1
|
Pancholi V. Group A Streptococcus-Mediated Host Cell Signaling. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0021-2018. [PMID: 30767846 PMCID: PMC11590744 DOI: 10.1128/microbiolspec.gpp3-0021-2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Indexed: 12/14/2022] Open
Abstract
In the past decade, the field of the cellular microbiology of group A Streptococcus (S. pyogenes) infection has made tremendous advances and touched upon several important aspects of pathogenesis, including receptor biology, invasive and evasive phenomena, inflammasome activation, strain-specific autophagic bacterial killing, and virulence factor-mediated programmed cell death. The noteworthy aspect of S. pyogenes-mediated cell signaling is the recognition of the role of M protein in a variety of signaling events, starting with the targeting of specific receptors on the cell surface and on through the induction and evasion of NETosis, inflammasome, and autophagy/xenophagy to pyroptosis and apoptosis. Variations in reports on S. pyogenes-mediated signaling events highlight the complex mechanism of pathogenesis and underscore the importance of the host cell and S. pyogenes strain specificity, as well as in vitro/in vivo experimental parameters. The severity of S. pyogenes infection is, therefore, dependent on the virulence gene expression repertoire in the host environment and on host-specific dynamic signaling events in response to infection. Commonly known as an extracellular pathogen, S. pyogenes finds host macrophages as safe havens wherein it survives and even multiplies. The fact that endothelial cells are inherently deficient in autophagic machinery compared to epithelial cells and macrophages underscores the invasive nature of S. pyogenes and its ability to cause severe systemic diseases. S. pyogenes is still one of the top 10 causes of infectious mortality. Understanding the orchestration of dynamic host signaling networks will provide a better understanding of the increasingly complex mechanism of S. pyogenes diseases and novel ways of therapeutically intervening to thwart severe and often fatal infections.
Collapse
Affiliation(s)
- Vijay Pancholi
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH 43210
| |
Collapse
|
2
|
Lannergård J, Kristensen BM, Gustafsson MCU, Persson JJ, Norrby-Teglund A, Stålhammar-Carlemalm M, Lindahl G. Sequence variability is correlated with weak immunogenicity in Streptococcus pyogenes M protein. Microbiologyopen 2015; 4:774-89. [PMID: 26175306 PMCID: PMC4618610 DOI: 10.1002/mbo3.278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/18/2015] [Indexed: 11/06/2022] Open
Abstract
The M protein of Streptococcus pyogenes, a major bacterial virulence factor, has an amino-terminal hypervariable region (HVR) that is a target for type-specific protective antibodies. Intriguingly, the HVR elicits a weak antibody response, indicating that it escapes host immunity by two mechanisms, sequence variability and weak immunogenicity. However, the properties influencing the immunogenicity of regions in an M protein remain poorly understood. Here, we studied the antibody response to different regions of the classical M1 and M5 proteins, in which not only the HVR but also the adjacent fibrinogen-binding B repeat region exhibits extensive sequence divergence. Analysis of antisera from S. pyogenes-infected patients, infected mice, and immunized mice showed that both the HVR and the B repeat region elicited weak antibody responses, while the conserved carboxy-terminal part was immunodominant. Thus, we identified a correlation between sequence variability and weak immunogenicity for M protein regions. A potential explanation for the weak immunogenicity was provided by the demonstration that protease digestion selectively eliminated the HVR-B part from whole M protein-expressing bacteria. These data support a coherent model, in which the entire variable HVR-B part evades antibody attack, not only by sequence variability but also by weak immunogenicity resulting from protease attack.
Collapse
Affiliation(s)
- Jonas Lannergård
- Department of Laboratory Medicine, Lund University, Lund, Sweden.,Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg C, Denmark
| | | | | | - Jenny J Persson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Karolinska Institutet, Huddinge University Hospital, Stockholm, Sweden
| | | | - Gunnar Lindahl
- Department of Laboratory Medicine, Lund University, Lund, Sweden.,Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
3
|
Kandricáková A, Lauková A. Clinical streptococci and their sensitivity to enterocins produced by different strains of the species Enterococcus faecium (short communication). Acta Microbiol Immunol Hung 2012; 59:21-7. [PMID: 22510284 DOI: 10.1556/amicr.59.2012.1.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In children, acute otitis media (AOM) is one of the most frequently occurring infections caused by Streptococcus pneumoniae and Str. pyogenes. The standard treatment of AOMis provided by antibiotics; however, an increased resistance of the causative agents to antibiotics requires the need to search for innovations. This study was focused on in vitro testing sensitivity of streptococci isolated from AOM to enterocins produced by 9 different origin strains of E. faecium. Enterocins (Ent) represent ribosomally synthesized proteinaceous substances with antimicrobial activity against Gram-positive and/or Gram-negative bacteria which are produced mostly by strains of the species Enterococcus faecium. Str. pneumoniae were sensitive at least to 1 Ent. Str. pneumoniae SPn 754 was sensitive to 5 Ent. Five Str. pyogenes were sensitive to enterocins. Ent A (P) inhibited the growth of 3 Str. pneumoniae, and 4 Str. pyogenes (activity between 100 and 3,200 AU/ml). Most of Ent inhibited the growth of streptococci tested (100-3,200 AU/ml). Str. pyogenes were more sensitive to Ent than Str. pneumoniae. Although more detailed further studies are required, our results indicate a new possibility for enterocin use.
Collapse
Affiliation(s)
- Anna Kandricáková
- 1 Slovak Academy of Sciences Institute of Animal Physiology Košice Slovakia
| | - Andrea Lauková
- 1 Slovak Academy of Sciences Institute of Animal Physiology Košice Slovakia
| |
Collapse
|
4
|
Maddocks SE, Lopez MS, Rowlands RS, Cooper RA. Manuka honey inhibits the development of Streptococcus pyogenes biofilms and causes reduced expression of two fibronectin binding proteins. MICROBIOLOGY-SGM 2012; 158:781-790. [PMID: 22294681 DOI: 10.1099/mic.0.053959-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Streptococcus pyogenes (group A Streptococcus; GAS) is always of clinical significance in wounds where it can initiate infection, destroy skin grafts and persist as a biofilm. Manuka honey has broad spectrum antimicrobial activity and its use in the clinical setting is beginning to gain acceptance with the continuing emergence of antibiotic resistance and the inadequacy of established systemic therapies; novel inhibitors may affect clinical practice. In this study, the effect of manuka honey on S. pyogenes (M28) was investigated in vitro with planktonic and biofilm cultures using MIC, MBC, microscopy and aggregation efficiency. Bactericidal effects were found in both planktonic cultures and biofilms, although higher concentrations of manuka honey were needed to inhibit biofilms. Abrogation of adherence and intercellular aggregation was observed. Manuka honey permeated 24 h established biofilms of S. pyogenes, resulting in significant cell death and dissociation of cells from the biofilm. Sublethal concentrations of manuka honey effectively prevented the binding of S. pyogenes to the human tissue protein fibronectin, but did not inhibit binding to fibrinogen. The observed inhibition of fibronectin binding was confirmed by a reduction in the expression of genes encoding two major fibronectin-binding streptococcal surface proteins, Sof and SfbI. These findings indicate that manuka honey has potential in the topical treatment of wounds containing S. pyogenes.
Collapse
Affiliation(s)
- Sarah E Maddocks
- Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK
| | | | | | - Rose A Cooper
- Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK
| |
Collapse
|
5
|
Oliver MA, Rojo JM, Rodríguez de Córdoba S, Alberti S. Binding of complement regulatory proteins to group A Streptococcus. Vaccine 2009; 26 Suppl 8:I75-8. [PMID: 19388169 DOI: 10.1016/j.vaccine.2008.11.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Streptococcus pyogenes or Group A Streptococcus (GAS) is the etiologic agent of important human infections such as acute pharyngitis, impetigo, rheumatic fever and the streptococcal toxic shock syndrome. Binding of the complement regulatory proteins factor H, factor H-like protein 1 (FHL-1), C4b-binding protein (C4BP), or CD46 is a crucial step in the pathogenesis of these infections. M protein is the GAS protein that generally mediates these interactions. However, a detailed analysis of the reports that have investigated the binding of complement regulatory components to GAS indicates that this microorganism has evolved alternative mechanisms for the recruitment of complement regulatory proteins to the bacterial surface. This article summarizes these data to provide a starting point for future research aimed at the characterization of additional mechanisms developed by GAS to evade the immune system.
Collapse
Affiliation(s)
- Maria A Oliver
- Institut Universitari d'Investigacions en Ciències de la Salut, Universitat de les Illes Balears, Crtra. Valldemosa, km 7.5, 07122 Palma de Mallorca, Spain
| | | | | | | |
Collapse
|
6
|
Solovyova AS, Pointon JA, Race PR, Smith WD, Kehoe MA, Banfield MJ. Solution structure of the major (Spy0128) and minor (Spy0125 and Spy0130) pili subunits from Streptococcus pyogenes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:469-80. [PMID: 19290517 DOI: 10.1007/s00249-009-0432-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 02/17/2009] [Accepted: 02/23/2009] [Indexed: 11/26/2022]
Abstract
Adhesion of the serotype M1 Streptococcus pyogenes strain SF370 to human tonsil explants and cultured keratinocytes requires extended polymeric surface structures called pili. In this important human pathogen, pili are assembled from three protein subunits: Spy0125, Spy0128 and Spy0130 through the action of sortase enzymes. For this study, the structural properties of these pili proteins have been investigated in solution. Spy0125 and Spy0128 display characteristics of globular, folded proteins. Circular dichroism suggests a largely beta-sheet composition for Spy0128 and Spy0125; Spy0130 appears to contain little secondary structure. Each of the proteins adopts a monodisperse, monomeric state in solution as assessed by analytical ultracentrifugation. Further, small-angle X-ray scattering curves for Spy0125, Spy0128 and Spy0130 suggest each protein adopts an elongated shape, likely comprised of two domains, with similar maximal dimensions. Based on the scattering data, dummy atom models of each of the pili subunits have been reconstructed ab initio. This study provides the first insights into the structure of Streptococcus pyogenes minor pili subunits, and possible implications for protein function are discussed.
