1
|
López-Caballero F, Coffman BA, Seebold D, Teichert T, Salisbury DF. N1 facilitation at short Inter-Stimulus-Interval (ISI) occurs under 400 ms and is dependent on ISI from previous sounds: Evidence using an unpredictable auditory stimulation sequence. Int J Psychophysiol 2025; 208:112495. [PMID: 39740730 DOI: 10.1016/j.ijpsycho.2024.112495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
The N1 auditory evoked potential amplitude depends heavily on the inter-stimulus interval (ISI). Typically, shorter ISIs result in reduced N1 amplitudes, suggesting a decreased neural response with high stimulus presentation rates. However, an exception known as N1 facilitation occurs with very brief ISIs (∼150-500 ms), where the N1 amplitude increases. This study aimed to further characterize N1 facilitation using an experimental paradigm with a continuous distribution of ISIs (0.25 to 8 s) to identify the specific ISI where N1 facilitation occurs. We also examined the role of ISI history in N1 facilitation and explored correlations between N1 facilitation, overall N1 amplitude and ISI-sensitivity, and results of cognitive tasks. Twenty-nine participants passively listened to a random sequence of auditory clicks at varying intensities (65, 75, or 85 dB) and ISI ranges (0.25-0.5 s, 0.5-1 s, 1-2 s, 2-4 s, 4-8 s) while EEG was recorded. Up to 1800 sweeps were collected in the critical ISI range (0.25 to 0.5 s) where N1 facilitation is expected. Results support N1 facilitation occurring at ISIs under 400 ms (p = 0.03), where N1 amplitudes returned to values seen at longer ISIs (∼1.7 s). Notably, this effect was observed when the ISI two clicks before was shorter than 1.5 s (p = 0.001), but not otherwise (p = 0.37). These findings clarify the temporal dynamics of N1 facilitation and challenge the notion of a rigid, context-independent latent inhibition process explaining this phenomenon.
Collapse
Affiliation(s)
- F López-Caballero
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - B A Coffman
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - D Seebold
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - T Teichert
- Departments of Psychiatry and Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - D F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
İlhan B, Kurt S, Bolay Y, Ungan P. Lateralization-specific adaptation in auditory cortical evoked potentials: Comparison with frequency-specificity. Eur J Neurosci 2025; 61:e16644. [PMID: 39686567 DOI: 10.1111/ejn.16644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
'Opponent channels model' (OCM) is the widely accepted model for cortical representation of sound lateralization. Stimulus-specific 'release from adaptation' (RFA) in cortical responses has been used in previous studies to test the predictions of this model. However, these attempts were shown to be prone to confounds of spurious responses such as those to auditory motion and sound onset. The present study aims to determine whether a multiple-adaptor RFA algorithm could be employed for relatively confound-free quantification of the population response of lateralization-specific auditory cortical neurons, and provide useful data for estimation of the OCM hemifield tuning curves. Two experiments were conducted on 12 volunteers with normal hearing. In Exp.1, quadruple tone pips of either low or high frequency were presented as adaptor, followed by a single tone pip of either frequency as probe. In Exp.2, tone pips were replaced with dichotic click train pips with left-leading and right-leading interaural time difference (ITD). Frequency- and ITD-specific RFA in cortical responses N1 and P2 was quantified using global field magnitude difference between ERPs to mismatched and matched adaptor-probe pairs. RFA level measured was lower for ITD mismatch than frequency mismatch. Nonetheless, it allowed measurement of ITD-specific cortical neurons' population response, without any spurious response confound. We proposed a method for extraction of ITD-specific response magnitude from the N1 response to a lateralized sound. Using it, one can reliably measure the activity of lateralization-specific cortical neurons, i.e. elicited by moderate ITD changes. This allows estimation of hemifield tuning curves in OCM using ERP data.
Collapse
Affiliation(s)
- Barkın İlhan
- Department of Biophysics, Necmettin Erbakan University Faculty of Medicine, Konya, Türkiye
| | - Saliha Kurt
- Department of Audiometry, Selçuk University Vocational School of Health Services, Konya, Türkiye
| | - Yavuz Bolay
- 5th year student, Necmettin Erbakan University Faculty of Medicine, Konya, Türkiye
| | | |
Collapse
|
3
|
Wong BWL, Huo S, Maurer U. Adaptation patterns and their associations with mismatch negativity: An electroencephalogram (EEG) study with controlled expectations. Eur J Neurosci 2024; 60:6312-6329. [PMID: 39363511 DOI: 10.1111/ejn.16546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/20/2024] [Accepted: 08/29/2024] [Indexed: 10/05/2024]
Abstract
Adaptation refers to the decreased neural response that occurs after repeated exposure to a stimulus. While many electroencephalogram (EEG) studies have investigated adaptation by using either single or multiple repetitions, the adaptation patterns under controlled expectations manifested in the two main auditory components, N1 and P2, are still largely unknown. Additionally, although multiple repetitions are commonly used in mismatch negativity (MMN) experiments, it is unclear how adaptation at different time windows contributes to this phenomenon. In this study, we conducted an EEG experiment with 37 healthy adults using a random stimulus arrangement and extended tone sequences to control expectations. We tracked the amplitudes of the N1 and P2 components across the first 10 tones to examine adaptation patterns. Our findings revealed an L-shaped adaptation pattern characterised by a significant decrease in N1 amplitude after the first repetition (N1 initial adaptation), followed by a continuous, linear increase in P2 amplitude after the first repetition (P2 subsequent adaptation), possibly indicating model adjustment. Regression analysis demonstrated that the peak amplitudes of both the N1 initial adaptation and the P2 subsequent adaptation significantly accounted for variance in MMN amplitude. These results suggest distinct adaptation patterns for multiple repetitions across different components and indicate that the MMN reflects a combination of two processes: the initial adaptation in the N1 and a continuous model adjustment effect in the P2. Understanding these processes separately could have implications for models of cognitive processing and clinical disorders.
