1
|
Sahu I, Sahoo MP, Kleifeld O, Glickman MH. Isolation of Proteasome-Trapped Peptides (PTPs) for Degradome Analysis. Methods Mol Biol 2023; 2602:229-241. [PMID: 36446979 DOI: 10.1007/978-1-0716-2859-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Analyzing intracellular peptides generated by proteasomes is highly informative to understand the spatiotemporal regulation of protein homeostasis. A large portion of eukaryotic proteins is proteolyzed within the 20S core particle of the 26S holoenzyme, where proteins are cleaved into peptides of varying lengths. A small percentage of these peptides are presented to the immune system as a representation of the proteome content of the cell. Therefore, understanding the rules that govern proteolytic specificity and product diversity is of relevance not only to biochemistry and proteostasis but also to physiology and immunology. One of the greatest challenges is to separate such proteasome-generated peptides from the total intracellular peptidome due to the susceptibility of short unstructured peptides to myriad proteases and peptidases that are activated upon cell lysis. Here, we describe a simple and rapid method to isolate peptides that are closely associated with proteasomes or trapped inside the core particle of proteasomes in eukaryotic cells. This approach termed PTPs, for proteasome-trapped peptides, requires a limited number of cells as starting materials compared to other published methods yet still provides sufficient yields for mass spectrometry-based proteomic analysis. A single sample obtained from cultured mammalian cells allowed the identification of 1000-2000 different PTPs following LC-MS analysis with high-resolution mass spectrometer.
Collapse
Affiliation(s)
- Indrajit Sahu
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
- Cancer Biology, Dana-Farber Cancer Institute, Massachusetts, Boston, US.
| | | | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Michael H Glickman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
2
|
Sahu I, Mali SM, Sulkshane P, Xu C, Rozenberg A, Morag R, Sahoo MP, Singh SK, Ding Z, Wang Y, Day S, Cong Y, Kleifeld O, Brik A, Glickman MH. The 20S as a stand-alone proteasome in cells can degrade the ubiquitin tag. Nat Commun 2021; 12:6173. [PMID: 34702852 PMCID: PMC8548400 DOI: 10.1038/s41467-021-26427-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
The proteasome, the primary protease for ubiquitin-dependent proteolysis in eukaryotes, is usually found as a mixture of 30S, 26S, and 20S complexes. These complexes have common catalytic sites, which makes it challenging to determine their distinctive roles in intracellular proteolysis. Here, we chemically synthesize a panel of homogenous ubiquitinated proteins, and use them to compare 20S and 26S proteasomes with respect to substrate selection and peptide-product generation. We show that 20S proteasomes can degrade the ubiquitin tag along with the conjugated substrate. Ubiquitin remnants on branched peptide products identified by LC-MS/MS, and flexibility in the 20S gate observed by cryo-EM, reflect the ability of the 20S proteasome to proteolyze an isopeptide-linked ubiquitin-conjugate. Peptidomics identifies proteasome-trapped ubiquitin-derived peptides and peptides of potential 20S substrates in Hi20S cells, hypoxic cells, and human failing-heart. Moreover, elevated levels of 20S proteasomes appear to contribute to cell survival under stress associated with damaged proteins.
Collapse
Affiliation(s)
- Indrajit Sahu
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Sachitanand M Mali
- Schulich faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Prasad Sulkshane
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Cong Xu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Andrey Rozenberg
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Roni Morag
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | | | - Sumeet K Singh
- Schulich faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Zhanyu Ding
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yifan Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Sharleen Day
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yao Cong
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| | - Ashraf Brik
- Schulich faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| | - Michael H Glickman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
3
|
Hertzberg L, Maggio N, Muler I, Yitzhaky A, Majer M, Haroutunian V, Zuk O, Katsel P, Domany E, Weiser M. Comprehensive Gene Expression Analysis Detects Global Reduction of Proteasome Subunits in Schizophrenia. Schizophr Bull 2021; 47:785-795. [PMID: 33141894 PMCID: PMC8084431 DOI: 10.1093/schbul/sbaa160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The main challenge in the study of schizophrenia is its high heterogeneity. While it is generally accepted that there exist several biological mechanisms that may define distinct schizophrenia subtypes, they have not been identified yet. We performed comprehensive gene expression analysis to search for molecular signals that differentiate schizophrenia patients from healthy controls and examined whether an identified signal was concentrated in a subgroup of the patients. METHODS Transcriptome sequencing of 14 superior temporal gyrus (STG) samples of subjects with schizophrenia and 15 matched controls from the Stanley Medical Research Institute (SMRI) was performed. Differential expression and pathway enrichment analysis results were compared to an independent cohort. Replicability was tested on 6 additional independent datasets. RESULTS The 2 STG cohorts showed high replicability. Pathway enrichment analysis of the down-regulated genes pointed to proteasome-related pathways. Meta-analysis of differential expression identified down-regulation of 12 of 39 proteasome subunit genes in schizophrenia. The signal of proteasome subunits down-regulation was replicated in 6 additional datasets (overall 8 cohorts with 267 schizophrenia and 266 control samples, from 5 brain regions). The signal was concentrated in a subgroup of patients with schizophrenia. CONCLUSIONS We detected global down-regulation of proteasome subunits in a subgroup of patients with schizophrenia. We hypothesize that the down-regulation of proteasome subunits leads to proteasome dysfunction that causes accumulation of ubiquitinated proteins, which has been recently detected in a subgroup of schizophrenia patients. Thus, down-regulation of proteasome subunits might define a biological subtype of schizophrenia.
Collapse
Affiliation(s)
- Libi Hertzberg
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
- Shalvata Mental Health Center, Affiliated to the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Inna Muler
- Childhood Leukemia Research Institute and the Department of Pediatric Hemato-Oncology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Majer
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Vahram Haroutunian
- Departments of Psychiatry and Neuroscience, The Mount Sinai School of Medicine, New York, NY
- Department of Psychiatry, James J Peters VA Medical Center, Bronx, NY
| | - Or Zuk
- Department of Statistics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Pavel Katsel
- Departments of Psychiatry and Neuroscience, The Mount Sinai School of Medicine, New York, NY
| | - Eytan Domany
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Mark Weiser
- Department of Psychiatry, Chaim Sheba Medical Center, Ramat-Gan and the Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Leister H, Luu M, Staudenraus D, Lopez Krol A, Mollenkopf HJ, Sharma A, Schmerer N, Schulte LN, Bertrams W, Schmeck B, Bosmann M, Steinhoff U, Visekruna A. Pro- and Antitumorigenic Capacity of Immunoproteasomes in Shaping the Tumor Microenvironment. Cancer Immunol Res 2021; 9:682-692. [PMID: 33707310 DOI: 10.1158/2326-6066.cir-20-0492] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 12/14/2020] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Abstract
Apart from the constitutive proteasome, the immunoproteasome that comprises the three proteolytic subunits LMP2, MECL-1, and LMP7 is expressed in most immune cells. In this study, we describe opposing roles for immunoproteasomes in regulating the tumor microenvironment (TME). During chronic inflammation, immunoproteasomes modulated the expression of protumorigenic cytokines and chemokines and enhanced infiltration of innate immune cells, thus triggering the onset of colitis-associated carcinogenesis (CAC) in wild-type mice. Consequently, immunoproteasome-deficient animals (LMP2/MECL-1/LMP7-null mice) were almost completely resistant to CAC development. In patients with ulcerative colitis with high risk for CAC, immunoproteasome-induced protumorigenic mediators were upregulated. In melanoma tumors, the role of immunoproteasomes is relatively unknown. We found that high expression of immunoproteasomes in human melanoma was associated with better prognosis. Similarly, our data revealed that the immunoproteasome has antitumorigenic activity in a mouse model of melanoma. The antitumor immunity against melanoma was compromised in immunoproteasome-deficient mice because of the impaired activity of CD8+ CTLs, CD4+ Th1 cells, and antigen-presenting cells. These findings show that immunoproteasomes may exert opposing roles with either pro- or antitumoral properties in a context-dependent manner.
