, Delage JP, Déléris G. Analysis of type I and IV collagens by FT-IR spectroscopy and imaging for a molecular investigation of skeletal muscle connective tissue. Anal Bioanal Chem 2006; 386:1961-6. [PMID: 17043797 DOI: 10.1007/s00216-006-0828-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 08/26/2006] [Accepted: 09/01/2006] [Indexed: 10/24/2022]
Abstract
Many muscular diseases result from abnormal organization of connective tissue and/or collagen network formation. Only a few molecular imaging techniques are able to analyze this collagen network by differentiating collagen types. In this study, FT-IR spectroscopy was used to analyze type I and IV collagens, the most important compounds of which are perimysium and endomysium, respectively. Secondary structure of collagen types was determined by curve-fitting the 1,700-1,480 cm(-1) spectral interval. Type I collagen could be differentiated from type IV by its higher amounts of triple helix and alpha-helix, but lower amounts of beta-sheets (P < 0.01). FT-IR imaging was then used to determine structural features of perimysium and endomysium collagen network in bovine Flexor carpi radialis muscle. Secondary structure of proteins contained in perimysium and endomysium was found to be very close to type I and IV collagens, respectively. FT-IR spectroscopy and imaging are thus analytical tools that might be used for investigating biodistribution and assembly of collagen types in connective tissues.
Collapse
Affiliation(s)
- Cyril Petibois
- CNRS UMR 5084, CNAB, Bio-Organic Chemistry Group, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | | | | | | | | |
Collapse
|
24
|
Calvet CM, Meuser M, Almeida D, Meirelles MNL, Pereira MCS. Trypanosoma cruzi–cardiomyocyte interaction: role of fibronectin in the recognition process and extracellular matrix expression in vitro and in vivo. Exp Parasitol 2004; 107:20-30. [PMID: 15208034 DOI: 10.1016/j.exppara.2004.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 04/02/2004] [Accepted: 04/05/2004] [Indexed: 11/28/2022]
Abstract
We investigated the involvement of fibronectin (FN) in Trypanosoma cruzi-cardiomyocyte invasion and the extracellular matrix (ECM) components expression during T. cruzi infection in vivo and in vitro. Treatment of trypomastigotes with FN or a synthetic peptide (MRGDS) prior to cardiomyocyte interaction reduced T. cruzi infection, indicating that FN mediates the parasite invasion through its RGD sequence. In murine experimental Chagas' disease, an enhancement of the ECM components was detected in the myocardium during the late acute infection, coinciding with inflammatory infiltrates accumulation. In contrast, highly infected cardiomyocytes displayed a reduction in FN expression in vitro, while laminin spatial distribution was altered. Although it has been demonstrated that cardiomyocytes are able to synthesize cytokines upon T. cruzi infection, our data suggest that matrix remodeling is dependent on cytokines secreted by inflammatory cells recruited in immune response.
Collapse
Affiliation(s)
- C M Calvet
- Laboratório de Ultra-estrutura Celular and Departamento de Ultra-estrutura e Biologia Celular, Instituto Oswaldo Cruz/FIOCRUZ. Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
25
|
Caliari MV, do Pilar Machado R, de Lana M, Caja RAF, Carneiro CM, Bahia MT, dos Santos CAB, Magalhaes GA, Sampaio IBM, Tafuri WL. Quantitative analysis of cardiac lesions in chronic canine chagasic cardiomyopathy. Rev Inst Med Trop Sao Paulo 2002; 44:273-8. [PMID: 12436168 DOI: 10.1590/s0036-46652002000500008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lesions observed in chronic chagasic cardiopathy frequently produce electrocardiographic alterations and affect cardiac function. Through a computerized morphometrical analysis we quantified the areas occupied by cardiac muscle, connective and adipose tissues in the right atrium of dogs experimentally infected with Trypanosoma cruzi. All of the infected dogs showed chronic myocarditis with variable reduction levels of cardiac muscle, fibrosis and adipose tissue replacement. In the atrial myocardium of dogs infected with Be78 and Be62 cardiac muscle represented 34 and 50%, fibrosis 28 and 32% and adipose tissue 38 and 18%, respectively. The fibrosis observed was both diffuse and focal and mostly intrafascicular, either partially or completely interrupting the path of muscle bundles. Such histological alterations probably contributed to the appearance of electrocardiographic disturbances verified in 10 out 11 dogs which are also common in human chronic chagasic cardiopathy. Fibrosis was the most important microscopic occurrence found since it produces rearrangements of collagen fibers in relation to myocardiocytes which causes changes in anatomical physiognomy and mechanical behavior of the myocardium. These abnormalities can contribute to the appearance of cardiac malfunction, arrythmias and congestive cardiac insufficiency as observed in two of the analyzed dogs. Strain Be78 caused destruction of atrial cardiac muscle higher than that induced by strain Be62.
Collapse
Affiliation(s)
- Marcelo Vidigal Caliari
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brasil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ramos SG, Rossi MA. Microcirculation and Chagas' disease: hypothesis and recent results. Rev Inst Med Trop Sao Paulo 1999; 41:123-9. [PMID: 10413961 DOI: 10.1590/s0036-46651999000200011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review focuses on studies that support the microvascular hypothesis, as well as on immunological and neurogenic mechanisms, and the role of the parasite itself, to explain further the pathology and clinical course of myocardial involvement in chagasic cardiomyopathy. The salient features of coronary microcirculation and Chagas' disease are discussed.
Collapse
Affiliation(s)
- S G Ramos
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Brazil.
| | | |
Collapse
|