1
|
Castilla-Sedano AJ, Zapana-García J, Valdivia-Del Águila E, Padilla-Huamantinco PG, Guerra DG. Quantification of early biofilm growth in microtiter plates through a novel image analysis software. J Microbiol Methods 2024; 223:106979. [PMID: 38944284 DOI: 10.1016/j.mimet.2024.106979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Given the significant impact of biofilms on human health and material corrosion, research in this field urgently needs more accessible techniques to facilitate the testing of new control agents and general understanding of biofilm biology. Microtiter plates offer a convenient format for standardized evaluations, including high-throughput assays of alternative treatments and molecular modulators. This study introduces a novel Biofilm Analysis Software (BAS) for quantifying biofilms from microtiter plate images. We focused on early biofilm growth stages and compared BAS quantification to common techniques: direct turbidity measurement, intrinsic fluorescence detection linked to pyoverdine production, and standard crystal violet staining which enables image analysis and optical density measurement. We also assessed their sensitivity for detecting subtle growth effects caused by cyclic AMP and gentamicin. Our results show that BAS image analysis is at least as sensitive as the standard method of spectrophotometrically quantifying the crystal violet retained by biofilms. Furthermore, we demonstrated that bacteria adhered after short incubations (from 10 min to 4 h), isolated from planktonic populations by a simple rinse, can be monitored until their growth is detectable by intrinsic fluorescence, BAS analysis, or resolubilized crystal violet. These procedures are widely accessible for many laboratories, including those with limited resources, as they do not require a spectrophotometer or other specialized equipment.
Collapse
Affiliation(s)
- Anderson J Castilla-Sedano
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín De Porres, Lima 15102, Peru
| | - José Zapana-García
- Biomedical Engineering Program PUCP-UPCH, Pontificia Universidad Católica del Perú, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Erika Valdivia-Del Águila
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín De Porres, Lima 15102, Peru
| | - Pierre G Padilla-Huamantinco
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín De Porres, Lima 15102, Peru
| | - Daniel G Guerra
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín De Porres, Lima 15102, Peru.
| |
Collapse
|
2
|
Cesaria M, Calcagnile M, Arima V, Bianco M, Alifano P, Cataldo R. Cyclic olefin copolymer (COC) as a promising biomaterial for affecting bacterial colonization: investigation on Vibrio campbellii. Int J Biol Macromol 2024; 271:132550. [PMID: 38782326 DOI: 10.1016/j.ijbiomac.2024.132550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/22/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Cyclic olefin copolymer (COC) has emerged as an interesting biocompatible material for Organ-on-a-Chip (OoC) devices monitoring growth, viability, and metabolism of cells. Despite ISO 10993 approval, systematic investigation of bacteria grown onto COC is a still not documented issue. This study discusses biofilm formations of the canonical wild type BB120 Vibrio campbellii strain on a native COC substrate and addresses the impact of the physico-chemical properties of COC compared to conventional hydroxyapatite (HA) and poly(dimethylsiloxane) (PDMS) surfaces. An interdisciplinary approach combining bacterial colony counting, light microscopy imaging and advanced digital image processing remarks interesting results. First, COC can reduce biomass adhesion with respect to common biopolymers, that is suitable for tuning biofilm formations in the biological and medical areas. Second, remarkably different biofilm morphology (dendritic complex patterns only in the case of COC) was observed among the examined substrates. Third, the observed biofilm morphogenesis was related to the interaction of COC with the conditioning layer of the planktonic biological medium. Fourth, Level Co-occurrence Matrix (CGLM)-based analysis enabled quantitative assessment of the biomass textural fractal development under different coverage conditions. All of this is of key practical relevance in searching innovative biocompatible materials for pharmaceutical, implantable and medical products.
Collapse
Affiliation(s)
- Maura Cesaria
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Campus Ecotekne, Via per Arnesano, 73100 Lecce, Italy.
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.BA.), University of Salento, c/o Campus Ecotekne-S.P. 6, 73100 Lecce, Italy
| | - Valentina Arima
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Monica Bianco
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.BA.), University of Salento, c/o Campus Ecotekne-S.P. 6, 73100 Lecce, Italy
| | - Rosella Cataldo
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Campus Ecotekne, Via per Arnesano, 73100 Lecce, Italy
| |
Collapse
|
3
|
Ren A, Yao M, Fang J, Dai Z, Li X, van der Meer W, Medema G, Rose JB, Liu G. Bacterial communities of planktonic bacteria and mature biofilm in service lines and premise plumbing of a Megacity: Composition, Diversity, and influencing factors. ENVIRONMENT INTERNATIONAL 2024; 185:108538. [PMID: 38422875 DOI: 10.1016/j.envint.2024.108538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Although simulated studies have provided valuable knowledge regarding the communities of planktonic bacteria and biofilms, the lack of systematic field studies have hampered the understanding of microbiology in real-world service lines and premise plumbing. In this study, the bacterial communities of water and biofilm were explored, with a special focus on the lifetime development of biofilm communities and their key influencing factors. The 16S rRNA gene sequencing results showed that both the planktonic bacteria and biofilm were dominated by Proteobacteria. Among the 15,084 observed amplicon sequence variants (ASVs), the 33 core ASVs covered 72.8 %, while the 12 shared core ASVs accounted for 62.2 % of the total sequences. Remarkably, it was found that the species richness and diversity of biofilm communities correlated with pipe age. The relative abundance of ASV2 (f_Sphingomonadaceae) was lower for pipe ages 40-50 years (7.9 %) than for pipe ages 10-20 years (59.3 %), while the relative abundance of ASV10 (f_Hyphomonadaceae) was higher for pipe ages 40-50 years (19.5 %) than its presence at pipe ages 20-30 years (1.9 %). The community of the premise plumbing biofilm had significantly higher species richness and diversity than that of the service line, while the steel-plastics composite pipe interior lined with polyethylene (S-PE) harbored significantly more diverse biofilm than the galvanized steel pipes (S-Zn). Interestingly, S-PE was enriched with ASV27 (g_Mycobacterium), while S-Zn pipes were enriched with ASV13 (g_Pseudomonas). Moreover, the network analysis showed that five rare ASVs, not core ASVs, were keystone members in biofilm communities, indicating the importance of rare members in the function and stability of biofilm communities. This manuscript provides novel insights into real-world service lines and premise plumbing microbiology, regarding lifetime dynamics (pipe age 10-50 years), and the influences of pipe types (premise plumbing vs. service line) and pipe materials (S-Zn vs. S-PE).
Collapse
Affiliation(s)
- Anran Ren
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands; University of Chinese Academy of Sciences, Beijing, China
| | - Mingchen Yao
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands; University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxing Fang
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Science and Technology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands
| | - Zihan Dai
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Xiaoming Li
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Walter van der Meer
- Science and Technology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands; Oasen Drinkwater, PO Box 122, 2800 AC, Gouda, The Netherlands
| | - Gertjan Medema
- Oasen Drinkwater, PO Box 122, 2800 AC, Gouda, The Netherlands; KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands; Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA
| | - Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Mora-Flórez LS, Cabrera-Rodríguez D, Hernández-Carrión M. Encapsulation of Menthol and Luteolin Using Hydrocolloids as Wall Material to Formulate Instant Aromatic Beverages. Foods 2023; 12:foods12102080. [PMID: 37238898 DOI: 10.3390/foods12102080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Aromatic plants represent about 0.7% of all medicinal plants. The most common are peppermint (main active ingredient: menthol) and chamomile (main active ingredient: luteolin), which are usually consumed in "tea bags" to make infusions or herbal teas. In this study, menthol and luteolin encapsulates using different hydrocolloids were obtained to replace the conventional preparation of these beverages. Encapsulation was carried out by feeding an infusion of peppermint and chamomile (83% aqueous phase = 75% water - 8% herbs in equal parts, and 17% dissolved solids = wall material in 2:1 ratio) into a spray dryer (180 °C-4 mL/min). A factorial experimental design was used to evaluate the effect of wall material on morphology (circularity and Feret's diameter) and texture properties of the powders using image analysis. Four formulations using different hydrocolloids were evaluated: (F1) maltodextrin-sodium caseinate (10 wt%), (F2) maltodextrin-soy protein (10 wt%), (F3) maltodextrin-sodium caseinate (15 wt%), and (F4) maltodextrin-soy protein (15 wt%). The moisture, solubility, bulk density, and bioavailability of menthol in the capsules were determined. The results showed that F1 and F2 presented the best combination of powder properties: higher circularity (0.927 ± 0.012, 0.926 ± 0.011), lower moisture (2.69 ± 0.53, 2.71 ± 0.21), adequate solubility (97.73 ± 0.76, 98.01 ± 0.50), and best texture properties. Those suggest the potential of these powders not only as an easy-to-consume and ecofriendly instant aromatic beverage but also as a functional one.