Collapse
Affiliation(s)
- Hanna Leister
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Maik Luu
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Daniel Staudenraus
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Aleksandra Lopez Krol
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Hans-Joachim Mollenkopf
- Max Planck Institute for Infection Biology, Core Facility Microarray/Genomics, Berlin, Germany
| | - Arjun Sharma
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.,Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Nils Schmerer
- Institute for Lung Research, UGMLC, Philipps-University Marburg, Marburg, Germany.,German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Leon N Schulte
- Institute for Lung Research, UGMLC, Philipps-University Marburg, Marburg, Germany.,German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, UGMLC, Philipps-University Marburg, Marburg, Germany.,German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, UGMLC, Philipps-University Marburg, Marburg, Germany.,German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.,Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
5
|
Maruyama H, Hirayama K, Yamashita M, Ohgi K, Tsujimoto R, Takayasu M, Shimohata H, Kobayashi M. Serum 20S proteasome levels are associated with disease activity in MPO-ANCA-associated microscopic polyangiitis. BMC Rheumatol 2020; 4:36. [PMID: 32864569 PMCID: PMC7447580 DOI: 10.1186/s41927-020-00137-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/05/2020] [Indexed: 11/10/2022] Open
Abstract
Background Proteasomes are found in both the cell nucleus and cytoplasm and play a major role in the ubiquitin-dependent and -independent non-lysosomal pathways of intracellular protein degradation. Proteasomes are also involved in the turnover of various regulatory proteins, antigen processing, cell differentiation, and apoptosis. To determine the diagnostic value of serum proteasome in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), we investigated patients with AAV at various stages of the disease. Methods Serum 20S-proteasome was measured by ELISA in 44 patients with MPO-ANCA-associated microscopic polyangiitis (MPA) and renal involvement. Thirty of the patients provided serum samples before the initial treatment, and 30 provided samples during remission; 16 provided samples at both time points. Results The mean serum 20S-proteasome level was significantly higher in the active-vasculitis patients (3414.6 ± 2738.9 ng/mL; n = 30) compared to the inactive-vasculitis patients (366.4 ± 128.4 ng/mL; n = 30; p < 0.0001) and 40 controls (234.9 ± 90.1 ng/mL; p < 0.0001). There were significant positive correlations between the serum 20S-proteasome level and the Birmingham Vasculitis Activity Score (BVAS) (r = 0.581, p < 0.0001), the ANCA titer (r = 0.384, p < 0.0001), the white blood cell (WBC) count (r = 0.284, p = 0.0042), the platelet count (r = 0.369, p = 0.0002), and the serum C-reactive protein (CRP) level (r = 0.550, p < 0.0001). There were significant negative correlations between the serum 20S-proteasome level and both the hemoglobin concentration (r = - 0.351, p = 0.0003) and the serum albumin level (r = - 0.460, p < 0.0001). In a multiple regression analysis, there was a significant positive correlation between the serum 20S-proteasome level and only the BVAS results (β = 0.851, p = 0.0009). In a receiver operating curve analysis, the area under the curve for the serum 20S-proteasome level was 0.996, which is higher than those of the WBC count (0.738) and the serum CRP level (0.963). Conclusion The serum level of 20S-proteasome may be a useful marker for disease activity in AAV.
Collapse
Affiliation(s)
- Hiroshi Maruyama
- Department of Nephrology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Ibaraki, 300-0395 Japan
| | - Kouichi Hirayama
- Department of Nephrology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Ibaraki, 300-0395 Japan
| | - Marina Yamashita
- Department of Nephrology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Ibaraki, 300-0395 Japan
| | - Kentaro Ohgi
- Department of Nephrology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Ibaraki, 300-0395 Japan.,Department of Intensive Care Medicine, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
| | - Ryuji Tsujimoto
- Department of Nephrology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Ibaraki, 300-0395 Japan.,Department of Nephrology, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Mamiko Takayasu
- Department of Nephrology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Ibaraki, 300-0395 Japan
| | - Homare Shimohata
- Department of Nephrology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Ibaraki, 300-0395 Japan
| | - Masaki Kobayashi
- Department of Nephrology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Ibaraki, 300-0395 Japan
| |
Collapse
|
6
|
Ji X, Zhang L, Peng J, Hou M. T cell immune abnormalities in immune thrombocytopenia. J Hematol Oncol 2014; 7:72. [PMID: 25274611 PMCID: PMC4189678 DOI: 10.1186/s13045-014-0072-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 09/22/2014] [Indexed: 01/24/2023] Open
Abstract
Immune thrombocytopenia is an autoimmune disease with abnormal T cell immunity. Cytotoxic T cells, abnormal T regulatory cells, helper T cell imbalance, megakaryocyte maturation abnormalities and abnormal T cell anergy are involved in the pathogenesis of this condition. The loss of T cell-mediated immune tolerance to platelet auto-antigens plays a crucial role in immune thrombocytopenia. The induction of T cell tolerance is an important mechanism by which the pathogenesis and treatment of immune thrombocytopenia can be studied. Studies regarding the roles of the new inducible costimulator signal transduction pathway, the ubiquitin proteasome pathway, and the nuclear factor kappa B signal transduction pathway in the induction of T cell tolerance can help improve our understanding of immune theory and may provide a new theoretical basis for studying the pathogenesis and treatment of immune thrombocytopenia.
Collapse
Affiliation(s)
- Xuebin Ji
- Department of Hematology, Qilu Hospital of Shandong University, 107 West Wenhua Rd, Jinan, Shandong, 250012, People's Republic of China.
| | - Liping Zhang
- Jinan Stomatological Hospital, Jinan, People's Republic of China.
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, 107 West Wenhua Rd, Jinan, Shandong, 250012, People's Republic of China.
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, 107 West Wenhua Rd, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
7
|
Cifaldi L, Romania P, Lorenzi S, Locatelli F, Fruci D. Role of endoplasmic reticulum aminopeptidases in health and disease: from infection to cancer. Int J Mol Sci 2012; 13:8338-8352. [PMID: 22942706 PMCID: PMC3430237 DOI: 10.3390/ijms13078338] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 06/27/2012] [Accepted: 06/29/2012] [Indexed: 12/22/2022] Open
Abstract
Endoplasmic reticulum (ER) aminopeptidases ERAP1 and ERAP2 (ERAPs) are essential for the maturation of a wide spectrum of proteins involved in various biological processes. In the ER, these enzymes work in concert to trim peptides for presentation on MHC class I molecules. Loss of ERAPs function substantially alters the repertoire of peptides presented by MHC class I molecules, critically affecting recognition of both NK and CD8+ T cells. In addition, these enzymes are involved in the modulation of inflammatory responses by promoting the shedding of several cytokine receptors, and in the regulation of both blood pressure and angiogenesis. Recent genome-wide association studies have identified common variants of ERAP1 and ERAP2 linked to several human diseases, ranging from viral infections to autoimmunity and cancer. More recently, inhibition of ER peptide trimming has been shown to play a key role in stimulating innate and adaptive anti-tumor immune responses, suggesting that inhibition of ERAPs might be exploited for the establishment of innovative therapeutic approaches against cancer. This review summarizes data currently available for ERAP enzymes in ER peptide trimming and in other immunological and non-immunological functions, paying attention to the emerging role played by these enzymes in human diseases.
Collapse
Affiliation(s)
- Loredana Cifaldi
- Paediatric Haematology/Oncology Department, Bambino Gesù Children’s Hospital IRCCS, Piazza S. Onofrio 4, Rome 00165, Italy; E-Mails: (L.C.); (P.R.); (S.L.); (F.L.)
| | - Paolo Romania
- Paediatric Haematology/Oncology Department, Bambino Gesù Children’s Hospital IRCCS, Piazza S. Onofrio 4, Rome 00165, Italy; E-Mails: (L.C.); (P.R.); (S.L.); (F.L.)
| | - Silvia Lorenzi
- Paediatric Haematology/Oncology Department, Bambino Gesù Children’s Hospital IRCCS, Piazza S. Onofrio 4, Rome 00165, Italy; E-Mails: (L.C.); (P.R.); (S.L.); (F.L.)
| | - Franco Locatelli
- Paediatric Haematology/Oncology Department, Bambino Gesù Children’s Hospital IRCCS, Piazza S. Onofrio 4, Rome 00165, Italy; E-Mails: (L.C.); (P.R.); (S.L.); (F.L.)
