1
|
Broere R, Luijmes SH, de Jonge J, Porte RJ. Graft repair during machine perfusion: a current overview of strategies. Curr Opin Organ Transplant 2024; 29:248-254. [PMID: 38726753 PMCID: PMC11224572 DOI: 10.1097/mot.0000000000001151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
PURPOSE OF REVIEW With changing donor characteristics (advanced age, obesity), an increase in the use of extended criteria donor (ECD) livers in liver transplantation is seen. Machine perfusion allows graft viability assessment, but still many donor livers are considered nontransplantable. Besides being used as graft viability assessment tool, ex situ machine perfusion offers a platform for therapeutic strategies to ameliorate grafts prior to transplantation. This review describes the current landscape of graft repair during machine perfusion. RECENT FINDINGS Explored anti-inflammatory therapies, including inflammasome inhibitors, hemoabsorption, and cellular therapies mitigate the inflammatory response and improve hepatic function. Cholangiocyte organoids show promise in repairing the damaged biliary tree. Defatting during normothermic machine perfusion shows a reduction of steatosis and improved hepatobiliary function compared to nontreated livers. Uptake of RNA interference therapies during machine perfusion paves the way for an additional treatment modality. SUMMARY The possibility to repair injured donor livers during ex situ machine perfusion might increase the utilization of ECD-livers. Application of defatting agents is currently explored in clinical trials, whereas other therapeutics require further research or optimization before entering clinical research.
Collapse
Affiliation(s)
- Roberto Broere
- Department of Surgery, Division of Hepato-Pancreato- Biliary and Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
2
|
Zhao J, Yue P, Mi N, Li M, Fu W, Zhang X, Gao L, Bai M, Tian L, Jiang N, Lu Y, Ma H, Dong C, Zhang Y, Zhang H, Zhang J, Ren Y, Suzuki A, Wong PF, Tanaka K, Rerknimitr R, Junger HH, Cheung TT, Melloul E, Demartines N, Leung JW, Yao J, Yuan J, Lin Y, Schlitt HJ, Meng W. Biliary fibrosis is an important but neglected pathological feature in hepatobiliary disorders: from molecular mechanisms to clinical implications. MEDICAL REVIEW (2021) 2024; 4:326-365. [PMID: 39135601 PMCID: PMC11317084 DOI: 10.1515/mr-2024-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/06/2024] [Indexed: 08/15/2024]
Abstract
Fibrosis resulting from pathological repair secondary to recurrent or persistent tissue damage often leads to organ failure and mortality. Biliary fibrosis is a crucial but easily neglected pathological feature in hepatobiliary disorders, which may promote the development and progression of benign and malignant biliary diseases through pathological healing mechanisms secondary to biliary tract injuries. Elucidating the etiology and pathogenesis of biliary fibrosis is beneficial to the prevention and treatment of biliary diseases. In this review, we emphasized the importance of biliary fibrosis in cholangiopathies and summarized the clinical manifestations, epidemiology, and aberrant cellular composition involving the biliary ductules, cholangiocytes, immune system, fibroblasts, and the microbiome. We also focused on pivotal signaling pathways and offered insights into ongoing clinical trials and proposing a strategic approach for managing biliary fibrosis-related cholangiopathies. This review will offer a comprehensive perspective on biliary fibrosis and provide an important reference for future mechanism research and innovative therapy to prevent or reverse fibrosis.
Collapse
Affiliation(s)
- Jinyu Zhao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ping Yue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningning Mi
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Matu Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wenkang Fu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xianzhuo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Long Gao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Mingzhen Bai
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liang Tian
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningzu Jiang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yawen Lu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Haidong Ma
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chunlu Dong
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yong Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hengwei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jinduo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanxian Ren
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Azumi Suzuki
- Department of Gastroenterology, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Peng F. Wong
- Department of Vascular Surgery, The James Cook University Hospital, Middlesbrough, UK
| | - Kiyohito Tanaka
- Department of Gastroenterology, Kyoto Second Red Cross Hospital, Kyoto, Japan
| | - Rungsun Rerknimitr
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn, Bangkok, Thailand
- Excellence Center for Gastrointestinal Endoscopy, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Henrik H. Junger
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Tan T. Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Emmanuel Melloul
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nicolas Demartines
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Joseph W. Leung
- Division of Gastroenterology and Hepatology, UC Davis Medical Center and Sacramento VA Medical Center, Sacramento, CA, USA
| | - Jia Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Jinqiu Yuan
- Clinical Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yanyan Lin
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hans J. Schlitt
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Sukocheva OA, Neganova ME, Aleksandrova Y, Burcher JT, Chugunova E, Fan R, Tse E, Sethi G, Bishayee A, Liu J. Signaling controversy and future therapeutical perspectives of targeting sphingolipid network in cancer immune editing and resistance to tumor necrosis factor-α immunotherapy. Cell Commun Signal 2024; 22:251. [PMID: 38698424 PMCID: PMC11064425 DOI: 10.1186/s12964-024-01626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/21/2024] [Indexed: 05/05/2024] Open
Abstract
Anticancer immune surveillance and immunotherapies trigger activation of cytotoxic cytokine signaling, including tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) pathways. The pro-inflammatory cytokine TNF-α may be secreted by stromal cells, tumor-associated macrophages, and by cancer cells, indicating a prominent role in the tumor microenvironment (TME). However, tumors manage to adapt, escape immune surveillance, and ultimately develop resistance to the cytotoxic effects of TNF-α. The mechanisms by which cancer cells evade host immunity is a central topic of current cancer research. Resistance to TNF-α is mediated by diverse molecular mechanisms, such as mutation or downregulation of TNF/TRAIL receptors, as well as activation of anti-apoptotic enzymes and transcription factors. TNF-α signaling is also mediated by sphingosine kinases (SphK1 and SphK2), which are responsible for synthesis of the growth-stimulating phospholipid, sphingosine-1-phosphate (S1P). Multiple studies have demonstrated the crucial role of S1P and its transmembrane receptors (S1PR) in both the regulation of inflammatory responses and progression of cancer. Considering that the SphK/S1P/S1PR axis mediates cancer resistance, this sphingolipid signaling pathway is of mechanistic significance when considering immunotherapy-resistant malignancies. However, the exact mechanism by which sphingolipids contribute to the evasion of immune surveillance and abrogation of TNF-α-induced apoptosis remains largely unclear. This study reviews mechanisms of TNF-α-resistance in cancer cells, with emphasis on the pro-survival and immunomodulatory effects of sphingolipids. Inhibition of SphK/S1P-linked pro-survival branch may facilitate reactivation of the pro-apoptotic TNF superfamily effects, although the role of SphK/S1P inhibitors in the regulation of the TME and lymphocyte trafficking should be thoroughly assessed in future studies.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia.
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Elena Chugunova
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Ruitai Fan
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Junqi Liu
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
4
|
Herr LA, Fiala GJ, Sagar, Schaffer AM, Hummel JF, Zintchenko M, Raute K, Velasco Cárdenas RMH, Heizmann B, Ebert K, Fehrenbach K, Janowska I, Chan S, Tanriver Y, Minguet S, Schamel WW. Kidins220 and Aiolos promote thymic iNKT cell development by reducing TCR signals. SCIENCE ADVANCES 2024; 10:eadj2802. [PMID: 38489359 PMCID: PMC10942104 DOI: 10.1126/sciadv.adj2802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024]
Abstract
Development of T cells is controlled by the signal strength of the TCR. The scaffold protein kinase D-interacting substrate of 220 kilodalton (Kidins220) binds to the TCR; however, its role in T cell development was unknown. Here, we show that T cell-specific Kidins220 knockout (T-KO) mice have strongly reduced invariant natural killer T (iNKT) cell numbers and modest decreases in conventional T cells. Enhanced apoptosis due to increased TCR signaling in T-KO iNKT thymocytes of developmental stages 2 and 3 shows that Kidins220 down-regulates TCR signaling at these stages. scRNA-seq indicated that the transcription factor Aiolos is down-regulated in Kidins220-deficient iNKT cells. Analysis of an Aiolos KO demonstrated that Aiolos is a downstream effector of Kidins220 during iNKT cell development. In the periphery, T-KO iNKT cells show reduced TCR signaling upon stimulation with α-galactosylceramide, suggesting that Kidins220 promotes TCR signaling in peripheral iNKT cells. Thus, Kidins220 reduces or promotes signaling dependent on the iNKT cell developmental stage.
Collapse
Affiliation(s)
- Laurenz A. Herr
- Signaling Research Centers BIOSS and CIBSS; University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany
| | - Gina J. Fiala
- Signaling Research Centers BIOSS and CIBSS; University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Sagar
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna-Maria Schaffer
- Signaling Research Centers BIOSS and CIBSS; University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany
| | - Jonas F. Hummel
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Germany
| | - Marina Zintchenko
- Signaling Research Centers BIOSS and CIBSS; University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany
| | - Katrin Raute
- Signaling Research Centers BIOSS and CIBSS; University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Rubí M.-H. Velasco Cárdenas
- Signaling Research Centers BIOSS and CIBSS; University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany
| | - Beate Heizmann
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Karolina Ebert
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Germany
| | - Kerstin Fehrenbach
- Signaling Research Centers BIOSS and CIBSS; University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany
| | - Iga Janowska
- Signaling Research Centers BIOSS and CIBSS; University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany
| | - Susan Chan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Yakup Tanriver
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Germany
- Department of Medicine IV: Nephrology and Primary Care, Medical Center, University of Freiburg, Freiburg, Germany
| | - Susana Minguet
- Signaling Research Centers BIOSS and CIBSS; University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Wolfgang W. Schamel
- Signaling Research Centers BIOSS and CIBSS; University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Sung DB, Lee JS. Natural-product-based fluorescent probes: recent advances and applications. RSC Med Chem 2023; 14:412-432. [PMID: 36970151 PMCID: PMC10034199 DOI: 10.1039/d2md00376g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Fluorescent probes are attractive tools for biology, drug discovery, disease diagnosis, and environmental analysis. In bioimaging, these easy-to-operate and inexpensive probes can be used to detect biological substances, obtain detailed cell images, track in vivo biochemical reactions, and monitor disease biomarkers without damaging biological samples. Over the last few decades, natural products have attracted extensive research interest owing to their great potential as recognition units for state-of-the-art fluorescent probes. This review describes representative natural-product-based fluorescent probes and recent discoveries, with a particular focus on fluorescent bioimaging and biochemical studies.
Collapse
Affiliation(s)
- Dan-Bi Sung
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology Busan Republic of Korea
| | - Jong Seok Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology Busan Republic of Korea
- Department of Marine Biotechnology, Korea University of Science and Technology Daejeon Republic of Korea
| |
Collapse
|
6
|
Parab S, Doshi G. The Experimental Animal Models in Psoriasis Research: A Comprehensive Review. Int Immunopharmacol 2023; 117:109897. [PMID: 36822099 DOI: 10.1016/j.intimp.2023.109897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/11/2023] [Indexed: 02/23/2023]
Abstract
Psoriasis is an autoimmune, chronic, inflammatory skin condition mediated by T cells. It differs from other inflammatory conditions by causing significant alterations in epidermal cell proliferation and differentiation that are both complicated and prominent. The lack of an appropriate animal model has significantly hindered studies into the pathogenic mechanisms of psoriasis since animals other than humans typically do not exhibit the complex phenotypic features of human psoriasis. A variety of methods, including spontaneous mutations, drug-induced mutations, genetically engineered animals, xenotransplantation models, and immunological reconstitution approaches, have all been employed to study specific characteristics in the pathogenesis of psoriasis. Although some of these approaches have been used for more than 50 years and far more models have been introduced recently, they have surprisingly not yet undergone detailed validation. Despite their limitations, these models have shown a connection between keratinocyte hyperplasia, vascular hyperplasia, and a cell-mediated immune response in the skin. The xenotransplantation of diseased or unaffected human skin onto immune-compromised recipients has also significantly aided psoriasis research. This technique has been used in a variety of ways to investigate the function of T lymphocytes and other cells, including preclinical therapeutic studies. The design of pertinent in vivo and in vitro psoriasis models is currently of utmost concern and a crucial step toward its cure. This article outlines the general approach in the development of psoriasis-related animal models, aspects of some specific models, along with their strengths and limitations.