Collapse
Affiliation(s)
- Brian W L Wong
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
- BCBL, Basque Center on Brain, Language and Cognition, Donostia-San Sebastián, Spain
| | - Shuting Huo
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Urs Maurer
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
- Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Developmental Psychology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Brinkmann P, Devos JVP, van der Eerden JHM, Smit JV, Janssen MLF, Kotz SA, Schwartze M. Parallel EEG assessment of different sound predictability levels in tinnitus. Hear Res 2024; 450:109073. [PMID: 38996530 DOI: 10.1016/j.heares.2024.109073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Tinnitus denotes the perception of a non-environmental sound and might result from aberrant auditory prediction. Successful prediction of formal (e.g., type) and temporal sound characteristics facilitates the filtering of irrelevant information, also labelled as 'sensory gating' (SG). Here, we explored if and how parallel manipulations of formal prediction violations and temporal predictability affect SG in persons with and without tinnitus. Age-, education- and sex-matched persons with and without tinnitus (N = 52) participated and listened to paired-tone oddball sequences, varying in formal (standard vs. deviant pitch) and temporal predictability (isochronous vs. random timing). EEG was recorded from 128 channels and data were analyzed by means of temporal spatial principal component analysis (tsPCA). SG was assessed by amplitude suppression for the 2nd tone in a pair and was observed in P50-like activity in both timing conditions and groups. Correspondingly, deviants elicited overall larger amplitudes than standards. However, only persons without tinnitus displayed a larger N100-like deviance response in the isochronous compared to the random timing condition. This result might imply that persons with tinnitus do not benefit similarly as persons without tinnitus from temporal predictability in deviance processing. Thus, persons with tinnitus might display less temporal sensitivity in auditory processing than persons without tinnitus.
Collapse
Affiliation(s)
- Pia Brinkmann
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, Maastricht 6229 ER, the Netherlands
| | - Jana V P Devos
- School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229 ER, the Netherlands; Department of Ear Nose Throat Head and Neck Surgery, Maastricht University Medical Center, Maastricht University, Maastricht 6229 HX, the Netherlands
| | - Jelle H M van der Eerden
- School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229 ER, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5612 AZ, the Netherlands
| | - Jasper V Smit
- Department of Ear, Nose, and Throat/Head and Neck Surgery, Zuyderland Medical Center, Heerlen, the Netherlands
| | - Marcus L F Janssen
- School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229 ER, the Netherlands; Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht University, Maastricht 6229 HX, the Netherlands
| | - Sonja A Kotz
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, Maastricht 6229 ER, the Netherlands
| | - Michael Schwartze
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, Maastricht 6229 ER, the Netherlands.
| |
Collapse
|
5
|
Sun M, Xing W, Yu W, Slevc LR, Li W. ERP evidence for cross-domain prosodic priming from music to speech. BRAIN AND LANGUAGE 2024; 254:105439. [PMID: 38945108 DOI: 10.1016/j.bandl.2024.105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Considerable work has investigated similarities between the processing of music and language, but it remains unclear whether typical, genuine music can influence speech processing via cross-domain priming. To investigate this, we measured ERPs to musical phrases and to syntactically ambiguous Chinese phrases that could be disambiguated by early or late prosodic boundaries. Musical primes also had either early or late prosodic boundaries and we asked participants to judge whether the prime and target have the same structure. Within musical phrases, prosodic boundaries elicited reduced N1 and enhanced P2 components (relative to the no-boundary condition) and musical phrases with late boundaries exhibited a closure positive shift (CPS) component. More importantly, primed target phrases elicited a smaller CPS compared to non-primed phrases, regardless of the type of ambiguous phrase. These results suggest that prosodic priming can occur across domains, supporting the existence of common neural processes in music and language processing.
Collapse
Affiliation(s)
- Mingjiang Sun
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Huanghe Road 850, Dalian 116029, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian 116029, China
| | - Weijing Xing
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Huanghe Road 850, Dalian 116029, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian 116029, China
| | - Wenjing Yu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Huanghe Road 850, Dalian 116029, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian 116029, China
| | - L Robert Slevc
- Department of Psychology, University of Maryland, College Park, MD, USA.
| | - Weijun Li
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Huanghe Road 850, Dalian 116029, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian 116029, China.
| |
Collapse
|
6
|
Ruan Y, Xiang Z, Lu G, Chen Y, Liu Y, Liu F, Wang J, Zhang Y, Yao J, Liu Y, Lin Q. Non-invasive measurement of rat auditory evoked fields using an optically pumped atomic magnetometer: Effects of task manipulation. Heliyon 2024; 10:e31740. [PMID: 38845884 PMCID: PMC11152962 DOI: 10.1016/j.heliyon.2024.e31740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Optically pumped magnetometers (OPMs) have become a favorable tool for magnetoencephalography (MEG) measurement, offering a non-invasive method of measurement. OPMs do not require cryogenic environments, sensors can be more closely aligned with the brain. We employed a passive single-stimulus paradigm in conjunction with OPMs with a sensitivity of 20 fT/Hz to investigate the auditory response of rats to inter-stimulus interval (ISI) and frequencies, recording the rat auditory event-related magnetic fields (ERMFs). Our findings include: (1) Auditory evoked fields can be detected non-invasively by OPMs; (2) The amplitude of the rat auditory ERMFs varies with changes in ISI, with more pronounced amplitude changes observed after 5 s; (3) When the sound stimulus frequency is altered at the same ISI, the amplitude of the rats ERMFs changes with frequency, indicating significant differences in attention. Our method offers a valuable tool for the clinical application of a single stimulus paradigm and opens up a new avenue for research on the brain magnetic field detections.