- University of Pavia, Corso Strada Nuova 65, Pavia I-27100, Italy
| | - Doriana Fruci
- Paediatric Haematology/Oncology Department, Bambino Gesù Children’s Hospital IRCCS, Piazza S. Onofrio 4, Rome 00165, Italy; E-Mails: (L.C.); (P.R.); (S.L.); (F.L.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-6-68592657; Fax: +39-6-68592904
| |
Collapse
|
8
|
Cabanski M, Wilhelm J, Zaslona Z, Steinmüller M, Fink L, Seeger W, Lohmeyer J. Genome-wide transcriptional profiling of mononuclear phagocytes recruited to mouse lungs in response to alveolar challenge with the TLR2 agonist Pam3CSK4. Am J Physiol Lung Cell Mol Physiol 2009; 297:L608-18. [PMID: 19617307 DOI: 10.1152/ajplung.90433.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Compared with the Toll-like receptor 4 (TLR4) ligand LPS restricted to gram-negative bacteria, few studies have addressed induction of lung inflammation and concomitant leukocyte recruitment in response to TLR2 ligands. This study is the first report showing that selective TLR2 stimulation by its ligand Pam(3)-Cys-Ser-Lys-Lys-Lys-Lys-OH (Pam(3)CSK(4)) within the alveolar compartment promoted lung inflammation in mice and induced the migration of circulatory immune cells including mononuclear phagocytes into the inflamed alveolar space. By using the transgenic CX(3)CR1(+/GFP) mouse strain for high-purity sorting of circulating and alveolar recruited mononuclear phagocytes together with SMART preamplification and whole genome oligonucleotide microarray techniques, we found that alveolar trafficking of mononuclear phagocytes was associated with profound changes of their gene expression profiles (approximately 900 differentially regulated genes postrecruitment). In particular, alveolar recruited mononuclear phagocytes showed upregulated transcripts of genes encoding cytokines/chemokines and pattern recognition receptor (PRR)-associated molecules. Notably, we observed a dynamic change of the genetic program of recruited mononuclear phagocytes obtained from bronchoalveolar lavage fluid at different time points (24 vs. 48 h) post-Pam(3)CSK(4) challenge. In early alveolar recruited mononuclear phagocytes, mRNA levels of both proinflammatory (e.g., TNF-alpha, CCL2, and IL-6) and central anti-inflammatory/ proresolution [e.g., IL-1-receptor antagonist (IL-1RN), CD200 receptor (CD200R), IL-1 receptor-associated kinase (IRAK-M), IL-10, and Bcl-2-associated X protein (Bax)] mediators were found to be highly upregulated simultaneously. In corresponding cells recruited until later time points, transcript levels of anti-inflammatory/proresolution molecules persisted at the same level, whereas mRNA levels of proinflammatory mediators were found to decline. Collectively, our in vivo study identifies genetic programs by which alveolar recruited mononuclear phagocytes may contribute to the development and termination of pneumonia caused by gram-positive bacteria.
Collapse
Affiliation(s)
- Maciej Cabanski
- Dept. of Internal Medicine, Division of Pulmonary and Critical Care Medicine and Infectious Diseases, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
9
|
Preta G, Marescotti D, Fortini C, Carcoforo P, Castelli C, Masucci M, Gavioli R. Inhibition of serine-peptidase activity enhances the generation of a survivin-derived HLA-A2-presented CTL epitope in colon-carcinoma cells. Scand J Immunol 2008; 68:579-88. [PMID: 19000094 DOI: 10.1111/j.1365-3083.2008.02175.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cytotoxic T lymphocytes eliminate tumor cells expressing antigenic peptides in the context of MHC-I molecules. Peptides are generated during protein degradation by the proteasome and resulting products, surviving cytosolic amino-peptidases activity, may be presented by MHC-I molecules. The MHC-I processing pathway is altered in a large number of malignancies and modulation of antigen generation is one strategy employed by cells to evade immune control. In this study we analyzed the generation and presentation of a survivin-derived CTL epitope in HLA-A2-positive colon-carcinoma cells. Although all cell lines expressed the anti-apoptotic protein survivin, some tumors were poorly recognized by ELTLGEFLKL (ELT)-specific CTL cultures. The expression of MHC-I or TAP molecules was similar in all cell lines suggesting that tumors not recognized by CTLs may present defects in the generation of the ELT-epitope which could be due either to lack of generation or to subsequent degradation of the epitope. The cells were analyzed for the expression and the activity of extra-proteasomal peptidases. A significant overexpression and higher activity of TPPII was observed in colon-carcinoma cells which are not killed by ELT-specific CTLs, suggesting a possible role of TPPII in the degradation of the ELT-epitope. To confirm the role of TPPII in the degradation of the ELT-peptide, we showed that treatment of colon-carcinoma cells with a TPPII inhibitor resulted in a dose-dependent increased sensitivity to ELT-specific CTLs. These results suggest that TPPII is involved in degradation of the ELT-peptide, and its overexpression may contribute to the immune escape of colon-carcinoma cells.
Collapse
Affiliation(s)
- G Preta
- Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhao C, Zhang H, Luan F, Zhang R, Liu M, Hu Z, Fan B. QSAR method for prediction of protein-peptide binding affinity: application to MHC class I molecule HLA-A*0201. J Mol Graph Model 2006; 26:246-54. [PMID: 17275373 DOI: 10.1016/j.jmgm.2006.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 12/05/2006] [Indexed: 11/29/2022]
Abstract
The support vector machine (SVM), which is a novel algorithm from the machine learning community, was used to develop quantitative structure-activity relationship (QSAR) models for predicting the binding affinity of 152 nonapeptides, which can bind to class I MHC HLA-A*201 molecule. Each peptide was represented by a large pool of descriptors including constitutional, topological descriptors and physical-chemical properties. The heuristic method (HM) was then used to search the descriptor space for selecting the proper ones responsible for binding affinity. The four descriptors were obtained to build linear models based on HM and nonlinear models based on SVM method. The best results are found using SVM: root mean-square (RMS) errors for training, test and whole data set were 0.383, 0.385 and 0.384, respectively. This paper allow the prediction of the binding affinity of new, untested peptides and, through the analysis of contribution of each parameter of different residue at specific position of peptidic ligands, to understand nature of the forces governing binding behavior and suggest new ideas for further synthesis of high-affinity peptides.
Collapse
Affiliation(s)
- Chunyan Zhao
- Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The 20S proteasome is a multicatalytic protein complex that plays an important role in intracellular protein degradation from archaebacteria to eukaryotes. This complex is made up of two copies each of seven different alpha (alpha) and seven different beta (beta) subunits arranged into four stacked rings (alpha7beta7beta7alpha7). Although the proteasome's cylindrical structure is conserved, the subunit composition of the 20S protein complex varies during the evolution, and the number of subunits increases from archaebacteria to mammals. To fully characterize the 20S proteasome subunit composition and understand the subunit functions, we, the authors of this chapter, have developed and employed various mass spectrometry (MS)-based approaches to generate a comprehensive profile of the 20S proteasomes from rat liver and Tropanosoma brucei. We have identified 7 alpha and 10 beta subunits, including 7 essential and 3 nonessential beta subunits from rat 20S proteasome complex using two-dimensional (2-D) gel electrophoresis and tandem MS (MS/MS). In addition, multiple isoforms of most of the subunits were determined; indicating the composition of rat 20S proteasome complex was much more complicated than expected. Further analysis of the intact protein molecular weight of each subunit using LC-MS confirmed the heterogeneous population of the 20S proteasome and revealed that many of the experimental measured molecular weights do not correspond well with the theoretical values deduced from the sequences in protein databases. This finding is mostly due to the sequence errors in the protein databases and possible posttranslational modifications. Although the protein sequences of rat 20S proteasome are present in the databases, the sequences of the 20S proteasome from T. brucei were not available at the time when the analysis was carried out. To determine the subunit composition of the 20S proteasome from T. brucei, we developed a homology-based database searching tool to identify unknown proteins based on the novel sequences determined by de novo sequencing using MS/MS. As a result, 14 subunits (7 alpha and 7 beta) were identified on the 2-D gel, which was later confirmed by the full-length sequences. Using the same approach, we also identified and characterized an activator protein, PA26, from T. brucei. The purified recombinant PA26 self-assembles into a heptamer ring, which can bind and activate the 20S proteasome from T. brucei as well as rat. Compared to the human PA28 complex, PA26 may be the prototype activator protein involved in proteasomal protein degradation. Therefore, the MS-based strategy developed here for identification of the known and unknown protein complexes can be generalized for the study of other protein complexes.