Collapse
Affiliation(s)
- Laura Sofía Mora-Flórez
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Daniel Cabrera-Rodríguez
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - María Hernández-Carrión
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| |
Collapse
|
5
|
Qin K, Shi X, Chen Y, Feng Q, Qin F, Guo R, Liu Q. Enhanced bio-affinity of magnetic QD-P(St-GMA)@Fe 3O 4 micro-particles via surface-quaternized modification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64168-64178. [PMID: 37060411 DOI: 10.1007/s11356-023-26907-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
In this work, a kind of bio-carrier quaternized-polystyrene-polyglycidyl methacrylate@Fe3O4 (QD-P(St-GMA)@Fe3O4, QD-PSGF) micro-particles was successfully prepared by modifying PSGF micro-particles through a hydrothermal method. The quaternary ammonium group and surface structure of QD-PSGF were confirmed through several characterization methods. We directly verified the efficacy of the quaternary ammonium group in promoting microbial activity due to QD-PSGF being synthesized by a hydrothermal method without changing the surface topography and pore. The bio-affinity of QD-PSGF microspheres was evaluated by bacterial adhesion and anaerobic digestion experiments. The results showed that a little quaternary ammonium group can increase bacterial adhesion by about 2-3 times and methane production by 40%. The novel developed QD-PSGF micro-particles can be a promising material as a biofilm carrier for bio-application.
Collapse
Affiliation(s)
- Kang Qin
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiaoshuang Shi
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
| | - Ying Chen
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
| | - Quan Feng
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
| | - Fan Qin
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Rongbo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| |
Collapse
|
6
|
Kurz DL, Secchi E, Stocker R, Jimenez-Martinez J. Morphogenesis of Biofilms in Porous Media and Control on Hydrodynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5666-5677. [PMID: 36976631 DOI: 10.1021/acs.est.2c08890] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The functioning of natural and engineered porous media, like soils and filters, depends in many cases on the interplay between biochemical processes and hydrodynamics. In such complex environments, microorganisms often form surface-attached communities known as biofilms. Biofilms can take the shape of clusters, which alter the distribution of fluid flow velocities within the porous medium, subsequently influencing biofilm growth. Despite numerous experimental and numerical efforts, the control of the biofilm clustering process and the resulting heterogeneity in biofilm permeability is not well understood, limiting our predictive abilities for biofilm-porous medium systems. Here, we use a quasi-2D experimental model of a porous medium to characterize biofilm growth dynamics for different pore sizes and flow rates. We present a method to obtain the time-resolved biofilm permeability field from experimental images and use the obtained permeability field to compute the flow field through a numerical model. We observe a biofilm cluster size distribution characterized by a spectrum slope evolving in time between -2 and -1, a fundamental measure that can be used to create spatio-temporal distributions of biofilm clusters for upscaled models. We find a previously undescribed biofilm permeability distribution, which can be used to stochastically generate permeability fields within biofilms. An increase in velocity variance for a decrease in physical heterogeneity shows that the bioclogged porous medium behaves differently than expected from studies on heterogeneity in abiotic porous media.
Collapse
Affiliation(s)
- Dorothee L Kurz
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland
- Department Water Resources and Drinking Water, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Eleonora Secchi
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland
| | - Roman Stocker
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland
| | - Joaquin Jimenez-Martinez
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland
- Department Water Resources and Drinking Water, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
7
|
Biology and Regulation of Staphylococcal Biofilm. Int J Mol Sci 2023; 24:ijms24065218. [PMID: 36982293 PMCID: PMC10049468 DOI: 10.3390/ijms24065218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Despite continuing progress in medical and surgical procedures, staphylococci remain the major Gram-positive bacterial pathogens that cause a wide spectrum of diseases, especially in patients requiring the utilization of indwelling catheters and prosthetic devices implanted temporarily or for prolonged periods of time. Within the genus, if Staphylococcus aureus and S. epidermidis are prevalent species responsible for infections, several coagulase-negative species which are normal components of our microflora also constitute opportunistic pathogens that are able to infect patients. In such a clinical context, staphylococci producing biofilms show an increased resistance to antimicrobials and host immune defenses. Although the biochemical composition of the biofilm matrix has been extensively studied, the regulation of biofilm formation and the factors contributing to its stability and release are currently still being discovered. This review presents and discusses the composition and some regulation elements of biofilm development and describes its clinical importance. Finally, we summarize the numerous and various recent studies that address attempts to destroy an already-formed biofilm within the clinical context as a potential therapeutic strategy to avoid the removal of infected implant material, a critical event for patient convenience and health care costs.
Collapse
|
8
|
Gierl L, Horn H, Wagner M. Impact of Fe 2+ and Shear Stress on the Development and Mesoscopic Structure of Biofilms-A Bacillus subtilis Case Study. Microorganisms 2022; 10:2234. [PMID: 36422304 PMCID: PMC9699539 DOI: 10.3390/microorganisms10112234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 07/25/2023] Open
Abstract
Bivalent cations are known to affect the structural and mechanical properties of biofilms. In order to reveal the impact of Fe2+ ions within the cultivation medium on biofilm development, structure and stability, Bacillus subtilis biofilms were cultivated in mini-fluidic flow cells. Two different Fe2+ inflow concentrations (0.25 and 2.5 mg/L, respectively) and wall shear stress levels (0.05 and 0.27 Pa, respectively) were tested. Mesoscopic biofilm structure was determined daily in situ and non-invasively by means of optical coherence tomography. A set of ten structural parameters was used to quantify biofilm structure, its development and change. The study focused on characterizing biofilm structure and development at the mesoscale (mm-range). Therefore, biofilm replicates (n = 10) were cultivated and analyzed. Three hypotheses were defined in order to estimate the effect of Fe2+ inflow concentration and/or wall shear stress on biofilm development and structure, respectively. It was not the intention to investigate and describe the underlying mechanisms of iron incorporation as this would require a different set of tools applied at microscopic levels as well as the use of, i.e., omic approaches. Fe2+ addition influenced biofilm development (e.g., biofilm accumulation) and structure markedly. Experiments revealed the accumulation of FeO(OH) within the biofilm matrix and a positive correlation of Fe2+ inflow concentration and biofilm accumulation. In more detail, independent of the wall shear stress applied during cultivation, biofilms grew approximately four times thicker at 2.5 mg Fe2+/L (44.8 µmol/L; high inflow concentration) compared to the low Fe2+ inflow concentration of 0.25 mg Fe2+/L (4.48 µmol/L). This finding was statistically verified (Scheirer-Ray-Hare test, ANOVA) and hints at a higher stability of Bacillus subtilis biofilms (e.g., elevated cohesive and adhesive strength) when grown at elevated Fe2+ inflow concentrations.
Collapse
Affiliation(s)
- Luisa Gierl
- Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany
| | - Harald Horn
- Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany
- German Technical and Scientific Association for Gas and Water (DVGW) Research Site at Karlsruhe Institute of Technology, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany
| | - Michael Wagner
- Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany
- Institute of Biological Interfaces (IBG-1), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
9
|
Romeu MJ, Lima M, Gomes LC, de Jong ED, Morais J, Vasconcelos V, Pereira MFR, Soares OSGP, Sjollema J, Mergulhão FJ. The Use of 3D Optical Coherence Tomography to Analyze the Architecture of Cyanobacterial Biofilms Formed on a Carbon Nanotube Composite. Polymers (Basel) 2022; 14:polym14204410. [PMID: 36297988 PMCID: PMC9607013 DOI: 10.3390/polym14204410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
The development of environmentally friendly antifouling strategies for marine applications is of paramount importance, and the fabrication of innovative nanocomposite coatings is a promising approach. Moreover, since Optical Coherence Tomography (OCT) is a powerful imaging technique in biofilm science, the improvement of its analytical power is required to better evaluate the biofilm structure under different scenarios. In this study, the effect of carbon nanotube (CNT)-modified surfaces in cyanobacterial biofilm development was assessed over a long-term assay under controlled hydrodynamic conditions. Their impact on the cyanobacterial biofilm architecture was evaluated by novel parameters obtained from three-dimensional (3D) OCT analysis, such as the contour coefficient, total biofilm volume, biovolume, volume of non-connected pores, and the average size of non-connected pores. The results showed that CNTs incorporated into a commercially used epoxy resin (CNT composite) had a higher antifouling effect at the biofilm maturation stage compared to pristine epoxy resin. Along with a delay in biofilm development, a decrease in biofilm wet weight, thickness, and biovolume was also achieved with the CNT composite compared to epoxy resin and glass (control surfaces). Additionally, biofilms developed on the CNT composite were smoother and presented a lower porosity and a strictly packed structure when compared with those formed on the control surfaces. The novel biofilm parameters obtained from 3D OCT imaging are extremely important when evaluating the biofilm architecture and behavior under different scenarios beyond marine applications.
Collapse
Affiliation(s)
- Maria J. Romeu
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Marta Lima
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luciana C. Gomes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ed. D. de Jong
- Department of Biomedical Engineering, University of Groningen, University Medical Centre Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - João Morais
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Vítor Vasconcelos
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Manuel F. R. Pereira
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LSRE–LCM—Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Olívia S. G. P. Soares
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LSRE–LCM—Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Jelmer Sjollema
- Department of Biomedical Engineering, University of Groningen, University Medical Centre Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Filipe J. Mergulhão
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: ; Tel.: +351-225081668
| |
Collapse
|
10
|
Grzegorczyk M, Pogorzelski S, Janowicz P, Boniewicz-Szmyt K, Rochowski P. Micron-Scale Biogeography of Seawater Biofilm Colonies at Submersed Solid Substrata Affected by Organic Matter and Microbiome Transformation in the Baltic Sea. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6351. [PMID: 36143678 PMCID: PMC9501339 DOI: 10.3390/ma15186351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The aim of this research was to determine temporal and spatial evolution of biofilm architecture formed at model solid substrata submersed in Baltic sea coastal waters in relation to organic matter transformation along a one-year period. Several materials (metals, glass, plastics) were deployed for a certain time, and the collected biofilm-covered samples were studied with a confocal microscopy technique using the advanced programs of image analysis. The geometric and structural biofilm characteristics: biovolume, coverage fraction, mean thickness, spatial heterogeneity, roughness, aggregation coefficient, etc., turned out to evolve in relation to organic matter transformation trends, trophic water status, microbiome evolution, and biofilm micro-colony transition from the heterotrophic community (mostly bacteria) to autotrophic (diatom-dominated) systems. The biofilm morphology parameters allowed the substratum roughness, surface wettability, chromatic organisms colony adaptation to substrata, and quorum sensing or cell to cell signaling effects to be quantitatively evaluated. In addition to the previous work, the structural biofilm parameters could become further novel trophic state indicators.