Collapse
Affiliation(s)
- Yi Ruan
- Zhejiang Provincial Key Laboratory and Collaborative Innovation Center for Quantum Precision Measurement, College of Science, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Zhao Xiang
- Zhejiang Provincial Key Laboratory and Collaborative Innovation Center for Quantum Precision Measurement, College of Science, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Guanzhong Lu
- Zhejiang Provincial Key Laboratory and Collaborative Innovation Center for Quantum Precision Measurement, College of Science, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Yuhai Chen
- Zhejiang Provincial Key Laboratory and Collaborative Innovation Center for Quantum Precision Measurement, College of Science, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Yufei Liu
- Zhejiang Provincial Key Laboratory and Collaborative Innovation Center for Quantum Precision Measurement, College of Science, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Fan Liu
- Zhejiang Provincial Key Laboratory and Collaborative Innovation Center for Quantum Precision Measurement, College of Science, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Jiahao Wang
- Zhejiang Provincial Key Laboratory and Collaborative Innovation Center for Quantum Precision Measurement, College of Science, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Ying Zhang
- Department of Endocrinology and Metabolism, Shaoxing Second Hospital, Shaoxing, 312000, China
| | - Jia Yao
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Yu Liu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Qiang Lin
- Zhejiang Provincial Key Laboratory and Collaborative Innovation Center for Quantum Precision Measurement, College of Science, Zhejiang University of Technology, Hangzhou, 310023, China
| |
Collapse
|
7
|
Gafoor SA, Uppunda AK. Sensory Gating in the Auditory System: Classical and Novel Stimulus Paradigms. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:989-1001. [PMID: 38386055 DOI: 10.1044/2023_jslhr-22-00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
PURPOSE Sensory gating is a phenomenon where the cortical response to the second stimulus in a pair of identical stimuli is inhibited. It is most often assessed in a conditioning-testing paradigm. Both active and passive neuronal mechanisms have been implicated in sensory gating. The present study aimed to assess if sensory gating is caused by an active neural mechanism associated with stimulus redundancy. METHOD The study was carried out on 20 young neurotypical adults. We assessed the gating phenomenon using identical and nonidentical stimuli pairs presented in an electrophysiological conditioning-testing paradigm. We hypothesized that the novel stimulus in the nonidentical stimulus pair would not exhibit the sensory gating effects (reduction in the amplitude of cortical potentials to the second stimuli in the pair), owing to stimulus novelty. RESULTS Contrary to our expectations, the response analyses of the cortical auditory evoked potentials revealed that adults gated repetitive and novel stimuli similarly. CONCLUSIONS The findings are discussed in relation to the significance of methodological factors in evaluating sensory gating. We believe that additional research using oddball presentation of novel stimuli along with appropriate analysis methods is necessary before drawing any conclusions on the mechanisms underlying sensory gating.
Collapse
Affiliation(s)
- Shezeen Abdul Gafoor
- Department of Audiology and Center for Hearing Science, All India Institute of Speech and Hearing, Mysore
| | - Ajith Kumar Uppunda
- Department of Audiology and Center for Hearing Science, All India Institute of Speech and Hearing, Mysore
| |
Collapse
|
8
|
Colas T, Farrugia N, Hendrickx E, Paquier M. Sound externalization in dynamic binaural listening: A comparative behavioral and EEG study. Hear Res 2023; 440:108912. [PMID: 37952369 DOI: 10.1016/j.heares.2023.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Binaural reproduction aims at recreating a realistic sound scene at the ears of the listener using headphones. Unfortunately, externalization for frontal and rear sources is often poor (virtual sources are perceived inside the head, instead of outside the head). Nevertheless, previous studies have shown that large head-tracked movements could substantially improve externalization and that this improvement persisted once the subject had stopped moving his/her head. The present study investigates the relation between externalization and evoked response potentials (ERPs) by performing behavioral and EEG measurements in the same experimental conditions. Different degrees of externalization were achieved by preceding measurements with 1) head-tracked movements, 2) untracked head movements, and 3) no head movement. Results showed that performing a head movement, whether the head tracking was active or not, increased the amplitude of ERP components after 100 ms, which suggests that preceding head movements alters the auditory processing. Moreover, untracked head movements gave a stronger amplitude on the N1 component, which might be a marker of a consistency break in regards to the real world. While externalization scores were higher after head-tracked movements in the behavioral experiment, no marker of externalization could be found in the EEG results.
Collapse
Affiliation(s)
- Tom Colas
- University of Brest, CNRS Lab-STICC UMR 6285, 6 avenue Victor Le Gorgeu, CS 93837, 29238 Brest Cedex 3, France.
| | - Nicolas Farrugia
- IMT Atlantique, CNRS Lab-STICC UMR 6285, 655 avenue du Technopole, 29280 Plouzane, France
| | - Etienne Hendrickx
- University of Brest, CNRS Lab-STICC UMR 6285, 6 avenue Victor Le Gorgeu, CS 93837, 29238 Brest Cedex 3, France
| | - Mathieu Paquier
- University of Brest, CNRS Lab-STICC UMR 6285, 6 avenue Victor Le Gorgeu, CS 93837, 29238 Brest Cedex 3, France
| |
Collapse
|
9
|
Moskowitz HS, Sussman ES. Sound category habituation requires task-relevant attention. Front Neurosci 2023; 17:1228506. [PMID: 37942141 PMCID: PMC10628171 DOI: 10.3389/fnins.2023.1228506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction Processing the wealth of sensory information from the surrounding environment is a vital human function with the potential to develop learning, advance social interactions, and promote safety and well-being. Methods To elucidate underlying processes governing these activities we measured neurophysiological responses to patterned stimulus sequences during a sound categorization task to evaluate attention effects on implicit learning, sound categorization, and speech perception. Using a unique experimental design, we uncoupled conceptual categorical effects from stimulus-specific effects by presenting categorical stimulus tokens that did not physically repeat. Results We found effects of implicit learning, categorical habituation, and a speech perception bias when the sounds were attended, and the listeners performed a categorization task (task-relevant). In contrast, there was no evidence of a speech perception bias, implicit learning of the structured sound sequence, or repetition suppression to repeated within-category sounds (no categorical habituation) when participants passively listened to the sounds and watched a silent closed-captioned video (task-irrelevant). No indication of category perception was demonstrated in the scalp-recorded brain components when participants were watching a movie and had no task with the sounds. Discussion These results demonstrate that attention is required to maintain category identification and expectations induced by a structured sequence when the conceptual information must be extracted from stimuli that are acoustically distinct. Taken together, these striking attention effects support the theoretical view that top-down control is required to initiate expectations for higher level cognitive processing.