Collapse
Affiliation(s)
- Lan Huang
- Science I, University of California, Irvine, USA
| | | |
Collapse
|
12
|
Wherry EJ, Golovina TN, Morrison SE, Sinnathamby G, McElhaugh MJ, Shockey DC, Eisenlohr LC. Re-evaluating the Generation of a “Proteasome-Independent” MHC Class I-Restricted CD8 T Cell Epitope. THE JOURNAL OF IMMUNOLOGY 2006; 176:2249-61. [PMID: 16455981 DOI: 10.4049/jimmunol.176.4.2249] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The proteasome is primarily responsible for the generation of MHC class I-restricted CTL epitopes. However, some epitopes, such as NP(147-155) of the influenza nucleoprotein (NP), are presented efficiently in the presence of proteasome inhibitors. The pathways used to generate such apparently "proteasome-independent" epitopes remain poorly defined. We have examined the generation of NP(147-155) and a second proteasome-dependent NP epitope, NP(50-57), using cells adapted to growth in the presence of proteasome inhibitors and also through protease overexpression. We observed that: 1) Ag processing and presentation proceeds in proteasome-inhibitor adapted cells but may become more dependent, at least in part, on nonproteasomal protease(s), 2) tripeptidyl peptidase II does not substitute for the proteasome in the generation of NP(147-155), 3) overexpression of leucine aminopeptidase, thymet oligopeptidase, puromycin-sensitive aminopeptidase, and bleomycin hydrolase, has little impact on the processing and presentation of NP(50-57) or NP(147-155), and 4) proteasome-inhibitor treatment altered the specificity of substrate cleavage by the proteasome using cell-free digests favoring NP(147-155) epitope preservation. Based on these results, we propose a central role for the proteasome in epitope generation even in the presence of proteasome inhibitors, although such inhibitors will likely alter cleavage patterns and may increase the dependence of the processing pathway on postproteasomal enzymes.
Collapse
Affiliation(s)
- E John Wherry
- Department of Microbiology and Immunology, Jefferson Medical College and Kimmel Cancer Institute, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Nussbaum AK, Rodriguez-Carreno MP, Benning N, Botten J, Whitton JL. Immunoproteasome-deficient mice mount largely normal CD8+ T cell responses to lymphocytic choriomeningitis virus infection and DNA vaccination. THE JOURNAL OF IMMUNOLOGY 2005; 175:1153-60. [PMID: 16002717 DOI: 10.4049/jimmunol.175.2.1153] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During viral infection, constitutive proteasomes are largely replaced by immunoproteasomes, which display distinct cleavage specificities, resulting in different populations of potential CD8(+) T cell epitope peptides. Immunoproteasomes are believed to be important for the generation of many viral CD8(+) T cell epitopes and have been implicated in shaping the immunodominance hierarchies of CD8(+) T cell responses to influenza virus infection. However, it remains unclear whether these conclusions are generally applicable. In this study we investigated the CD8(+) T cell responses to lymphocytic choriomeningitis virus infection and DNA immunization in wild-type mice and in mice lacking the immunoproteasome subunits LMP2 or LMP7. Although the total number of virus-specific cells was lower in LMP2 knockout mice, consistent with their having lower numbers of naive cells before infection, the kinetics of virus clearance were similar in all three mouse strains, and LMP-deficient mice mounted strong primary and secondary lymphocytic choriomeningitis virus-specific CD8(+) T cell responses. Furthermore, the immunodominance hierarchy of the four investigated epitopes (nuclear protein 396 (NP(396)) > gp33 > gp276 > NP(205)) was well maintained. We observed a slight reduction in the NP(205)-specific response in LMP2-deficient mice, but this had no demonstrable biological consequence. DNA vaccination of LMP2- and LMP7-deficient mice induced CD8(+) T cell responses that were slightly lower than, although not significantly different from, those induced in wild-type mice. Taken together, our results challenge the notion that immunoproteasomes are generally needed for effective antiviral CD8(+) T cell responses and for the shaping of immunodominance hierarchies. We conclude that the immunoproteasome may affect T cell responses to only a limited number of viral epitopes, and we propose that its main biological function may lie elsewhere.
Collapse
Affiliation(s)
- Alexander K Nussbaum
- Department of Neuropharmacology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
14
|
Peters B, Sidney J, Bourne P, Bui HH, Buus S, Doh G, Fleri W, Kronenberg M, Kubo R, Lund O, Nemazee D, Ponomarenko JV, Sathiamurthy M, Schoenberger SP, Stewart S, Surko P, Way S, Wilson S, Sette A. The design and implementation of the immune epitope database and analysis resource. Immunogenetics 2005; 57:326-36. [PMID: 15895191 PMCID: PMC4780685 DOI: 10.1007/s00251-005-0803-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 04/22/2005] [Indexed: 01/13/2023]
Abstract
Epitopes are defined as parts of antigens interacting with receptors of the immune system. Knowledge about their intrinsic structure and how they affect the immune response is required to continue development of techniques that detect, monitor, and fight diseases. Their scientific importance is reflected in the vast amount of epitope-related information gathered, ranging from interactions between epitopes and major histocompatibility complex molecules determined by X-ray crystallography to clinical studies analyzing correlates of protection for epitope based vaccines. Our goal is to provide a central resource capable of capturing this information, allowing users to access and connect realms of knowledge that are currently separated and difficult to access. Here, we portray a new initiative, "The Immune Epitope Database and Analysis Resource." We describe how we plan to capture, structure, and store this information, what query interfaces we will make available to the public, and what additional predictive and analytical tools we will provide.
Collapse
Affiliation(s)
- Bjoern Peters
- La Jolla Institute of Allergy and Immunology, 3030 Bunker Hill Street, Suite 326, San Diego, CA, 92109, USA
| | - John Sidney
- La Jolla Institute of Allergy and Immunology, 3030 Bunker Hill Street, Suite 326, San Diego, CA, 92109, USA
| | - Phil Bourne
- San Diego Supercomputer Center, P.O.Box 85608 San Diego, CA, 92186-5608, USA
| | - Huynh-Hoa Bui
- La Jolla Institute of Allergy and Immunology, 3030 Bunker Hill Street, Suite 326, San Diego, CA, 92109, USA
| | - Soeren Buus
- University of Copenhagen, Panum Building 18.3.22, Bleadamsvei 3, 220 Copenhagen, Denmark
| | - Grace Doh
- SH Grace Consulting, A-402 Hannam Riverhill, 390 Hannam-dong, Youngsan-ku, Seoul, 140-210, South Korea
| | - Ward Fleri
- La Jolla Institute of Allergy and Immunology, 3030 Bunker Hill Street, Suite 326, San Diego, CA, 92109, USA
| | - Mitch Kronenberg
- La Jolla Institute of Allergy and Immunology, 3030 Bunker Hill Street, Suite 326, San Diego, CA, 92109, USA
| | - Ralph Kubo
- La Jolla Institute of Allergy and Immunology, 3030 Bunker Hill Street, Suite 326, San Diego, CA, 92109, USA
| | - Ole Lund
- BioCentrum-DTU, Technical University of Denmark, Building 208, Lyngby, 2800, Denmark
| | - David Nemazee
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, IMM-29, La Jolla, CA, 92037, USA
| | | | - Muthu Sathiamurthy
- La Jolla Institute of Allergy and Immunology, 3030 Bunker Hill Street, Suite 326, San Diego, CA, 92109, USA
| | - Stephen P. Schoenberger
- La Jolla Institute of Allergy and Immunology, 3030 Bunker Hill Street, Suite 326, San Diego, CA, 92109, USA
| | - Scott Stewart
- Science Applications International Corporation, 9455 Towne Center Drive, MS-W2, San Diego, CA, 92121, USA
| | - Pamela Surko
- Science Applications International Corporation, 9455 Towne Center Drive, MS-W2, San Diego, CA, 92121, USA
| | - Scott Way
- Science Applications International Corporation, 9455 Towne Center Drive, MS-W2, San Diego, CA, 92121, USA
| | - Steve Wilson
- La Jolla Institute of Allergy and Immunology, 3030 Bunker Hill Street, Suite 326, San Diego, CA, 92109, USA
| | | |
Collapse
|
15
|
Han YG, Liu HL, Zheng HJ, Li SG, Bi RC. Purification and refolding of human alpha5-subunit (PSMA5) of the 20S proteasome, expressed as inclusion bodies in Escherichia coli. Protein Expr Purif 2005; 35:360-5. [PMID: 15135414 DOI: 10.1016/j.pep.2004.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 01/29/2004] [Indexed: 11/18/2022]
Abstract
The 20S proteasome is the central enzyme of nonlysosomal protein degradation in both the cytosol and nucleus. It is composed of 28 protein subunits which are arranged into four staggered heptameric rings. The outer rings consist of alpha-subunits which are responsible for binding of proteasome activators, inhibitors, and regulators. To better characterize human alpha5-subunit (PSMA5) of the 20S proteasome, we have established a high-efficiency Escherichia coli expression system. The DNA-coding sequence for the human PSMA5, which was subcloned into the vector pET-22b (+), has been expressed as inclusion bodies in E. coli BL21 (DE3). To produce the native PSMA5, straightforward protocols have been developed for refolding the human PSMA5 in the presence of surfactants using dilution refolding and size-exclusion chromatography matrix refolding methods. After refolding, recovery yields of about 20% were obtained, respectively, with purity above 95%. The human PSMA5 was detected by dynamic light scattering in refolding process, and the molecular weight of the final refolded product was measured using gel filtration chromatography, which indicates that the human PSMA5 exists mainly as tetramer.