Collapse
Affiliation(s)
- Alexandra S Solovyova
- Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | | | | | | | | | | |
Collapse
|
7
|
Stålhammar-Carlemalm M, Waldemarsson J, Johnsson E, Areschoug T, Lindahl G. Nonimmunodominant Regions Are Effective as Building Blocks in a Streptococcal Fusion Protein Vaccine. Cell Host Microbe 2007; 2:427-34. [DOI: 10.1016/j.chom.2007.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 08/27/2007] [Accepted: 10/12/2007] [Indexed: 11/28/2022]
|
8
|
Takenouchi-Ohkubo N, Mortensen LM, Drasbek KR, Kilian M, Poulsen K. Horizontal transfer of the immunoglobulin A1 protease gene (iga) from Streptococcus to Gemella haemolysans. MICROBIOLOGY-SGM 2006; 152:2171-2180. [PMID: 16804190 DOI: 10.1099/mic.0.28801-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial IgA1 proteases share the ability to cleave human IgA1 at the hinge region. Nature has developed this trait along at least five independent evolutionary lineages. To obtain further insight into the phylogeny and function of IgA1 proteases, the nucleotide sequence of the iga gene that encodes the IgA1 protease was determined from two Streptococcus mitis strains and one Gemella haemolysans strain. Heterologous expression in Escherichia coli confirmed that the genes encode human IgA1-cleaving activity. IgA1 proteases from Streptococcus and G. haemolysans shared structural features, including a motif typical for zinc-dependent metalloproteases of clan MA(E) family M26 and an N-terminal signal sequence followed by an LPXTG cell-wall-anchor motif and two putative membrane-spanning domains. In addition, they all harboured a repeat region preceding the active site of the protease. In the streptococcal IgA1 proteases, a G5 domain, which has been suggested to bind N-acetylglucosamine, was identified. Conservation of these structures in otherwise diverse proteases suggests that they are essential to the biological function of the enzyme. The phylogenetic distribution of homologous iga genes and conservation of gene order in the iga gene region in different Streptococcus species, combined with the sequence homologies, strongly suggest that the iga gene is more ancient in Streptococcus than in G. haemolysans, and therefore that the IgA1 protease gene was transferred from Streptococcus to G. haemolysans.
Collapse
Affiliation(s)
- Nobuko Takenouchi-Ohkubo
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan
- Institute of Medical Microbiology and Immunology, The Bartholin Building, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Lotte M Mortensen
- Institute of Medical Microbiology and Immunology, The Bartholin Building, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Kim R Drasbek
- Institute of Medical Microbiology and Immunology, The Bartholin Building, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Mogens Kilian
- Institute of Medical Microbiology and Immunology, The Bartholin Building, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Knud Poulsen
- Institute of Medical Microbiology and Immunology, The Bartholin Building, University of Aarhus, DK-8000 Aarhus C, Denmark
| |
Collapse
|
9
|
Persson J, Beall B, Linse S, Lindahl G. Extreme sequence divergence but conserved ligand-binding specificity in Streptococcus pyogenes M protein. PLoS Pathog 2006; 2:e47. [PMID: 16733543 PMCID: PMC1464397 DOI: 10.1371/journal.ppat.0020047] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Accepted: 04/10/2006] [Indexed: 11/30/2022] Open
Abstract
Many pathogenic microorganisms evade host immunity through extensive sequence variability in a protein region targeted by protective antibodies. In spite of the sequence variability, a variable region commonly retains an important ligand-binding function, reflected in the presence of a highly conserved sequence motif. Here, we analyze the limits of sequence divergence in a ligand-binding region by characterizing the hypervariable region (HVR) of Streptococcus pyogenes M protein. Our studies were focused on HVRs that bind the human complement regulator C4b-binding protein (C4BP), a ligand that confers phagocytosis resistance. A previous comparison of C4BP-binding HVRs identified residue identities that could be part of a binding motif, but the extended analysis reported here shows that no residue identities remain when additional C4BP-binding HVRs are included. Characterization of the HVR in the M22 protein indicated that two relatively conserved Leu residues are essential for C4BP binding, but these residues are probably core residues in a coiled-coil, implying that they do not directly contribute to binding. In contrast, substitution of either of two relatively conserved Glu residues, predicted to be solvent-exposed, had no effect on C4BP binding, although each of these changes had a major effect on the antigenic properties of the HVR. Together, these findings show that HVRs of M proteins have an extraordinary capacity for sequence divergence and antigenic variability while retaining a specific ligand-binding function. Many pathogens have evolved mechanisms to evade host immunity. In one such mechanism, the sequence of a surface protein varies among different strains of a pathogen. This sequence variability represents an apparent paradox, because the variable protein must retain an important function. The authors studied this problem in Streptococcus pyogenes, a major human pathogen. The surface-localized M protein of this bacterium varies extensively in sequence between bacterial strains, allowing immune escape. Nevertheless, the most variable part of the M protein commonly binds a human plasma protein. By hijacking this human protein the bacteria evade attack by complement an important part of the innate immune system. Comparison of the ligand-binding region in different M proteins showed that these regions lack a shared amino acid sequence motif. Thus, a variable protein can retain a ligand-binding function in the absence of a conserved binding motif. Evidence is also presented that a single amino acid change in the variable region may cause a major antigenic change, providing a selective advantage for the bacteria. Together, these data bear witness to the extraordinary ability of pathogens to escape host immunity, without losing ability to cause disease.
Collapse
Affiliation(s)
- Jenny Persson
- Division of Medical Microbiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Bernard Beall
- Centers for Disease Control and Prevention, Respiratory Diseases Branch, Atlanta, Georgia, United States of America
| | - Sara Linse
- Department of Biophysical Chemistry, Chemical Center, Lund University, Lund, Sweden
| | - Gunnar Lindahl
- Division of Medical Microbiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
10
|
Sandin C, Carlsson F, Lindahl G. Binding of human plasma proteins to Streptococcus pyogenes M protein determines the location of opsonic and non-opsonic epitopes. Mol Microbiol 2006; 59:20-30. [PMID: 16359315 DOI: 10.1111/j.1365-2958.2005.04913.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Antibodies directed against a pathogenic microorganism may recognize either protective or non-protective epitopes. Because antibodies elicited by a vaccine must be directed against protective epitopes, it is essential to understand the molecular properties that distinguish the two types of epitope. Here we analyse this problem for the antiphagocytic M protein of Streptococcus pyogenes, using the opsonizing capacity of antibodies to estimate their ability to confer protection in vivo. Our studies were focused on the M5 protein, which has three surface-exposed regions: the amino-terminal hypervariable region (HVR) and the B- and C-repeat regions. We first analysed the role of different M5 regions in phagocytosis resistance under non-immune conditions, employing chromosomal mutants expressing M5 proteins with internal deletions, and demonstrate that only the B-repeat region is essential for phagocytosis resistance. However, only antibodies to the HVR were opsonic. This apparent paradox could be explained by the ability of fibrinogen and albumin to specifically bind to the B- and C-repeats, respectively, causing inhibition of antibody binding under physiological conditions, while antibodies to the HVR could bind and promote deposition of complement. These data indicate that binding of human plasma proteins plays an important role in determining the location of opsonic and non-opsonic epitopes in streptococcal M protein.
Collapse
Affiliation(s)
- Charlotta Sandin
- Department of Laboratory Medicine, Division of Medical Microbiology, Lund University, Sölvegatan 23, SE-22362, Lund, Sweden
| | | | | |
Collapse
|
11
|
Carlsson F, Sandin C, Lindahl G. Human fibrinogen bound to Streptococcus pyogenes M protein inhibits complement deposition via the classical pathway. Mol Microbiol 2005; 56:28-39. [PMID: 15773976 DOI: 10.1111/j.1365-2958.2005.04527.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Human fibrinogen (Fg) binds to surface proteins expressed by many pathogenic bacteria and has been implicated in different host-pathogen interactions, but the role of bound Fg remains unclear. Here, we analyse the role of Fg bound to Streptococcus pyogenes M protein, a major virulence factor that confers resistance to phagocytosis. Studies of the M5 system showed that a chromosomal mutant lacking the Fg-binding region was completely unable to resist phagocytosis, indicating that bound Fg plays a key role in virulence. Deposition of complement on S. pyogenes occurred via the classical pathway even under non-immune conditions, but was blocked by M5-bound Fg, which reduced the amount of classical pathway C3 convertase on the bacterial surface. This property of M protein-bound Fg may explain its role in phagocytosis resistance. Previous studies have shown that many M proteins do not bind Fg, but interfere with complement deposition and phagocytosis by recruiting human C4b-binding protein (C4BP), an inhibitor of the classical pathway. Thus, all M proteins may share ability to recruit a human plasma protein, Fg or C4BP, which inhibits complement deposition via the classical pathway. Our data identify a novel function for surface-bound Fg and allow us to propose a unifying mechanism by which M proteins interfere with innate immunity.
Collapse
Affiliation(s)
- Fredric Carlsson
- Department of Medical Microbiology, Dermatology and Infection, Lund University, Sölvegatan 23, SE-22362 Lund, Sweden
| | | | | |
Collapse
|
12
|
Price JD, Schaumburg J, Sandin C, Atkinson JP, Lindahl G, Kemper C. Induction of a Regulatory Phenotype in Human CD4+ T Cells by Streptococcal M Protein. THE JOURNAL OF IMMUNOLOGY 2005; 175:677-84. [PMID: 16002662 DOI: 10.4049/jimmunol.175.2.677] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Regulatory T cells (Tregs) participate in the control of the immune response. In the human system, an IL-10-secreting, T regulatory type 1 cell (Tr1)-like subset of Tregs can be induced by concurrent cross-linking of the TCR and CD46 on naive CD4(+) T cells. Because many viral and bacterial pathogens, including the major human pathogen Streptococcus pyogenes, bind to CD46, we asked whether this bacterium can directly induce Tr1-like cells through the streptococcal ligand for CD46, the M protein. The M5 and M22 proteins were found to induce T cells to develop into the IL-10-producing Tr1-like phenotype. Moreover, whole M5-expressing bacteria, but not isogenic M-negative bacteria, led to proliferation and IL-10 secretion by T cells. The interaction between the M5 protein and T cells was dependent on CD46 and the conserved C repeat region of M5. Supernatants derived from T cells stimulated with M proteins or M protein-expressing bacteria suppressed bystander T cell proliferation through IL-10 secretion. In addition, activation of CD46 through streptococcal M protein induced the expression of granzyme B, providing a second means for these cells to regulate an immune response. These findings suggest that binding to CD46 and exploiting its signaling pathway may represent a strategy employed by a number of important human pathogens to induce directly an immunosuppressive/regulatory phenotype in T cells.