Collapse
Affiliation(s)
- Howard S. Moskowitz
- Department of Otorhinolaryngology-Head and Neck Surgery, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Elyse S. Sussman
- Department of Otorhinolaryngology-Head and Neck Surgery, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, Unites States
| |
Collapse
|
10
|
Rojas-Thomas F, Artigas C, Wainstein G, Morales JP, Arriagada M, Soto D, Dagnino-Subiabre A, Silva J, Lopez V. Impact of acute psychosocial stress on attentional control in humans. A study of evoked potentials and pupillary response. Neurobiol Stress 2023; 25:100551. [PMID: 37362419 PMCID: PMC10285563 DOI: 10.1016/j.ynstr.2023.100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 06/28/2023] Open
Abstract
Psychosocial stress has increased considerably in our modern lifestyle, affecting global mental health. Deficits in attentional control are cardinal features of stress disorders and pathological anxiety. Studies suggest that changes in the locus coeruleus-norepinephrine system could underlie the effects of stress on top-down attentional control. However, the impact of psychosocial stress on attentional processes and its underlying neural mechanisms are poorly understood. This study aims to investigate the effect of psychosocial stress on attentional processing and brain signatures. Evoked potentials and pupillary activity related to the oddball auditory paradigm were recorded before and after applying the Montreal Imaging Stress Task (MIST). Electrocardiogram (ECG), salivary cortisol, and subjective anxiety/stress levels were measured at different experimental periods. The control group experienced the same physical and cognitive effort but without the psychosocial stress component. The results showed that stressed subjects exhibited decreased P3a and P3b amplitude, pupil phasic response, and correct responses. On the other hand, they displayed an increase in Mismatch Negativity (MMN). N1 amplitude after MIST only decreased in the control group. We found that differences in P3b amplitude between the first and second oddball were significantly correlated with pupillary dilation and salivary cortisol levels. Our results suggest that under social-evaluative threat, basal activity of the coeruleus-norepinephrine system increases, enhancing alertness and decreasing voluntary attentional resources for the cognitive task. These findings contribute to understanding the neurobiological basis of attentional changes in pathologies associated with chronic psychosocial stress.
Collapse
Affiliation(s)
- F. Rojas-Thomas
- Laboratorio de Psicología Experimental y Neurociencias, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
- Programa de Doctorado en Neurociencia, Centro Interdisciplinario en Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile
| | - C. Artigas
- Departamento de Biología, Universidad Autónoma de Chile, Santiago, Chile
| | - G. Wainstein
- Departamento de Psiquiatría, Escuela de Medicina y Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan-Pablo Morales
- Programa de Doctorado en Neurociencia, Centro Interdisciplinario en Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile
- Facultad de Educación Psicología y Familia, Universidad Finis Terrae, Santiago, Chile
| | - M. Arriagada
- College of Veterinary Medicine, Faculty of Medical Sciences, Bernardo O'Higgins University, Santiago, Chile
| | - D. Soto
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile
| | - A. Dagnino-Subiabre
- Laboratorio de Neurobiología del Estrés, Instituto de Fisiología, CENFI, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - J. Silva
- Instituto de Bienestar Socioemocional (IBEM), Facultad de Psicología, Universidad del Desarrollo, Santiago, Chile
| | - V. Lopez
- Laboratorio de Psicología Experimental y Neurociencias, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
11
|
Rufener KS, Wienke C, Salanje A, Haghikia A, Zaehle T. Effects of transcutaneous auricular vagus nerve stimulation paired with tones on electrophysiological markers of auditory perception. Brain Stimul 2023; 16:982-989. [PMID: 37336282 DOI: 10.1016/j.brs.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Transcutaneous auricular vagus nerve stimulation (taVNS) has been introduced as a non-invasive alternative to invasive vagus nerve stimulation (iVNS). While iVNS paired with tones has been highlighted as a potential effective therapy for the treatment of auditory disorders such as tinnitus, there is still scarce data available confirming the efficacy of non-invasive taVNS. Here, we assessed the effect of taVNS paired with acoustic stimuli on sensory-related electrophysiological responses. METHODS A total of 22 healthy participants were investigated with a taVNS tone-pairing paradigm using a within-subjects design. In a single session pure tones paired with either active taVNS or sham taVNS were repeatedly presented. Novel tones without electrical stimulation served as control condition. Auditory event related potentials and auditory cortex oscillations were compared before and after the tone pairing procedure between stimulation conditions. RESULTS From pre to post pairing, we observed a decrease in the N1 amplitude and in theta power to tones paired with sham taVNS while these electrophysiological measures remained stable for tones paired with active taVNS a pattern mirroring auditory sensory processing of novel, unpaired control tones. CONCLUSION Our results demonstrate the efficacy of a short-term application of non-invasive taVNS to modulate auditory processing in healthy individuals and, thereby, have potential implications for interventions in auditory processing deficits.
Collapse
Affiliation(s)
- Katharina S Rufener
- Department of Child and Adolescent Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-University Magdeburg, Germany.