Collapse
Affiliation(s)
- Yu-Gang Han
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | |
Collapse
|
16
|
Nielsen M, Lundegaard C, Lund O, Keşmir C. The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 2005; 57:33-41. [PMID: 15744535 DOI: 10.1007/s00251-005-0781-7] [Citation(s) in RCA: 344] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 01/13/2005] [Indexed: 11/25/2022]
Abstract
Cytotoxic T cells (CTLs) perceive the world through small peptides that are eight to ten amino acids long. These peptides (epitopes) are initially generated by the proteasome, a multi-subunit protease that is responsible for the majority of intra-cellular protein degradation. The proteasome generates the exact C-terminal of CTL epitopes, and the N-terminal with a possible extension. CTL responses may diminish if the epitopes are destroyed by the proteasomes. Therefore, the prediction of the proteasome cleavage sites is important to identify potential immunogenic regions in the proteomes of pathogenic microorganisms (or humans). We have recently shown that NetChop, a neural network-based prediction method, is the best method available at the moment to do such predictions; however, its performance is still lower than desired. Here, we use novel sequence encoding methods and show that the new version of NetChop predicts approximately 10% more of the cleavage sites correctly while lowering the number of false positives with close to 15%. With this more reliable prediction tool, we study two important questions concerning the function of the proteasome. First, we estimate the N-terminal extension of epitopes after proteasomal cleavage and find that the average extension is relatively short. However, more than 30% of the peptides have N-terminal extensions of three amino acids or more, and thus, N-terminal trimming might play an important role in the presentation of a substantial fraction of the epitopes. Second, we show that good TAP ligands have an increased chance of being cleaved by the proteasome, i.e., the specificity of TAP has evolved to fit the specificity of the proteasome. This evolutionary relationship allows for a more efficient antigen presentation.
Collapse
Affiliation(s)
- Morten Nielsen
- Center for Biological Sequence Analysis, Technical University of Denmark, BioCentrum-DTU, Building 208, 2800, Lyngby, Denmark.
| | | | | | | |
Collapse
|
17
|
Cook PW, Brown JR, Cornell KA, Pittelkow MR. Suprabasal expression of human amphiregulin in the epidermis of transgenic mice induces a severe, early-onset, psoriasis-like skin pathology: expression of amphiregulin in the basal epidermis is also associated with synovitis. Exp Dermatol 2004; 13:347-56. [PMID: 15186320 DOI: 10.1111/j.0906-6705.2004.00183.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The expression of amphiregulin (AR) in the basal epidermis of transgenic mice [keratin 14 promoter AR gene (K14-ARGE)] has been previously shown to induce an early-onset and severe skin pathology, with many similarities to psoriasis. In this study, it is demonstrated that involucrin enhancer/promoter-dependent expression of human AR (INV-AR) in the suprabasal epidermis of transgenic mice also produces a cutaneous psoriasis-like phenotype. INV-AR mice possess a limited lifespan and scaling, papillomatous, erythematous skin with partial alopecia. INV-AR mouse histopathology also revealed epidermal hyperkeratosis, parakeratosis, acanthosis, and an exaggerated dermal vasculature. A dermal and epidermal infiltrate was also evident and consisted of both neutrophils and CD3(+) T lymphocytes. The histology of synovial joints in both the INV-AR mice and the K14-ARGE mice of our previous investigation was examined. The histologic examination revealed that 3-week-old INV-AR transgenic mice displayed normal knee joint histology, while 2- to 3-week-old K14-ARGE transgenic mice frequently displayed synovitis, as exemplified by the presence of a mixed leukocytic infiltration, increased vascularization, and enhanced deposition of fibrous matrix in the knee synovium. These results demonstrate that AR overexpression in both the basal and suprabasal epidermis of transgenic mice induces a phenotype that mimics cutaneous psoriasis, while basal AR expression is also associated with synovial inflammation, a precursor to the psoriasis-associated arthropathy, psoriatic arthritis. Collectively, the results implicate epidermal AR expression as a possible mediator of innate cutaneous immunity and epidermal proliferation and also as a potential trigger of both cutaneous psoriasis and psoriatic arthritis.
Collapse
Affiliation(s)
- Paul W Cook
- Department of Dermatology, The Oregon Health Sciences University, Portland, OR, USA.
| | | | | | | |
Collapse
|
18
|
Cannon MJ, Pate JL. Expression and regulation of interferon gamma-inducible proteasomal subunits LMP7 and LMP10 in the bovine corpus luteum. Biol Reprod 2003; 68:1447-54. [PMID: 12606494 DOI: 10.1095/biolreprod.102.010249] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The proteasome is a large, polymeric protease complex responsible for intracellular protein degradation and generation of peptides that bind to class I major histocompatibility complex (MHC) molecules. Interferon gamma (INFgamma) induces expression of alternative proteasomal subunits that affect intracellular protein degradation, thereby changing the types of peptides that bind to class I MHC molecules. These alterations in class I MHC peptides can influence whether cells and tissues are tolerated by the immune system. Expression of two INFgamma-inducible proteasomal subunits, LMP7 and LMP10, in bovine luteal tissue was examined in this study. Northern analysis revealed the presence of mRNA encoding LMP7 and LMP10 in luteal tissue. Steady-state amounts of LMP7 mRNA did not change during the estrous cycle, but LMP10 mRNA was low in early corpus luteum (CL) and elevated in midcycle and late CL. Tumor necrosis factor alpha alone and in the presence of LH and/or prostaglandin F2alpha elevated steady-state amounts of LMP10 mRNA but did not affect LMP7 mRNA in cultured luteal cells. Immunohistochemistry revealed the presence of LMP10 primarily in small luteal cells. Numbers of LMP10-positive cells were lower in early CL than in midcycle and late CL. The finding that INFgamma-inducible proteasomal subunits are expressed in luteal tissue when the CL is fully functional was unexpected and suggests that proteasomes in luteal cells may generate peptides capable of stimulating a class I MHC-dependent inflammatory response.