Collapse
Affiliation(s)
- Siddhi Parab
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| | - Gaurav Doshi
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
7
|
Role of NKT cells in cancer immunotherapy-from bench to bed. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:29. [PMID: 36460881 DOI: 10.1007/s12032-022-01888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022]
Abstract
Natural killer T (NKT) cells are a specific T cell subset known to express the αβ-T cell receptor (TCR) for antigens identification and express typical NK cell specifications, such as surface expression of CD56 and CD16 markers as well as production of granzyme. Human NKT cells are divided into two subgroups based on their cytokine receptor and TCR repertoire. Both of them are CD1-restricted and recognize lipid antigens presented by CD1d molecules. Studies have demonstrated that these cells are essential in defense against malignancies. These cells secret proinflammatory and regulatory cytokines that stimulate or suppress immune system responses. In several murine tumor models, activation of type I NKT cells induces tumor rejection and inhibits metastasis's spread. However, type II NKT cells are associated with an inhibitory and regulatory function during tumor immune responses. Variant NKT cells may suppress tumor immunity via different mechanisms that require cross-talk with other immune-regulatory cells. NKT-like cells display high tumor-killing abilities against many tumor cells. In the recent decade, different studies have been performed based on the application of NKT-based immunotherapy for cancer therapy. Moreover, manipulation of NKT cells through administering autologous dendritic cell (DC) loaded with α-galactosylceramide (α-GalCer) and direct α-GalCer injection has also been tested. In this review, we described different subtypes of NKT cells, their function in the anti-tumor immune responses, and the application of NKT cells in cancer immunotherapy from bench to bed.
Collapse
|
8
|
Shojaei Z, Jafarpour R, Mehdizadeh S, Bayatipoor H, Pashangzadeh S, Motallebnezhad M. Functional prominence of natural killer cells and natural killer T cells in pregnancy and infertility: A comprehensive review and update. Pathol Res Pract 2022; 238:154062. [PMID: 35987030 DOI: 10.1016/j.prp.2022.154062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
During pregnancy, complicated connections are formed between a mother and a fetus. In a successful pregnancy, the maternal-fetal interface is affected by dynamic changes, and the fetus is protected against the mother's immune system. Natural killer (NK) cells are one of the immune system cells in the female reproductive system that play an essential role in the physiology of pregnancy. NK cells not only exist in peripheral blood (PB) but also can exist in the decidua. Studies have suggested multiple roles for these cells, including decidualization, control of trophoblast growth and invasion, embryo acceptance and maintenance by the mother, and facilitation of placental development during pregnancy. Natural killer T (NKT) cells are another group of NK cells that play a crucial role in the maintenance of pregnancy and regulation of the immune system during pregnancy. Studies show that NK and NKT cells are not only effective in maintaining pregnancy but also can be involved in infertility-related diseases. This review focuses on NK and NKT cells biology and provides a detailed description of the functions of these cells in implantation, placentation, and immune tolerance during pregnancy and their role in pregnancy complications.
Collapse
Affiliation(s)
- Zeinab Shojaei
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Jafarpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Saber Mehdizadeh
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Hashem Bayatipoor
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Pashangzadeh
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Motallebnezhad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Santos J, Calabrese DR, Greenland JR. Lymphocytic Airway Inflammation in Lung Allografts. Front Immunol 2022; 13:908693. [PMID: 35911676 PMCID: PMC9335886 DOI: 10.3389/fimmu.2022.908693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Lung transplant remains a key therapeutic option for patients with end stage lung disease but short- and long-term survival lag other solid organ transplants. Early ischemia-reperfusion injury in the form of primary graft dysfunction (PGD) and acute cellular rejection are risk factors for chronic lung allograft dysfunction (CLAD), a syndrome of airway and parenchymal fibrosis that is the major barrier to long term survival. An increasing body of research suggests lymphocytic airway inflammation plays a significant role in these important clinical syndromes. Cytotoxic T cells are observed in airway rejection, and transcriptional analysis of airways reveal common cytotoxic gene patterns across solid organ transplant rejection. Natural killer (NK) cells have also been implicated in the early allograft damage response to PGD, acute rejection, cytomegalovirus, and CLAD. This review will examine the roles of lymphocytic airway inflammation across the lifespan of the allograft, including: 1) The contribution of innate lymphocytes to PGD and the impact of PGD on the adaptive immune response. 2) Acute cellular rejection pathologies and the limitations in identifying airway inflammation by transbronchial biopsy. 3) Potentiators of airway inflammation and heterologous immunity, such as respiratory infections, aspiration, and the airway microbiome. 4) Airway contributions to CLAD pathogenesis, including epithelial to mesenchymal transition (EMT), club cell loss, and the evolution from constrictive bronchiolitis to parenchymal fibrosis. 5) Protective mechanisms of fibrosis involving regulatory T cells. In summary, this review will examine our current understanding of the complex interplay between the transplanted airway epithelium, lymphocytic airway infiltration, and rejection pathologies.
Collapse
Affiliation(s)
- Jesse Santos
- Department of Medicine University of California, San Francisco, San Francisco, CA, United States
| | - Daniel R. Calabrese
- Department of Medicine University of California, San Francisco, San Francisco, CA, United States
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA, United States
| | - John R. Greenland
- Department of Medicine University of California, San Francisco, San Francisco, CA, United States
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA, United States
| |
Collapse
|
10
|
Cavalcante MKDA, de Freitas e Silva R, Pereira VRA, Brelaz-de-Castro MCA. Opinion Article: NK Cells in Cutaneous Leishmaniasis: Protection or Damage? Front Immunol 2022; 13:933490. [PMID: 35844579 PMCID: PMC9283678 DOI: 10.3389/fimmu.2022.933490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Marton Kaique de Andrade Cavalcante
- Department of Immunology, Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Recife, Brazil
- Parasitology Laboratory, Federal University of Pernambuco, Vitoria de Santo Antão, Brazil
| | - Rafael de Freitas e Silva
- Department of Immunology, Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Recife, Brazil
- Department of Natural Sciences, University of Pernambuco, Garanhuns, Brazil
| | | | - Maria Carolina Accioly Brelaz-de-Castro
- Department of Immunology, Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Recife, Brazil
- Parasitology Laboratory, Federal University of Pernambuco, Vitoria de Santo Antão, Brazil
- *Correspondence: Maria Carolina Accioly Brelaz-de-Castro,
| |
Collapse
|
11
|
Nong C, Guan P, Li L, Zhang H, Hu H. Tumor immunotherapy: Mechanisms and clinical applications. MEDCOMM – ONCOLOGY 2022. [DOI: 10.1002/mog2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Cheng Nong
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Pengbo Guan
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Li Li
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Hongbo Hu
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
- Chongqing International Institution for Immunology Chongqing China
| |
Collapse
|
12
|
Vakrakou AG, Kolilekas L, Lama N, Katsanos S, Stratakos G, Tsougos I, Manali E, Grigoriou E, Psarra K, Kilidireas C, Papiris S, Kelekis NL, Gialafos EJ. Peripheral blood natural killer cells in sarcoidosis are associated with early cardiac involvement. Eur J Clin Invest 2022; 52:e13742. [PMID: 35037712 DOI: 10.1111/eci.13742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/28/2021] [Accepted: 01/02/2022] [Indexed: 12/01/2022]
Abstract
AIM To evaluate the distribution of circulating immune cell subsets in peripheral blood of patients with sarcoidosis and investigate if there is an association with an underlying cardiac involvement. METHODS AND RESULTS Eighty-five newly diagnosed treatment-naïve patients with sarcoidosis (50 women) were included in the study. All patients underwent a thorough cardiac investigation, including cardiac magnetic resonance imaging (CMR). Of all patients, 19 (23.53%) had myocardial involvement, and the NK subpopulation in these patients in peripheral blood was significantly decreased compared to patients without (n = 63, p = 0.001 and p = 0.003 respectively). The absolute number of NKT cells (CD3+CD16/56+ ) in patients with cardiac involvement was highly correlated with T2 map increased values in MRI (r = -686, p = 0.041) showing that low NKT cell count correlates with the inflammatory process of the heart. No difference in CD19, CD3, CD4, CD8 and CD3- NK cell counts was found between groups. Lung severity was not found to correlate with the number of NK cells. CONCLUSION We found that low NK cell count in peripheral blood of patients with sarcoidosis is associated with cardiac involvement, and the number of NK-T cells correlates with CMR findings indicative of myocardial inflammation. This finding might have a potential clinical application in detecting clinically silent cardiac involvement in sarcoidosis and may also suggest potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Aigli G Vakrakou
- Neuroimmunology Laboratory, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Immunology and Histocompatibility Department, Evangelismos Hospital, Athens, Greece
| | | | - Niki Lama
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Spiros Katsanos
- Department of Cardiology, Medical School, General University Hospital "Attikon", National and Kapodistrian University of Athens, Athens, Greece
| | - Grigorios Stratakos
- Respiratory Medicine Department, Athens Chest Hospital 'Sotiria' Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ilias Tsougos
- Department of Cardiology, Heart Failure and Preventive Cardiology Section, Ygeia Hospital, Athens, Greece
| | - Effrosyni Manali
- Pulmonary Medicine Department, Medical School, General University Hospital 'Attikon', National and Kapodistrian University of Athens, Athens, Greece
| | - Eirini Grigoriou
- Immunology and Histocompatibility Department, Evangelismos Hospital, Athens, Greece
| | - Katherina Psarra
- Immunology and Histocompatibility Department, Evangelismos Hospital, Athens, Greece
| | - Constantinos Kilidireas
- Neuroimmunology Laboratory, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece.,First Department of Neurology, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Spiros Papiris
- Pulmonary Medicine Department, Medical School, General University Hospital 'Attikon', National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos L Kelekis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elias J Gialafos
- Department of Cardiology, Medical School, General University Hospital "Attikon", National and Kapodistrian University of Athens, Athens, Greece.,First Department of Neurology, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
13
|
Velikkakam T, Gollob KJ, Dutra WO. Double-negative T cells: Setting the stage for disease control or progression. Immunology 2022; 165:371-385. [PMID: 34939192 PMCID: PMC10626195 DOI: 10.1111/imm.13441] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022] Open
Abstract
Double-negative (DN) T cells are present at relatively low frequencies in human peripheral blood, and are characterized as expressing the alpha-beta or gamma-delta T-cell receptor (TCR), but not the CD4 nor the CD8 co-receptors. Despite their low frequencies, these cells are potent producers of cytokines and, thus, are key orchestrators of immune responses. DN T cells were initially associated with induction of peripheral immunological tolerance and immunomodulatory activities related to disease prevention. However, other studies demonstrated that these cells can also display effector functions associated with pathology development. This apparent contradiction highlighted the heterogeneity of the DN T-cell population. Here, we review phenotypic and functional characteristics of DN T cells, emphasizing their role in human diseases. The need for developing biomarkers to facilitate the translation of studies from animal models to humans will also be discussed. Finally, we will examine DN T cells as promising therapeutic targets to prevent or inhibit human disease development.