Collapse
Affiliation(s)
- Maciej Grzegorczyk
- Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland
- MGE, Lipowa 7, 82-103 Stegna, Poland
| | - Stanislaw Pogorzelski
- Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland
| | - Paulina Janowicz
- Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland
| | | | - Pawel Rochowski
- Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland
| |
Collapse
|
11
|
Mhamdi H, Azaiez K, Fiorido T, Benabderrahmane Zaghouani R, Lazzari J, Bendahan M, Dimassi W. Room temperature NO2 gas sensor based on stain-etched porous silicon: Towards a low-cost gas sensor integrated on silicon. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Narciso DAC, Pereira A, Dias NO, Melo LF, Martins FG. Characterization of biofilm structure and properties via processing of 2D optical coherence tomography images in BISCAP. Bioinformatics 2022; 38:1708-1715. [PMID: 34986264 DOI: 10.1093/bioinformatics/btac002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Processing of Optical Coherence Tomography (OCT) biofilm images is currently restricted to a set of custom-made MATLAB scripts. None of the tools currently available for biofilm image processing (including those developed for Confocal Laser Scanning Microscopy-CLSM) enable a fully automatic processing of 2D OCT images. RESULTS A novel software tool entitled Biofilm Imaging and Structure Classification Automatic Processor (BISCAP) is presented. It was developed specifically for the automatic processing of 2D OCT biofilm images. The proposed approach makes use of some of the key principles used in CLSM image processing, and introduces a novel thresholding algorithm and substratum detection strategy. Two complementary pixel continuity checks are executed, enabling very detailed pixel characterizations. BISCAP delivers common structural biofilm parameters and a set of processed images for biofilm analysis. A novel biofilm 'compaction parameter' is suggested. The proposed strategy was tested on a set of 300 images with highly satisfactory results obtained. BISCAP is a Python-based standalone application, not requiring any programming knowledge or property licenses, and where all operations are managed via an intuitive Graphical User Interface. The automatic nature of this image processing strategy decreases biasing problems associated to human-perception and allows a reliable comparison of outputs. AVAILABILITY AND IMPLEMENTATION BISCAP and a collection of biofilm images obtained from OCT scans can be found at: https://github.com/diogonarciso/BISCAP. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Diogo A C Narciso
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Ana Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Nuno O Dias
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Luis F Melo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - F G Martins
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
13
|
Comparative Analysis of Fermentation Conditions on the Increase of Biomass and Morphology of Milk Kefir Grains. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Kefir grains represent a symbiotic association group of yeasts, lactic acid bacteria and acetic acid bacteria within an exopolysaccharide and protein matrix known as kefiran. The mechanism of growth of a biomass of kefir after successive fermentations and optimal conditions is not well understood yet. Biomass growth kinetics were determined to evaluate the effects of temperatures (10 °C to 40 °C) and different substrates, such as monosaccharides (fructose, galactose, glucose), disaccharides (lactose, saccharose) and polysaccharides (Agave angustifolia fructans) at 2%, in reconstituted nonfat milk powder at 10% (w/v) and inoculated with 2% of milk kefir grain (105 CFU/g), after determining the pH kinetics. The best conditions of temperature and substrates were 20 °C and fructans and galactose. An increase in cells, grain sizes and a change in the morphology of the granules with the best substrates were observed using environmental scanning electron microscopy, confocal laser scanning microscopy and Image Digital Analysis (IDA). Kefir grains with agave fructans as their carbon source showed the higher fractal dimension (2.380), related to a greater co-aggregation ability of LAB and yeasts, and increase the formation of exopolysaccharides and the size of the kefir grains, which opens new application possibilities for the use of branched fructans as a substrate for the fermentation of milk kefir grains for the enhancement of cellular biomasses and exopolysaccharide production, as well as IDA as a characterization tool.
Collapse
|
14
|
Pettygrove BA, Smith HJ, Pallister KB, Voyich JM, Stewart PS, Parker AE. Experimental Designs to Study the Aggregation and Colonization of Biofilms by Video Microscopy With Statistical Confidence. Front Microbiol 2022; 12:785182. [PMID: 35095798 PMCID: PMC8793059 DOI: 10.3389/fmicb.2021.785182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/06/2021] [Indexed: 01/14/2023] Open
Abstract
The goal of this study was to quantify the variability of confocal laser scanning microscopy (CLSM) time-lapse images of early colonizing biofilms to aid in the design of future imaging experiments. To accomplish this a large imaging dataset consisting of 16 independent CLSM microscopy experiments was leveraged. These experiments were designed to study interactions between human neutrophils and single cells or aggregates of Staphylococcus aureus (S. aureus) during the initial stages of biofilm formation. Results suggest that in untreated control experiments, variability differed substantially between growth phases (i.e., lag or exponential). When studying the effect of an antimicrobial treatment (in this case, neutrophil challenge), regardless of the inoculation level or of growth phase, variability changed as a frown-shaped function of treatment efficacy (i.e., the reduction in biofilm surface coverage). These findings were used to predict the best experimental designs for future imaging studies of early biofilms by considering differing (i) numbers of independent experiments; (ii) numbers of fields of view (FOV) per experiment; and (iii) frame capture rates per hour. A spreadsheet capable of assessing any user-specified design is included that requires the expected mean log reduction and variance components from user-generated experimental results. The methodology outlined in this study can assist researchers in designing their CLSM studies of antimicrobial treatments with a high level of statistical confidence.
Collapse
Affiliation(s)
- Brian A. Pettygrove
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Heidi J. Smith
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Kyler B. Pallister
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Jovanka M. Voyich
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Philip S. Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States
| | - Albert E. Parker
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, United States
- *Correspondence: Albert E. Parker
| |
Collapse
|
15
|
Roychoudhury T, Ray B, Seal A. Metabolically dependent consortia in biofilm: A new horizon for green agriculture. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Yang J, Cheng S. External resistance acclimation regulates bio-anode: new perspective from biofilm structure and its correlation with anode performance. Bioprocess Biosyst Eng 2021; 45:269-277. [PMID: 34689231 DOI: 10.1007/s00449-021-02658-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
External resistance is important for the anode and cell performance. However, little attentions were paid on the effect of external resistance on the variation of biofilm structure. Here, we used external resistance ranged from 4000 to 500 Ω for anodic acclimation to investigate the correlation between anode performance and biofilm structure. With the reduce of external resistance, the maximum current density of anode increased from 1.0 to 3.4 A/m2, which was resulted from a comprehensive effect of reduced charge transfer resistance and increased diffusion resistance. Biological analysis showed that with the reduce of external resistance, biomass and extracellular polymeric substances content increased by 109 and 286%, cell viability increased by 22.7%, which contributed to the reduced charge transfer resistance. But the porosity of anodic biofilm decreased by 27.8%, which led to an increased diffusion resistance of H+. This work provided a clear correlation between the electrochemical performance and biofilm structure.
Collapse
Affiliation(s)
- Jiawei Yang
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
17
|
The effect of process variables on the physical properties and microstructure of HOPO nanoemulsion flakes obtained by refractance window. Sci Rep 2021; 11:9359. [PMID: 33931665 PMCID: PMC8087804 DOI: 10.1038/s41598-021-88381-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/08/2021] [Indexed: 11/09/2022] Open
Abstract
Refractance window (RW) drying is considered an emerging technique in the food field due to its scalability, energy efficiency, cost and end-product quality. It can be used for obtaining flakes from high-oleic palm oil (HOPO) nanoemulsions containing a high concentration of temperature-sensitive active compounds. This work was thus aimed at studying the effect of temperature, thickness of the film drying, nanoemulsion process conditions, and emulsion formulation on the flakes’ physical properties and microstructure. The results showed that HOPO flakes had good physical characteristics: 1.4% to 5.6% moisture content and 0.26 to 0.58 aw. Regarding microstructure, lower fractal dimension (FDt) was obtained when RW drying temperature increased, which is related to more regular surfaces. The results indicated that flakes with optimal physical properties can be obtained by RW drying of HOPO nanoemulsions.
Collapse
|
18
|
Yuan H, Wang Y, Lai Z, Zhang X, Jiang Z, Zhang X. Analyzing microalgal biofilm structures formed under different light conditions by evaluating cell-cell interactions. J Colloid Interface Sci 2021; 583:563-570. [PMID: 33039857 DOI: 10.1016/j.jcis.2020.09.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 11/17/2022]
Abstract
Biofilm structure plays an important role in microalgae biofilm-based culture. This work aims to understand microalgal biofilm structures formed under different light conditions. Here, Scenedesmus obliquus was biofilm cultured under the light spectra of white, blue, green, and red, and the photoperiods of 5:5 s, 30:30 min, and 12:12 h (light : dark period). Biofilms were observed with confocal laser scanning microscopes and profilometry, then the porosity and roughness of biofilm were determined. We found that cells under white light formed a heterogeneous biofilm with many voids, high porosity, and roughness. While under red and blue lights, cells formed homogeneous biofilms with low porosity. Biofilm structures formed under different photoperiods were different. The mechanism of forming different biofilm structures under different light conditions was interpreted from the aspect of cell-cell interactions. Moreover, the results revealed that biomass accumulation increased with the increasing biofilm porosity due to the high effective diffusion coefficient.