Collapse
Affiliation(s)
- Jeffrey D Price
- Graduate Program in Immunology, Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
13
|
Blanc G, Ngwamidiba M, Ogata H, Fournier PE, Claverie JM, Raoult D. Molecular evolution of rickettsia surface antigens: evidence of positive selection. Mol Biol Evol 2005; 22:2073-83. [PMID: 15972845 DOI: 10.1093/molbev/msi199] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Rickettsia genus is a group of obligate intracellular parasitic alpha-proteobacteria that includes human pathogens responsible for the typhus disease and various types of spotted fevers. rOmpA and rOmpB are two members of the "surface cell antigen" (Sca) autotransporter (AT) protein family that may play key roles in the adhesion of the Rickettsia cells to the host tissue. These molecules are likely determinants for the pathogenicity of the Rickettsia and represent good candidates for vaccine development. We identified the 17 members of this family of outer-membrane proteins in nine fully sequenced Rickettsia genomes. The typical architecture of the Sca proteins is composed of an N-terminal signal peptide and a C-terminal AT domain that promote the export of the central passenger domain to the outside of the bacteria. A characteristic of this family is the frequent degradation of the genes, which results in different subsets of the sca genes being expressed among Rickettsia species. Here, we present a detailed analysis of their phylogenetic relationships and evolution. We provide strong evidence that rOmpA and rOmpB as well as three other members of the Sca protein family--Sca1, Sca2, and Sca4--have evolved under positive selection. The exclusive distribution of the predicted positively selected sites within the passenger domains of these proteins argues that these regions are involved in the interaction with the host and may be locked in "arms race" coevolutionary conflicts.
Collapse
Affiliation(s)
- Guillaume Blanc
- Information Génomique et Structurale, UPR 2589, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | | | | | |
Collapse
|
14
|
Bowden MG, Chen W, Singvall J, Xu Y, Peacock SJ, Valtulina V, Speziale P, Höök M. Identification and preliminary characterization of cell-wall-anchored proteins of Staphylococcus epidermidis. Microbiology (Reading) 2005; 151:1453-1464. [PMID: 15870455 DOI: 10.1099/mic.0.27534-0] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus epidermidis is a ubiquitous human skin commensal that has emerged as a major cause of foreign-body infections. Eleven genes encoding putative cell-wall-anchored proteins were identified by computer analysis of the publicly available S. epidermidis unfinished genomic sequence. Four genes encode previously described proteins (Aap, Bhp, SdrF and SdrG), while the remaining seven have not been characterized. Analysis of primary sequences of the
Staphylococcus epidermidis
surface (Ses) proteins indicates that they have a structural organization similar to the previously described cell-wall-anchored proteins from S. aureus and other Gram-positive cocci. However, not all of the Ses proteins are direct homologues of the S. aureus proteins. Secondary and tertiary structure predictions suggest that most of the Ses proteins are composed of several contiguous subdomains, and that the majority of these predicted subdomains are folded into β-rich structures. PCR analysis indicates that certain genes may be found more frequently in disease isolates compared to strains isolated from healthy skin. Patients recovering from S. epidermidis infections had higher antibody titres against some Ses proteins, implying that these proteins are expressed during human infection. Western blot analyses of early-logarithmic and late-stationary in vitro cultures suggest that different regulatory mechanisms control the expression of the Ses proteins.
Collapse
Affiliation(s)
- M Gabriela Bowden
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030-3303, USA
| | - Wei Chen
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030-3303, USA
| | - Jenny Singvall
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030-3303, USA
| | - Yi Xu
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030-3303, USA
| | - Sharon J Peacock
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Pietro Speziale
- Department of Biochemistry, University of Pavia, 27100 Pavia, Italy
| | - Magnus Höök
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030-3303, USA
| |
Collapse
|
15
|
Lindahl G, Stålhammar-Carlemalm M, Areschoug T. Surface proteins of Streptococcus agalactiae and related proteins in other bacterial pathogens. Clin Microbiol Rev 2005; 18:102-27. [PMID: 15653821 PMCID: PMC544178 DOI: 10.1128/cmr.18.1.102-127.2005] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Streptococcus agalactiae (group B Streptococcus) is the major cause of invasive bacterial disease, including meningitis, in the neonatal period. Although prophylactic measures have contributed to a substantial reduction in the number of infections, development of a vaccine remains an important goal. While much work in this field has focused on the S. agalactiae polysaccharide capsule, which is an important virulence factor that elicits protective immunity, surface proteins have received increasing attention as potential virulence factors and vaccine components. Here, we summarize current knowledge about S. agalactiae surface proteins, with emphasis on proteins that have been characterized immunochemically and/or elicit protective immunity in animal models. These surface proteins have been implicated in interactions with human epithelial cells, binding to extracellular matrix components, and/or evasion of host immunity. Of note, several S. agalactiae surface proteins are related to surface proteins identified in other bacterial pathogens, emphasizing the general interest of the S. agalactiae proteins. Because some S. agalactiae surface proteins elicit protective immunity, they hold promise as components in a vaccine based only on proteins or as carriers in polysaccharide conjugate vaccines.
Collapse
Affiliation(s)
- Gunnar Lindahl
- Department of Medical Microbiology, Dermatology and Infection, Lund University, Sölvegatan 23, SE-22362 Lund, Sweden.
| | | | | |
Collapse
|
16
|
Derbise A, Song YP, Parikh S, Fischetti VA, Pancholi V. Role of the C-terminal lysine residues of streptococcal surface enolase in Glu- and Lys-plasminogen-binding activities of group A streptococci. Infect Immun 2004; 72:94-105. [PMID: 14688086 PMCID: PMC343989 DOI: 10.1128/iai.72.1.94-105.2004] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Accepted: 09/22/2003] [Indexed: 11/20/2022] Open
Abstract
Streptococcal surface enolase (SEN) is a major plasminogen-binding protein of group A streptococci. Our earlier biochemical studies have suggested that the region responsible for this property is likely located at the C-terminal end of the SEN molecule. In the present study, the gene encoding SEN was cloned from group A streptococci M6 isolate D471. A series of mutations in the sen gene corresponding to the C-terminal region (428KSFYNLKK435) of the SEN molecule were created by either deleting one or more terminal lysine residues or replacing them with leucine. All purified recombinant SEN proteins with altered C-terminal ends were found to be enzymatically active and were analyzed for their Glu- and Lys-plasminogen-binding activities. Wild-type SEN bound to Lys-plasminogen with almost three times more affinity than to Glu-plasminogen. However, the recombinant mutant SEN proteins with a deletion of Lys434-435 or with K435L and K434-435L replacements showed a significant decrease in Glu- and Lys-plasminogen-binding activities. Accordingly, a streptococcal mutant expressing SEN-K434-435L showed a significant decrease in Glu- and Lys-plasminogen-binding activities. Biochemical and functional analyses of the isogenic mutant strain revealed a significant decrease in its abilities to cleave a chromogenic tripeptide substrate, acquire plasminogen from human plasma, and penetrate the extracellular matrix. Together, these data indicate that the last two C-terminal lysine residues of surface-exposed SEN contribute significantly to the plasminogen-binding activity of intact group A streptococci and hence to their ability to exploit host properties to their own advantage in tissue invasion.
Collapse
Affiliation(s)
- Anne Derbise
- Laboratory of Bacterial Pathogenesis, Public Health Research Institute, International Center for Public Health, Newark, New Jersey 07103-3535, USA
| | | | | | | | | |
Collapse
|
17
|
Neuhaus FC, Baddiley J. A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol Mol Biol Rev 2003; 67:686-723. [PMID: 14665680 PMCID: PMC309049 DOI: 10.1128/mmbr.67.4.686-723.2003] [Citation(s) in RCA: 735] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Teichoic acids (TAs) are major wall and membrane components of most gram-positive bacteria. With few exceptions, they are polymers of glycerol-phosphate or ribitol-phosphate to which are attached glycosyl and D-alanyl ester residues. Wall TA is attached to peptidoglycan via a linkage unit, whereas lipoteichoic acid is attached to glycolipid intercalated in the membrane. Together with peptidoglycan, these polymers make up a polyanionic matrix that functions in (i) cation homeostasis; (ii) trafficking of ions, nutrients, proteins, and antibiotics; (iii) regulation of autolysins; and (iv) presentation of envelope proteins. The esterification of TAs with D-alanyl esters provides a means of modulating the net anionic charge, determining the cationic binding capacity, and displaying cations in the wall. This review addresses the structures and functions of D-alanyl-TAs, the D-alanylation system encoded by the dlt operon, and the roles of TAs in cell growth. The importance of dlt in the physiology of many organisms is illustrated by the variety of mutant phenotypes. In addition, advances in our understanding of D-alanyl ester function in virulence and host-mediated responses have been made possible through targeted mutagenesis of dlt. Studies of the mechanism of D-alanylation have identified two potential targets of antibacterial action and provided possible screening reactions for designing novel agents targeted to D-alanyl-TA synthesis.