Collapse
Affiliation(s)
- Teresiama Velikkakam
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Pós-graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kenneth J. Gollob
- Hospital Israelita Albert Einsten, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais – INCT-DT, Belo Horizonte, Brazil
| | - Walderez Ornelas Dutra
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Pós-graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais – INCT-DT, Belo Horizonte, Brazil
| |
Collapse
|
14
|
Liggett JR, Kang J, Ranjit S, Rodriguez O, Loh K, Patil D, Cui Y, Duttargi A, Nguyen S, He B, Lee Y, Oza K, Frank BS, Kwon D, Li HH, Kallakury B, Libby A, Levi M, Robson SC, Fishbein TM, Cui W, Albanese C, Khan K, Kroemer A. Oral N-acetylcysteine decreases IFN-γ production and ameliorates ischemia-reperfusion injury in steatotic livers. Front Immunol 2022; 13:898799. [PMID: 36148239 PMCID: PMC9486542 DOI: 10.3389/fimmu.2022.898799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/11/2022] [Indexed: 12/05/2022] Open
Abstract
Type 1 Natural Killer T-cells (NKT1 cells) play a critical role in mediating hepatic ischemia-reperfusion injury (IRI). Although hepatic steatosis is a major risk factor for preservation type injury, how NKT cells impact this is understudied. Given NKT1 cell activation by phospholipid ligands recognized presented by CD1d, we hypothesized that NKT1 cells are key modulators of hepatic IRI because of the increased frequency of activating ligands in the setting of hepatic steatosis. We first demonstrate that IRI is exacerbated by a high-fat diet (HFD) in experimental murine models of warm partial ischemia. This is evident in the evaluation of ALT levels and Phasor-Fluorescence Lifetime (Phasor-FLIM) Imaging for glycolytic stress. Polychromatic flow cytometry identified pronounced increases in CD45+CD3+NK1.1+NKT1 cells in HFD fed mice when compared to mice fed a normal diet (ND). This observation is further extended to IRI, measuring ex vivo cytokine expression in the HFD and ND. Much higher interferon-gamma (IFN-γ) expression is noted in the HFD mice after IRI. We further tested our hypothesis by performing a lipidomic analysis of hepatic tissue and compared this to Phasor-FLIM imaging using "long lifetime species", a byproduct of lipid oxidation. There are higher levels of triacylglycerols and phospholipids in HFD mice. Since N-acetylcysteine (NAC) is able to limit hepatic steatosis, we tested how oral NAC supplementation in HFD mice impacted IRI. Interestingly, oral NAC supplementation in HFD mice results in improved hepatic enhancement using contrast-enhanced magnetic resonance imaging (MRI) compared to HFD control mice and normalization of glycolysis demonstrated by Phasor-FLIM imaging. This correlated with improved biochemical serum levels and a decrease in IFN-γ expression at a tissue level and from CD45+CD3+CD1d+ cells. Lipidomic evaluation of tissue in the HFD+NAC mice demonstrated a drastic decrease in triacylglycerol, suggesting downregulation of the PPAR-γ pathway.
Collapse
Affiliation(s)
- Jedson R Liggett
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States.,Department of Surgery, Naval Medical Center Portsmouth, Portsmouth, VA, United States
| | - Jiman Kang
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Suman Ranjit
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States.,Microscopy & Imaging Shared Resource, Georgetown University, Washington, DC, United States
| | - Olga Rodriguez
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Katrina Loh
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Digvijay Patil
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Yuki Cui
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Anju Duttargi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Sang Nguyen
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States
| | - Britney He
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States
| | - Yichien Lee
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Kesha Oza
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Brett S Frank
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - DongHyang Kwon
- Department of Pathology, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Heng-Hong Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Bhaskar Kallakury
- Department of Pathology, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Andrew Libby
- Division of Endocrinology, Metabolism, & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Simon C Robson
- Departments of Anesthesiology and Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Thomas M Fishbein
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Wanxing Cui
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Chris Albanese
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States.,Department of Radiology, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Khalid Khan
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
15
|
Synthetic approaches for BF2-containing adducts of outstanding biological potential. A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Abstract
Gastrointestinal (GI) cancers represent a complex array of cancers that affect the digestive system. This includes liver, pancreatic, colon, rectal, anal, gastric, esophageal, intestinal and gallbladder cancer. Patients diagnosed with certain GI cancers typically have low survival rates, so new therapeutic approaches are needed. A potential approach is to harness the potent immunoregulatory properties of natural killer T (NKT) cells which are true T cells, not natural killer (NK) cells, that recognize lipid instead of peptide antigens presented by the non-classical major histocompatibility (MHC) molecule CD1d. The NKT cell subpopulation is known to play a vital role in tumor immunity by bridging innate and adaptive immune responses. In GI cancers, NKT cells can contribute to either antitumor or protumor immunity depending on the cytokine profile expressed and type of cancer. This review discusses the complexities of the role of NKT cells in liver, colon, pancreatic and gastric cancers with an emphasis on type I NKT cells.
Collapse
Affiliation(s)
- Julian Burks
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA,CONTACT Julian Burks National Cancer Institute, National Institute of Health, Building 41/Room D702, 41 Medlars Drive, Bethesda, Maryland20892, USA
| | - Purevdorj B. Olkhanud
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jay A. Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Gong L, Liao L, Dai X, Xue X, Peng C, Li Y. The dual role of immune response in acetaminophen hepatotoxicity: Implication for immune pharmacological targets. Toxicol Lett 2021; 351:37-52. [PMID: 34454010 DOI: 10.1016/j.toxlet.2021.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022]
Abstract
Acetaminophen (APAP), one of the most widely used antipyretic and analgesic drugs, principally contributes to drug-induced liver injury when taken at a high dose. APAP-induced liver injury (AILI) results in extensive necrosis of hepatocytes along with the occurrence of multiple intracellular events such as metabolic activation, cell injury, and signaling pathway activation. However, the specific role of the immune response in AILI remains controversial for its complicated regulatory mechanisms. A variety of inflammasomes, immune cells, inflammatory mediators, and signaling transduction pathways are activated in AILI. These immune components play antagonistic roles in aggravating the liver injury or promoting regeneration. Recent experimental studies indicated that natural products showed remarkable therapeutic effects against APAP hepatotoxicity due to their favorable efficacy. Therefore, this study aimed to review the present understanding of the immune response in AILI and attempted to establish ties among a series of inflammatory cascade reactions. Also, the immune molecular mechanisms of natural products in the treatment of AILI were extensively reviewed, thus providing a fundamental basis for exploring the potential pharmacological targets associated with immune interventions.
Collapse
Affiliation(s)
- Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xuyang Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
18
|
Natural Killer T (NKT) Cells and Periodontitis: Potential Regulatory Role of NKT10 Cells. Mediators Inflamm 2021; 2021:5573937. [PMID: 34594157 PMCID: PMC8478603 DOI: 10.1155/2021/5573937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/24/2021] [Indexed: 12/03/2022] Open
Abstract
Natural killer T (NKT) cells constitute a unique subset of T lymphocytes characterized by specifically interacting with antigenic glycolipids conjugated to the CD1d receptor on antigen-presenting cells. Functionally, NKT cells are capable of performing either effector or suppressor immune responses, depending on their production of proinflammatory or anti-inflammatory cytokines, respectively. Effector NKT cells are subdivided into three subsets, termed NKT1, NKT2, and NKT17, based on the cytokines they produce and their similarity to the cytokine profile produced by Th1, Th2, and Th17 lymphocytes, respectively. Recently, a new subgroup of NKT cells termed NKT10 has been described, which cooperates and interacts with other immune cells to promote immunoregulatory responses. Although the tissue-specific functions of NKT cells have not been fully elucidated, their activity has been associated with the pathogenesis of different inflammatory diseases with immunopathogenic similarities to periodontitis, including osteolytic pathologies such as rheumatoid arthritis and osteoporosis. In the present review, we revise and discuss the pathogenic characteristics of NKT cells in these diseases and their role in the pathogenesis of periodontitis; particularly, we analyze the potential regulatory role of the IL-10-producing NKT10 cells.
Collapse
|
19
|
Higher circulating natural killer cells and lower lactate levels at admission predict spontaneous survival in non-acetaminophen induced acute liver failure. Clin Immunol 2021; 231:108829. [PMID: 34419620 DOI: 10.1016/j.clim.2021.108829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 11/20/2022]
Abstract
Massive cellular necrosis in acute liver failure (ALF) is dominantly immune mediated and innate immune cells are major pathophysiological determinants in liver damage. In fifty ALF and fifteen healthy, immune cells phenotyping by flow-cytometry, DAMPs using ELISA were analysed and correlated with clinical and biochemical parameters. ALF patients (aged 27 ± 9 yr, 56% males, 78% viral aetiology) showed no difference in neutrophils and classical monocytes, but significantly increased intermediate monocytes (CD14+CD16+) (p < 0.01), decreased non-classical monocytes (CD14-CD16+) and CD3-veCD16+CD56+ NK cells compared to HC. ALF patients who survived, showed higher NK cells (9.28 vs. 5.1%, p < 0.001) among lymphocytes and lower serum lactate levels (6.1 vs. 28, Odds ratio 2.23, CI 1.27-3.94) than non- survivors had higher. Logistic regression model predicted the combination of lactate levels with NK cell percentage at admission for survival. In conclusion, Combination of NK cell frequency among lymphocytes and lactate levels at admission can reliably predict survival of ALF patients.
Collapse
|
20
|
Exploring the Pathogenic Role and Therapeutic Implications of Interleukin 2 in Autoimmune Hepatitis. Dig Dis Sci 2021; 66:2493-2512. [PMID: 32833154 DOI: 10.1007/s10620-020-06562-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022]
Abstract
Interleukin 2 is essential for the expansion of regulatory T cells, and low-dose recombinant interleukin 2 has improved the clinical manifestations of diverse autoimmune diseases in preliminary studies. The goals of this review are to describe the actions of interleukin 2 and its receptor, present preliminary experiences with low-dose interleukin 2 in the treatment of diverse autoimmune diseases, and evaluate its potential as a therapeutic intervention in autoimmune hepatitis. English abstracts were identified in PubMed by multiple search terms. Full-length articles were selected for review, and secondary and tertiary bibliographies were developed. Interleukin 2 is critical for the thymic selection, peripheral expansion, induction, and survival of regulatory T cells, and it is also a growth factor for activated T cells and natural killer cells. Interleukin 2 activates the signal transducer and activator of transcription 5 after binding with its trimeric receptor on regulatory T cells. Immune suppressor activity is increased; anti-inflammatory interleukin 10 is released; pro-inflammatory interferon-gamma is inhibited; and activation-induced apoptosis of CD8+ T cells is upregulated. Preliminary experiences with cyclic injections of low-dose recombinant interleukin 2 in diverse autoimmune diseases have demonstrated increased numbers of circulating regulatory T cells, preserved regulatory function, improved clinical manifestations, and excellent tolerance. Similar improvements have been recognized in one of two patients with refractory autoimmune hepatitis. In conclusion, interferon 2 has biological actions that favor the immune suppressor functions of regulatory T cells, and low-dose regimens in preliminary studies encourage its rigorous investigation in autoimmune hepatitis.
Collapse
|
21
|
Gao Y, Guo J, Bao X, Xiong F, Ma Y, Tan B, Yu L, Zhao Y, Lu J. Adoptive Transfer of Autologous Invariant Natural Killer T Cells as Immunotherapy for Advanced Hepatocellular Carcinoma: A Phase I Clinical Trial. Oncologist 2021; 26:e1919-e1930. [PMID: 34255901 PMCID: PMC8571770 DOI: 10.1002/onco.13899] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/08/2021] [Indexed: 12/17/2022] Open
Abstract
Lessons Learned Administration of autologous invariant natural killer T (iNKT) cells was safe and well‐tolerated in patients with hepatocellular carcinoma (Barcelona Clinic Liver Cancer stage B/C). Expanded iNKT cells produced T‐helper 1–like responses with possible antitumor activity. No severe adverse events were observed in any of the enrolled patients, including one patient who received 1010 in vitro–expanded autologous iNKT cells as a single infusion.