Collapse
Affiliation(s)
- Hao Yuan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yi Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhijian Lai
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xinru Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Research Center of Energy Saving and Environmental Protection, Beijing 100083, China.
| | - Zeyi Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Energy Saving and Emission Reduction of Metallurgical Industry, Beijing 100083, China
| | - Xinxin Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Energy Saving and Emission Reduction of Metallurgical Industry, Beijing 100083, China
| |
Collapse
|
19
|
Quantitative image analysis of microbial communities with BiofilmQ. Nat Microbiol 2021; 6:151-156. [PMID: 33398098 PMCID: PMC7840502 DOI: 10.1038/s41564-020-00817-4] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/19/2020] [Indexed: 01/19/2023]
Abstract
Biofilms are microbial communities that represent a highly abundant form of microbial life on Earth. Inside biofilms, phenotypic and genotypic variations occur in three-dimensional space and time; microscopy and quantitative image analysis are therefore crucial for elucidating their functions. Here, we present BiofilmQ—a comprehensive image cytometry software tool for the automated and high-throughput quantification, analysis and visualization of numerous biofilm-internal and whole-biofilm properties in three-dimensional space and time. BiofilmQ is an image cytometry software tool that enables the visualization, quantification and analysis of biofilm properties, providing insights into their structure and function.
Collapse
|
20
|
Ahamed T, Brown SP, Salehi M. Investigate the role of biofilm and water chemistry on lead deposition onto and release from polyethylene: An implication for potable water pipes. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123253. [PMID: 32947746 DOI: 10.1016/j.jhazmat.2020.123253] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
In this study, the influence of biofilm presence and water chemistry conditions on lead (Pb) deposition onto low density polyethylene (LDPE) surface was examined. The results demonstrated that biofilm presence on LDPE surfaces strongly and significantly enhanced Pb uptake, with the 13-fold greater equilibrium Pb surface loading when biofilm was present (1602 μg/m2) compared to the condition when it was absent (124 μg/m2). The kinetics of Pb adsorption onto LDPE surface when biofilm was present is best described by Pseudo 2nd order kinetic model. Pb adsorption onto new LDPE surfaces was significantly reduced from 1101 μg/m2 to 134 μg/m2 with increased aqueous solution's ionic strength from 3 × 10-6 M to 0.0072 M. The presence of chlorine residual (2 mg/L) significantly reduced Pb adsorption onto LDPE surfaces by possible oxidation of Pb2+ to Pb4+ species. The kinetics of Pb release from LDPE surfaces was investigated under static and dynamic conditions through immediate exposure of Pb accumulated LDPE pellets to the synthetic water at pH 5.0 and 7.8. The results demonstrated a greater Pb release (86 %) at pH 5.0 compared to the pH 7.8 (58 %). An enhanced Pb release into the contact water was found under dynamic conditions compared to static conditions.
Collapse
Affiliation(s)
- Tanvir Ahamed
- Department of Civil Engineering, The University of Memphis, Memphis, TN, USA
| | - Shawn P Brown
- Department of Biological Sciences, The University of Memphis, Memphis, TN, USA
| | - Maryam Salehi
- Department of Civil Engineering, The University of Memphis, Memphis, TN, USA.
| |
Collapse
|
21
|
Computational image analysis reveals the structural complexity of Toxoplasma gondii tissue cysts. PLoS One 2020; 15:e0234169. [PMID: 32810131 PMCID: PMC7444489 DOI: 10.1371/journal.pone.0234169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/25/2020] [Indexed: 11/19/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite infecting up to one third of the human population. The central event in the pathogenesis of toxoplasmosis is the conversion of tachyzoites into encysted bradyzoites. A novel approach to analyze the structure of in vivo-derived tissue cysts may be the increasingly used computational image analysis. The objective of this study was to quantify the geometrical complexity of T. gondii cysts by morphological, particle, and fractal analysis, as well as to determine if it is impacted by parasite strain, cyst age, and host type. A total of 31 images of T. gondii brain cysts of four type-2 strains (Me49, and local isolates BGD1, BGD14, and BGD26) was analyzed using ImageJ software. The parameters of interest included diameter, circularity, packing density (PD), fractal dimension (FD), and lacunarity. Although cyst diameter varied widely, its negative correlation with PD was observed. Circularity was remarkably close to 1, indicating a perfectly round shape of the cysts. PD and FD did not vary among cysts of different strains, age, and derived from mice of different genetic background. Conversely, lacunarity, which is a measure of heterogeneity, was significantly lower for BGD1 strain vs. all other strains, and higher for Me49 vs. BGD14 and BGD26, but did not differ among Me49 cysts of different age, or those derived from genetically different mice. The results indicate a highly uniform structure and occupancy of the different T. gondii tissue cysts. This study furthers the use of image analysis in describing the structural complexity of T. gondii cyst morphology, and presents the first application of fractal analysis for this purpose. The presented results show that use of a freely available software is a cost-effective approach to advance automated image scoring for T. gondii cysts.
Collapse
|
22
|
Ben-Sahil A, Mohamed A, Beyenal H. Three-dimensional biofilm image reconstruction for assessing structural parameters. Biotechnol Bioeng 2020; 117:2460-2468. [PMID: 32339263 DOI: 10.1002/bit.27363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/30/2020] [Accepted: 04/23/2020] [Indexed: 11/06/2022]
Abstract
Parameters representing three-dimensional (3D) biofilm structure are quantified from confocal laser-scanning microscope (CLSM) images. These 3D parameters describe the distribution of biomass pixels within the space occupied by a biofilm; however, they lack a direct connection to biofilm activity. As a result, researchers choose a handful of parameters without there being a consensus on a standard set of parameters. We hypothesized that a select 3D parameter set could be used to reconstruct a biofilm image and that the reconstructed and original biofilm images would have similar activities. To test this hypothesis, an algorithm was developed to reconstruct a biofilm image with parameters identical to those of the original CLSM image. We introduced an objective method to assess the reconstruction algorithm by comparing the activities of the original and reconstructed biofilm images. We found that biofilm images with identical structural parameters showed nearly identical activities and substrate concentration profiles. This implies that the set containing all common structural parameters can successfully describe biofilm structure. This finding is significant, as it opens the door to the next step, of finding a smaller standard set of biofilm structural parameters that can be used to compare biofilm structure.
Collapse
Affiliation(s)
- Ahmed Ben-Sahil
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| | - Abdelrhman Mohamed
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| |
Collapse
|
23
|
An open-source robotic platform that enables automated monitoring of replicate biofilm cultivations using optical coherence tomography. NPJ Biofilms Microbiomes 2020; 6:18. [PMID: 32238809 PMCID: PMC7113294 DOI: 10.1038/s41522-020-0129-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
The paper introduces a fully automated cultivation and monitoring tool to study biofilm development in replicate experiments operated in parallel. To gain a fundamental understanding of the relation between cultivation conditions and biofilm characteristics (e.g., structural, mechanical) a monitoring setup allowing for the standardization of methods is required. Optical coherence tomography (OCT) is an imaging modality ideal for biofilms since it allows for the monitoring of structure in real time. By integrating an OCT device into the open-source robotic platform EvoBot, a fully automated monitoring platform for investigating biofilm development in several flow cells at once was realized. Different positioning scenarios were tested and revealed that the positioning accuracy is within the optical resolution of the OCT. On that account, a reliable and accurate monitoring of biofilm development by means of OCT has become possible. With this robotic platform, reproducible biofilm experiments including a statistical analysis are achievable with only a small investment of operator time. Furthermore, a number of structural parameters calculated within this study confirmed the necessity to perform replicate biofilm cultivations.
Collapse
|
24
|
Zhang X, Yuan H, Wang Y, Guan L, Zeng Z, Jiang Z, Zhang X. Cell Surface Energy Affects the Structure of Microalgal Biofilm. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3057-3063. [PMID: 32160744 DOI: 10.1021/acs.langmuir.0c00274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microalgae biofilm-based culture systems have wide applications in environmental engineering and biotechnology. Biofilm structure is critical for the transport of nutrients, gas, and signaling molecules in a microalgal biofilm. This work aims to understand the influence of cell surface energy (SE) on the microalgal biofilm structure. Three microalgae species were used as model cells in the study: Chlorella sp., Nannochloris oculata, and Chlorella pyrenoidosa. First, by mediating biofilm culture conditions, we obtained Chlorella sp. cells with SEs of 40.4 ± 1.5, 44.7 ± 1.0, and 62. 7 ± 1.2 mJ/m2, N. oculata cells with SEs of 47.7 ± 0.5, 41.1 ± 1.0, and 62.6 ± 1.2 mJ/m2, and C. pyrenoidosa cells with SEs of 64.0 ± 0.6, 62.1 ± 0.7, and 62.8 ± 0.6 mJ/m2. Then, based on the characterizations of biofilm structures, we found that cell SE can significantly affect the microalgae biofilm structure. When the cell SEs ranged from 40 to 50 mJ/m2, the microalgae cells formed heterogeneous biofilms with a large number of open voids, and the biofilm porosity was higher than 20%. Alternatively, when the cell SEs ranged from 50 to 65 mJ/m2, the cells formed a flat, homogeneous biofilm with the porosity lower than 20%. Finally, the influencing mechanism of cell SE on biofilm structure was interpreted based on the thermodynamic theory via analyzing the co-adhesion energy between cells. The study has important implications in understanding factors that influence the biofilm structures.