Collapse
Affiliation(s)
- Matthew J Cannon
- Department of Animal Sciences, Ohio State University/Ohio Agricultural Research and Development Center, Wooster, Ohio 44691, USA
| | | |
Collapse
|
19
|
Nussbaum AK, Kuttler C, Tenzer S, Schild H. Using the World Wide Web for predicting CTL epitopes. Curr Opin Immunol 2003; 15:69-74. [PMID: 12495736 DOI: 10.1016/s0952791502000043] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Alexander K Nussbaum
- The Scripps Research Institute, Department of Neuropharmacology, CVN-9, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
20
|
Vertegaal ACO, Kuiperij HB, Houweling A, Verlaan M, van der Eb AJ, Zantema A. Differential expression of tapasin and immunoproteasome subunits in adenovirus type 5- versus type 12-transformed cells. J Biol Chem 2003; 278:139-46. [PMID: 12407112 DOI: 10.1074/jbc.m206267200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adenovirus type 12 (Ad12)-transformed baby rat kidney (BRK) cells are oncogenic in syngeneic immunocompetent rats in contrast to adenovirus type 5 (Ad5)-transformed BRK cells, which are not oncogenic in these animals. A significant factor contributing to the difference in oncogenicity may be the low levels of major histocompatibility complex (MHC) class I membrane expression in Ad12-transformed BRK cells as compared with those in Ad5-transformed BRK cells, which presumably results in escape from killing by cytotoxic T lymphocytes. Here we show that, in addition to the decreased levels of expression of the MHC class I heavy chain and the peptide transporter Tap-2, the expression levels of the chaperone Tapasin and the immunoproteasome components MECL-1, PA28-alpha, and PA28-beta also are much lower in Ad12- than in Ad5-transformed BRK cells. The low expression levels of these proteins may contribute to the escape from killing by cytotoxic T lymphocytes, because the generation of optimal peptides and loading of these peptides on MHC class I require these components. Increased levels of phosphorylated signal transducer and activator of transcription-1 protein and expression of IFN regulatory factor-7 were found in Ad5- versus Ad12-transformed BRK cells. Therefore, the critical alteration leading to the plethora of differences may be an interferon (-related) effect.
Collapse
Affiliation(s)
- Alfred C O Vertegaal
- Medical Genetic Centre-Department of Molecular Cell Biology, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Abstract
The most important 'on-off' switch within the immune system are the T cells: these decide whether an immune response has to be induced and maintained or not. Since T cells glean their information from the interaction between their specific T cell receptor and a MHC-peptide complex, MHC molecules are invaluable information carriers. Each T cell is usually restricted to only one of the set of autologous MHC molecules, but it is nevertheless able to react upon contact with allogeneic MHC. For a given T cell, both the MHC molecule and presented peptide thus play a crucial role in antigen recognition. MHC molecules govern the allele-specific restriction of T cells or, most important in transplantation immunology, allo-specific recognition, which is often peptide-independent. Peptides serving as MHC ligands are able either to tolerise T cells if presented under certain circumstances, or to activate T cells if presented by professional antigen-presenting cells in an inflammatory environment. The vast polymorphism of human MHC molecules combined with the complexity of thousands of different peptides presented by each allelic product provide the utmost heterogeneity. During the past few years, a huge amount of information about MHC-bound peptides has been compiled that helps us to understand the structural basis of immunogenicity. This contribution describes the characteristics of antigen processing within the MHC class I pathway, from proteasomal processing to the rules of MHC binding. Our current knowledge enables the exact description of many processes within the class I processing pathway and paves the way for the prediction of potential T cell epitopes by employing the rules of peptide presentation.
Collapse
Affiliation(s)
- Stefan Stevanović
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Germany.
| |
Collapse
|
23
|
Abstract
Despite the fact that the composition of proteasomes purified from different species is almost identical, and the basic components of the proteasome are remarkably conserved among all eukaryotes, there are quite a few additional proteins that show up in certain purifications or in certain screens. There is increasing evidence that the proteasome is in fact a dynamic structure forming multiple interactions with transiently associated subunits and cellular factors that are necessary for functions such as cellular localization, presentation of substrates, substrate-specific interactions, or generation of varied products. Harnessing the eukaryotic proteasome to its defined regulatory roles has been achieved by a number of means: (a) increasing the complexity of the proteasome by gene duplication, and differentiation of members within each gene family (namely the CP and RPT subunits); (b) addition of regulatory particles, complexes, and factors that influence both what enters and what exits the proteasome; and (c) signal-dependent alterations in subunit composition (for example, the CP beta to beta i exchange). It is not be surprising that the proteasome plays diverse roles, and that its specific functions can be fine-tuned depending on biological context or need.
Collapse
Affiliation(s)
- M H Glickman
- Department of Biology, The Technion, Israel Institute of Technology, 32000 Haifa, Israel
| | | |
Collapse
|
24
|
Rao N, Dodge I, Band H. The Cbl family of ubiquitin ligases: critical negative regulators of tyrosine kinase signaling in the immune system. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.5.753] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Navin Rao
- Division of Medical Sciences, Boston, Massachusetts
| | - Ingrid Dodge
- Division of Medical Sciences, Boston, Massachusetts
| | - Hamid Band
- Lymphocyte Biology Section, Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
25
|
Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002; 82:373-428. [PMID: 11917093 DOI: 10.1152/physrev.00027.2001] [Citation(s) in RCA: 3056] [Impact Index Per Article: 138.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Between the 1960s and 1980s, most life scientists focused their attention on studies of nucleic acids and the translation of the coded information. Protein degradation was a neglected area, considered to be a nonspecific, dead-end process. Although it was known that proteins do turn over, the large extent and high specificity of the process, whereby distinct proteins have half-lives that range from a few minutes to several days, was not appreciated. The discovery of the lysosome by Christian de Duve did not significantly change this view, because it became clear that this organelle is involved mostly in the degradation of extracellular proteins, and their proteases cannot be substrate specific. The discovery of the complex cascade of the ubiquitin pathway revolutionized the field. It is clear now that degradation of cellular proteins is a highly complex, temporally controlled, and tightly regulated process that plays major roles in a variety of basic pathways during cell life and death as well as in health and disease. With the multitude of substrates targeted and the myriad processes involved, it is not surprising that aberrations in the pathway are implicated in the pathogenesis of many diseases, certain malignancies, and neurodegeneration among them. Degradation of a protein via the ubiquitin/proteasome pathway involves two successive steps: 1) conjugation of multiple ubiquitin moieties to the substrate and 2) degradation of the tagged protein by the downstream 26S proteasome complex. Despite intensive research, the unknown still exceeds what we currently know on intracellular protein degradation, and major key questions have remained unsolved. Among these are the modes of specific and timed recognition for the degradation of the many substrates and the mechanisms that underlie aberrations in the system that lead to pathogenesis of diseases.
Collapse
Affiliation(s)
- Michael H Glickman
- Faculty of Biology and the Institute for Catalysis Science and Technology, Haifa, Israel.
| | | |
Collapse
|
26
|
Fromm SV, Duady-Ben Yaakov S, Schechter C, Ehrlich R. Assembly and cell surface expression of TAP-independent, chloroquine-sensitive and interferon-gamma-inducible class I MHC complexes in transformed fibroblast cell lines are regulated by tapasin. Cell Immunol 2002; 215:207-18. [PMID: 12202157 DOI: 10.1016/s0008-8749(02)00015-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antigen processing and presentation by class I MHC molecules generally require assembly with peptide epitopes generated by the proteasome and transported into the ER by the transporters associated with antigen presentation (TAP). Recently, TAP-independent pathways supporting class I MHC-mediated presentation of exogenous antigens, as well as of endogenously synthesized viral antigens, were described. We now characterize a TAP-independent pathway that is operative in both TAP1- and TAP2-deficient Adenovirus (Ad)-transformed fibroblast cell lines. To the best of our knowledge, this is the first time that the existence of such a pathway has been described in non-infected cells that do not belong to the hematopoietic lineage. We show that this pathway is proteasome-independent and chloroquine-sensitive. Cell surface expression of these TAP-independent class I complexes is modulated by tapasin levels and is enhanced by IFN-gamma. The data imply that IFN-gamma increases the relative level of TAP-independent high affinity class I complexes that exit the ER on their way to the cell surface and to vacuolar compartments where peptide cleavage/exchange might take place before recycling to the cell surface. Since both TAP and tapasin expression are altered in numerous tumors and in virus-infected cells, TAP-independent class I complexes may be a valuable target source for immune responses.