Background Invariant natural killer T cells co‐express T‐cell antigen receptor and natural killer (NK) cell receptors. Invariant natural killer T (iNKT) cells exhibit antitumor activity, but their numbers and functions are impaired in patients with hepatocellular carcinoma (HCC). The adoptive transfer of iNKT cells might treat advanced HCC. Methods This phase I study (NCT03175679) enrolled 10 patients with HCC (Barcelona Clinic Liver Cancer [BCLC] stage B/C) at Beijing YouAn Hospital (April 2017 to May 2018). iNKT cells isolated from peripheral blood mononuclear cells (PBMCs) were expanded and alpha‐galactosylceramide (α‐GalCer)–pulsed. Dosage escalated from 3 × 107 to 6 × 107 to 9 × 107 cells/m2 (3+3 design). An exploratory dose trial (1 × 1010 cells/m2) was conducted in one patient. Results Expanded iNKT cells produced greater quantities of T‐helper 1 (Th1) cytokines (e.g., interferon‐gamma, perforin, and granzyme B) but less interleukin‐4 than nonexpanded iNKT cells. Circulating numbers of iNKT cells and activated NK cells were increased after iNKT cell infusion. Most treatment‐related adverse events were grade 1–2, and three grade 3 adverse events were reported; all resolved without treatment. Four patients were progression‐free at 5.5, 6, 7, and 11 months after therapy, and one patient was alive and without tumor recurrence at the last follow‐up. Five patients died at 1.5 to 11 months after treatment. Conclusion Autologous iNKT cell treatment is safe and well‐tolerated. Expanded iNKT cells produce Th1‐like responses with possible antitumor activity. The antitumor effects of iNKT cell infusion in patients with advanced HCC merit further investigation.
Collapse
Affiliation(s)
- Yao Gao
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jia Guo
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xuli Bao
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Fang Xiong
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yanpin Ma
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Bingqin Tan
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lele Yu
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yong Zhao
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jun Lu
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
22
|
Czaja AJ. Incorporating mucosal-associated invariant T cells into the pathogenesis of chronic liver disease. World J Gastroenterol 2021; 27:3705-3733. [PMID: 34321839 PMCID: PMC8291028 DOI: 10.3748/wjg.v27.i25.3705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/22/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells have been described in liver and non-liver diseases, and they have been ascribed antimicrobial, immune regulatory, protective, and pathogenic roles. The goals of this review are to describe their biological properties, indicate their involvement in chronic liver disease, and encourage investigations that clarify their actions and therapeutic implications. English abstracts were identified in PubMed by multiple search terms, and bibliographies were developed. MAIT cells are activated by restricted non-peptides of limited diversity and by multiple inflammatory cytokines. Diverse pro-inflammatory, anti-inflammatory, and immune regulatory cytokines are released; infected cells are eliminated; and memory cells emerge. Circulating MAIT cells are hyper-activated, immune exhausted, dysfunctional, and depleted in chronic liver disease. This phenotype lacks disease-specificity, and it does not predict the biological effects. MAIT cells have presumed protective actions in chronic viral hepatitis, alcoholic hepatitis, non-alcoholic fatty liver disease, primary sclerosing cholangitis, and decompensated cirrhosis. They have pathogenic and pro-fibrotic actions in autoimmune hepatitis and mixed actions in primary biliary cholangitis. Local factors in the hepatic microenvironment (cytokines, bile acids, gut-derived bacterial antigens, and metabolic by-products) may modulate their response in individual diseases. Investigational manipulations of function are warranted to establish an association with disease severity and outcome. In conclusion, MAIT cells constitute a disease-nonspecific, immune response to chronic liver inflammation and infection. Their pathological role has been deduced from their deficiencies during active liver disease, and future investigations must clarify this role, link it to outcome, and explore therapeutic interventions.
Collapse
Affiliation(s)
- Albert J Czaja
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, United States
| |
Collapse
|
23
|
Durán-Laforet V, Peña-Martínez C, García-Culebras A, Alzamora L, Moro MA, Lizasoain I. Pathophysiological and pharmacological relevance of TLR4 in peripheral immune cells after stroke. Pharmacol Ther 2021; 228:107933. [PMID: 34174279 DOI: 10.1016/j.pharmthera.2021.107933] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023]
Abstract
Stroke is a very common disease being the leading cause of death and disability worldwide. The immune response subsequent to an ischemic stroke is a crucial factor in its physiopathology and outcome. This response is not limited to the injury site. In fact, the immune response to the ischemic process mobilizes mainly circulating cells which upon activation will be recruited to the injury site. When a stroke occurs, molecules that are usually retained inside the cell bodies are released into the extracellular space by uncontrolled cell death. These molecules can bind to the Toll-like receptor 4 (TLR4) in circulating immune cells which are then activated, eliciting, although not exclusively, the inflammatory response to the stroke. In this review, we present an up-to-date summary of the role of the different peripheral immune cells in stroke as well as the role of TLR4 in the function of each cell type in ischemia. Also, we summarize the different antagonists developed against TLR4 and their potential as a pharmacological tool for stroke treatment.
Collapse
Affiliation(s)
- V Durán-Laforet
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital, 12 de Octubre (imas12), Madrid, Spain.
| | - C Peña-Martínez
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital, 12 de Octubre (imas12), Madrid, Spain
| | - A García-Culebras
- Neurovascular Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - L Alzamora
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital, 12 de Octubre (imas12), Madrid, Spain
| | - M A Moro
- Neurovascular Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - I Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital, 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
24
|
Burn OK, Pankhurst TE, Painter GF, Connor LM, Hermans IF. Harnessing NKT cells for vaccination. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab013. [PMID: 36845569 PMCID: PMC9914585 DOI: 10.1093/oxfimm/iqab013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/14/2022] Open
Abstract
Natural killer T (NKT) cells are innate-like T cells capable of enhancing both innate and adaptive immune responses. When NKT cells are stimulated in close temporal association with co-administered antigens, strong antigen-specific immune responses can be induced, prompting the study of NKT cell agonists as novel immune adjuvants. This activity has been attributed to the capacity of activated NKT cells to act as universal helper cells, with the ability to provide molecular signals to dendritic cells and B cells that facilitate T cell and antibody responses, respectively. These signals can override the requirement for conventional CD4+ T cell help, so that vaccines can be designed without need to consider CD4+ T cell repertoire and major histocompatibility complex Class II diversity. Animal studies have highlighted some drawbacks of the approach, namely, concerns around induction of NKT cell hyporesponsiveness, which may limit vaccine boosting, and potential for toxicity. Here we highlight studies that suggest these obstacles can be overcome by targeted delivery in vivo. We also feature new studies that suggest activating NKT cells can help encourage differentiation of T cells into tissue-resident memory cells that play an important role in prophylaxis against infection, and may be required in cancer therapy.
Collapse
Affiliation(s)
- Olivia K Burn
- Malaghan Institute of Medical Research, PO Box 7060, Wellington 6042, New Zealand
| | - Theresa E Pankhurst
- The School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Gavin F Painter
- The Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Petone 5046, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Lisa M Connor
- Malaghan Institute of Medical Research, PO Box 7060, Wellington 6042, New Zealand,The School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, PO Box 7060, Wellington 6042, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, New Zealand,Correspondence address. Malaghan Institute of Medical Research, Wellington, New Zealand. Tel: +64 4 4996914; E-mail: (I.F.H.)
| |
Collapse
|
25
|
Gerussi A, Natalini A, Antonangeli F, Mancuso C, Agostinetto E, Barisani D, Di Rosa F, Andrade R, Invernizzi P. Immune-Mediated Drug-Induced Liver Injury: Immunogenetics and Experimental Models. Int J Mol Sci 2021; 22:4557. [PMID: 33925355 PMCID: PMC8123708 DOI: 10.3390/ijms22094557] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) is a challenging clinical event in medicine, particularly because of its ability to present with a variety of phenotypes including that of autoimmune hepatitis or other immune mediated liver injuries. Limited diagnostic and therapeutic tools are available, mostly because its pathogenesis has remained poorly understood for decades. The recent scientific and technological advancements in genomics and immunology are paving the way for a better understanding of the molecular aspects of DILI. This review provides an updated overview of the genetic predisposition and immunological mechanisms behind the pathogenesis of DILI and presents the state-of-the-art experimental models to study DILI at the pre-clinical level.
Collapse
Affiliation(s)
- Alessio Gerussi
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (D.B.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology (IBPM), National Research Council of Italy (CNR), 00185 Rome, Italy; (A.N.); (F.A.); (F.D.R.)
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology (IBPM), National Research Council of Italy (CNR), 00185 Rome, Italy; (A.N.); (F.A.); (F.D.R.)
| | - Clara Mancuso
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (D.B.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Elisa Agostinetto
- Academic Trials Promoting Team, Institut Jules Bordet, L’Universite’ Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
- Medical Oncology and Hematology Unit, Humanitas Clinical and Research Center—IRCCS, Humanitas Cancer Center, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
| | - Donatella Barisani
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (D.B.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology (IBPM), National Research Council of Italy (CNR), 00185 Rome, Italy; (A.N.); (F.A.); (F.D.R.)
| | - Raul Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), UGC Aparato Digestivo, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29016 Málaga, Spain;
| | - Pietro Invernizzi
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (D.B.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| |
Collapse
|
26
|
Hanson ED, Bates LC, Bartlett DB, Campbell JP. Does exercise attenuate age- and disease-associated dysfunction in unconventional T cells? Shining a light on overlooked cells in exercise immunology. Eur J Appl Physiol 2021; 121:1815-1834. [PMID: 33822261 DOI: 10.1007/s00421-021-04679-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/28/2021] [Indexed: 02/06/2023]
Abstract
Unconventional T Cells (UTCs) are a unique population of immune cells that links innate and adaptive immunity. Following activation, UTCs contribute to a host of immunological activities, rapidly responding to microbial and viral infections and playing key roles in tumor suppression. Aging and chronic disease both have been shown to adversely affect UTC numbers and function, with increased inflammation, change in body composition, and physical inactivity potentially contributing to the decline. One possibility to augment circulating UTCs is through increased physical activity. Acute exercise is a potent stimulus leading to the mobilization of immune cells while the benefits of exercise training may include anti-inflammatory effects, reductions in fat mass, and improved fitness. We provide an overview of age-related changes in UTCs, along with chronic diseases that are associated with altered UTC number and function. We summarize how UTCs respond to acute exercise and exercise training and discuss potential mechanisms that may lead to improved frequency and function.
Collapse
Affiliation(s)
- Erik D Hanson
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27517, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Lauren C Bates
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27517, USA.,Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David B Bartlett
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC, USA
| | | |
Collapse
|
27
|
Liu X, Gosline SJC, Pflieger LT, Wallet P, Iyer A, Guinney J, Bild AH, Chang JT. Knowledge-based classification of fine-grained immune cell types in single-cell RNA-Seq data. Brief Bioinform 2021; 22:6157454. [PMID: 33681983 DOI: 10.1093/bib/bbab039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 11/13/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-Seq) is an emerging strategy for characterizing immune cell populations. Compared to flow or mass cytometry, scRNA-Seq could potentially identify cell types and activation states that lack precise cell surface markers. However, scRNA-Seq is currently limited due to the need to manually classify each immune cell from its transcriptional profile. While recently developed algorithms accurately annotate coarse cell types (e.g. T cells versus macrophages), making fine distinctions (e.g. CD8+ effector memory T cells) remains a difficult challenge. To address this, we developed a machine learning classifier called ImmClassifier that leverages a hierarchical ontology of cell type. We demonstrate that its predictions are highly concordant with flow-based markers from CITE-seq and outperforms other tools (+15% recall, +14% precision) in distinguishing fine-grained cell types with comparable performance on coarse ones. Thus, ImmClassifier can be used to explore more deeply the heterogeneity of the immune system in scRNA-Seq experiments.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | - Lance T Pflieger
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Pierre Wallet
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Archana Iyer
- Center for Cancer Systems Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Andrea H Bild
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jeffrey T Chang
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
28
|
Sun K, Li YY, Jin J. A double-edged sword of immuno-microenvironment in cardiac homeostasis and injury repair. Signal Transduct Target Ther 2021; 6:79. [PMID: 33612829 PMCID: PMC7897720 DOI: 10.1038/s41392-020-00455-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/14/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
The response of immune cells in cardiac injury is divided into three continuous phases: inflammation, proliferation and maturation. The kinetics of the inflammatory and proliferation phases directly influence the tissue repair. In cardiac homeostasis, cardiac tissue resident macrophages (cTMs) phagocytose bacteria and apoptotic cells. Meanwhile, NK cells prevent the maturation and transport of inflammatory cells. After cardiac injury, cTMs phagocytose the dead cardiomyocytes (CMs), regulate the proliferation and angiogenesis of cardiac progenitor cells. NK cells prevent the cardiac fibrosis, and promote vascularization and angiogenesis. Type 1 macrophages trigger the cardioprotective responses and promote tissue fibrosis in the early stage. Reversely, type 2 macrophages promote cardiac remodeling and angiogenesis in the late stage. Circulating macrophages and neutrophils firstly lead to chronic inflammation by secreting proinflammatory cytokines, and then release anti-inflammatory cytokines and growth factors, which regulate cardiac remodeling. In this process, dendritic cells (DCs) mediate the regulation of monocyte and macrophage recruitment. Recruited eosinophils and Mast cells (MCs) release some mediators which contribute to coronary vasoconstriction, leukocyte recruitment, formation of new blood vessels, scar formation. In adaptive immunity, effector T cells, especially Th17 cells, lead to the pathogenesis of cardiac fibrosis, including the distal fibrosis and scar formation. CMs protectors, Treg cells, inhibit reduce the inflammatory response, then directly trigger the regeneration of local progenitor cell via IL-10. B cells reduce myocardial injury by preserving cardiac function during the resolution of inflammation.