Collapse
Affiliation(s)
- Xinru Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Research Center of Energy Saving and Environmental Protection, Beijing 100083, China
| | - Hao Yuan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yi Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Libo Guan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ziyi Zeng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zeyi Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory for Energy Saving and Emission Reduction of Metallurgical Industry, Beijing 100083, China
| | - Xinxin Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory for Energy Saving and Emission Reduction of Metallurgical Industry, Beijing 100083, China
| |
Collapse
|
25
|
Chen P, Wang JJ, Hong B, Tan L, Yan J, Zhang Z, Liu H, Pan Y, Zhao Y. Characterization of Mixed-Species Biofilm Formed by Vibrio parahaemolyticus and Listeria monocytogenes. Front Microbiol 2019; 10:2543. [PMID: 31787947 PMCID: PMC6856058 DOI: 10.3389/fmicb.2019.02543] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
Mixed-species biofilms are the predominant form of biofilms found in nature. Research on biofilms have typically concentrated on single species biofilms and this study expands the horizon of biofilm research, where the characterization and dynamic changes of mono and mixed-species biofilms formed by the pathogens, Vibrio parahaemolyticus and Listeria monocytogenes were investigated. Compared to mono-species biofilm, the biomass, bio-volume, and thickness of mixed-species biofilms were significantly lower, which were confirmed using crystal violet staining, confocal laser scanning microscopy and scanning electron microscopy. Further experimental analysis showed these variations might result from the reduction of bacterial numbers, the down-regulation of biofilm-regulated genes and loss of metabolic activity in mixed-species biofilm. In addition, V. parahaemolyticus was located primarily on the surface layers of the mixed-species biofilms thus accruing competitive advantage. This competitive advantage was evidenced in a higher V. parahaemolyticus population density in the mixed-species biofilms. The adhesion to surfaces of the mixed-species biofilms were also reduced due to lower concentrations of extracellular polysaccharide and protein when the structure of the mixed-species was examined using Raman spectral analysis, phenol-sulfuric acid method and Lowry method. Furthermore, the minimum biofilm inhibitory concentration to antibiotics obviously decreased when V. parahaemolyticus co-exited with L. monocytogenes. This study firstly elucidated the interactive behavior in biofilm development of two foodborne pathogens, and future studies for biofilm control and antibiotic therapy should take into account interactions in mixed-species biofilms.
Collapse
Affiliation(s)
- Ping Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Bin Hong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ling Tan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
| |
Collapse
|
26
|
Structure and Fluorescence Intensity Measurements in Biofilms. Methods Mol Biol 2019. [PMID: 31432478 DOI: 10.1007/978-1-4939-9686-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
Confocal laser scanning microscopy (CLSM) is one of the most relevant technologies for studying biofilms in situ. Several tools have been developed to investigate and quantify the architecture of biofilms. However, an approach to accurately quantify the intensity of a fluorescent signal over biofilm depth is still lacking. Here we present a tool developed in the ImageJ open-source software that can be used to extract both structure and fluorescence intensity from CLSM data: BIAM (Biofilm Intensity and Architecture Measurement). This is of utmost significance when studying the fundamental mechanisms of biofilm development, differentiation, and in situ gene expression or when aiming to understand the effect of external molecules on biofilm phenotypes.
Collapse
|
27
|
Chaddad A, Daniel P, Sabri S, Desrosiers C, Abdulkarim B. Integration of Radiomic and Multi-omic Analyses Predicts Survival of Newly Diagnosed IDH1 Wild-Type Glioblastoma. Cancers (Basel) 2019; 11:cancers11081148. [PMID: 31405148 PMCID: PMC6721570 DOI: 10.3390/cancers11081148] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022] Open
Abstract
Predictors of patient outcome derived from gene methylation, mutation, or expression are severely limited in IDH1 wild-type glioblastoma (GBM). Radiomics offers an alternative insight into tumor characteristics which can provide complementary information for predictive models. The study aimed to evaluate whether predictive models which integrate radiomic, gene, and clinical (multi-omic) features together offer an increased capacity to predict patient outcome. A dataset comprising 200 IDH1 wild-type GBM patients, derived from The Cancer Imaging Archive (TCIA) (n = 71) and the McGill University Health Centre (n = 129), was used in this study. Radiomic features (n = 45) were extracted from tumor volumes then correlated to biological variables and clinical outcomes. By performing 10-fold cross-validation (n = 200) and utilizing independent training/testing datasets (n = 100/100), an integrative model was derived from multi-omic features and evaluated for predictive strength. Integrative models using a limited panel of radiomic (sum of squares variance, large zone/low gray emphasis, autocorrelation), clinical (therapy type, age), genetic (CIC, PIK3R1, FUBP1) and protein expression (p53, vimentin) yielded a maximal AUC of 78.24% (p = 2.9 × 10−5). We posit that multi-omic models using the limited set of ‘omic’ features outlined above can improve capacity to predict the outcome for IDH1 wild-type GBM patients.
Collapse
Affiliation(s)
- Ahmad Chaddad
- Division of Radiation Oncology, Department of Oncology, McGill University, Montreal, QC H4A 3J1, Canada
- The Laboratory for Imagery, Vision and Artificial Intelligence, École de Technologie Supérieure (ETS), Montréal, QC H3C 1K3, Canada
| | - Paul Daniel
- Division of Radiation Oncology, Department of Oncology, McGill University, Montreal, QC H4A 3J1, Canada
| | - Siham Sabri
- Department of Pathology, McGill University, Montreal, QC H4A 3J1, Canada
- Research Institute of the McGill University Health Centre, Glen Site, Montreal, QC H4A 3J1, Canada
| | - Christian Desrosiers
- The Laboratory for Imagery, Vision and Artificial Intelligence, École de Technologie Supérieure (ETS), Montréal, QC H3C 1K3, Canada
| | - Bassam Abdulkarim
- Division of Radiation Oncology, Department of Oncology, McGill University, Montreal, QC H4A 3J1, Canada.
- Research Institute of the McGill University Health Centre, Glen Site, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
28
|
Song P, Zhou B, Feng G, Brooks JP, Zhou H, Zhao Z, Liu Y, Li Y. The influence of chlorination timing and concentration on microbial communities in labyrinth channels: implications for biofilm removal. BIOFOULING 2019; 35:401-415. [PMID: 31142151 DOI: 10.1080/08927014.2019.1600191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Chlorination is an effective method to control biofilm formation in enclosed pipelines. To date, very little is known about how to control biofilms at the mesoscale in complex pipelines through chlorination. In this study, the dynamic of microbial communities was examined under different residual chlorine concentrations on the biofilms attached to labyrinth channels for drip irrigation using reclaimed water. The results indicated that the microbial phospholipid fatty acids, extracellular polymeric substances, microbial dynamics, and the ace and Shannon microbial diversity indices showed a gradual decrease after chlorination. However, chlorination increased microbial activity by 0.5-19.2%. The increase in the relative abundances of chloride-resistant bacteria (Acinetobacter and Thermomonas) could lead to a potential risk of chlorine resistance. Thus, keeping a low chlorine concentration (0.83 mg l-1 for 3 h) is effective for controlling biofilm formation in the labyrinth channels.