| | - Christian Wienke
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Germany
| | - Alena Salanje
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Germany
| | - Aiden Haghikia
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-University Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-University Magdeburg, Germany
| |
Collapse
|
12
|
Francisco AA, Foxe JJ, Molholm S. Event-related potential (ERP) markers of 22q11.2 deletion syndrome and associated psychosis. J Neurodev Disord 2023; 15:19. [PMID: 37328766 PMCID: PMC10273715 DOI: 10.1186/s11689-023-09487-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/07/2023] [Indexed: 06/18/2023] Open
Abstract
22q11.2 deletion syndrome (22q11.2DS) is a multisystemic disorder characterized by a wide range of clinical features, ranging from life-threatening to less severe conditions. One-third of individuals with the deletion live with mild to moderate intellectual disability; approximately 60% meet criteria for at least one psychiatric condition.22q11.2DS has become an important model for several medical, developmental, and psychiatric disorders. We have been particularly interested in understanding the risk for psychosis in this population: Approximately 30% of the individuals with the deletion go on to develop schizophrenia. The characterization of cognitive and neural differences between those individuals who develop schizophrenia and those who do not, despite being at genetic risk, holds important promise in what pertains to the clarification of paths to disease and to the development of tools for early identification and intervention.Here, we review our previous event-related potential (ERP) findings as potential markers for 22q11.2DS and the associated risk for psychosis, while discussing others' work. We focus on auditory processing (auditory-evoked potentials, auditory adaptation, and auditory sensory memory), visual processing (visual-evoked potentials and visual adaptation), and inhibition and error monitoring.The findings discussed suggest basic mechanistic and disease process effects on neural processing in 22q11.2DS that are present in both early sensory and later cognitive processing, with possible implications for phenotype. In early sensory processes, both during auditory and visual processing, two mechanisms that impact neural responses in opposite ways seem to coexist-one related to the deletion, which increases brain responses; another linked to psychosis, decreasing neural activity. Later, higher-order cognitive processes may be equally relevant as markers for psychosis. More specifically, we argue that components related to error monitoring may hold particular promise in the study of risk for schizophrenia in the general population.
Collapse
Affiliation(s)
- Ana A Francisco
- Department of Pediatrics, The Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - John J Foxe
- Department of Pediatrics, The Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, The Frederick J. and Marion A, Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monde Institute for Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - Sophie Molholm
- Department of Pediatrics, The Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Neuroscience, The Frederick J. and Marion A, Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monde Institute for Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
13
|
Francis AM, Anderson TJ, Ross L, Bissonnette JN, Napier KR, Shead NW, Fisher DJ. Examining the impact of schizotypal personality traits on event-related potential (ERP) indexes of sensory gating in a healthy population. PERSONALITY NEUROSCIENCE 2023; 6:e4. [PMID: 38107780 PMCID: PMC10725774 DOI: 10.1017/pen.2023.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/04/2023] [Accepted: 02/01/2023] [Indexed: 12/19/2023]
Abstract
The aim of this study was to better understand the relation of schizotypy traits with sensory gating ability in a sample of community-dwelling individuals with high and low schizotypy traits. Sensory gating was assessed through the paired click paradigm and mid-latency evoked responses (i.e., P50, N100, P200), while schizotypy traits were assessed through the SPQ-BR which was used to classify participants into "high" and "low" schizotypy groups. Based on prior work, we hypothesized that those with the highest schizotypy scores would have reduced sensory gating ability. While this study does not show differences between relatively low and high schizotypy groups on sensory gating ability, it does suggest that our participants may have been experiencing deficits in attention allocation, a downstream cognitive processing measure. Scores on the SPQ-BR suggest that our sample was not close to the high end of the schizotypy traits which may help explain why no differences were found. This research shows the importance of including all levels of schizotypy ratings in clinical research as we can gain a clearer view of the impact of schizotypy on the brain and cognitive functioning in those with "high" levels of schizotypy. Additionally, this work highlights the importance of including measures of important factors such as impulsivity and sensation-seeking to better understand what aspects of schizotypy may be driving these sensory gating alterations reported in the literature.
Collapse
Affiliation(s)
| | - T-Jay Anderson
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Canada
- Department of Psychology, Mount Saint Vincent University, Halifax, Canada
| | - Lauren Ross
- Department of Psychology, Mount Saint Vincent University, Halifax, Canada
| | - Jenna N. Bissonnette
- Department of Psychiatry, Dalhousie University, Halifax, Canada
- Department of Psychology, Mount Saint Vincent University, Halifax, Canada
| | - Kaitlyn R. Napier
- Department of Psychology, Mount Saint Vincent University, Halifax, Canada
| | - N. W. Shead
- Department of Psychology, Mount Saint Vincent University, Halifax, Canada
| | - Derek J. Fisher
- Department of Psychiatry, Dalhousie University, Halifax, Canada
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Canada
- Department of Psychology, Mount Saint Vincent University, Halifax, Canada
| |
Collapse
|
14
|
Kruiper C, Sommer IEC, Koster M, Bakker PR, Durston S, Oranje B. Clonidine augmentation in patients with schizophrenia: A double-blind, randomized placebo-controlled trial. Schizophr Res 2023; 255:148-154. [PMID: 36989672 DOI: 10.1016/j.schres.2023.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/23/2023] [Accepted: 03/18/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION Noradrenergic imbalance in the brain of schizophrenia patients may underlie both symptomatology and deficits in basic information processing. The current study investigated whether augmentation with the noradrenergic α2-agonist clonidine might alleviate these symptoms. METHODS In a double-blind placebo-controlled randomized clinical trial, 32 chronic schizophrenia patients were randomly assigned to six-weeks augmentation with either 50 μg clonidine or placebo to their current medication. Effects on symptom severity and both sensory- and sensorimotor gating were assessed at baseline, 3- and 6-weeks. Results were compared with 21 age- and sex-matched healthy controls (HC) who received no treatment. RESULTS Only patients treated with clonidine showed significantly reduced PANSS negative, general and total scores at follow-up compared to baseline. On average, also patients treated with placebo showed minor (non-significant) reductions in these scores, likely indicating a placebo effect. Sensorimotor gating of patients was significantly lower at baseline compared to controls. It increased in patients treated with clonidine over the treatment period, whereas it decreased in both the HC and patients treated with placebo. However, neither treatment nor group effects were found in sensory gating. Clonidine treatment was very well tolerated. CONCLUSION Only patients treated with clonidine showed a significant decrease on two out of the three PANSS subscales, while additionally retained their levels of sensorimotor gating. Given that there are only a few reports on effective treatment for negative symptoms in particular, our current results support augmentation of antipsychotics with clonidine as a promising, low-cost and safe treatment strategy for schizophrenia.