Collapse
Affiliation(s)
- Kang Sun
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Yuan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Jin Jin
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
- Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
29
|
Choi JP, Woo YD, Losol P, Kim SH, Chang YS. Thymic stromal lymphopoietin production in DN32.D3 invariant natural killer T (iNKT) cell line and primary mouse liver iNKT cells. Asia Pac Allergy 2021; 11:e10. [PMID: 33604280 PMCID: PMC7870374 DOI: 10.5415/apallergy.2021.11.e10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 01/24/2021] [Indexed: 11/04/2022] Open
Abstract
Background Invariant natural killer T (iNKT) cells are known as the fast responder in allergic inflammation and the source of interleukin (IL)-4, IL-13, and interferon-gamma. Absence of iNKT cells down-regulated thymic stromal lymphopoietin (TSLP) production at the early stage of type 2 immune responses in the airway. However, it has not been reported whether iNKT cells are able to produce TSLP via stimulation of T-cell receptor (TCR). Objective We aimed to evaluate TSLP production from iNKT cells by TCR specific stimulations with anti-CD3/CD28 antibodies and α-galactoceramide (α-GalCer). Methods DN32.D3 iNKT cell line was stimulated with anti-CD3/CD28 antibodies, and TSLP production was measured in culture supernatants. Next, to confirm the TSLP production in primary mouse iNKT cells, the cells were sorted using α-GalCer-CD1d tetramer from mouse liver, and stimulated with anti-CD3/CD28 antibodies and α-GalCer. Then, cytokine productions were evaluated by enzyme-linked immunosorbent assay and quantitative polymerase chain reaction. Results TCR specific stimulation in DN32.D3 cells induced TSLP production as well as signature cytokines of iNKT cells. On the other hand, isolated primary mouse iNKT cells from liver did not show any induction of TSLP by TCR specific stimulations including anti-CD3/CD28 antibodies and α-GalCer, on the contrary to other cytokines. Conclusion This study suggested the possibility of TSLP production in iNKT cells, especially from DN32.D3 although primary mouse liver iNKT cells showed a different result.
Collapse
Affiliation(s)
- Jun-Pyo Choi
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yeon Duk Woo
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Purevsuren Losol
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Sae-Hoon Kim
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yoon-Seok Chang
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Zingaropoli MA, Perri V, Pasculli P, Cogliati Dezza F, Nijhawan P, Savelloni G, La Torre G, D'Agostino C, Mengoni F, Lichtner M, Ciardi MR, Mastroianni CM. Major reduction of NKT cells in patients with severe COVID-19 pneumonia. Clin Immunol 2020; 222:108630. [PMID: 33189887 PMCID: PMC7661928 DOI: 10.1016/j.clim.2020.108630] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Background NK cells seem to be mainly involved in COVID-19 pneumonia. Little is known about NKT cells which represent a bridge between innate and adaptive immunity. Methods We characterized peripheral blood T, NK and NKT cells in 45 patients with COVID-19 pneumonia (COVID-19 subjects) and 19 healthy donors (HDs). According to the severity of the disease, we stratified COVID-19 subjects into severe and non-severe groups. Results Compared to HDs, COVID-19 subjects showed higher percentages of NK CD57+ and CD56dim NK cells and lower percentages of NKT and CD56bright cells. In the severe group we found a significantly lower percentage of NKT cells. In a multiple logistic regression analysis, NKT cell was independently associated with the severity of the disease. Conclusions The low percentage of NKT cells in peripheral blood of COVID-19 subjects and the independent association with the severity of the disease suggests a potential role of this subset. High percentages of NK CD57+ cells and CD56dimNK cells in COVID-19 subjects Low percentages of CD56bright and NKT cells in COVID-19 subjects Severe COVID-19 pneumonia and NKT cell reduction were independently associated
Collapse
Affiliation(s)
| | - Valentina Perri
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - Patrizia Pasculli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | | | - Parni Nijhawan
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - Giulia Savelloni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - Giuseppe La Torre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - Claudia D'Agostino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - Fabio Mengoni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - Miriam Lichtner
- Infectious Diseases Unit, SM Goretti Hospital, Polo Pontino, Sapienza University of Rome, Latina, Italy
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | | |
Collapse
|
31
|
Blum K, Downs BW, Bagchi M, Kushner S, Morrison BS, Galvin J, Randsdorp K, Randsdorp J, Badgaiyan RD, Braverman ER, Bagchi D. Induction of homeostatic biological parameters in reward deficiency as a function of an iron-free multi-nutrient complex: Promoting hemoglobinization, aerobic metabolism, viral immuno-competence, and neuroinflammatory regulation. JOURNAL OF SYSTEMS AND INTEGRATIVE NEUROSCIENCE 2020; 7:10.15761/JSIN.1000234. [PMID: 35096420 PMCID: PMC8793786 DOI: 10.15761/jsin.1000234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND A common neurological condition worldwide is Reward Deficiency Syndrome (RDS) leading to both substance and non-substance addictive behaviors, that must be combatted by integrating both central nervous system and peripheral nervous system biological approaches. Integrity of hemoglobin is a crucial determining factor for the overall health functions. Nutrient repletion therapy should be a fundamental strategy to restore the healthy properties of blood. A unique patent-pending iron-free VMP35 formulation was engineered by our laboratory to restore iron-dependent hemoglobin in anemic cells using a proprietary Prodosome® absorption technology. This formulation, containing an array of nano-emulsified botanical ingredients rich in bioflavonoids, strengthens the structural integrity of connective tissues, and potentiates immune competence, cellular aerobic metabolism, and enhances efficient regulation of inflammatory events. We discuss the intricate aspects of strong vs. fragile immunity and consequential inflammatory responses to convey a deeper understanding of the varied and overly complex sequela of immunological behaviors and events. The effect of the VMP35 is mediated through highly absorbable nutritional/nutrigenomic repletion enabling improvements in the systemic set of functional behaviors. In fact, the iron-free VMP35 facilitates a "Systems Biology Approach" which restores hemoglobin status, reverses anaerobic hypoxia, improves competent immune responsivity, and regulates appropriate and controlled activation of general and neuro-inflammatory sequela. Under these pathogenic circumstances, iron-deficiency anemia has been misconceptualized, and a new nosological term, Chronic Anemia Syndrome, is proposed. The comparative therapeutic rationale of Reductionist vs. Systems Biology approaches is also explained in detail. METHODS The efficacy of the novel therapeutic iron-free VMP35 liquid nutraceutical is detailed in restoring iron-dependent hemoglobin to RBCs and boosting cellular morphology, viability, and immune competence, thereby reducing the need for prolonging inflammatory sequela. RESULTS This was demonstrated in a previous IRB approved multi-subject human study. In addition, two recent case studies report dramatic restorative benefits of nutrient repletion therapy of the VMP35 on subjects having experienced near-fatal events, which confirmed the findings explained in this manuscript. CONCLUSIONS This novel iron-free VMP35 modulates an array of homeostatic biological parameters such as enhanced hemoglobinization, aerobic metabolism, viral immuno-competence, and inflammatory regulation. Further research, examining mechanistic and beneficial effects in athletic performance, is in progress. Importantly, during these troubled immune challenging times, modulating an array of homeostatic immunological and inflammatory dysfunctions are tantamount to improved population outcomes. TRIAL REGISTRATION The Clinical investigation in a total of 38 subjects was conducted under an Institutional Review Board (IRB) from the Path Foundation in New York, NY (#13-009 April 25, 2013). The two case studies were done at Lancaster General Hospital, Lancaster, PA, and Jefferson University Hospital, Philadelphia, PA, USA. Both studies were retrospectively registered.
Collapse
Affiliation(s)
- Kenneth Blum
- Graduate College, Western University, Health Sciences, Pomona, CA, USA
| | - Bernard W Downs
- Victory Nutrition International, Inc., Department of R&D, Lederach, PA USA
| | | | | | | | - Jeffrey Galvin
- Vitality Medical Wellness Institute, PLLC, Charlotte, NC USA
| | | | | | - Rajendra D Badgaiyan
- Department of Psychiatry, ICHAN School of Medicine, Mount Sinai, New York, NY, USA
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, USA
- Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| | | | - Debasis Bagchi
- Victory Nutrition International, Inc., Department of R&D, Lederach, PA USA
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston college of Pharmacy, Houston, TX, USA
| |
Collapse
|
32
|
Collin R, Lombard-Vadnais F, Hillhouse EE, Lebel MÈ, Chabot-Roy G, Melichar HJ, Lesage S. MHC-Independent Thymic Selection of CD4 and CD8 Coreceptor Negative αβ T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:133-142. [PMID: 32434937 DOI: 10.4049/jimmunol.2000156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
It is becoming increasingly clear that unconventional T cell subsets, such as NKT, γδ T, mucosal-associated invariant T, and CD8αα T cells, each play distinct roles in the immune response. Subsets of these cell types can lack both CD4 and CD8 coreceptor expression. Beyond these known subsets, we identify CD4-CD8-TCRαβ+, double-negative (DN) T cells, in mouse secondary lymphoid organs. DN T cells are a unique unconventional thymic-derived T cell subset. In contrast to CD5high DN thymocytes that preferentially yield TCRαβ+ CD8αα intestinal lymphocytes, we find that mature CD5low DN thymocytes are precursors to peripheral DN T cells. Using reporter mouse strains, we show that DN T cells transit through the immature CD4+CD8+ (double-positive) thymocyte stage. Moreover, we provide evidence that DN T cells can differentiate in MHC-deficient mice. Our study demonstrates that MHC-independent thymic selection can yield DN T cells that are distinct from NKT, γδ T, mucosal-associated invariant T, and CD8αα T cells.