Collapse
Affiliation(s)
- Peng Song
- a College of Water Resources and Civil Engineering , China Agricultural University , Beijing , PR China
- b Genetics and Sustainable Agricultural Research Unit , United States Department of Agriculture , Starkville , MS , USA
| | - Bo Zhou
- a College of Water Resources and Civil Engineering , China Agricultural University , Beijing , PR China
- c College of Agricultural and Life Sciences , University of Wisconsin-Madison , Madison , WI , USA
| | - Gary Feng
- b Genetics and Sustainable Agricultural Research Unit , United States Department of Agriculture , Starkville , MS , USA
| | - John P Brooks
- b Genetics and Sustainable Agricultural Research Unit , United States Department of Agriculture , Starkville , MS , USA
| | - Hongxu Zhou
- a College of Water Resources and Civil Engineering , China Agricultural University , Beijing , PR China
| | - Zhirui Zhao
- d Research Center for Eco-environmental Sciences , Chinese Academy of Sciences , Beijing , PR China
| | - Yaoze Liu
- e Department of Environmental and Sustainable Engineering , University at Albany , Albany , NY , USA
| | - Yunkai Li
- a College of Water Resources and Civil Engineering , China Agricultural University , Beijing , PR China
| |
Collapse
|
29
|
Hou Y, Yang M, Jiang H, Li D, Du Y. Effects of low-intensity and low-frequency ultrasound combined with tobramycin on biofilms of extended-spectrum beta-lactamases (ESBLs) Escherichia coli. FEMS Microbiol Lett 2019; 366:5304977. [DOI: 10.1093/femsle/fnz026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/30/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yuru Hou
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing Collaborative Innovation Center for Minimally Invasive and Noninvasive Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Min Yang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing Collaborative Innovation Center for Minimally Invasive and Noninvasive Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Hexun Jiang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing Collaborative Innovation Center for Minimally Invasive and Noninvasive Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China
| | - Dairong Li
- Department of Respiratory Disease, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yonghong Du
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing Collaborative Innovation Center for Minimally Invasive and Noninvasive Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
30
|
Sutlief AL, Valquier-Flynn H, Wilson C, Perez M, Kleinschmidt H, Schofield BJ, Delmain E, Holmes AE, Wentworth CD. Live Cell Analysis of Shear Stress on Pseudomonas aeruginosa Using an Automated Higher-Throughput Microfluidic System. J Vis Exp 2019:10.3791/58926. [PMID: 30735194 PMCID: PMC6455916 DOI: 10.3791/58926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A higher-throughput microfluidic in vitro bioreactor coupled with fluorescence microscopy has been used to study bacterial biofilm growth and morphology, including Pseudomonas aeruginosa (P. aeruginosa). Here, we will describe how the system can be used to study the growth kinetics and the morphological properties such as the surface roughness and textural entropy of P. aeruginosa strain PA01 that expresses an enhanced green fluorescent protein (PA01-EGFP). A detailed protocol will describe how to grow and seed PA01-EGFP cultures, how to set up the microscope and autorun, and conduct the image analysis to determine growth rate and morphological properties using a variety of shear forces that are controlled by the microfluidic device. This article will provide a detailed description of a technique to improve the study of PA01-EGFP biofilms which eventually can be applied towards other strains of bacteria, fungi, or algae biofilms using the microfluidic platform.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elizabeth Delmain
- Department of Pathology and Microbiology, University of Nebraska Medical Center
| | | | | |
Collapse
|
31
|
He X, Liu Y, Bai X, Yuan C, Li H. Alginate/albumin in incubation solution mediates the adhesion and biofilm formation of typical marine bacteria and algae. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Dynamics of Pseudomonas putida biofilms in an upscale experimental framework. ACTA ACUST UNITED AC 2018; 45:899-911. [DOI: 10.1007/s10295-018-2070-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
Abstract
Abstract
Exploitation of biofilms for industrial processes requires them to adopt suitable physical structures for rendering them efficient and predictable. While hydrodynamics could be used to control material features of biofilms of the platform strain Pseudomonas putida KT2440 there is a dearth of experimental data on surface-associated growth behavior in such settings. Millimeter scale biofilm patterns formed by its parental strain P. putida mt-2 under different Reynolds numbers (Re) within laminar regime were analyzed using an upscale experimental continuous cultivation assembly. A tile-scan image acquisition process combined with a customized image analysis revealed patterns of dense heterogeneous structures at Re = 1000, but mostly flattened coverings sparsely patched for Re < 400. These results not only fix the somewhat narrow hydrodynamic regime under which P. putida cells form stable coatings on surfaces destined for large-scale processes, but also provide useful sets of parameters for engineering catalytic biofilms based on this important bacterium as a cell factory.
Collapse
|
33
|
Del Mondo A, Pinto G, Carbone DA, Pollio A, De Natale A. Biofilm architecture on different substrates of an Oculatella subterranea (Cyanobacteria) strain isolated from Pompeii archaeological site (Italy). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:26079-26089. [PMID: 29971739 DOI: 10.1007/s11356-018-2643-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/24/2018] [Indexed: 06/08/2023]
Abstract
The Cyanobacterium Oculatella subterranea Zammit, Billi, Albertano inhabits hypogea and stone caves and is a pioneer of different stone substrata. In this study, a strain isolated from the House of Marco Castricio (Archaeological Park of Pompeii, Italy) was identified by a polyphasic approach and used for an in vitro colonization test to verify the influence of the substrate on the biofilm architecture. Fine structure of O. subterranea microbial mats was revealed as well as filaments orientation toward light source. This aim has been achieved through confocal laser scanner microscope microscopy and computer image analysis. Moreover, bioreceptivity of five different substrates, commonly retrieved in archaeological sites of Campania, was assessed for O. subterranea. Our results show that the three-dimensional structure of O. subterranea microbial mats is poorly affected by physical and geochemical features of substrates: in fact, the porous architecture of its biofilm was preserved, independently of the materials. On the other hand, the area/perimeter ratio relative to the O. subterranea growth on tuff, brick, and porphyry showed significant differences, indicating dissimilar levels of bioreceptivity of the three substrates.
Collapse
Affiliation(s)
- Angelo Del Mondo
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126, Naples, Italy.
| | - Gabriele Pinto
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126, Naples, Italy
| | - Dora Allegra Carbone
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126, Naples, Italy
| | - Antonino Pollio
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126, Naples, Italy
| | - Antonino De Natale
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126, Naples, Italy
| |
Collapse
|
34
|
A Sensitive Thresholding Method for Confocal Laser Scanning Microscope Image Stacks of Microbial Biofilms. Sci Rep 2018; 8:13013. [PMID: 30158655 PMCID: PMC6115396 DOI: 10.1038/s41598-018-31012-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/02/2018] [Indexed: 11/08/2022] Open
Abstract
Biofilms are surface-attached microbial communities whose architecture can be captured with confocal microscopy. Manual or automatic thresholding of acquired images is often needed to help distinguish biofilm biomass from background noise. However, manual thresholding is subjective and current automatic thresholding methods can lead to loss of meaningful data. Here, we describe an automatic thresholding method designed for confocal fluorescent signal, termed the biovolume elasticity method (BEM). We evaluated BEM using confocal image stacks of oral biofilms grown in pooled human saliva. Image stacks were thresholded manually and automatically with three different methods; Otsu, iterative selection (IS), and BEM. Effects on biovolume, surface area, and number of objects detected indicated that the BEM was the least aggressive at removing signal, and provided the greatest visual and quantitative acuity of single cells. Thus, thresholding with BEM offers a sensitive, automatic, and tunable method to maintain biofilm architectural properties for subsequent analysis.
Collapse
|
35
|
Allen A, Habimana O, Casey E. The effects of extrinsic factors on the structural and mechanical properties of Pseudomonas fluorescens biofilms: A combined study of nutrient concentrations and shear conditions. Colloids Surf B Biointerfaces 2018; 165:127-134. [PMID: 29471219 DOI: 10.1016/j.colsurfb.2018.02.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 01/17/2018] [Accepted: 02/14/2018] [Indexed: 12/16/2022]
Abstract
The growth of biofilms on surfaces is a complicated process influenced by several environmental factors such as nutrient availability and fluid shear. In this study, combinations of growth conditions were selected for the study of Pseudomonas fluorescens biofilms including as cultivation time (24- or 48 h), nutrient levels (1:1 or 1:10 King B medium), and shear conditions (75 RPM shaking, 0.4 mL min -1 or 0.7 mL min -1). The use of Confocal Laser Scanning Microscopy (CLSM) determined biofilm structure, while liquid-phase Atomic Force Microscopy (AFM) techniques resolved the mechanical properties of biofilms. Under semi-static conditions, high nutrient environments led to more abundant biofilms with three times higher EPS content compared to biofilms grown under low nutrient conditions. AFM results revealed that biofilms formed under these conditions were less stiff, as shown by their Young's modulus values of 2.35 ± 0.08 kPa, compared to 4.98 ± 0.02 kPa for that of biofilms formed under low nutrient conditions. Under dynamic conditions, however, biofilms exposed to low nutrient conditions and high shear rates led to more developed biofilms compared to other tested dynamic conditions. These biofilms were also found to be significantly more adhesive compared to their counterparts grown at higher nutrient conditions.
Collapse
Affiliation(s)
- Ashley Allen
- School of Engineering, The University of Edinburgh, Edinburgh, UK
| | - Olivier Habimana
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Eoin Casey
- School of Chemical and Bioprocess Engineering, University College Dublin (UCD), Belfield, Dublin 4, Ireland.
| |
Collapse
|
36
|
Tsagkari E, Sloan WT. Turbulence accelerates the growth of drinking water biofilms. Bioprocess Biosyst Eng 2018; 41:757-770. [PMID: 29428998 PMCID: PMC5958169 DOI: 10.1007/s00449-018-1909-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/06/2018] [Indexed: 11/14/2022]
Abstract
Biofilms are found at the inner surfaces of drinking water pipes and, therefore, it is essential to understand biofilm processes to control their formation. Hydrodynamics play a crucial role in shaping biofilms. Thus, knowing how biofilms form, develop and disperse under different flow conditions is critical in the successful management of these systems. Here, the development of biofilms after 4 weeks, the initial formation of biofilms within 10 h and finally, the response of already established biofilms within 24-h intervals in which the flow regime was changed, were studied using a rotating annular reactor under three different flow regimes: turbulent, transition and laminar. Using fluorescence microscopy, information about the number of microcolonies on the reactor slides, the surface area of biofilms and of extracellular polymeric substances and the biofilm structures was acquired. Gravimetric measurements were conducted to characterise the thickness and density of biofilms, and spatial statistics were used to characterise the heterogeneity and spatial correlation of biofilm structures. Contrary to the prevailing view, it was shown that turbulent flow did not correlate with a reduction in biofilms; turbulence was found to enhance both the initial formation and the development of biofilms on the accessible surfaces. Additionally, after 24-h changes of the flow regime it was indicated that biofilms responded to the quick changes of the flow regime. Overall, this work suggests that different flow conditions can cause substantial changes in biofilm morphology and growth and specifically that turbulent flow can accelerate biofilm growth in drinking water.