Collapse
Affiliation(s)
- Francis C Neuhaus
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208. USA.
| | | |
Collapse
|
18
|
Osmark P, Cedervall T, Pieters K, Akerström B. Heat elution chromatography of immunoglobulins. Protein Expr Purif 2003; 30:301-3. [PMID: 12880780 DOI: 10.1016/s1046-5928(03)00130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A tremendous increase has taken place over the last decades in the biochemical and clinical use of antibodies. Unfortunately, the constantly growing demand has not been matched by a corresponding easy access to pure immunoglobulin, as purification procedures tend to be either laborious, expensive, or inefficient. We present a new and simplified method to obtain pure antibody based on the special thermal properties of the streptococcal M proteins, a family of cell-surface exposed coiled-coil molecules which bind different sets of host plasma proteins. The coiled-coil structure is already destabilized at low temperatures and the M proteins unfold reversibly, usually below 40 degrees C. We demonstrate the use of this property to purify immunoglobulin G from rabbit serum with protein H from the AP1 strain of Streptococcus pyogenes. Recombinant protein H is linked to nickel-agarose via a C-terminal histidine tag. After mixing with rabbit serum and washing at room temperature, pure IgG can be eluted from the gel with a moderately heated buffer. In this case, protein H has been used to purify rabbit IgG, but the principle should be applicable to other M protein-ligand pairs.
Collapse
Affiliation(s)
- Peter Osmark
- Department of Cell and Molecular Biology, BMC, Plan C11, Lund University, SE-22184 Lund, Sweden.
| | | | | | | |
Collapse
|
19
|
Shimoji Y, Ogawa Y, Osaki M, Kabeya H, Maruyama S, Mikami T, Sekizaki T. Adhesive surface proteins of Erysipelothrix rhusiopathiae bind to polystyrene, fibronectin, and type I and IV collagens. J Bacteriol 2003; 185:2739-48. [PMID: 12700253 PMCID: PMC154401 DOI: 10.1128/jb.185.9.2739-2748.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erysipelothrix rhusiopathiae is a gram-positive bacterium that causes erysipelas in animals and erysipeloid in humans. We found two adhesive surface proteins of E. rhusiopathiae and determined the nucleotide sequences of the genes, which were colocalized and designated rspA and rspB. The two genes were present in all of the serovars of E. rhusiopathiae strains examined. The deduced RspA and RspB proteins contain the C-terminal anchoring motif, LPXTG, which is preceded by repeats of consensus amino acid sequences. The consensus sequences are composed of 78 to 92 amino acids and repeat 16 and 3 times in RspA and RspB, respectively. Adhesive surface proteins of other gram-positive bacteria, including Listeria monocytogenes adhesin-like protein, Streptococcus pyogenes protein F2 and F2-like protein, Streptococcus dysgalactiae FnBB, and Staphylococcus aureus Cna, share the same consensus repeats. Furthermore, the N-terminal regions of RspA and RspB showed characteristics of the collagen-binding domain that was described for Cna. RspA and RspB were expressed in Escherichia coli as histidine-tagged fusion proteins and purified. The recombinant proteins showed a high degree of capacity to bind to polystyrene and inhibited the binding of E. rhusiopathiae onto the abiotic surface in a dose dependent manner. In a solid-phase binding assay, both of the recombinant proteins bound to fibronectin, type I and IV collagens, indicating broad spectrum of their binding ability. It was suggested that both RspA and RspB were exposed on the cell surface of E. rhusiopathiae, as were the bacterial cells agglutinated by the anti-RspA immunoglobulin G (IgG) and anti-RspB IgG. RspA and RspB were present both in surface-antigen extracts and the culture supernatants of E. rhusiopathiae Fujisawa-SmR (serovar 1a) and SE-9 (serovar 2). The recombinant RspA, but not RspB, elicited protection in mice against experimental challenge. These results suggest that RspA and RspB participate in initiation of biofilm formation through their binding abilities to abiotic and biotic surfaces.
Collapse
|
20
|
Adindla S, Guruprasad L. Sequence analysis corresponding to the PPE and PE proteins in Mycobacterium tuberculosis and other genomes. J Biosci 2003; 28:169-79. [PMID: 12711809 DOI: 10.1007/bf02706216] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Amino acid sequence analysis corresponding to the PPE proteins in H37Rv and CDC1551 strains of the Mycobacterium tuberculosis genomes resulted in the identification of a previously uncharacterized 225 amino acid-residue common region in 22 proteins. The pairwise sequence identities were as low as 18%. Conservation of amino acid residues was observed at fifteen positions that were distributed over the whole length of the region. The secondary structure corresponding to this region is predicted to be a mixture of a-helices and b-strands. Although the function is not known, proteins with this region specific to mycobacterial species may be associated with a common function. We further observed another group of 20 PPE proteins corresponding to the conserved C-terminal region comprising 44 amino acid residues with GFxGT and PxxPxxW sequence motifs. This region is preceded by a hydrophobic region, comprising 40-100 amino acid residues, that is flanked by charged amino acid residues. Identification of conserved regions described above may be useful to detect related proteins from other genomes and assist the design of suitable experiments to test their corresponding functions. Amino acid sequence analysis corresponding to the PE proteins resulted in the identification of tandem repeats comprising 41-43 amino acid residues in the C-terminal variable regions in two PE proteins (Rv0978 and Rv0980). These correspond to the AB repeats that were first identified in some proteins of the Methanosarcina mazei genome, and were demonstrated as surface antigens. We observed the AB repeats also in several other proteins of hitherto uncharacterized function in Archaea and Bacteria genomes. Some of these proteins are also associated with another repeat called the C-repeat or the PKD-domain comprising 85 amino acid residues. The secondary structure corresponding to the AB repeat is predicted mainly as 4 b-strands. We suggest that proteins with AB repeats in Mycobacterium tuberculosis and other genomes may be associated as surface antigens. The M. leprae genome, however, does not contain either the AB or C-repeats and different proteins may therefore be recruited as surface antigens in the M. leprae genome compared to the M. tuberculosis genome.
Collapse
Affiliation(s)
- Swathi Adindla
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | | |
Collapse
|
21
|
Areschoug T, Linse S, Stålhammar-Carlemalm M, Hedén LO, Lindahl G. A proline-rich region with a highly periodic sequence in Streptococcal beta protein adopts the polyproline II structure and is exposed on the bacterial surface. J Bacteriol 2002; 184:6376-83. [PMID: 12399508 PMCID: PMC151936 DOI: 10.1128/jb.184.22.6376-6393.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proline-rich regions have been identified in many surface proteins of pathogenic streptococci and staphylococci. These regions have been suggested to be located in cell wall-spanning domains and/or to be required for surface expression of the protein. Because little is known about these regions, which are found in extensively studied and biologically important surface proteins, we characterized the proline-rich region in one such protein, the beta protein of group B streptococci. The proline-rich region in beta, designated the XPZ region, has a proline at every third position, and the sequence is highly periodic in other respects. Immunochemical analysis showed that the XPZ region was not associated with the cell wall but was exposed on the bacterial surface. Moreover, characterization of a beta mutant lacking the XPZ region demonstrated that this region was not required for surface expression of the beta protein. Comparison of the XPZ region in different beta proteins showed that it varied in size but always retained the typical sequence periodicity. Circular dichroism spectroscopy indicated that the XPZ region had the structure of a polyproline II helix, an extended and solvent-exposed structure with exactly three residues per turn. Because of the three-residue sequence periodicity in the XPZ region, it is expected to be amphipathic and to have distinct nonpolar and polar surfaces. This study identified a proline-rich structure with unique properties that is exposed on the surface of an important human pathogen.
Collapse
Affiliation(s)
- Thomas Areschoug
- Department of Medical Microbiology, Dermatology and Infection, Lund University, Sweden
| | | | | | | | | |
Collapse
|
22
|
Sandin C, Linse S, Areschoug T, Woof JM, Reinholdt J, Lindahl G. Isolation and detection of human IgA using a streptococcal IgA-binding peptide. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:1357-64. [PMID: 12133959 DOI: 10.4049/jimmunol.169.3.1357] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bacterial proteins that bind to the Fc part of IgG have found widespread use in immunology. A similar protein suitable for the isolation and detection of human IgA has not been described. Here, we show that a 50-residue synthetic peptide, designated streptococcal IgA-binding peptide (Sap) and derived from a streptococcal M protein, can be used for single-step affinity purification of human IgA. High affinity binding of IgA required the presence in Sap of a C-terminal cysteine residue, not present in the intact M protein. Passage of human serum through a Sap column caused depletion of >99% of the IgA, and elution of the column allowed quantitative recovery of highly purified IgA, for which the proportions of the IgA1 and IgA2 subclasses were the same as in whole serum. Moreover, immobilized Sap could be used for single-step purification of secretory IgA of both subclasses from human saliva, with a recovery of approximately 45%. The Sap peptide could also be used to specifically detect IgA bound to Ag. Together, these data indicate that Sap is a versatile Fc-binding reagent that may open new possibilities for the characterization of human IgA.
Collapse
Affiliation(s)
- Charlotta Sandin
- Department of Medical Microbiology, Dermatology and Infection, Lund University, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
23
|
Frick IM, Axcrona K, Härdig Y, Tapper H, Gustafsson L, Kellner R, Leanderson T, Björck L. Uptake and intracellular transportation of a bacterial surface protein in lymphoid cells. Mol Microbiol 2002; 44:917-34. [PMID: 12010489 DOI: 10.1046/j.1365-2958.2002.02931.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Some strains of the human pathogen Streptococcus pyogenes express a surface protein called protein H, which is released from the streptococcal surface by a cysteine proteinase produced by the bacteria. Here, we find that soluble protein H binds to the surface of lymphocytes and granulocytes, and that the molecule is taken up by lymphocytes and transported to the perinuclear region. The translocation over the cell membrane is rapid, and the uptake and intracellular transportation is not dependent on actin polymerization. Protein H could be immunoprecipitated from cell extracts and nuclear preparations of lymphocytes, and analysis of molecular interactions between protein H and proteins of different cellular compartments demonstrated a binding to nucleophosmin/ B23, a protein known to shuttle between the cytoplasm and the nucleus, and to the nuclear proteins SET and hnRNP A2/B1. Nucleophosmin/B23 was co-immunoprecipitated with protein H from cell and nuclear extracts, and binding experiments, including kinetic analyses, suggest that protein H dissociating from nucleophosmin/B23 complexes in the perinuclear region or in the nucleus binds to proteins SET and hnRNP A2/B1. Finally, the uptake and intracellular transportation of protein H was found to result in a cytostatic effect on B and T lymphocytes.