Collapse
Affiliation(s)
- Roxanne Collin
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Félix Lombard-Vadnais
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 0G4, Canada; and
| | - Erin E Hillhouse
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada
| | - Marie-Ève Lebel
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada
| | - Geneviève Chabot-Roy
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada
| | - Heather J Melichar
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Sylvie Lesage
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada; .,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
33
|
Licari A, Manti S, Castagnoli R, Leonardi S, Marseglia GL. Measuring inflammation in paediatric severe asthma: biomarkers in clinical practice. Breathe (Sheff) 2020; 16:190301. [PMID: 32494300 PMCID: PMC7249787 DOI: 10.1183/20734735.0301-2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Severe asthma in children is a highly heterogeneous disorder, encompassing different clinical characteristics (phenotypes) and immunopathological pathways (endotypes). Research is focusing on the identification of noninvasive biomarkers able to predict treatment response and assist in designing personalised therapies for severe asthma. Blood and sputum eosinophils, serum IgE and exhaled nitric oxide fraction mostly reflect type 2 airway inflammation in children. However, in the absence of available point-of-care biomarkers, the diagnosis of non-type 2 asthma is still reached by exclusion. In this review, we present the most recent evidence on biomarkers for severe asthma and discuss their implementation in clinical practice. We address the methods for guiding treatment decisions and patient identification, focusing on the paediatric age group. Noninvasive biomarkers should be integrated with clinical findings to assist in diagnosing and guiding personalised therapies for severe asthma in childrenhttp://bit.ly/2JPvKFV
Collapse
Affiliation(s)
- Amelia Licari
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy.,These authors contributed equally
| | - Sara Manti
- Dept of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,These authors contributed equally
| | - Riccardo Castagnoli
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Salvatore Leonardi
- Dept of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Gian Luigi Marseglia
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| |
Collapse
|
34
|
Antonelli LR, Junqueira C, Vinetz JM, Golenbock DT, Ferreira MU, Gazzinelli RT. The immunology of Plasmodium vivax malaria. Immunol Rev 2019; 293:163-189. [PMID: 31642531 DOI: 10.1111/imr.12816] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
Plasmodium vivax infection, the predominant cause of malaria in Asia and Latin America, affects ~14 million individuals annually, with considerable adverse effects on wellbeing and socioeconomic development. A clinical hallmark of Plasmodium infection, the paroxysm, is driven by pyrogenic cytokines produced during the immune response. Here, we review studies on the role of specific immune cell types, cognate innate immune receptors, and inflammatory cytokines on parasite control and disease symptoms. This review also summarizes studies on recurrent infections in individuals living in endemic regions as well as asymptomatic infections, a serious barrier to eliminating this disease. We propose potential mechanisms behind these repeated and subclinical infections, such as poor induction of immunological memory cells and inefficient T effector cells. We address the role of antibody-mediated resistance to P. vivax infection and discuss current progress in vaccine development. Finally, we review immunoregulatory mechanisms, such as inhibitory receptors, T regulatory cells, and the anti-inflammatory cytokine, IL-10, that antagonizes both innate and acquired immune responses, interfering with the development of protective immunity and parasite clearance. These studies provide new insights for the clinical management of symptomatic as well as asymptomatic individuals and the development of an efficacious vaccine for vivax malaria.
Collapse
Affiliation(s)
- Lis R Antonelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Caroline Junqueira
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Joseph M Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Douglas T Golenbock
- Division of Infectious Disease and immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marcelo U Ferreira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo T Gazzinelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil.,Division of Infectious Disease and immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.,Plataforma de Medicina Translacional, Fundação Oswaldo Cruz, Ribeirão Preto, Brazil
| |
Collapse
|
35
|
Giacoia-Gripp CBW, Cazote ADS, da Silva TP, Sant'Anna FM, Schmaltz CAS, Brum TDS, de Matos JA, Silva J, Benjamin A, Pilotto JH, Rolla VC, Morgado MG, Scott-Algara D. Changes in the NK Cell Repertoire Related to Initiation of TB Treatment and Onset of Immune Reconstitution Inflammatory Syndrome in TB/HIV Co-infected Patients in Rio de Janeiro, Brazil-ANRS 12274. Front Immunol 2019; 10:1800. [PMID: 31456797 PMCID: PMC6700218 DOI: 10.3389/fimmu.2019.01800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB) is the most common comorbidity and the leading cause of death among HIV-infected individuals. Although the combined antiretroviral therapy (cART) during TB treatment improves the survival of TB/HIV patients, the occurrence of immune reconstitution inflammatory syndrome (IRIS) in some patients poses clinical and scientific challenges. This work aimed to evaluate blood innate lymphocytes during therapeutic intervention for both diseases and their implications for the onset of IRIS. Natural killer (NK) cells, invariant NKT cells (iNKT), γδ T cell subsets, and in vitro NK functional activity were characterized by multiparametric flow cytometry in the following groups: 33 TB/HIV patients (four with paradoxical IRIS), 27 TB and 25 HIV mono-infected subjects (prior to initiation of TB treatment and/or cART and during clinical follow-up to 24 weeks), and 25 healthy controls (HC). Concerning the NK cell repertoire, several activation and inhibitory receptors were skewed in the TB/HIV patients compared to those in the other groups, especially the HCs. Significantly higher expression of CD158a (p = 0.025), NKp80 (p = 0.033), and NKG2C (p = 0.0076) receptors was detected in the TB/HIV IRIS patients than in the non-IRIS patients. Although more NK degranulation was observed in the TB/HIV patients than in the other groups, the therapeutic intervention did not alter the frequency during follow-up (weeks 2-24). A higher frequency of the γδ T cell population was observed in the TB/HIV patients with inversion of the Vδ2+/Vδ2- ratio, especially for those presenting pulmonary TB, suggesting an expansion of particular γδ T subsets during TB/HIV co-infection. In conclusion, HIV infection impacts the frequency of circulating NK cells and γδ T cell subsets in TB/HIV patients. Important modifications of the NK cell repertoire were observed after anti-TB treatment (week 2) but not during the cART/TB follow-up (weeks 6-24). An increase of CD161+ NK cells was related to an unfavorable outcome. Despite the low number of cases, a more preserved NK cell profile was detected in IRIS patients previous to treatment, suggesting a role for these cells in IRIS onset. Longitudinal evaluation of the NK repertoire showed the impact of TB treatment and implicated these cells in TB pathogenesis in TB/HIV co-infected patients.
Collapse
Affiliation(s)
| | - Andressa da Silva Cazote
- Laboratory of AIDS and Molecular Immunology, Oswaldo Cruz Institute (FIOCRUZ), Rio de Janeiro, Brazil
| | - Tatiana Pereira da Silva
- Laboratory of AIDS and Molecular Immunology, Oswaldo Cruz Institute (FIOCRUZ), Rio de Janeiro, Brazil
| | - Flávia Marinho Sant'Anna
- Clinical Research Laboratory on Mycobacteria, National Institute of Infectious Diseases Evandro Chagas (FIOCRUZ), Rio de Janeiro, Brazil
| | - Carolina Arana Stanis Schmaltz
- Clinical Research Laboratory on Mycobacteria, National Institute of Infectious Diseases Evandro Chagas (FIOCRUZ), Rio de Janeiro, Brazil
| | - Tania de Souza Brum
- HIV Clinical Research Center, Nova Iguaçu General Hospital (HGNI), Rio de Janeiro, Brazil
| | - Juliana Arruda de Matos
- Clinical Research Laboratory on Health Surveillance and Immunization, National Institute of Infectious Diseases Evandro Chagas (FIOCRUZ), Rio de Janeiro, Brazil
| | - Júlio Silva
- Platform for Clinical Research, National Institute of Infectious Diseases Evandro Chagas (FIOCRUZ), Rio de Janeiro, Brazil
| | - Aline Benjamin
- Clinical Research Laboratory on Mycobacteria, National Institute of Infectious Diseases Evandro Chagas (FIOCRUZ), Rio de Janeiro, Brazil
| | - José Henrique Pilotto
- Laboratory of AIDS and Molecular Immunology, Oswaldo Cruz Institute (FIOCRUZ), Rio de Janeiro, Brazil.,HIV Clinical Research Center, Nova Iguaçu General Hospital (HGNI), Rio de Janeiro, Brazil
| | - Valeria Cavalcanti Rolla
- Clinical Research Laboratory on Mycobacteria, National Institute of Infectious Diseases Evandro Chagas (FIOCRUZ), Rio de Janeiro, Brazil
| | - Mariza Gonçalves Morgado
- Laboratory of AIDS and Molecular Immunology, Oswaldo Cruz Institute (FIOCRUZ), Rio de Janeiro, Brazil
| | | |
Collapse
|
36
|
Ollé Hurtado M, Wolbert J, Fisher J, Flutter B, Stafford S, Barton J, Jain N, Barone G, Majani Y, Anderson J. Tumor infiltrating lymphocytes expanded from pediatric neuroblastoma display heterogeneity of phenotype and function. PLoS One 2019; 14:e0216373. [PMID: 31398192 PMCID: PMC6688820 DOI: 10.1371/journal.pone.0216373] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/18/2019] [Indexed: 01/06/2023] Open
Abstract
Adoptive transfer of ex vivo expanded tumor infiltrating lymphocytes (TILs) has led to clinical benefit in some patients with melanoma but has not demonstrated convincing efficacy in other solid cancers. Whilst the presence of TILs in many types of cancer is often associated with better clinical prognosis, their function has not been systematically evaluated across cancer types. Responses to immunological checkpoint inhibitors in a wide range of cancers, including those for which adoptive transfer of expanded TILs has not shown clinical benefit, has clearly delineated a number of tumor type associated with tumor-reactive lymphocytes capable of effecting tumor remissions. Neuroblastoma is an aggressive childhood solid cancer in which immunotherapy with GD2-directed antibodies confers a proven survival advantage through incompletely understood mechanisms. We therefore evaluated the feasibility of ex vivo expansion of TILs from freshly resected neuroblastoma tumors and the potential therapeutic utility of TIL expansions. TILs were successfully expanded from both tumor biopsies or resections. Significant numbers of NKT and γδT cells were identified alongside the mixed population of cytotoxic (CD8+) and helper (CD4+) T cells of both effector and central memory phenotypes. Isolated TILs were broadly non-reactive against autologous tumor and neuroblastoma cell lines, so enhancement of neuroblastoma killing was attained by transducing TILs with a second-generation chimeric antigen receptor (CAR) targeting GD2. CAR-TILs demonstrated antigen-specific cytotoxicity against tumor cell lines. This study is the first to show reproducible expansion of TILs from pediatric neuroblastoma, the high proportion of innate-like lymphocytes, and the feasibility to use CAR-TILs therapeutically.
Collapse
Affiliation(s)
- Marina Ollé Hurtado
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, England, United Kingdom
| | - Jolien Wolbert
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, England, United Kingdom
| | - Jonathan Fisher
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, England, United Kingdom
| | - Barry Flutter
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, England, United Kingdom
| | - Sian Stafford
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, England, United Kingdom
| | - Jack Barton
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, England, United Kingdom
| | - Neha Jain
- Department of Oncology, Great Ormond Street Hospital, London, England, United Kingdom
| | - Giuseppe Barone
- Department of Oncology, Great Ormond Street Hospital, London, England, United Kingdom
| | - Yvonne Majani
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, England, United Kingdom
| | - John Anderson
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, England, United Kingdom
- Department of Oncology, Great Ormond Street Hospital, London, England, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Li Z, Wu Y, Wang C, Zhang M. Mouse CD8 +NKT-like cells exert dual cytotoxicity against mouse tumor cells and myeloid-derived suppressor cells. Cancer Immunol Immunother 2019; 68:1303-1315. [PMID: 31278476 PMCID: PMC6682577 DOI: 10.1007/s00262-019-02363-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Our previous work has demonstrated the high efficiency of CD8+ natural killer T (NKT)-like cells in killing antigen-bearing dendritic cells. To evaluate their role in the tumor microenvironment, we performed in vitro and in vivo antitumor experiments to investigate whether CD8+NKT-like cells could kill Yac-1 and B16 cells like NK cells and kill EL4-OVA8 cells in an antigen-specific manner like cytotoxic T lymphocytes (CTLs). Unlike NK1.1−CTLs, CD8+NKT-like cells also exhibit the capability to kill myeloid-derived suppressor cells (MDSCs) in an antigen-specific manner, indicative of their potential role in clearing tumor antigen-bearing MDSCs to improve the antitumor microenvironment. In vitro blocking experiments showed that granzyme B inhibitor efficiently suppressed the cytotoxicity of CD8+NKT-like cells against tumor cells and MDSCs, while Fas ligand (FasL) or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) inhibition failed to produce similar effects. Transcriptomic and phenotypic analyses of CD8+NKT-like cells, NK cells, and NK1.1−CTLs indicated that CD8+NKT-like cells expressed both T-cell activation markers and NK cell markers, thus bearing features of both the activated T cells and NK cells. Taken together, CD8+NKT-like cells could exert NK- and CTL-like antitumor effects through the elimination of both tumor cells and MDSCs in a granzyme B-dependent manner.