Collapse
Affiliation(s)
- Caitlyn Kruiper
- University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Iris E C Sommer
- Rijksuniversiteit Groningen (RUG), department of Biomedical Sciences of Cells and Systems, Department of Psychiatry, University Medical Center Groningen, Netherlands
| | - Michiel Koster
- University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - P Roberto Bakker
- Arkin, Institute for Mental Health, Amsterdam, the Netherlands; Maastricht University Medical Center, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht, the Netherlands
| | - Sarah Durston
- University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Bob Oranje
- Center for Neuropsychiatric Schizophrenia Research (CNSR), Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital - Mental Health Services CPH, Glostrup, Denmark.
| |
Collapse
|
15
|
Uhler K, Tollin DJ, Gilley PM. EEG Alpha Band Responses Reveal Amplification Benefits in Infants with Hearing Loss. CHILDREN (BASEL, SWITZERLAND) 2023; 10:600. [PMID: 36980158 PMCID: PMC10047398 DOI: 10.3390/children10030600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
Our objective was to examine the effects of hearing aid amplification on auditory detection and discrimination in infants who were hard of hearing (IHH) using a physiological measure of auditory perception. We recorded EEG from 41 sleeping IHH aged 1.04 to 5.62 months while presenting auditory stimuli in a mismatch response paradigm. Responses were recorded during two listening conditions for each participant: aided and unaided. Temporal envelopes of the mismatch response in the EEG alpha band (6-12 Hz) were extracted from the latent, time-frequency transformed data. Aided alpha band responses were greater than unaided responses for the deviant trials but were not different for the standard trials. Responses to the deviant trials were greater than responses to the standard trials for the aided conditions but were not different for the unaided conditions. These results suggest that the alpha band mismatch can be used to examine both detection and discrimination of speech and non-speech sounds in IHH. With further study, the alpha band mismatch could expand and refine our abilities to validate hearing aid fittings at younger ages than current clinical protocols allow.
Collapse
Affiliation(s)
- Kristin Uhler
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz School of Medicine & Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Daniel J. Tollin
- Department of Physiology and Biophysics, University of Colorado Anschutz School of Medicine, Aurora, CO 80045, USA
| | - Phillip M. Gilley
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz School of Medicine & Children’s Hospital Colorado, Aurora, CO 80045, USA
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
16
|
Takeuchi N, Fujita K, Taniguchi T, Kinukawa T, Sugiyama S, Kanemoto K, Nishihara M, Inui K. Mechanisms of Short- and Long-Latency Sensory Suppression: Magnetoencephalography Study. Neuroscience 2023; 514:92-99. [PMID: 36435478 DOI: 10.1016/j.neuroscience.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
Prepulse inhibition (PPI) is sensory suppression whose mechanism (i.e., whether PPI originates from specific inhibitory mechanisms) remains unclear. In this study, we applied the combination of short-latency PPI and long-latency paired pulse suppression in 17 healthy subjects using magnetoencephalography to investigate the mechanisms of sensory suppression. Repeats of a 25-ms pure tone without a blank at 800 Hz and 70 dB were used for a total duration of 1600 ms. To elicit change-related cortical responses, the sound pressure of two consecutive tones in this series at 1300 ms was increased to 80 dB (Test). For the conditioning stimuli, the sound pressure was increased to 73 dB at 1250 ms (Pre 1) and 80 dB at 700 ms (Pre 2). Six stimuli were randomly presented as follows: (1) Test alone, (2) Pre 1 alone, (3) Pre 1 + Test, (4) Pre 2 + Test, (5) Pre 2 + Pre 1, and (6) Pre 2 + Pre 1 + Test. The inhibitory effects of the conditioning stimuli were evaluated using N100m/P200m components. The results showed that both Pre 1 and Pre 2 significantly suppressed the Test response. Moreover, the inhibitory effects of Pre 1 and Pre 2 were additive. However, when both prepulses were present, Pre 2 significantly suppressed the Pre 1 response, suggesting that the Pre 1 response amplitude was not a determining factor for the degree of suppression. These results suggested that the suppression originated from a specific inhibitory circuit independent of the excitatory pathway.
Collapse
Affiliation(s)
- Nobuyuki Takeuchi
- Neuropsychiatric Department, Aichi Medical University, Nagakute 480-1195, Japan; Department of Psychiatry, Okazaki City Hospital, Okazaki 444-8553, Japan.
| | - Kohei Fujita
- Neuropsychiatric Department, Aichi Medical University, Nagakute 480-1195, Japan
| | - Tomoya Taniguchi
- Department of Anesthesiology, Nagoya University, Nagoya 466-8550, Japan
| | - Tomoaki Kinukawa
- Department of Anesthesiology, Nagoya University, Nagoya 466-8550, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry and Psychotherapy, Gifu University, Gifu 501-1193, Japan
| | - Kousuke Kanemoto
- Neuropsychiatric Department, Aichi Medical University, Nagakute 480-1195, Japan
| | - Makoto Nishihara
- Neuropsychiatric Department, Aichi Medical University, Nagakute 480-1195, Japan; Multidisciplinary Pain Center, Aichi Medical University, Nagakute 480-1195, Japan
| | - Koji Inui
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Japan
| |
Collapse
|
17
|
Efficient use of peripheral information for temporal prediction. Biol Psychol 2023; 177:108484. [PMID: 36621665 DOI: 10.1016/j.biopsycho.2023.108484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/26/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
We adapt to the environment by predicting subsequent events. Generally, intervals between predictions and events make it difficult to predict the events accurately. Previous studies reported that using peripheral information is useful for maintaining predictions of subsequent events; however, it remains unclear how this information maintains the accuracy of the prediction. I presented peripheral visual stimuli in a discrimination task and manipulated the number of times these stimuli were presented while participants were waiting for a task-relevant visual stimulus, and compared participants' response times and event-related brain potentials in Experiment 1. In addition, the influence of the difficulty of predicting the task-relevant visual stimulus was examined in Experiment 2. In both experiments, contingent negative variation (CNV) amplitude immediately before the task-relevant visual stimulus appeared was larger under the condition where many peripheral visual stimuli were presented, and the response time was shorter under this condition. In addition, the largest CNV amplitude under this condition was elicited by the third peripheral visual stimulus, followed in order by the first and second peripheral visual stimuli. These results show that we can predict the timing of events that occur with a delay after the prediction by using peripheral information. Moreover, this peripheral information is processed according to the importance of predicting a task-relevant stimulus, and attentional resources are allocated efficiently. These results provide evidence of the predictive function for temporal prediction of using peripheral information and the allocation of cognitive resources.