Collapse
Affiliation(s)
- Inga-Maria Frick
- Department of Cell and Molecular Biology, Lund University, BMC, B14, Tornavägen 10, S-221 84 Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Morfeldt E, Berggård K, Persson J, Drakenberg T, Johnsson E, Lindahl E, Linse S, Lindahl G. Isolated hypervariable regions derived from streptococcal M proteins specifically bind human C4b-binding protein: implications for antigenic variation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3870-7. [PMID: 11564804 DOI: 10.4049/jimmunol.167.7.3870] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Antigenic variation in microbial surface proteins represents an apparent paradox, because the variable region must retain an important function, while exhibiting extensive immunological variability. We studied this problem for a group of streptococcal M proteins in which the approximately 50-residue hypervariable regions (HVRs) show essentially no residue identity but nevertheless bind the same ligand, the human complement regulator C4b-binding protein (C4BP). Synthetic peptides derived from different HVRs were found to retain the ability to bind C4BP, implying that the HVR corresponds to a distinct ligand-binding domain that can be studied in isolated form. This finding allowed direct characterization of the ligand-binding properties of isolated HVRs and permitted comparisons between different HVRs in the absence of conserved parts of the M proteins. Affinity chromatography of human serum on immobilized peptides showed that they bound C4BP with high specificity and inhibition experiments indicated that different peptides bound to the same site in C4BP. Different C4BP-binding peptides did not exhibit any immunological cross-reactivity, but structural analysis suggested that they have similar folds. These data show that the HVR of streptococcal M protein can exhibit extreme variability in sequence and immunological properties while retaining a highly specific ligand-binding function.
Collapse
Affiliation(s)
- E Morfeldt
- Department of Medical Microbiology, Dermatology, and Infection, Lund University, Sölvegatan 23, SE-22362 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Berggård K, Johnsson E, Morfeldt E, Persson J, Stålhammar-Carlemalm M, Lindahl G. Binding of human C4BP to the hypervariable region of M protein: a molecular mechanism of phagocytosis resistance in Streptococcus pyogenes. Mol Microbiol 2001; 42:539-51. [PMID: 11703674 DOI: 10.1046/j.1365-2958.2001.02664.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The amino-terminal hypervariable region (HVR) of streptococcal M protein is required for the ability of this virulence factor to confer phagocytosis resistance. The function of the HVR has remained unknown, but the finding that many HVRs with extremely divergent sequences bind the human complement regulator C4b-binding protein (C4BP) has suggested that this ligand may play a role in phagocytosis resistance. We used the M22 system to study the function of bound C4BP and provide several lines of evidence that C4BP indeed contributes to phagocytosis resistance. First, the ability of anti-HVR antibodies to cause opsonization correlated with their ability to inhibit binding of C4BP. Secondly, a short deletion in the HVR eliminated C4BP binding and also reduced the ability of M22 to confer phagocytosis resistance. Thirdly, the addition of an excess of pure C4BP to a phagocytosis system almost completely blocked the effect of opsonizing anti-HVR antibodies. Together, our data indicate that binding of C4BP to the HVR of M22 plays an important role in phagocytosis resistance, but other properties of M22 also contribute. This study provides the first molecular insight into the mechanisms by which the HVR of an M protein confers phagocytosis resistance.
Collapse
Affiliation(s)
- K Berggård
- Department of Medical Microbiology, Dermatology and Infection, Lund University, Sölvegatan 23, SE-223 62 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
26
|
Janulczyk R, Rasmussen M. Improved pattern for genome-based screening identifies novel cell wall-attached proteins in gram-positive bacteria. Infect Immun 2001; 69:4019-26. [PMID: 11349071 PMCID: PMC98464 DOI: 10.1128/iai.69.6.4019-4026.2001] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
With a large number of sequenced microbial genomes available, tools for identifying groups or classes of proteins have become increasingly important. Here we present an improved pattern for the identification of cell wall-attached proteins (CWPs), a group of proteins with diverse and important functions in gram-positive bacteria. This tripartite pattern is based on analysis of 65 previously described cell wall-attached proteins and takes into account the three principal requirements for cell wall sorting; a sortase target region (LPXTGX), a membrane-spanning region, and a charged stop-transfer tail. In five different genomes of gram-positive bacteria, the tripartite pattern identified a total of 35 putative CWPs, 19 of which were novel. The specificity and sensitivity of the tripartite pattern are higher than those of the classical pattern, which is based solely on the sortase target region. Several putative CWPs with atypical sortase target regions were identified. In the complete genome of the important human pathogen Streptococcus pyogenes, the tripartite pattern identified 14 putative CWPs. Seven of the putative S. pyogenes proteins were novel, and two of these were a 5' nucleotidase and a pullulanase. This study represents the first whole-genome screening for CWPs, and we conclude that the tripartite pattern is highly suitable for this purpose. Identification of CWPs using this pattern offers important possibilities in the study of the pathogenesis and physiology of gram-positive bacteria.
Collapse
Affiliation(s)
- R Janulczyk
- Department of Cell and Molecular Biology, Section for Molecular Pathogenesis, Lund University, Sweden.
| | | |
Collapse
|
27
|
Singh KK, Zhang X, Patibandla AS, Chien P, Laal S. Antigens of Mycobacterium tuberculosis expressed during preclinical tuberculosis: serological immunodominance of proteins with repetitive amino acid sequences. Infect Immun 2001; 69:4185-91. [PMID: 11349098 PMCID: PMC98491 DOI: 10.1128/iai.69.6.4185-4191.2001] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Four antigens of Mycobacterium tuberculosis that are expressed in vivo after aerosol infection but prior to the development of clinical tuberculosis (TB) in rabbits were identified by immunoscreening of an expression library of M. tuberculosis genomic DNA with sera obtained 5 weeks postinfection. Three of the proteins identified, PirG (Rv3810), polymorphic GC-repetitive sequence (PE-PGRS; Rv3367), and proline-threonine repetitive protein (PTRP) (Rv0538), have multiple tandem repeats of unique amino acid sequences and have characteristics of surface or secreted proteins. The fourth protein, MtrA (Rv3246c), is a response regulator of a putative two-component signal transduction system, mtrA-mtrB, of M. tuberculosis. All four antigens were recognized by pooled sera from TB patients and not from healthy controls, confirming their in vivo expression during active infection in humans. Three of the antigens (PE-PGRS, PTRP, and MtrA) were also recognized by retrospective preclinical TB sera obtained, prior to the clinical manifestation of TB, from human immunodeficiency virus-TB patients, suggesting that they are potential candidates for devising diagnostic tests for active, preclinical TB.
Collapse
Affiliation(s)
- K K Singh
- Department of Pathology, New York University Medical Center, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
28
|
Liu T, García M, Levisohn S, Yogev D, Kleven SH. Molecular variability of the adhesin-encoding gene pvpA among Mycoplasma gallisepticum strains and its application in diagnosis. J Clin Microbiol 2001; 39:1882-8. [PMID: 11326008 PMCID: PMC88043 DOI: 10.1128/jcm.39.5.1882-1888.2001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma gallisepticum is an important pathogen of chickens and turkeys that causes considerable economic losses to the poultry industry worldwide. The reemergence of M. gallisepticum outbreaks among poultry, the increased use of live M. gallisepticum vaccines, and the detection of M. gallisepticum in game and free-flying song birds has strengthened the need for molecular diagnostic and strain differentiation tests. Molecular techniques, including restriction fragment length polymorphism of genomic DNA (RFLP) and PCR-based random amplification of polymorphic DNA (RAPD), have already been utilized as powerful tools to detect intraspecies variation. However, certain intrinsic drawbacks constrain the application of these methods. The main goal of this study was to determine the feasibility of using an M. gallisepticum-specific gene encoding a phase-variable putative adhesin protein (PvpA) as the target for molecular typing. This was accomplished using a pvpA PCR-RFLP assay. Size variations among PCR products and nucleotide divergence of the C-terminus-encoding region of the pvpA gene were the basis for strain differentiation. This method can be used for rapid differentiation of vaccine strains from field isolates by amplification directly from clinical samples without the need for isolation by culture. Moreover, molecular epidemiology of M. gallisepticum outbreaks can be performed using RFLP and/or sequence analysis of the pvpA gene.
Collapse
Affiliation(s)
- T Liu
- Department of Avian Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
29
|
Enright MC, Spratt BG, Kalia A, Cross JH, Bessen DE. Multilocus sequence typing of Streptococcus pyogenes and the relationships between emm type and clone. Infect Immun 2001; 69:2416-27. [PMID: 11254602 PMCID: PMC98174 DOI: 10.1128/iai.69.4.2416-2427.2001] [Citation(s) in RCA: 271] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2000] [Accepted: 01/24/2001] [Indexed: 11/20/2022] Open
Abstract
Multilocus sequence typing (MLST) is a tool that can be used to study the molecular epidemiology and population genetic structure of microorganisms. A MLST scheme was developed for Streptococcus pyogenes and the nucleotide sequences of internal fragments of seven selected housekeeping loci were obtained for 212 isolates. A total of 100 unique combinations of housekeeping alleles (allelic profiles) were identified. The MLST scheme was highly concordant with several other typing methods. The emm type, corresponding to a locus that is subject to host immune selection, was determined for each isolate; of the >150 distinct emm types identified to date, 78 are represented in this report. For a given emm type, the majority of isolates shared five or more of the seven housekeeping alleles. Stable associations between emm type and MLST were documented by comparing isolates obtained decades apart and/or from different continents. For the 33 emm types for which more than one isolate was examined, only five emm types were present on widely divergent backgrounds, differing at four or more of the housekeeping loci. The findings indicate that the majority of emm types examined define clones or clonal complexes. In addition, an MLST database is made accessible to investigators who seek to characterize other isolates of this species via the internet (http://www.mlst.net).