Collapse
Affiliation(s)
- Zhengyuan Li
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yiqing Wu
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Chao Wang
- School of Medicine, Tsinghua University, Room B343, Haidian District, Beijing, 100084, China.
| | - Minghui Zhang
- School of Medicine, Tsinghua University, Room B343, Haidian District, Beijing, 100084, China.
| |
Collapse
|
38
|
NKT Cells in Mice Originate from Cytoplasmic CD3-Positive, CD4 -CD8 - Double-Negative Thymocytes that Express CD44 and IL-7Rα. Sci Rep 2019; 9:1874. [PMID: 30755654 PMCID: PMC6372634 DOI: 10.1038/s41598-018-37811-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022] Open
Abstract
Although natural killer T cells (NKT cells) are thought to be generated from CD4+CD8+ (DP) thymocytes, the developmental origin of CD4−CD8− (DN) NKT cells has remained unclear. In this study, we found the level of NK1.1 expression was highest in DN cells, followed by CD4 and CD8 (SP) and DP cells. The level of NK1.1 expression was highest in CD44+CD25− (DN1) cells, after that CD44+CD25+ (DN2), finally, CD44−CD25− (DN3) and CD44− CD25+ (DN4) cells. Unexpectedly, cytoplasmic CD3 was not only expressed in SP and DP thymocytes but also in most DN thymocytes at various stages. The mean fluorescence of cytoplasmic and surface CD3 in DN cells was significantly lower than in mature (SP) T and NKT cells in the thymus and spleen. Interestingly, there were more NKT cells in DN-cytoplasmic CD3 expression cells was higher than in DN-surface CD3 expression cells. There were more CD3-NKT cells in DN1 thymocytes than in TCR-β-NKT cells. NKT cells expressed higher levels of IL-7Rα which was correlated with CD44 expression in the thymus. Our data suggest that T cells and NKT cells follow similar patterns of expression with respect to cytoplasmic and surface CD3. Cytoplasmic CD3 could be used as a marker for early stage T cells. Both cytoplasmic CD3 and surface CD3 were expressed in mature T cells and immature T cells, including the immature cytoplasmic CD3+ surface CD3− and surface CD3+TCR-β− cells in DN1-NKT thymocytes. CD44 could be used as an additional marker of NKT cells which may originate from cytoplasmic CD3-positive DN thymocytes that express CD44 and IL-7Rα in mice.
Collapse
|
39
|
Immunostimulatory Phosphatidylmonogalactosyldiacylglycerols (PGDG) from the Marine Diatom Thalassiosira weissflogii: Inspiration for a Novel Synthetic Toll-Like Receptor 4 Agonist. Mar Drugs 2019; 17:md17020103. [PMID: 30744121 PMCID: PMC6409857 DOI: 10.3390/md17020103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/16/2022] Open
Abstract
An unprecedented phosphatidylmonogalactosyldiacylglycerol pool (PGDG, 1) rich in polyunsaturated fatty acids was isolated from the marine diatoms Thalassiosira weissflogii. Here we report for the first time the NMR characterization of this rare lipid from marine organisms along with a synthetic strategy for the preparation of a PGDG analog (2). PGDG 1 exhibited immunostimulatory activity in human dendritic cells (DCs) and the synthetic PGDG 2 was prepared to explore its mechanism of action. A Toll-like receptor-4 (TLR-4) agonistic activity was evidenced in human and murine DCs underlying the antigen-specific T-cell activation of this class of molecules.
Collapse
|
40
|
Chen L, Gu J, Qian Y, Li M, Qian Y, Xu M, Li J, Wen Y, Xia L, Li J, Xia Q, Kong X, Wu H. Deletion of C-C Motif Chemokine Ligand 5 Worsens Invariant Natural Killer T-Cell-Mediated Hepatitis via Compensatory Up-regulation of CXCR2-Related Chemokine Activity. Cell Mol Gastroenterol Hepatol 2019; 7:623-639. [PMID: 30630119 PMCID: PMC6434496 DOI: 10.1016/j.jcmgh.2018.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Chemokine-mediated immune cell recruitment plays pivotal roles in liver inflammation. C-C motif chemokine ligand 5 (CCL5) has been shown to be responsible for the recruitment of monocytes/macrophages and has been implicated in various liver diseases, including nonalcoholic fatty liver disease, fibrosis, and hepatocellular carcinoma. Previous studies have also shown that inhibition of CCL5 appears to be a promising therapeutic approach for several chronic liver diseases. However, whether blocking CCL5 could benefit immune cell-mediated hepatitis remains largely elusive. METHODS By adopting a specific agonist, alpha-galactosylceramide (α-Galcer), of invariant natural killer T cells (iNKTs), we investigated the function and mechanism of CCL5 in the iNKT induced murine hepatitis model. RESULTS We found significantly increased CCL5 expression in α-Galcer-induced hepatitis murine model. Such an increase in CCL5 is mainly enriched in non-parenchymal cells such as macrophages and iNKTs but not in hepatocytes. Surprisingly, CCL5 blockage by genetic deletion of Ccl5 does not affect the α-Galcer-induced iNKT activation but greatly worsens α-Galcer-induced liver injury accompanied by an increased hepatic neutrophil infiltration. Mechanistically, we demonstrated that greater neutrophil accumulation in the liver is responsible for the enhanced liver injury in Ccl5-/- mice. Such an increased hepatic neutrophil infiltration is mainly caused by an enhanced CXCL1-CXCR2 signal in Ccl5-/- mice. Therapeutically, either antibody-mediated neutrophil depletion or a CXCR2 antagonist, SB225002, mediated CXCR2 signaling blockage significantly ameliorated α-Galcer-induced liver injury in Ccl5-/- mice. CONCLUSIONS Our present study demonstrates that (1) α-Galcer-induced murine hepatitis could greatly induce CCL5 production in macrophages and iNKT cells; (2) loss of CCL5 could enhance CXCL1 expression in hepatocytes and activate CXCL1-CXCR2 axis in neutrophils to augment their hepatic infiltration; and (3) neutrophil depletion or blockage of CXCL1-CXCR2 axis greatly improves α-Galcer-induced liver injury in Ccl5-/- mice. This study suggests that clinical utilization of CCL5 blockage may compensatorily induce the activation of other chemokine pathways to enhance neutrophil recruitment and liver injury in hepatitis.
Collapse
Affiliation(s)
- Lili Chen
- Shanghai Key Laboratory for Molecular Imaging, Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China; Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinyang Gu
- Department of Transplantation, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yihan Qian
- School of Pharmacy, Fudan University, Shanghai, China
| | - Meng Li
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongbing Qian
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Xu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jichang Li
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yankai Wen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaxin Li
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoni Kong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Hailong Wu
- Shanghai Key Laboratory for Molecular Imaging, Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| |
Collapse
|
41
|
Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound Healing: A Cellular Perspective. Physiol Rev 2019; 99:665-706. [PMID: 30475656 PMCID: PMC6442927 DOI: 10.1152/physrev.00067.2017] [Citation(s) in RCA: 1295] [Impact Index Per Article: 259.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 02/08/2023] Open
Abstract
Wound healing is one of the most complex processes in the human body. It involves the spatial and temporal synchronization of a variety of cell types with distinct roles in the phases of hemostasis, inflammation, growth, re-epithelialization, and remodeling. With the evolution of single cell technologies, it has been possible to uncover phenotypic and functional heterogeneity within several of these cell types. There have also been discoveries of rare, stem cell subsets within the skin, which are unipotent in the uninjured state, but become multipotent following skin injury. Unraveling the roles of each of these cell types and their interactions with each other is important in understanding the mechanisms of normal wound closure. Changes in the microenvironment including alterations in mechanical forces, oxygen levels, chemokines, extracellular matrix and growth factor synthesis directly impact cellular recruitment and activation, leading to impaired states of wound healing. Single cell technologies can be used to decipher these cellular alterations in diseased states such as in chronic wounds and hypertrophic scarring so that effective therapeutic solutions for healing wounds can be developed.
Collapse
Affiliation(s)
- Melanie Rodrigues
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Nina Kosaric
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Clark A Bonham
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Geoffrey C Gurtner
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| |
Collapse
|
42
|
Consonni M, Dellabona P, Casorati G. Potential advantages of CD1-restricted T cell immunotherapy in cancer. Mol Immunol 2018; 103:200-208. [PMID: 30308433 DOI: 10.1016/j.molimm.2018.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/01/2018] [Accepted: 09/29/2018] [Indexed: 12/11/2022]
Abstract
Adoptive cell therapy (ACT) using tumor-specific "conventional" MHC-restricted T cells obtained from tumor-infiltrating lymphocytes, or derived ex vivo by either antigen-specific expansion or genetic engineering of polyclonal T cell populations, shows great promise for cancer treatment. However, the wide applicability of this therapy finds limits in the high polymorphism of MHC molecules that restricts the use in the autologous context. CD1 antigen presenting molecules are nonpolymorphic and specialized for lipid antigen presentation to T cells. They are often expressed on malignant cells and, therefore, may represent an attractive target for ACT. We provide a brief overview of the CD1-resticted T cell response in tumor immunity and we discuss the pros and cons of ACT approaches based on unconventional CD1-restricted T cells.
Collapse
Affiliation(s)
- Michela Consonni
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy.
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
43
|
Murine DX5 +NKT Cells Display Their Cytotoxic and Proapoptotic Potentials against Colitis-Inducing CD4 +CD62L high T Cells through Fas Ligand. J Immunol Res 2018; 2018:8175810. [PMID: 30364054 PMCID: PMC6186349 DOI: 10.1155/2018/8175810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/20/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022] Open
Abstract
Introduction It has been previously shown that immunoregulatory DX5+NKT cells are able to prevent colitis induced by CD4+CD62Lhigh T lymphocytes in a SCID mouse model. The aim of this study was to further investigate the underlying mechanism in vitro. Methods CD4+CD62Lhigh and DX5+NKT cells from the spleen of Balb/c mice were isolated first by MACS, followed by FACS sorting and cocultured for up to 96 h. After polyclonal stimulation with anti-CD3, anti-CD28, and IL-2, proliferation of CD4+CD62Lhigh cells was assessed using a CFSE assay and activity of proapoptotic caspase-3 was determined by intracellular staining and flow cytometry. Extrinsic apoptotic pathway was blocked using an unconjugated antibody against FasL, and activation of caspase-3 was measured. Results As previously shown in vivo, DX5+NKT cells inhibit proliferation of CD4+CD62Lhigh cells in vitro after 96 h coculture compared to a CD4+CD62Lhigh monoculture (proliferation index: 1.39 ± 0.07 vs. 1.76 ± 0.12; P = 0.0079). The antiproliferative effect of DX5+NKT cells was likely due to an induction of apoptosis in CD4+CD62Lhigh cells as evidenced by increased activation of the proapoptotic caspase-3 after 48 h (38 ± 3% vs. 28 ± 3%; P = 0.0451). Furthermore, DX5+NKT cells after polyclonal stimulation showed an upregulation of FasL on their cell surface (15 ± 2% vs. 2 ± 1%; P = 0.0286). Finally, FasL was blocked on DX5+NKT cells, and therefore, the extrinsic apoptotic pathway abrogated the activation of caspase-3 in CD4+CD62Lhigh cells. Conclusion Collectively, these data confirmed that DX5+NKT cells inhibit proliferation of colitis-inducing CD4+CD62Lhigh cells by induction of apoptosis. Furthermore, DX5+NKT cells likely mediate their cytotoxic and proapoptotic potentials via FasL, confirming recent reports about iNKT cells. Further studies will be necessary to evaluate the therapeutical potential of these immunoregulatory cells in patients with colitis.