Collapse
Affiliation(s)
- Sharon Vigodman Fromm
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
27
|
Dutaud D, Aubry L, Henry L, Levieux D, Hendil KB, Kuehn L, Bureau JP, Ouali A. Development and evaluation of a sandwich ELISA for quantification of the 20S proteasome in human plasma. J Immunol Methods 2002; 260:183-93. [PMID: 11792388 DOI: 10.1016/s0022-1759(01)00555-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Because quantification of the 20S proteasome by functional activity measurements is difficult and inaccurate, we have developed an indirect sandwich enzyme-linked immunosorbent assays (ELISA) for quantification of the 20S proteasome in human plasma. This sandwich ELISA uses a combination of a monoclonal antibody (mcp 20) recognizing the C2-beta subunit of human 20S proteasome (Mr approximately 30,000) and a polyclonal rabbit anti-20S antibody which labels different subunits of the complex. The detection limit of the assay was established as 10 ng/ml (n=10, mean of zero standard+2 S.D.) and the recovery rate ranged from 96% to 104%. The within-run and between-run coefficients of variation (CV) ranges were 2.8-3.3 and 3.0-3.4, respectively. Using serial dilutions of plasma to which various amounts of purified 20S proteasome were added, a linear dose-response was observed between 102 and 2050 ng/ml with a slope of 1.004 and a coefficient of determination r(2) of 0.99. In a preliminary experiment performed on a limited number of patients, the present assay was used to quantify the 20S proteasome in plasma from healthy subjects (n=11) and from a limited number of patients with various diseases (two patients with each of the following diagnoses: acute myeloid leukaemia, chronic myeloproliferative syndromes, Hodgkin's disease and solid tumors). The average concentration of 20S proteasome in plasma from normal subjects was found to be 2319+/-237 ng/ml (n=11). With reference to this normal range, the plasma proteasome concentration was found to be increased in most of these pathological state and as high as 1200% when solid tumors had been detected. For patients with Hodgkin's disease, the changes were more variable whereas in patients with chronic lymphocytic leukaemia, the proteasome concentration was raised during the acute phase of disease and decreased during therapy. We suggest that this robust, accurate and highly reproducible assay could be used to quantify proteasome in human plasma and investigate its value as a biological marker for various malignant and nonmalignant diseases.
Collapse
Affiliation(s)
- Dominique Dutaud
- Biochemistry Team, SRV, INRA Theix, 63122 Saint Genès Champanelle, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Murata S, Udono H, Tanahashi N, Hamada N, Watanabe K, Adachi K, Yamano T, Yui K, Kobayashi N, Kasahara M, Tanaka K, Chiba T. Immunoproteasome assembly and antigen presentation in mice lacking both PA28alpha and PA28beta. EMBO J 2001; 20:5898-907. [PMID: 11689430 PMCID: PMC125708 DOI: 10.1093/emboj/20.21.5898] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Two members of the proteasome activator, PA28alpha and PA28beta, form a heteropolymer that binds to both ends of the 20S proteasome. Evidence in vitro indicates that this interferon-gamma (IFN-gamma)-inducible heteropolymer is involved in the processing of intracellular antigens, but its functions in vivo remain elusive. To investigate the role of PA28alpha/beta in vivo, we generated mice deficient in both PA28alpha and PA28beta genes. The ATP-dependent proteolytic activities were decreased in PA28alpha(-/-)/beta(-/-) cells, suggesting that 'hybrid proteasomes' are involved in protein degradation. Treatment of PA28alpha(-/-)/beta(-/-) cells with IFN-gamma resulted in sufficient induction of the 'immunoproteasome'. Moreover, splenocytes from PA28alpha(-/-)/beta(-/-) mice displayed no apparent defects in processing of ovalbumin. These results are in marked contrast to the previous finding that immunoproteasome assembly and immune responses were impaired in PA28beta(-/-) mice. PA28alpha(-/-)/beta(-/-) mice also showed apparently normal immune responses against infection with influenza A virus. However, they almost completely lost the ability to process a melanoma antigen TRP2-derived peptide. Hence, PA28alpha/beta is not a prerequisite for antigen presentation in general, but plays an essential role for the processing of certain antigens.
Collapse
Affiliation(s)
| | - Heiichiro Udono
- Department of Molecular Oncology, Tokyo Metropolitan Institute of Medical Science, and CREST, Japan Science and Technology Corporation, Tokyo 113-8613,
Department of Medical Zoology and Immunology, School of Medicine and Laboratory of Molecular Biology of Diseases, School of Pharmaceutical Sciences, Nagasaki University, Nagasaki 852-8521 and Department of Biosystems Science, School of Advanced Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan Corresponding author e-mail:
| | | | - Nobuyuki Hamada
- Department of Molecular Oncology, Tokyo Metropolitan Institute of Medical Science, and CREST, Japan Science and Technology Corporation, Tokyo 113-8613,
Department of Medical Zoology and Immunology, School of Medicine and Laboratory of Molecular Biology of Diseases, School of Pharmaceutical Sciences, Nagasaki University, Nagasaki 852-8521 and Department of Biosystems Science, School of Advanced Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan Corresponding author e-mail:
| | - Ken Watanabe
- Department of Molecular Oncology, Tokyo Metropolitan Institute of Medical Science, and CREST, Japan Science and Technology Corporation, Tokyo 113-8613,
Department of Medical Zoology and Immunology, School of Medicine and Laboratory of Molecular Biology of Diseases, School of Pharmaceutical Sciences, Nagasaki University, Nagasaki 852-8521 and Department of Biosystems Science, School of Advanced Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan Corresponding author e-mail:
| | - Kei Adachi
- Department of Molecular Oncology, Tokyo Metropolitan Institute of Medical Science, and CREST, Japan Science and Technology Corporation, Tokyo 113-8613,
Department of Medical Zoology and Immunology, School of Medicine and Laboratory of Molecular Biology of Diseases, School of Pharmaceutical Sciences, Nagasaki University, Nagasaki 852-8521 and Department of Biosystems Science, School of Advanced Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan Corresponding author e-mail:
| | - Taketoshi Yamano
- Department of Molecular Oncology, Tokyo Metropolitan Institute of Medical Science, and CREST, Japan Science and Technology Corporation, Tokyo 113-8613,
Department of Medical Zoology and Immunology, School of Medicine and Laboratory of Molecular Biology of Diseases, School of Pharmaceutical Sciences, Nagasaki University, Nagasaki 852-8521 and Department of Biosystems Science, School of Advanced Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan Corresponding author e-mail:
| | - Katsuyuki Yui
- Department of Molecular Oncology, Tokyo Metropolitan Institute of Medical Science, and CREST, Japan Science and Technology Corporation, Tokyo 113-8613,
Department of Medical Zoology and Immunology, School of Medicine and Laboratory of Molecular Biology of Diseases, School of Pharmaceutical Sciences, Nagasaki University, Nagasaki 852-8521 and Department of Biosystems Science, School of Advanced Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan Corresponding author e-mail:
| | - Nobuyuki Kobayashi
- Department of Molecular Oncology, Tokyo Metropolitan Institute of Medical Science, and CREST, Japan Science and Technology Corporation, Tokyo 113-8613,
Department of Medical Zoology and Immunology, School of Medicine and Laboratory of Molecular Biology of Diseases, School of Pharmaceutical Sciences, Nagasaki University, Nagasaki 852-8521 and Department of Biosystems Science, School of Advanced Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan Corresponding author e-mail:
| | - Masanori Kasahara
- Department of Molecular Oncology, Tokyo Metropolitan Institute of Medical Science, and CREST, Japan Science and Technology Corporation, Tokyo 113-8613,
Department of Medical Zoology and Immunology, School of Medicine and Laboratory of Molecular Biology of Diseases, School of Pharmaceutical Sciences, Nagasaki University, Nagasaki 852-8521 and Department of Biosystems Science, School of Advanced Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan Corresponding author e-mail:
| | | | - Tomoki Chiba
- Department of Molecular Oncology, Tokyo Metropolitan Institute of Medical Science, and CREST, Japan Science and Technology Corporation, Tokyo 113-8613,
Department of Medical Zoology and Immunology, School of Medicine and Laboratory of Molecular Biology of Diseases, School of Pharmaceutical Sciences, Nagasaki University, Nagasaki 852-8521 and Department of Biosystems Science, School of Advanced Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan Corresponding author e-mail:
| |
Collapse
|
29
|
Lüder CG, Seeber F. Toxoplasma gondii and MHC-restricted antigen presentation: on degradation, transport and modulation. Int J Parasitol 2001; 31:1355-69. [PMID: 11566303 DOI: 10.1016/s0020-7519(01)00260-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Resistance against Toxoplasma gondii, an obligate intracellular protozoan parasite surrounded by a parasitophorous vacuolar membrane, is mediated by the cellular arm of the immune system, namely CD8+ and CD4+ T cells. Thus, priming and activation of these cells by presentation of antigenic peptides in the context of major histocompatibility complex class I and class II molecules have to take place. This is despite the fact that the vacuolar membrane avoids fusion with the endocytic compartment and acts like a molecular sieve, restricting passive diffusion of larger molecules. This raises several cell biological and immunological questions which will be discussed in this review in the context of our current knowledge about major histocompatibility complex-restricted antigen presentation in other systems: (1) By which pathways are parasite-derived antigens presented to T cells? (2) Has the parasite evolved mechanisms to interfere with major histocompatibility complex-restricted antigen presentation in order to avoid immune recognition? (3) To what extent and by which mechanism is antigenic material, originating from the parasite, able to pass through the vacuolar membrane into the cytosol of the infected cell and is it then accessible to the antigen presentation machinery of the infected cell? (4) What are the actual antigen-presenting cells which prime specific T cells in lymphoid organs? An understanding of these mechanisms will not only provide new insights into the pathogenesis of Toxoplasma gondii and possibly other intravacuolar parasites, but will also improve vaccination strategies.