Collapse
Affiliation(s)
- M C Enright
- Wellcome Trust Centre for the Epidemiology of Infectious Diseases, University of Oxford, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
30
|
Pleass RJ, Areschoug T, Lindahl G, Woof JM. Streptococcal IgA-binding proteins bind in the Calpha 2-Calpha 3 interdomain region and inhibit binding of IgA to human CD89. J Biol Chem 2001; 276:8197-204. [PMID: 11096107 DOI: 10.1074/jbc.m009396200] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Certain pathogenic bacteria express surface proteins that bind to the Fc part of human IgA or IgG. These bacterial proteins are important as immunochemical tools and model systems, but their biological function is still unclear. Here, we describe studies of three streptococcal proteins that bind IgA: the Sir22 and Arp4 proteins of Streptococcus pyogenes and the unrelated beta protein of group B streptococcus. Analysis of IgA domain swap and point mutants indicated that two loops at the Calpha2/Calpha3 domain interface are critical for binding of the streptococcal proteins. This region is also used in binding the human IgA receptor CD89, an important mediator of IgA effector function. In agreement with this finding, the three IgA-binding proteins and a 50-residue IgA-binding peptide derived from Sir22 blocked the ability of IgA to bind CD89. Further, the Arp4 protein inhibited the ability of IgA to trigger a neutrophil respiratory burst via CD89. Thus, we have identified residues on IgA-Fc that play a key role in binding of different streptococcal IgA-binding proteins, and we have identified a mechanism by which a bacterial IgA-binding protein may interfere with IgA effector function.
Collapse
Affiliation(s)
- R J Pleass
- Department of Molecular and Cellular Pathology, University of Dundee Medical School, Ninewells Hospital, Dundee DD1 9SY, United Kingdom
| | | | | | | |
Collapse
|
31
|
Whatmore AM. Streptococcus pyogenes sclB encodes a putative hypervariable surface protein with a collagen-like repetitive structure. MICROBIOLOGY (READING, ENGLAND) 2001; 147:419-429. [PMID: 11158359 DOI: 10.1099/00221287-147-2-419] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus pyogenes is the causative agent in a wide range of diseases of humans of varying severity. During a study scanning the genome sequence of a serotype M1 invasive isolate SF370 for novel surface proteins, an ORF, designated sclB, was identified. The putative protein encoded by sclB contains both a signal peptide and classic Gram-positive wall-associated sequences. Comparison of the sequences of this ORF with those from a number of unrelated isolates demonstrated that sclB encodes a putative surface protein with a variable N-terminal sequence followed by a variable length tract of collagen-like GXY(n) repeats. A further feature of sclB is the presence of CAAAA repeat tracts immediately downstream of the putative start codon. The number of these pentameric repeats varies from 4 to 15 between strains and variation in repeat number results in the predicted SclB protein being either in or out of frame relative to the start codon. These observations suggest that expression of this protein may be regulated at the translational level as a result of gain or loss of CAAAA repeats. While the function of SclB remains to be elucidated, an sclB-specific transcript was detected by RT-PCR during in vitro culture. Finally, it is shown that a second gene, sclA, potentially encoding a protein with a similar extensive collagen-like structure and variable N-terminal sequence, is present in all isolates of S. pyogenes tested to date. Thus S. pyogenes harbours a novel family of structurally related and surface-exposed proteins of potential importance in the pathogenic process.
Collapse
Affiliation(s)
- Adrian M Whatmore
- Infectious Disease Research Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK1
| |
Collapse
|
32
|
Meehan M, Muldowney DA, O'Meara F, Owen P. Neither the A- nor B-repeat regions of the fibrinogen-binding protein of Streptococcus equi subsp. equi are essential for fibrinogen binding. FEMS Microbiol Lett 2000; 190:317-21. [PMID: 11034298 DOI: 10.1111/j.1574-6968.2000.tb09305.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The major cell wall-associated protein (FgBP) of Streptococcus equi subsp. equi possesses two internal blocks of repeated sequence (A and B) and binds horse fibrinogen (Fg) avidly through residues located in the N-terminal half of the molecule. In the present study, we investigated the roles of the two repeats blocks in Fg binding through construction of recombinant FgBP proteins containing defined internal deletions of sequence. Ligand binding experiments clearly showed that neither repeat is essential for Fg binding. However, residues within the B repeats seem to play a major role in the aberrant mobility observed for FgBP following sodium dodecyl sulfate polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- M Meehan
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | | | | | | |
Collapse
|
33
|
Frick IM, Mörgelin M, Björck L. Virulent aggregates of Streptococcus pyogenes are generated by homophilic protein-protein interactions. Mol Microbiol 2000; 37:1232-47. [PMID: 10972839 DOI: 10.1046/j.1365-2958.2000.02084.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many strains of the important human pathogen Streptococcus pyogenes form aggregates when grown in vitro in liquid medium. The present studies demonstrate that this property is crucial for the adherence, the resistance to phagocytosis and the virulence of S. pyogenes. A conserved sequence of 19 amino acid residues (designated AHP) was identified in surface proteins of common S. pyogenes serotypes. This sequence was found to promote bacterial aggregation through homophilic protein-protein interactions between AHP-containing surface proteins of neighbouring bacteria. A synthetic AHP peptide inhibited S. pyogenes aggregation, reduced the survival of S. pyogenes in human blood and attenuated its virulence in mice. In contrast, mutant bacteria devoid of surface proteins containing AHP-related sequences did not aggregate or adhere to epithelial cells. These bacteria are also rapidly killed in human blood and show reduced virulence in mice, underlining the pathogenic significance of the AHP sequence and S. pyogenes aggregation.
Collapse
Affiliation(s)
- I M Frick
- Department of Cell and Molecular Biology, Sections for Molecular Pathogenesis and Connective Tissue Biology, Lund University, PO Box 94, S-221 00 Lund, Sweden.
| | | | | |
Collapse
|
34
|
McCrea KW, Hartford O, Davis S, Eidhin DN, Lina G, Speziale P, Foster TJ, Höök M. The serine-aspartate repeat (Sdr) protein family in Staphylococcus epidermidis. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 7):1535-1546. [PMID: 10878118 DOI: 10.1099/00221287-146-7-1535] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Staphylococcus epidermidis can express three different cell-surface-associated proteins, designated SdrF, SdrG and SdrH, that contain serine-aspartate dipeptide repeats. Proteins SdrF and SdrG are similar in sequence and structural organization to the Sdr proteins of Staphylococcus aureus and comprise unique 625- and 548-residue A regions at their N termini, respectively, followed by 110-119-residue B-repeat regions and SD-repeat regions. The C termini contain LPXTG motifs and hydrophobic amino acid segments characteristic of surface proteins covalently anchored to peptidoglycan. In contrast, SdrH has a short 60-residue A region at its N terminus followed by a SD-repeat region, a unique 277-residue C region and a C-terminal hydrophobic segment. SdrH lacks a LPXTG motif. Recombinant proteins representing the A regions of SdrF, SdrG and SdrH were expressed and purified from Escherichia coli. Antisera specific to these proteins were raised in rabbits and used to identify Sdr proteins expressed by S. epidermidis. Only SdrF was released from lysostaphin-generated protoplasts of cells grown to late-exponential phase. SdrG and SdrH remained associated with the protoplast fraction and thus appear to be ineffectively sorted along the conventional pathway used for cell-wall-anchored proteins. In Southern hybridization analyses, the sdrG and sdrH genes were present in all 16 strains tested, whilst sdrF was present in 12 strains. Antisera from 16 patients who had recovered from S. epidermidis infections contained antibodies that reacted with recombinant A regions of SdrG and SdrH, suggesting that these proteins can be expressed during infection.
Collapse
Affiliation(s)
- Kirk W McCrea
- Institute of Biosciences and Technology, Texas Medical Center, 2121 West Holcombe Boulevard, Houston, TX 77030-3303, USA1
| | - Orla Hartford
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland2
| | - Stacey Davis
- Institute of Biosciences and Technology, Texas Medical Center, 2121 West Holcombe Boulevard, Houston, TX 77030-3303, USA1
| | - Deirdre Nı Eidhin
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland2
| | - Gerard Lina
- EA1655, Faculté Laennec, 69372 Lyon Cedex 08, France3
| | - Pietro Speziale
- Department of Biochemistry, University of Pavia, 27100 Pavia, Italy4
| | - Timothy J Foster
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland2
| | - Magnus Höök
- Institute of Biosciences and Technology, Texas Medical Center, 2121 West Holcombe Boulevard, Houston, TX 77030-3303, USA1
| |
Collapse
|
35
|
Boguslavsky S, Menaker D, Lysnyansky I, Liu T, Levisohn S, Rosengarten R, García M, Yogev D. Molecular characterization of the Mycoplasma gallisepticum pvpA gene which encodes a putative variable cytadhesin protein. Infect Immun 2000; 68:3956-64. [PMID: 10858209 PMCID: PMC101673 DOI: 10.1128/iai.68.7.3956-3964.2000] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A putative cytadhesin-related protein (PvpA) undergoing variation in its expression was identified in the avian pathogen Mycoplasma gallisepticum. The pvpA gene was cloned, expressed in Escherichia coli, and sequenced. It exhibits 54 and 52% homology with the P30 and P32 cytadhesin proteins of the human pathogens Mycoplasma pneumoniae and Mycoplasma genitalium, respectively. In addition, 50% homology was found with the MGC2 cytadhesin of M. gallisepticum and 49% homology was found with a stretch of 205 amino acids of the cytadherence accessory protein HMW3 of M. pneumoniae. The PvpA molecule possesses a proline-rich carboxy-terminal region (28%) containing two identical directly repeated sequences of 52 amino acids and a tetrapeptide motif (Pro-Arg-Pro-X) which is repeated 14 times. Genetic analysis of several clonal isolates representing different expression states of the PvpA product ruled out chromosomal rearrangement as the mechanism for PvpA phase variation. The molecular basis of PvpA variation was revealed in a short tract of repeated GAA codons, encoding five successive glutamate resides, located in the N-terminal region and subject to frequent mutation generating an in-frame UAA stop codon. Size variation of the PvpA protein was observed among M. gallisepticum strains, ranging from 48 to 55 kDa and caused by several types of deletions occurring at the PvpA C-terminal end and within the two directly repeated sequences. By immunoelectron microscopy, the PvpA protein was localized on the mycoplasma cell surface, in particular on the terminal tip structure. Collectively, these findings suggest that PvpA is a newly identified variable surface cytadhesin protein of M. gallisepticum.