Collapse
Affiliation(s)
- E Tsagkari
- College of Science and Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK.
| | - W T Sloan
- College of Science and Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| |
Collapse
|
37
|
Harraghy N, Seiler S, Jacobs K, Hannig M, Menger MD, Herrmann M. Advances in in Vitro and in Vivo Models for Studying the Staphylococcal Factors Involved in Implant Infections. Int J Artif Organs 2018; 29:368-78. [PMID: 16705605 DOI: 10.1177/039139880602900406] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Implant infections due to staphylococci are one of the greatest threats facing patients receiving implant devices. For many years researchers have sought to understand the mechanisms involved in the adherence of the bacterium to the implanted device and the formation of the unique structure, the biofilm, which protects the indwelling bacteria from the host defence and renders them resistant to antibiotic treatment. A major goal has been to develop in vitro and in vivo models that adequately reflect the real-life situation. From the simple microtiter plate assay and scanning electron microscopy, tools for studying adherence and biofilm formation have since evolved to include specialised equipment for studying adherence, flow cell systems, real-time analysis of biofilm formation using reporter gene assays both in vitro and in vivo, and a wide variety of animal models. In this article, we discuss advances in the last few years in selected in vitro and in vivo models as well as future developments in the study of adherence and biofilm formation by the staphylococci.
Collapse
Affiliation(s)
- N Harraghy
- Institute of Medical Microbiology and Hygiene, University of Saarland, Homburg/Saar, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Hui C, Guo X, Sun P, Khan RA, Zhang Q, Liang Y, Zhao YH. Removal of nitrite from aqueous solution by Bacillus amyloliquefaciens biofilm adsorption. BIORESOURCE TECHNOLOGY 2018; 248:146-152. [PMID: 28756127 DOI: 10.1016/j.biortech.2017.06.176] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
A newly verified adsorbent biofilm produced by Bacillus amyloliquefaciens DT was investigated for nitrite removal from aqueous solutions. The biofilm's characteristics and adsorption mechanism were determined, with results indicating that nitrite ions were adsorbed onto the protonated amine sites of biofilm under acidic conditions. Analysis of various factors showed that higher nitrite adsorption capacities occurred at pH < 3.0 and higher temperatures as well as higher initial nitrite concentrations, with a maximum nitrite removal capacity of 116.84mg/g. Furthermore, nitrite adsorption was well fitted to the pseudo second-order and Weber-Morris kinetic models, and the Freundlich and Sips isotherm models. Simultaneously, thermodynamic analysis demonstrated that nitrite adsorption is a spontaneous endothermic process. In summary, the adsorption of nitrite was complex, and mainly resulted from electrostatic attraction and intraparticle diffusion. Consequently, the B. amyloliquefaciens biofilm can be considered as a promising adsorbent for nitrite removal from wastewater.
Collapse
Affiliation(s)
- Cai Hui
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoxiao Guo
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pengfei Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Rashid Azim Khan
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qichun Zhang
- Institute of Soil and Water Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu-Hua Zhao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
39
|
Chaddad A, Desrosiers C, Toews M, Abdulkarim B. Predicting survival time of lung cancer patients using radiomic analysis. Oncotarget 2017; 8:104393-104407. [PMID: 29262648 PMCID: PMC5732814 DOI: 10.18632/oncotarget.22251] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/02/2017] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES This study investigates the prediction of Non-small cell lung cancer (NSCLC) patient survival outcomes based on radiomic texture and shape features automatically extracted from tumor image data. MATERIALS AND METHODS Retrospective analysis involves CT scans of 315 NSCLC patients from The Cancer Imaging Archive (TCIA). A total of 24 image features are computed from labeled tumor volumes of patients within groups defined using NSCLC subtype and TNM staging information. Spearman's rank correlation, Kaplan-Meier estimation and log-rank tests were used to identify features related to long/short NSCLC patient survival groups. Automatic random forest classification was used to predict patient survival group from multivariate feature data. Significance is assessed at P < 0.05 following Holm-Bonferroni correction for multiple comparisons. RESULTS Significant correlations between radiomic features and survival were observed for four clinical groups: (group, [absolute correlation range]): (large cell carcinoma (LCC) [0.35, 0.43]), (tumor size T2, [0.31, 0.39]), (non lymph node metastasis N0, [0.3, 0.33]), (TNM stage I, [0.39, 0.48]). Significant log-rank relationships between features and survival time were observed for three clinical groups: (group, hazard ratio): (LCC, 3.0), (LCC, 3.9), (T2, 2.5) and (stage I, 2.9). Automatic survival prediction performance (i.e. below/above median) is superior for combined radiomic features with age-TNM in comparison to standard TNM clinical staging information (clinical group, mean area-under-the-ROC-curve (AUC)): (LCC, 75.73%), (N0, 70.33%), (T2, 70.28%) and (TNM-I, 76.17%). CONCLUSION Quantitative lung CT imaging features can be used as indicators of survival, in particular for patients with large-cell-carcinoma (LCC), primary-tumor-sizes (T2) and no lymph-node-metastasis (N0).
Collapse
Affiliation(s)
- Ahmad Chaddad
- Division of Radiation Oncology, McGill University, Montréal, Canada
- The Laboratory for Imagery, Vision and Artificial Intelligence, Ecole de Technologie Supérieure, Montréal, Canada
| | - Christian Desrosiers
- The Laboratory for Imagery, Vision and Artificial Intelligence, Ecole de Technologie Supérieure, Montréal, Canada
| | - Matthew Toews
- The Laboratory for Imagery, Vision and Artificial Intelligence, Ecole de Technologie Supérieure, Montréal, Canada
| | | |
Collapse
|
40
|
Balsa-Canto E, Vilas C, López-Núñez A, Mosquera-Fernández M, Briandet R, Cabo ML, Vázquez C. Modeling Reveals the Role of Aging and Glucose Uptake Impairment in L1A1 Listeria monocytogenes Biofilm Life Cycle. Front Microbiol 2017; 8:2118. [PMID: 29163410 PMCID: PMC5671982 DOI: 10.3389/fmicb.2017.02118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/18/2017] [Indexed: 12/17/2022] Open
Abstract
Listeria monocytogenes is a food-borne pathogen that can persist in food processing plants by forming biofilms on abiotic surfaces. The benefits that bacteria can gain from living in a biofilm, i.e., protection from environmental factors and tolerance to biocides, have been linked to the biofilm structure. Different L. monocytogenes strains build biofilms with diverse structures, and the underlying mechanisms for that diversity are not yet fully known. This work combines quantitative image analysis, cell counts, nutrient uptake data and mathematical modeling to provide a mechanistic insight into the dynamics of the structure of biofilms formed by L. monocytogenes L1A1 (serotype 1/2a) strain. Confocal laser scanning microscopy (CLSM) and quantitative image analysis were used to characterize the structure of L1A1 biofilms throughout time. L1A1 forms flat, thick structures; damaged or dead cells start appearing early in deep layers of the biofilm and rapidly and massively loss biomass after 4 days. We proposed several reaction-diffusion models to explain the system dynamics. Model candidates describe biomass and nutrients evolution including mechanisms of growth and cell spreading, nutrients diffusion and uptake and biofilm decay. Data fitting was used to estimate unknown model parameters and to choose the most appropriate candidate model. Remarkably, standard reaction-diffusion models could not describe the biofilm dynamics. The selected model reveals that biofilm aging and glucose impaired uptake play a critical role in L1A1 L. monocytogenes biofilm life cycle.
Collapse
Affiliation(s)
- Eva Balsa-Canto
- (Bio)Process Engineering Group, IIM-CSIC Spanish National Research Council, Vigo, Spain
| | - Carlos Vilas
- (Bio)Process Engineering Group, IIM-CSIC Spanish National Research Council, Vigo, Spain
| | | | - Maruxa Mosquera-Fernández
- (Bio)Process Engineering Group, IIM-CSIC Spanish National Research Council, Vigo, Spain
- Microbiology Group, IIM-CSIC Spanish National Research Council, Vigo, Spain
| | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Massy, France
| | - Marta L. Cabo
- Microbiology Group, IIM-CSIC Spanish National Research Council, Vigo, Spain
| | - Carlos Vázquez
- Mathematics Department, ITMATI, CITIC, University of A Coruña, A Coruña, Spain
| |
Collapse
|
41
|
Rodríguez-López P, Puga CH, Orgaz B, Cabo ML. Quantifying the combined effects of pronase and benzalkonium chloride in removing late-stage Listeria monocytogenes-Escherichia coli dual-species biofilms. BIOFOULING 2017; 33:690-702. [PMID: 28871864 DOI: 10.1080/08927014.2017.1356290] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
This work presents the assessment of the effectivity of a pronase (PRN)-benzalkonium chloride (BAC) sequential treatment in removing Listeria monocytogenes-Escherichia coli dual-species biofilms grown on stainless steel (SS) using fluorescence microscopy and plate count assays. The effects of PRN-BAC on the occupied area (OA) by undamaged cells in 168 h dual-species samples were determined using a first-order factorial design. Empirical equations significantly (r2 = 0.927) described a negative individual effect of BAC and a negative interactive effect of PRN-BAC achieving OA reductions up to 46%. After treatment, high numbers of remaining attached and released viable and cultivable E. coli cells were detected in PRN-BAC combinations when low BAC concentrations were used. Therefore, at appropriate BAC doses, in addition to biofilm removal, sequential application of PRN and BAC represents an appealing strategy for pathogen control on SS surfaces while hindering the dispersion of live cells into the environment.