Collapse
|
18
|
Fiorini L, Di Russo F, Lucia S, Bianco V. Modality predictability modulation confirms the sensorial readiness function of the pre-stimulus activity in sensory brain areas. Cortex 2023; 159:193-204. [PMID: 36640619 DOI: 10.1016/j.cortex.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/03/2022] [Accepted: 12/13/2022] [Indexed: 12/30/2022]
Abstract
The auditory Positivity (aP) and the visual Negativity (vN) are recently discovered modality-specific event-related potential (ERP) components associated with sensory readiness, which seems promising to study anticipatory perception and attention. However, a crucial aspect of these waves remains to be determined since it is still unclear if these components are indeed related to sensory readiness or represent the result of stimulus predictably. Indeed, earlier studies found these components in tasks where stimuli were repeatedly presented uniquely in the same sensory modality. To disentangle this issue, we used an experimental design consisting of three passive tasks: a unimodal auditory condition, a unimodal visual condition, and an intermodal condition in which the visual and auditory stimuli were unpredictably alternated. Then, we compared the amplitudes of the aP and vN in the three conditions and performed correlation analyses between pre-stimulus and post-stimulus components. Crucially, results showed that in the intermodal condition the components still occur, but their amplitudes are decreased compared to unimodal condition, providing evidence that they are only partially dependent on the task and that expectancy might modulate them. This result is in line with the "modality-shift effect" costs phenomenon which can occur also for passive tasks even before stimulus presentation. In addition, the amplitude of the post-stimulus components correlated with pre-stimulus ERP. Collectively, the present study confirms that the aP and the vN reflect sensory readiness processes that "boost" post-stimulus auditory N1 and visual P1 components.
Collapse
Affiliation(s)
- Linda Fiorini
- Dept. of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy; IMT School for Advanced Studies Lucca, Lucca, Italy.
| | - Francesco Di Russo
- Dept. of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Stefania Lucia
- Dept. of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Valentina Bianco
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy
| |
Collapse
|
19
|
Kim N, Grégoire L, Razavi M, Yan N, Ahn CR, Anderson BA. Virtual accident curb risk habituation in workers by restoring sensory responses to real-world warning. iScience 2022; 26:105827. [PMID: 36636343 PMCID: PMC9830218 DOI: 10.1016/j.isci.2022.105827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
In high-risk work environments, workers become habituated to hazards they frequently encounter, subsequently underestimating risk and engaging in unsafe behaviors. This phenomenon has been termed "risk habituation" and identified as a vital root cause of fatalities and injuries at workplaces. Providing an effective intervention that curbs workers' risk habituation is critical in preventing occupational injuries and fatalities. However, there exists no empirically supported intervention for curbing risk habituation. To this end, here we investigated how experiencing an accident in a virtual reality (VR) environment affects workers' risk habituation toward repeatedly exposed workplace hazards. We examined an underlying mechanism of risk habituation at the sensory level and evaluated the effect of the accident intervention through electroencephalography (EEG). The results of pre- and posttreatment analyses indicate experiencing the virtual accident effectively curbs risk habituation at both the behavioral and sensory level. The findings open new vistas for occupational safety training.
Collapse
Affiliation(s)
- Namgyun Kim
- Department of Civil and Environmental Engineering and Engineering Mechanics, University of Dayton, Dayton, OH, USA
| | - Laurent Grégoire
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Moein Razavi
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX, USA
| | - Niya Yan
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Changbum R. Ahn
- Department of Architecture and Architectural Engineering, Seoul National University, Seoul, South Korea
- Corresponding author
| | - Brian A. Anderson
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
- Corresponding author
| |
Collapse
|
20
|
Hajizadeh A, Matysiak A, Wolfrum M, May PJC, König R. Auditory cortex modelled as a dynamical network of oscillators: understanding event-related fields and their adaptation. BIOLOGICAL CYBERNETICS 2022; 116:475-499. [PMID: 35718809 PMCID: PMC9287241 DOI: 10.1007/s00422-022-00936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Adaptation, the reduction of neuronal responses by repetitive stimulation, is a ubiquitous feature of auditory cortex (AC). It is not clear what causes adaptation, but short-term synaptic depression (STSD) is a potential candidate for the underlying mechanism. In such a case, adaptation can be directly linked with the way AC produces context-sensitive responses such as mismatch negativity and stimulus-specific adaptation observed on the single-unit level. We examined this hypothesis via a computational model based on AC anatomy, which includes serially connected core, belt, and parabelt areas. The model replicates the event-related field (ERF) of the magnetoencephalogram as well as ERF adaptation. The model dynamics are described by excitatory and inhibitory state variables of cell populations, with the excitatory connections modulated by STSD. We analysed the system dynamics by linearising the firing rates and solving the STSD equation using time-scale separation. This allows for characterisation of AC dynamics as a superposition of damped harmonic oscillators, so-called normal modes. We show that repetition suppression of the N1m is due to a mixture of causes, with stimulus repetition modifying both the amplitudes and the frequencies of the normal modes. In this view, adaptation results from a complete reorganisation of AC dynamics rather than a reduction of activity in discrete sources. Further, both the network structure and the balance between excitation and inhibition contribute significantly to the rate with which AC recovers from adaptation. This lifetime of adaptation is longer in the belt and parabelt than in the core area, despite the time constants of STSD being spatially homogeneous. Finally, we critically evaluate the use of a single exponential function to describe recovery from adaptation.