Collapse
Affiliation(s)
- S Boguslavsky
- Department of Membrane and Ultrastructure Research, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Group A streptococci are model extracellular gram-positive pathogens responsible for pharyngitis, impetigo, rheumatic fever, and acute glomerulonephritis. A resurgence of invasive streptococcal diseases and rheumatic fever has appeared in outbreaks over the past 10 years, with a predominant M1 serotype as well as others identified with the outbreaks. emm (M protein) gene sequencing has changed serotyping, and new virulence genes and new virulence regulatory networks have been defined. The emm gene superfamily has expanded to include antiphagocytic molecules and immunoglobulin-binding proteins with common structural features. At least nine superantigens have been characterized, all of which may contribute to toxic streptococcal syndrome. An emerging theme is the dichotomy between skin and throat strains in their epidemiology and genetic makeup. Eleven adhesins have been reported, and surface plasmin-binding proteins have been defined. The strong resistance of the group A streptococcus to phagocytosis is related to factor H and fibrinogen binding by M protein and to disarming complement component C5a by the C5a peptidase. Molecular mimicry appears to play a role in autoimmune mechanisms involved in rheumatic fever, while nephritis strain-associated proteins may lead to immune-mediated acute glomerulonephritis. Vaccine strategies have focused on recombinant M protein and C5a peptidase vaccines, and mucosal vaccine delivery systems are under investigation.
Collapse
Affiliation(s)
- M W Cunningham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
37
|
Affiliation(s)
- S Rottem
- Department of Membrane and Ultrastructure Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | | |
Collapse
|
38
|
Affiliation(s)
- M F Minnick
- Division of Biological Sciences, University of Montana, Missoula 59812-1002, USA
| | | |
Collapse
|
39
|
Collin M, Olsén A. Generation of a mature streptococcal cysteine proteinase is dependent on cell wall-anchored M1 protein. Mol Microbiol 2000; 36:1306-18. [PMID: 10931281 DOI: 10.1046/j.1365-2958.2000.01942.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study, we have generated a mutant strain of Streptococcus pyogenes, MC25, which lacks M protein on its surface, and we demonstrate that this strain is unable to generate a mature 28 kDa cysteine proteinase. Furthermore, we show that S. pyogenes bacteria of M1 serotype are dependent on cell wall-anchored M protein to cleave the secreted zymogen into a mature cysteine proteinase. We also show that MC25 secretes a 40 kDa zymogen, having a conformation different from that secreted by wild-type bacteria. We provide data showing that the cleavage site is not blocked but, presumably, the active site is. This suggests that M protein, when anchored to the cell wall, is involved in the unfolding of the zymogen and generation of a mature cysteine proteinase that can be activated under reducing conditions. Our data add new aspects to the interaction between two important virulence factors of S. pyogenes, the streptococcal cysteine proteinase and M protein.
Collapse
Affiliation(s)
- M Collin
- Department of Cell and Molecular Biology, Lund University, Sweden
| | | |
Collapse
|
40
|
Meehan M, Muldowney DA, Watkins NJ, Owen P. Localization and characterization of the ligand-binding domain of the fibrinogen-binding protein (FgBP) of Streptococcus equi subsp. equi. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 5):1187-1194. [PMID: 10832647 DOI: 10.1099/00221287-146-5-1187] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The group C streptococcus Streptococcus equi subsp. equi possesses a 498-residue major cell-wall-associated protein (FgBP) which binds horse fibrinogen (Fg), reacts with convalescent horse serum and protects against lethal S. equi challenge in a small animal model. In the present study, analysis of a panel of 17 purified N- and C-terminal FgBP truncates by ligand affinity blotting and SDS-PAGE revealed that the region required for maximum binding of Fg extended over the first half of the mature protein. The C-terminal two-thirds of this domain is predicted to be alpha-helical coiled-coil and the N-terminal one-third to possess non-coiled-coil single strands. Residues at the extreme N-terminus and within the coiled-coil region are both required for ligand binding. A high incidence of alpha-helical coiled-coil structure also seems to be responsible in part for the aberrant mobility of FgBP on SDS gels. The efficiency with which FgBP binds Fg from different animal species decreases in the order horse > mouse, pig > rat > sheep, dog, bovine, human. Binding to horse Fg is inversely related to temperature over the range 45-4 degrees C and is independent of Ca2+ ions. MS analysis provided corroborative evidence that FgBP is covalently linked to the cell wall peptidoglycan.
Collapse
Affiliation(s)
- Mary Meehan
- National Pharmaceutical Biotechnology Centre, BioResearch, Ireland1, and Department of Microbiology, Moyne Institute of Preventive Medicine2, Trinity College, Dublin 2, Ireland
| | - Deirdre A Muldowney
- National Pharmaceutical Biotechnology Centre, BioResearch, Ireland1, and Department of Microbiology, Moyne Institute of Preventive Medicine2, Trinity College, Dublin 2, Ireland
| | - Naomi J Watkins
- National Pharmaceutical Biotechnology Centre, BioResearch, Ireland1, and Department of Microbiology, Moyne Institute of Preventive Medicine2, Trinity College, Dublin 2, Ireland
| | - Peter Owen
- National Pharmaceutical Biotechnology Centre, BioResearch, Ireland1, and Department of Microbiology, Moyne Institute of Preventive Medicine2, Trinity College, Dublin 2, Ireland
| |
Collapse
|
41
|
Bate AL, Ma JK, Pitt Ford TR. Detection of bacterial virulence genes associated with infective endocarditis in infected root canals. Int Endod J 2000; 33:194-203. [PMID: 11307435 DOI: 10.1046/j.1365-2591.1999.00299.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM The aim of this study was to examine whether bacteria associated with root canals possess genes that might predispose to bacterial colonization of the endocardium. METHODOLOGY Oligonucleotides were designed from DNA sequences encoding the functional binding regions of streptococcal fibronectin-binding protein (FnBP) and staphylococcal fibrinogen-binding protein (FgBP). The specificity and cross-reactivity of the oligonucleotide primers were investigated; streptococcal primers were tested for recognition of FnBP genes in other strains of streptococci, and the staphylococcal primers for detection of FgBP from other staphylococci. Interspecies specificity of these primers was also investigated. In a pilot clinical study, the pulp chambers of 16 nonvital teeth without sinus tracts, were opened aseptically. Root canal samples were collected, along with samples from the gingival sulcus and anterior nares. From these samples DNA was extracted, subjected to polymerase chain reaction (PCR) and analysed by agarose gel electrophoresis. RESULTS Using the streptococcal FnBP primers, PCR bands were amplified from eight root canal samples, eight gingival samples and three nasal samples. With the staphylococcal primers, PCR bands were amplified from seven root canals, 11 gingival and nine nasal samples. This study showed that PCR could be used to detect bacteria in root canals that possess genes with homology to functional regions of those encoding FnBP or FgBP. CONCLUSIONS If bacteria in root canals possess FnBP or FgBP, they may have the potential to cause infective endocarditis.
Collapse
Affiliation(s)
- A L Bate
- Department of Conservative Dentistry, GKT Dental Institute, King's College, University of London, London, UK
| | | | | |
Collapse
|
42
|
Nordstrand A, Norgren M, Holm SE. Pathogenic mechanism of acute post-streptococcal glomerulonephritis. SCANDINAVIAN JOURNAL OF INFECTIOUS DISEASES 2000; 31:523-37. [PMID: 10680980 DOI: 10.1080/00365549950164382] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Considerable knowledge has been accumulated regarding the characteristics of acute post-streptococcal glomerulonephritis (APSGN), and many attempts have been made to identify a streptococcal factor or factors responsible for triggering this disease. However, the pathogenic mechanism behind APSGN remains largely unknown. As glomerular deposition of C3 is generally demonstrated before that of IgG in the disease process, it is likely that the inflammatory response is initiated by renal deposition of a streptococcal product, rather than by deposition of antibodies or pre-formed immune complexes. During recent years, a number of streptococcal products have been suggested to be involved in the pathogenic process. In this review, possible roles of these factors are discussed in the context of the clinical and renal findings most often demonstrated in patients with APSGN. Streptokinase was observed to be required in order to induce signs of APSGN in mice, and a number of findings suggest that the initiation of the disease may occur as a result of renal binding by certain nephritis-associated variants of this protein. However, additional factors may be required for the development of the disease.
Collapse
Affiliation(s)
- A Nordstrand
- Department of Clinical Bacteriology, Umeå university, Sweden
| | | | | |
Collapse
|
43
|
DeWinter LM, Low DE, Prescott JF. Virulence of Streptococcus canis from canine streptococcal toxic shock syndrome and necrotizing fasciitis. Vet Microbiol 1999; 70:95-110. [PMID: 10591501 DOI: 10.1016/s0378-1135(99)00128-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The recent recognition of streptococcal toxic shock syndrome (STSS) and necrotizing fasciitis (NF) in dogs caused by Streptococcus canis highlights our lack of knowledge regarding the mechanisms of virulence of this organism. Fifteen isolates of S. canis from cases of canine STSS and/or NF were examined for the presence of 10 Streptococcus pyogenes-associated virulence genes by Southern hybridizations using gene probes generated by PCR. The isolates lacked DNA with homology to eight of the 10 gene probes (speA, speB, speC, mf, ssa, scp, hasA, ska) under low stringency conditions. Thirteen and 15 of 15 isolates hybridized with streptolysin O and M protein gene probes, respectively. Twelve of 15 S. canis isolates were resistant to phagocytosis in canine blood. Electron microscopy revealed the presence of proteinaceous cell surface fibrillae. These results suggest that S. canis possesses M proteins and encodes streptolysin O, but lacks some of the other recognized virulence genes with significant homology to those in S. pyogenes.