Collapse
Affiliation(s)
- C G Lüder
- Department of Bacteriology, Georg-August-Universität Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany.
| | | |
Collapse
|
30
|
Toes R, Nussbaum A, Degermann S, Schirle M, Emmerich N, Kraft M, Laplace C, Zwinderman A, Dick T, Müller J, Schönfisch B, Schmid C, Fehling HJ, Stevanovic S, Rammensee H, Schild H. Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J Exp Med 2001; 194:1-12. [PMID: 11435468 PMCID: PMC2193442 DOI: 10.1084/jem.194.1.1] [Citation(s) in RCA: 272] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proteasomes are the main proteases responsible for cytosolic protein degradation and the production of major histocompatibility complex class I ligands. Incorporation of the interferon gamma--inducible subunits low molecular weight protein (LMP)-2, LMP-7, and multicatalytic endopeptidase complex--like (MECL)-1 leads to the formation of immunoproteasomes which have been associated with more efficient class I antigen processing. Although differences in cleavage specificities of constitutive and immunoproteasomes have been observed frequently, cleavage motifs have not been described previously. We now report that cells expressing immunoproteasomes display a different peptide repertoire changing the overall cytotoxic T cell--specificity as indicated by the observation that LMP-7(-/-) mice react against cells of LMP-7 wild-type mice. Moreover, using the 436 amino acid protein enolase-1 as an unmodified model substrate in combination with a quantitative approach, we analyzed a large collection of peptides generated by either set of proteasomes. Inspection of the amino acids flanking proteasomal cleavage sites allowed the description of two different cleavage motifs. These motifs finally explain recent findings describing differential processing of epitopes by constitutive and immunoproteasomes and are important to the understanding of peripheral T cell tolerization/activation as well as for effective vaccine development.
Collapse
Affiliation(s)
- R.E.M. Toes
- Department of Immunohematology and Blood Transfusion, Department of Rheumatology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - A.K. Nussbaum
- Institute for Cell Biology, Department of Immunology
| | - S. Degermann
- Basel Institute for Immunology, CH-4005 Basel, Switzerland
| | - M. Schirle
- Institute for Cell Biology, Department of Immunology
| | | | - M. Kraft
- Institute for Cell Biology, Department of Immunology
| | - C. Laplace
- Basel Institute for Immunology, CH-4005 Basel, Switzerland
| | - A. Zwinderman
- Department of Immunohematology and Blood Transfusion, Department of Rheumatology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - T.P. Dick
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520
| | - J. Müller
- Biomathematik, University of Tübingen, D-72076 Tübingen, Germany
| | - B. Schönfisch
- Biomathematik, University of Tübingen, D-72076 Tübingen, Germany
| | - C. Schmid
- Institute for Cell Biology, Department of Immunology
| | - H.-J. Fehling
- Department of Immunology, Medical Faculty/University Clinics Ulm, D-89070 Ulm, Germany
| | - S. Stevanovic
- Institute for Cell Biology, Department of Immunology
| | | | - H. Schild
- Institute for Cell Biology, Department of Immunology
| |
Collapse
|
31
|
Van den Eynde BJ, Morel S. Differential processing of class-I-restricted epitopes by the standard proteasome and the immunoproteasome. Curr Opin Immunol 2001; 13:147-53. [PMID: 11228406 DOI: 10.1016/s0952-7915(00)00197-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Upon exposure to IFN-gamma, the standard proteasome is replaced by the immunoproteasome, which contains LMP2, LMP7 and MECL1, and is considered more efficient at producing antigenic peptides presented to CD8(+) T cells. This view has been challenged this year by reports showing that some epitopes, mainly of self origin, are not processed by the immunoproteasome and that mature dendritic cells constitutively express immunoproteasomes and therefore cannot efficiently present such epitopes.
Collapse
Affiliation(s)
- B J Van den Eynde
- Ludwig Institute for Cancer Research, Brussels Branch, and Cellular Genetics Unit, Université Catholique de Louvain (UCL), Avenue Hippocrate 74, UCL 7459, B-1200, Brussels, Belgium
| | | |
Collapse
|
32
|
Singh-Jasuja H, Hilf N, Scherer HU, Arnold-Schild D, Rammensee HG, Toes RE, Schild H. The heat shock protein gp96: a receptor-targeted cross-priming carrier and activator of dendritic cells. Cell Stress Chaperones 2000; 5:462-70. [PMID: 11189453 PMCID: PMC312878 DOI: 10.1379/1466-1268(2000)005<0462:thspga>2.0.co;2] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2000] [Revised: 08/29/2000] [Accepted: 08/30/2000] [Indexed: 11/24/2022] Open
Abstract
Heat shock proteins like gp96 (grp94) are able to induce specific cytotoxic T-cell (CTL) responses against cells from which they originate and are currently studied in clinical trials for use in immunotherapy of tumors. We have recently demonstrated that gp96 binds to at least one yet unidentified receptor restricted to antigen-presenting cells (APCs) like dendritic cells (DCs) but not to T cells. Moreover we have shown, that for CTL activation by gp96-chaperoned peptides receptor-mediated uptake of gp96 by APCs is required. Lately, we have discovered a second function of gp96 when interacting with professional APCs. Gp96 is able to mediate maturation of DCs as determined by upregulation of MHC class II, CD86 and CD83 molecules, secretion of pro-inflammatory cytokines IL-12 and TNF-alpha and enhanced T-cell simulatory capacity. Furthermore, the gp96 receptor(s) are down-regulated on mature DCs, suggesting that the gp96 receptor(s) behave similar to other endocytic receptors like CD36, mannose receptor etc. Our findings now provide additional evidence for the remarkable immunogenicity of gp96: first, the existence of specific gp96 receptors on APCs and second, the capacity to activate dendritic cells which is strictly required to enable these highly sophisticated APCs to prime CTL responses.
Collapse
Affiliation(s)
| | - Norbert Hilf
- Department of Immunology, University of Tübingen, Tübingen, Germany
| | | | | | | | - René E.M. Toes
- Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Hansjörg Schild
- Department of Immunology, University of Tübingen, Tübingen, Germany
- Correspondence to: Hansjörg Schild, Tel: +49 7071 2980992; Fax: +49 7071 295653; .
| |
Collapse
|