Collapse
Affiliation(s)
- Pedro Rodríguez-López
- a Department of Microbiology and Technology of Marine Products , Instituto de Investigaciones Marinas (IIM-CSIC) , Pontevedra , Spain
| | - Carmen H Puga
- b Department of Nutrition, Food Science and Technology, Faculty of Veterinary , University Complutense of Madrid (UCM) , Madrid , Spain
| | - Belén Orgaz
- b Department of Nutrition, Food Science and Technology, Faculty of Veterinary , University Complutense of Madrid (UCM) , Madrid , Spain
| | - Marta L Cabo
- a Department of Microbiology and Technology of Marine Products , Instituto de Investigaciones Marinas (IIM-CSIC) , Pontevedra , Spain
| |
Collapse
|
42
|
Dutta Sinha S, Das S, Tarafdar S, Dutta T. Monitoring of Wild Pseudomonas Biofilm Strain Conditions Using Statistical Characterization of Scanning Electron Microscopy Images. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b01106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Suparna Dutta Sinha
- Condensed Matter Physics Research Centre, Department of Physics, Jadavpur University, Kolkata−700032, India
| | - Saptarshi Das
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
- Department of Power
Engineering, Jadavpur University, Salt Lake Campus, LB-8, Sector 3, Kolkata−700098, India
| | - Sujata Tarafdar
- Condensed Matter Physics Research Centre, Department of Physics, Jadavpur University, Kolkata−700032, India
| | - Tapati Dutta
- Physics Department, St. Xavier’s College, Kolkata−700016, India
| |
Collapse
|
43
|
A survey for the applications of content-based microscopic image analysis in microorganism classification domains. Artif Intell Rev 2017. [DOI: 10.1007/s10462-017-9572-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
44
|
Understanding the fundamental mechanisms of biofilms development and dispersal: BIAM (Biofilm Intensity and Architecture Measurement), a new tool for studying biofilms as a function of their architecture and fluorescence intensity. J Microbiol Methods 2017; 140:47-57. [PMID: 28679111 DOI: 10.1016/j.mimet.2017.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 01/08/2023]
Abstract
Confocal laser scanning microscopy (CLSM) is one of the most relevant technologies for studying biofilms in situ. Several tools have been developed to investigate and quantify the architecture of biofilms. However, an approach to quantify correctly the evolution of intensity of a fluorescent signal as a function of the structural parameters of a biofilm is still lacking. Here we present a tool developed in the ImageJ open source software that can be used to extract both structural and fluorescence intensity from CLSM data: BIAM (Biofilm Intensity and Architecture Measurement). This is of utmost significance when studying the fundamental mechanisms of biofilm growth, differentiation and development or when aiming to understand the effect of external molecules on biofilm phenotypes. In order to provide an example of the potential of such a tool in this study we focused on biofilm dispersion. cis-2-Decenoic acid (CDA) is a molecule known to induce biofilm dispersion of multiple bacterial species. The mechanisms by which CDA induces dispersion are still poorly understood. To investigate the effects of CDA on biofilms, we used a reporter strain of Escherichia coli (E. coli) that expresses the GFPmut2 protein under control of the rrnBP1 promoter. Experiments were done in flow cells and image acquisition was made with CLSM. Analysis carried out using the new tool, BIAM, indicates that CDA affects the fluorescence intensity of the biofilm structures as well as biofilm architectures. Indeed, our results demonstrate that CDA removes more than 35% of biofilm biovolume and suggest that it results in an increase of the biofilm's mean fluorescence intensity (MFI) by more than 26% compared to the control biofilm in the absence of CDA.
Collapse
|
45
|
Microbial fuel cell characterisation and evaluation of Lysinibacillus macroides MFC02 electrigenic capability. World J Microbiol Biotechnol 2017; 33:91. [PMID: 28391561 DOI: 10.1007/s11274-017-2252-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/24/2017] [Indexed: 10/19/2022]
Abstract
Microbial fuel cell (MFC) is the most prominent research field due to its capability to generate electricity by utilizing the renewable sources. In the present study, Two MFC designs namely, H type-Microbial fuel cell (HT-MFC) and U type-Microbial fuel cell (UT-MFC) were constructed based on standardized H shaped anode and cathode compartment as well as U shaped anode and cathode compartments, respectively. In order to lower the cost for MFC construction, Pencil graphite lead was used as electrode and salt agar as Proton exchange membrane. Results inferred that newly constructed UT-MFC showed high electron production when compared to the HT-MFC. UT-MFC displayed an output of about 377 ± 18.85 mV (millivolts); whereas HT-MFC rendered only 237 ± 11.85 mV (millivolts) of power generation, which might be due to the low internal resistance. By increasing the number of cathode in UT-MFC, power production was increased upto 313 ± 15.65 mV in Open circuit voltage (OCV). Electrogenic bacteria namely, Lysinibacillus macroides (Acc. No. KX011879) rendered enriched power generation. The attachment of bacteria as a biofilm on pencil graphite lead was analyzed using fluorescent microscope and Scanning Electron Microscope (SEM). Based on our findings, it was observed that UT-MFC has a tendency to produce high electron generation using pencil graphite lead as the electrode material.
Collapse
|
46
|
Fortunato L, Bucs S, Linares RV, Cali C, Vrouwenvelder JS, Leiknes T. Spatially-resolved in-situ quantification of biofouling using optical coherence tomography (OCT) and 3D image analysis in a spacer filled channel. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.11.052] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Influence of Nutrient Availability and Quorum Sensing on the Formation of Metabolically Inactive Microcolonies Within Structurally Heterogeneous Bacterial Biofilms: An Individual-Based 3D Cellular Automata Model. Bull Math Biol 2017; 79:594-618. [PMID: 28127665 DOI: 10.1007/s11538-017-0246-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/13/2017] [Indexed: 10/20/2022]
Abstract
The resistance of bacterial biofilms to antibiotic treatment has been attributed to the emergence of structurally heterogeneous microenvironments containing metabolically inactive cell populations. In this study, we use a three-dimensional individual-based cellular automata model to investigate the influence of nutrient availability and quorum sensing on microbial heterogeneity in growing biofilms. Mature biofilms exhibited at least three structurally distinct strata: a high-volume, homogeneous region sandwiched between two compact sections of high heterogeneity. Cell death occurred preferentially in layers in close proximity to the substratum, resulting in increased heterogeneity in this section of the biofilm; the thickness and heterogeneity of this lowermost layer increased with time, ultimately leading to sloughing. The model predicted the formation of metabolically dormant cellular microniches embedded within faster-growing cell clusters. Biofilms utilizing quorum sensing were more heterogeneous compared to their non-quorum sensing counterparts, and resisted sloughing, featuring a cell-devoid layer of EPS atop the substratum upon which the remainder of the biofilm developed. Overall, our study provides a computational framework to analyze metabolic diversity and heterogeneity of biofilm-associated microorganisms and may pave the way toward gaining further insights into the biophysical mechanisms of antibiotic resistance.
Collapse
|
48
|
Cheng C, Dong Y, Dorian M, Kamili F, Seitaridou E. Quantifying Biofilm Formation of <i>Sinorhizobium meliloti</i> Bacterial Strains in Microfluidic Platforms by Measuring the Diffusion Coefficient of Polystyrene Beads. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ojbiphy.2017.73012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Mosquera-Fernández M, Sanchez-Vizuete P, Briandet R, Cabo M, Balsa-Canto E. Quantitative image analysis to characterize the dynamics of Listeria monocytogenes biofilms. Int J Food Microbiol 2016; 236:130-7. [DOI: 10.1016/j.ijfoodmicro.2016.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/06/2016] [Accepted: 07/09/2016] [Indexed: 01/24/2023]
|
50
|
Pieniazek F, Messina V. Scanning electron microscopy combined with image processing technique: Analysis of microstructure, texture and tenderness in Semitendinous and Gluteus Medius bovine muscles. SCANNING 2016; 38:727-734. [PMID: 27273728 DOI: 10.1002/sca.21321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/31/2016] [Indexed: 06/06/2023]
Abstract
In this study the effect of freeze drying on the microstructure, texture, and tenderness of Semitendinous and Gluteus Medius bovine muscles were analyzed applying Scanning Electron Microscopy combined with image analysis. Samples were analyzed by Scanning Electron Microscopy at different magnifications (250, 500, and 1,000×). Texture parameters were analyzed by Texture analyzer and by image analysis. Tenderness by Warner-Bratzler shear force. Significant differences (p < 0.05) were obtained for image and instrumental texture features. A linear trend with a linear correlation was applied for instrumental and image features. Image texture features calculated from Gray Level Co-occurrence Matrix (homogeneity, contrast, entropy, correlation and energy) at 1,000× in both muscles had high correlations with instrumental features (chewiness, hardness, cohesiveness, and springiness). Tenderness showed a positive correlation in both muscles with image features (energy and homogeneity). Combing Scanning Electron Microscopy with image analysis can be a useful tool to analyze quality parameters in meat.Summary SCANNING 38:727-734, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Facundo Pieniazek
- CINSO-UNIDEF (Strategic I & D for Defense)-MINDEF-CITEDEF-CONICET, Villa Martelli, Buenos Aires, Argentina
| | - Valeria Messina
- CINSO-UNIDEF (Strategic I & D for Defense)-MINDEF-CITEDEF-CONICET, Villa Martelli, Buenos Aires, Argentina
- The National Council for Scientific and Technical Research (CONICET), Rivadavia, Buenos Aires, Argentina
| |
Collapse
|