Collapse
Affiliation(s)
- L M DeWinter
- Department of Pathobiology, University of Guelph, Ont., Canada
| | | | | |
Collapse
|
44
|
Geyer A, Roth A, Vettermann S, Günther E, Groh A, Straube E, Schmidt K. M protein of a Streptococcus dysgalactiae human wound isolate shows multiple binding to different plasma proteins and shares epitopes with keratin and human cartilage. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1999; 26:11-24. [PMID: 10518039 DOI: 10.1111/j.1574-695x.1999.tb01368.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Besides group A (GAS), Lancefield group C beta-haemolytic streptococci (GCS) have been implicated as a causative agent in outbreaks of purulent pharyngitis. In this study we have investigated a class CI M protein of a Streptococcus dysgalactiae1:256, revealed that 26% of these sera showed serological cross-reactivity between a 68-kDa cartilage protein and the N-terminal part of MC. Only 8% of the sera of healthy patients showed this property. In additional, MC also cross-reacted with antibodies recognising epidermal keratins. The cross-reacting 68-kDa protein from cartilage was different from human serum albumin, but was recognised with anti-vimentin immune serum. The MC was cloned and the gene sequenced. By using PCR, recombinant gene fragments encoding characteristic peptide fragments of MC were expressed in Escherichia coli. The peptides were used to map the binding sites for plasma proteins and to locate the cross-reacting epitopes on the MC molecule. In consequence, sequence alignments revealed that MC shared homologous regions with vimentin and different keratins. Our data, obtained with MC, suggest that not only infections with GAS but also infections with GCS and possibly GGS (the latter species can also produce class CI M-like proteins) may be responsible for the formation of streptococcal-associated sequel diseases.
Collapse
Affiliation(s)
- A Geyer
- Hospital of the Friedrich-Schiller-University, Institute of Medical Microbiology, Semmelweissstr. 4, D-07740, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Svensson MD, Sjöbring U, Bessen DE. Selective distribution of a high-affinity plasminogen-binding site among group A streptococci associated with impetigo. Infect Immun 1999; 67:3915-20. [PMID: 10417156 PMCID: PMC96672 DOI: 10.1128/iai.67.8.3915-3920.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group A streptococci can be classified according to their tendency to cause either impetigo, pharyngitis, or both types of infection. Genotypic markers for tissue site preference lie within emm genes, which encode fibrillar surface proteins that play a key role in virulence. emm gene products (M and M-like proteins) display an extensive array of binding activities for tissue and plasma proteins of the human host. In a previous study, a high-affinity binding site for human plasmin(ogen) was mapped to the emm53 gene product. In this report, a structurally similar plasminogen-binding domain is found to be widely and selectively distributed among group A streptococci harboring the emm gene marker for the skin as the preferred tissue site for infection. The findings are highly suggestive of a central role for bacterial modulation of host plasmin(ogen) during localized infection at the epidermis.
Collapse
Affiliation(s)
- M D Svensson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | | |
Collapse
|
46
|
Stålhammar-Carlemalm M, Areschoug T, Larsson C, Lindahl G. The R28 protein of Streptococcus pyogenes is related to several group B streptococcal surface proteins, confers protective immunity and promotes binding to human epithelial cells. Mol Microbiol 1999; 33:208-19. [PMID: 10411737 DOI: 10.1046/j.1365-2958.1999.01470.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The R28 protein is a surface molecule expressed by some strains of Streptococcus pyogenes (group A streptococcus). Here, we present evidence that R28 may play an important role in virulence. Sequence analysis demonstrated that R28 has an extremely repetitive sequence and can be viewed as a chimera derived from the three surface proteins Rib, alpha and beta of the group B streptococcus (GBS). Thus, the gene encoding R28 may have originated in GBS. The R28 protein promotes adhesion to human epithelial cells, as shown by experiments with an R28-negative mutant and by the demonstration that antibodies to highly purified R28 inhibited adhesion. In a mouse model of lethal intraperitoneal S. pyogenes infection, antibodies to R28 conferred protective immunity. However, the virulence of an R28-negative mutant was similar to that of the parental strain in the intraperitoneal infection model. Together, these data indicate that R28 represents a novel type of adhesin expressed by S. pyogenes and that R28 may also act as a target for protective antibodies at later stages of an infection. We consider the hypothesis that R28 played a pathogenetic role in the well-known epidemics of childbed fever (puerperal fever), which were caused by S. pyogenes. A role for R28 in these epidemics is suggested by epidemiological data.
Collapse
|
47
|
Whatmore AM, King SJ, Doherty NC, Sturgeon D, Chanter N, Dowson CG. Molecular characterization of equine isolates of Streptococcus pneumoniae: natural disruption of genes encoding the virulence factors pneumolysin and autolysin. Infect Immun 1999; 67:2776-82. [PMID: 10338480 PMCID: PMC96581 DOI: 10.1128/iai.67.6.2776-2782.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/1999] [Accepted: 03/05/1999] [Indexed: 11/20/2022] Open
Abstract
Although often considered a strict human pathogen, Streptococcus pneumoniae has been reported to infect and cause pneumonia in horses, although the pathology appears restricted compared to that of human infections. Here we report on the molecular characterization of a group of S. pneumoniae isolates obtained from horses in England and Ireland. Despite being obtained from geographically distinct locations, the isolates were found to represent a tight clonal group, virtually identical to each other but genetically distinguishable from more than 120 divergent isolates of human S. pneumoniae. A comprehensive analysis of known pneumococcal virulence determinants was undertaken in an attempt to understand the pathogenicity of equine pneumococci. Surprisingly, equine isolates appear to lack activities associated with both the hemolytic cytotoxin pneumolysin, often considered a major virulence factor of pneumococci, and the major autolysin gene lytA, also considered an important virulence factor. In support of phenotypic data, molecular studies demonstrated a deletion of parts of the coding sequences of both lytA and ply genes in equine pneumococci. The implications of these findings for the evolution and pathogenicity of equine S. pneumoniae are discussed.
Collapse
Affiliation(s)
- A M Whatmore
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom.
| | | | | | | | | | | |
Collapse
|
48
|
Kihlberg BM, Collin M, Olsén A, Björck L. Protein H, an antiphagocytic surface protein in Streptococcus pyogenes. Infect Immun 1999; 67:1708-14. [PMID: 10085008 PMCID: PMC96518 DOI: 10.1128/iai.67.4.1708-1714.1999] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Surface-associated M protein is a major virulence factor in Streptococcus pyogenes which confers bacterial resistance to phagocytosis. However, many S. pyogenes strains also express additional structurally related so-called M-like proteins. The strain studied here is of the clinically important M1 serotype and expresses two structurally related surface proteins, the M1 protein and protein H. Mutants were generated that expressed only one or none of these proteins at the bacterial surface. For survival in human blood either protein H or M1 protein was sufficient, whereas the double mutant was rapidly killed. The protein-binding properties of protein H, M1 protein, and the mutants suggest that bacterial binding of immunoglobulin G and factor H or factor H-like protein 1, which are regulatory proteins in the complement system, contribute to the antiphagocytic property.
Collapse
Affiliation(s)
- B M Kihlberg
- Section for Molecular Pathogenesis, Department of Cell and Molecular Biology, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
49
|
Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 1999; 63:174-229. [PMID: 10066836 PMCID: PMC98962 DOI: 10.1128/mmbr.63.1.174-229.1999] [Citation(s) in RCA: 935] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins.
Collapse
Affiliation(s)
- W W Navarre
- Department of Microbiology & Immunology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | |
Collapse
|
50
|
Abstract
The recent sequencing of the entire genomes of Mycoplasma genitalium and M. pneumoniae has attracted considerable attention to the molecular biology of mycoplasmas, the smallest self-replicating organisms. It appears that we are now much closer to the goal of defining, in molecular terms, the entire machinery of a self-replicating cell. Comparative genomics based on comparison of the genomic makeup of mycoplasmal genomes with those of other bacteria, has opened new ways of looking at the evolutionary history of the mycoplasmas. There is now solid genetic support for the hypothesis that mycoplasmas have evolved as a branch of gram-positive bacteria by a process of reductive evolution. During this process, the mycoplasmas lost considerable portions of their ancestors' chromosomes but retained the genes essential for life. Thus, the mycoplasmal genomes carry a high percentage of conserved genes, greatly facilitating gene annotation. The significant genome compaction that occurred in mycoplasmas was made possible by adopting a parasitic mode of life. The supply of nutrients from their hosts apparently enabled mycoplasmas to lose, during evolution, the genes for many assimilative processes. During their evolution and adaptation to a parasitic mode of life, the mycoplasmas have developed various genetic systems providing a highly plastic set of variable surface proteins to evade the host immune system. The uniqueness of the mycoplasmal systems is manifested by the presence of highly mutable modules combined with an ability to expand the antigenic repertoire by generating structural alternatives, all compressed into limited genomic sequences. In the absence of a cell wall and a periplasmic space, the majority of surface variable antigens in mycoplasmas are lipoproteins. Apart from providing specific antimycoplasmal defense, the host immune system is also involved in the development of pathogenic lesions and exacerbation of mycoplasma induced diseases. Mycoplasmas are able to stimulate as well as suppress lymphocytes in a nonspecific, polyclonal manner, both in vitro and in vivo. As well as to affecting various subsets of lymphocytes, mycoplasmas and mycoplasma-derived cell components modulate the activities of monocytes/macrophages and NK cells and trigger the production of a wide variety of up-regulating and down-regulating cytokines and chemokines. Mycoplasma-mediated secretion of proinflammatory cytokines, such as tumor necrosis factor alpha, interleukin-1 (IL-1), and IL-6, by macrophages and of up-regulating cytokines by mitogenically stimulated lymphocytes plays a major role in mycoplasma-induced immune system modulation and inflammatory responses.
Collapse
Affiliation(s)
- S Razin
- Department of Membrane and Ultrastructure Research, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | | | | |
Collapse
|