Collapse
|
44
|
Gao L, Fan Y, Yang Y, Xie R, Yang J, Chen Z. Mechanism of Premature Apoptosis in CD1d-Restricted Natural Killier T Cells From Human Peripheral Blood During the Induction of Proliferation In Vitro. Transplant Proc 2018; 50:1514-1518. [PMID: 29880380 DOI: 10.1016/j.transproceed.2018.02.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 02/07/2018] [Accepted: 02/19/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE A preliminary investigation on the proliferation and cultivation process of natural killer T cells (NKT) was carried out. We provide reference data for future NKT-related research and development. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from healthy people and were induced by α-galactosylceramide (α-GalCer). The phenotypic changes of the cells and the activation and apoptosis of Caspase-3 were recorded for 3-4 weeks. RESULTS The proliferation of the NKT cells continued for approximately 3 weeks, and then apoptosis started to occur. The activity of Caspase-3 was maintained at a high level from the second week. The responses of individual human NKT cells to α-GalCer stimulation differed significantly. CONCLUSION The proliferation of the NKT cells continued for approximately 3 weeks, and then apoptosis Semiconstitutively started to occur. The activity of Caspase-3 was maintained at a high level from the second week. The responses of individual human NKT cells to α-GalCer stimulation differed significantly.
Collapse
Affiliation(s)
- L Gao
- Shanghai Blood Center, Shanghai, China.
| | - Y Fan
- Department of Gynecology, Huashan Hospital North Fudan University, Shanghai, China
| | - Y Yang
- Shanghai Blood Center, Shanghai, China
| | - R Xie
- Shanghai Blood Center, Shanghai, China
| | - J Yang
- Shanghai Blood Center, Shanghai, China.
| | - Z Chen
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China; Quintiles Asia Medical Oncology, Shanghai, China.
| |
Collapse
|
45
|
Leishmania donovani mediated higher expression of CCL4 induces differential accumulation of CD4 +CD56 +NKT and CD8 +CD56 +NKT cells at infection site. Cytokine 2018; 110:306-315. [PMID: 29807685 DOI: 10.1016/j.cyto.2018.03.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/15/2018] [Accepted: 03/17/2018] [Indexed: 01/20/2023]
Abstract
Sterile cure from visceralized Leishmania donovani (L. donovani) needs Th1 cell support along with the assistance from innate immune cells, NK cells and NKT cells. NKT cells play as a connecting link between innate and adaptive immune cell and support T helper cell function. Earlier, a categorical function of CD56 positive CD4+ or CD8+ NKT cells was reported in visceral leishmaniasis (VL). It was observed in in vitro that CD4+CD56+NKT cells, but not CD8+CD56+NKT cells, were accumulated at the L. donovani infection site. Therefore, in vitro experiments have been carried out to decipher the mechanism behind preferential accumulation of CD4+CD56+NKT cells at infection site. In this study, 1.89 fold higher expression of CCL4/MIP-1β was noticed in infected macrophages. The higher expression of CCL4 was correlated with preferential accumulation of CCR5+CD4+CD56+NKT cells and apoptosis of CD8+CD56+NKT cells at in vitro infection site. The CD4+CD56+NKT cells were also observed expressing TGF-β dominantly. Interaction of CCL4 chemotaxis was interrupted by blocking, which led to drift back the TGF-β producing CD4+CD56+NKT cells and promoted CD8+CD56+NKT cells recruitment in in vitro infection site. CCR5 blockade also reduced CD25 and FoxP3 positive CD4+CD56+NKT cells in in vitro infection site. Therefore, it was concluded that Leishmania promotes strategic expression of CCL4, which alternately attracts CCR5+ cells, mostly expressing regulatory cytokines, at infection site. This reduces the CD8+CD56+NKT cells at infection site through Smad4 mediated TGF-β expression and activation of caspases. Data indicates that L. donovani induces higher expression of CCL4 in host cell to attract CCR5+ cells under its strategic plan to downregulate host immune response.
Collapse
|
46
|
Inácio DP, Amado T, Silva-Santos B, Gomes AQ. Control of T cell effector functions by miRNAs. Cancer Lett 2018; 427:63-73. [PMID: 29679611 DOI: 10.1016/j.canlet.2018.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/23/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
The differentiation of effector T cells is a tightly regulated process that relies on the selective expression of lineage-defining master regulators that orchestrate unique transcriptional programs, including the production of distinct sets of effector cytokines. miRNAs are post-transcriptional regulators that are now viewed as critical players in these gene expression networks and help defining cell identity and function. This review summarises the role of individual miRNAs in the regulation of the differentiation of effector T cell subsets, including CD4+ T helper cells, cytotoxic CD8+ T cells and innate-like NKT cells. Moreover, we refer to miRNAs that have been identified to affect simultaneously two or more effector T cell populations, impacting on the balance between effector T cells in vivo, thus constituting potential biomarkers or targets for therapies aiming at boosting immunity or controlling autoimmunity.
Collapse
Affiliation(s)
- Daniel P Inácio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Tiago Amado
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Anita Q Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal; Escola Superior de Tecnologia da Saúde de Lisboa, 1990-096, Lisboa, Portugal.
| |
Collapse
|
47
|
O'Konek JJ, Ambrosino E, Bloom AC, Pasquet L, Massilamany C, Xia Z, Terabe M, Berzofsky JA. Differential Regulation of T-cell mediated anti-tumor memory and cross-protection against the same tumor in lungs versus skin. Oncoimmunology 2018; 7:e1439305. [PMID: 29900040 DOI: 10.1080/2162402x.2018.1439305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 01/06/2023] Open
Abstract
A major advantage of immunotherapy of cancer is that effector cells induced at one site should be able to kill metastatic cancer cells in other sites or tissues. However, different tissues have unique immune components, and very little is known about whether effector T cells induced against tumors in one tissue can work against the same tumors in other tissues. Here, we used CT26 murine tumor models to investigate anti-tumor immune responses in the skin and lungs and characterized cross-protection between the two tissues. Blockade of the function of Treg cells with anti-CD25 allowed for T cell-dependent rejection of s.c. tumors. When these mice were simultaneously inoculated i.v. with CT26, they also rejected tumors in the lung. Interestingly, in the absence of s.c. tumors, anti-CD25 treatment alone had no effect on lung tumor growth. These observations suggested that T cell-mediated anti-tumor protective immunity induced against s.c. tumors can also protect against lung metastases of the same tumors. In contrast, NKT cell-deficiency in CD1d-/- mice conferred significant protection against lung tumors but had no effect on the growth of tumors in the skin, and tumor rejection induced against the CT26 in the lung did not confer protection for the same tumor cells in the skin. Thus, effector cells against the same tumor do not work in all tissues, and the induction site of the effector T cells is critical to control metastasis. Further, the regulation of tumor immunity may be different for the same tumor in different anatomical locations.
Collapse
Affiliation(s)
- Jessica J O'Konek
- Vaccine Branch, CCR, NCI, NIH Bethesda, MD USA.,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Elena Ambrosino
- Vaccine Branch, CCR, NCI, NIH Bethesda, MD USA.,Institute for Public Health Genomics, Department of Genetics & Cell Biology, School for Oncology & Developmental Biology (GROW), FHML, Maastricht University, The Netherlands
| | | | | | | | - Zheng Xia
- Vaccine Branch, CCR, NCI, NIH Bethesda, MD USA
| | | | | |
Collapse
|
48
|
|
49
|
Elsaid AF, Shaheen M, Ghoneum M. Biobran/MGN-3, an arabinoxylan rice bran, enhances NK cell activity in geriatric subjects: A randomized, double-blind, placebo-controlled clinical trial. Exp Ther Med 2018; 15:2313-2320. [PMID: 29456638 PMCID: PMC5795547 DOI: 10.3892/etm.2018.5713] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 11/28/2017] [Indexed: 12/31/2022] Open
Abstract
Aging is associated with a decline in natural killer (NK) and natural killer T (NKT) cell function that may contribute to increased susceptibility to malignancy and infection. A preliminary investigation was conducted examining the hypothesis that arabinoxylan rice bran (Biobran/MGN-3), a denatured hemicellulose with known immunomodulatory activity, could counteract this decline in NK/NKT cell activity in geriatrics. A total of 12 healthy geriatric subjects of both sexes and over 56 years old, participated in a randomized, double-blind, placebo-controlled clinical trial. A total of six subjects served as control and six subjects ingested Biobran/MGN-3 (500 mg/day) for 30 days. The effect of Biobran/MGN-3 supplementation on NK/NKT cell activity was assessed using the degranulation assay. All study subjects were monitored for the development of any inadvertent side effects. In addition, the pharmacological effects of Biobran/MGN-3 on blood cell components and liver and kidney functions were also assessed. Results demonstrated that Biobran/MGN-3 had no effect on the total percentage of NK cells, however it enhanced the cytotoxic activity of induced NK cell expression of cluster of differentiation 107a, when compared with baseline values and with the placebo group (P<0.05). Furthermore, there were no side effects observed, indicating that Biobran/MGN-3 supplementation was safe at the utilized dosage and for the duration of administration. Various additional beneficial effects were observed, including improved mean corpuscular volume and reduced hepatic aspartate aminotransferase enzyme levels, which suggested improved liver function. It was concluded that Biobran/MGN-3 induces a significant increase in NK activity which may increase resistance to viral infections and cancers in the geriatric population. However, additional clinical trials should be conducted in the future to verify these findings.
Collapse
Affiliation(s)
- Ahmed F. Elsaid
- Department of Community Medicine and Public Health, Faculty of Medicine, Zagazig University, Zagazig, Al Sharqia 44519, Egypt
| | - Magda Shaheen
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Mamdooh Ghoneum
- Department of Surgery, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| |
Collapse
|
50
|
Saltzman ET, Palacios T, Thomsen M, Vitetta L. Intestinal Microbiome Shifts, Dysbiosis, Inflammation, and Non-alcoholic Fatty Liver Disease. Front Microbiol 2018; 9:61. [PMID: 29441049 PMCID: PMC5797576 DOI: 10.3389/fmicb.2018.00061] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/10/2018] [Indexed: 12/16/2022] Open
Abstract
Adverse fluctuations in the distribution of the intestinal microbiome cohort has been associated with the onset of intra- and extra-intestinal inflammatory conditions, like the metabolic syndrome (MetS) and it's hepatic manifestation, non-alcoholic fatty liver disease (NAFLD). The intestinal microbial community of obese compared to lean subjects has been shown to undergo configurational shifts in various genera, including but not limited to increased abundances of Prevotella, Escherichia, Peptoniphilus, and Parabacteroides and decreased levels of Bifidobacteria, Roseburia, and Eubacteria genera. At the phylum level, decreased Bacteroidetes and increased Firmicutes have been reported. The intestinal microbiota therefore presents an important target for designing novel therapeutic modalities that target extra-intestinal inflammatory disorders, such as NAFLD. This review hypothesizes that disruption of the intestinal-mucosal macrophage interface is a key factor in intestinal-liver axis disturbances. Intestinal immune responses implicated in the manifestation, maintenance and progression of NAFLD provide insights into the dialogue between the intestinal microbiome, the epithelia and mucosal immunity. The pro-inflammatory activity and immune imbalances implicated in NAFLD pathophysiology are reported to stem from dysbiosis of the intestinal epithelia which can serve as a source of hepatoxic effects. We posit that the hepatotoxic consequences of intestinal dysbiosis are compounded through intestinal microbiota-mediated inflammation of the local mucosa that encourages mucosal immune dysfunction, thus contributing important plausible insight in NAFLD pathogenesis. The administration of probiotics and prebiotics as a cure-all remedy for all chronic diseases is not advocated, instead, the incorporation of evidence based probiotic/prebiotic formulations as adjunctive modalities may enhance lifestyle modification management strategies for the amelioration of NAFLD.
Collapse
Affiliation(s)
- Emma T. Saltzman
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Medlab Clinical, Sydney, NSW, Australia
| | - Talia Palacios
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Medlab Clinical, Sydney, NSW, Australia
| | - Michael Thomsen
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Medlab Clinical, Sydney, NSW, Australia
| | - Luis Vitetta
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Medlab Clinical, Sydney, NSW, Australia
| |
Collapse
|