Collapse
Affiliation(s)
- Aida Hajizadeh
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118 Magdeburg, Germany
| | - Artur Matysiak
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118 Magdeburg, Germany
| | - Matthias Wolfrum
- Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstraße 39, 10117 Berlin, Germany
| | - Patrick J. C. May
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118 Magdeburg, Germany
- Department of Psychology, Lancaster University, Lancaster, LA1 4YF UK
| | - Reinhard König
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118 Magdeburg, Germany
| |
Collapse
|
21
|
Sugimoto F, Kimura M, Takeda Y. Investigation of the optimal time interval between task-irrelevant auditory probes for evaluating mental workload in the shortest possible time. Int J Psychophysiol 2022; 177:103-110. [PMID: 35513137 DOI: 10.1016/j.ijpsycho.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 10/18/2022]
Abstract
Event-related brain potentials (ERPs) elicited by auditory stimuli unrelated to a current visual-cognitive task (i.e., task-irrelevant auditory probes) can be used to evaluate the level of mental workload. Towards the evaluation of workload in the shortest possible time, the present study with a multiple-stimulus paradigm (Takeda and Kimura, 2014, Int. J. Psychophysiol.) examined whether manipulating time intervals between probes could improve the temporal resolution in evaluating workload. Probes were presented in four interval conditions as a combination of two mean interval lengths [long (600 ms) vs. short (300 ms)] and two interval variabilities [variable (five levels) vs. fixed], while participants were performing a driving game at slow and fast speeds (i.e., imposing low and high workload, respectively). For each interval condition, the minimum data length required to obtain a significant difference in the amplitude of ERPs (i.e., auditory N1 and P2) between the slow and fast driving tasks was estimated. The N1 difference was significant in all four interval conditions but the required minimum data lengths to observe this difference did not greatly differ across the interval conditions (about 60-90 s). The P2 difference was significant only in the long-variable condition and the required minimum data length was about 120 s. These results suggest that, at least with a multiple-stimulus paradigm, manipulations of time intervals between probes did not greatly improve the temporal resolution in evaluating mental workload; at present, long-variable intervals would be optimal for evaluating mental workload in detail.
Collapse
Affiliation(s)
- Fumie Sugimoto
- National Institute of Advanced Industrial Science and Technology (AIST), Japan.
| | - Motohiro Kimura
- National Institute of Advanced Industrial Science and Technology (AIST), Japan
| | - Yuji Takeda
- National Institute of Advanced Industrial Science and Technology (AIST), Japan
| |
Collapse
|
22
|
Francisco AA, Foxe JJ, Horsthuis DJ, Molholm S. Early visual processing and adaptation as markers of disease, not vulnerability: EEG evidence from 22q11.2 deletion syndrome, a population at high risk for schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:28. [PMID: 35314711 PMCID: PMC8938446 DOI: 10.1038/s41537-022-00240-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/21/2022] [Indexed: 01/17/2023]
Abstract
We investigated visual processing and adaptation in 22q11.2 deletion syndrome (22q11.2DS), a condition characterized by an increased risk for schizophrenia. Visual processing differences have been described in schizophrenia but remain understudied early in the disease course. Electrophysiology was recorded during a visual adaptation task with different interstimulus intervals to investigate visual processing and adaptation in 22q11.2DS (with (22q+) and without (22q−) psychotic symptoms), compared to control and idiopathic schizophrenia groups. Analyses focused on early windows of visual processing. While increased amplitudes were observed in 22q11.2DS in an earlier time window (90–140 ms), decreased responses were seen later (165–205 ms) in schizophrenia and 22q+. 22q11.2DS, and particularly 22q−, presented increased adaptation effects. We argue that while amplitude and adaptation in the earlier time window may reflect specific neurogenetic aspects associated with a deletion in chromosome 22, amplitude in the later window may be a marker of the presence of psychosis and/or of its chronicity/severity.
Collapse
Affiliation(s)
- Ana A Francisco
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA.,The Cognitive Neurophysiology Laboratory, Department of Neuroscience, The Ernest J. Del Monde Institute for Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Douwe J Horsthuis
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA. .,The Cognitive Neurophysiology Laboratory, Department of Neuroscience, The Ernest J. Del Monde Institute for Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
23
|
Heugel N, Beardsley SA, Liebenthal E. EEG and fMRI coupling and decoupling based on joint independent component analysis (jICA). J Neurosci Methods 2022; 369:109477. [PMID: 34998799 PMCID: PMC8879823 DOI: 10.1016/j.jneumeth.2022.109477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Meaningful integration of functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) requires knowing whether these measurements reflect the activity of the same neural sources, i.e., estimating the degree of coupling and decoupling between the neuroimaging modalities. NEW METHOD This paper proposes a method to quantify the coupling and decoupling of fMRI and EEG signals based on the mixing matrix produced by joint independent component analysis (jICA). The method is termed fMRI/EEG-jICA. RESULTS fMRI and EEG acquired during a syllable detection task with variable syllable presentation rates (0.25-3 Hz) were separated with jICA into two spatiotemporally distinct components, a primary component that increased nonlinearly in amplitude with syllable presentation rate, putatively reflecting an obligatory auditory response, and a secondary component that declined nonlinearly with syllable presentation rate, putatively reflecting an auditory attention orienting response. The two EEG subcomponents were of similar amplitude, but the secondary fMRI subcomponent was ten folds smaller than the primary one. COMPARISON TO EXISTING METHOD FMRI multiple regression analysis yielded a map more consistent with the primary than secondary fMRI subcomponent of jICA, as determined by a greater area under the curve (0.5 versus 0.38) in a sensitivity and specificity analysis of spatial overlap. CONCLUSION fMRI/EEG-jICA revealed spatiotemporally distinct brain networks with greater sensitivity than fMRI multiple regression analysis, demonstrating how this method can be used for leveraging EEG signals to inform the detection and functional characterization of fMRI signals. fMRI/EEG-jICA may be useful for studying neurovascular coupling at a macro-level, e.g., in neurovascular disorders.
Collapse
Affiliation(s)
- Nicholas Heugel
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI
| | - Scott A Beardsley
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI,Clinical Translational Science Institute, Medical College of Wisconsin, Milwaukee WI
| | - Einat Liebenthal
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA; McLean Hospital, Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
No evidence for auditory N1 dishabituation in healthy adults after presentation of rare novel distractors. Int J Psychophysiol 2022; 174:1-8. [DOI: 10.1016/j.ijpsycho.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/22/2022]
|
25
|
Isenstein EL, Grosman HE, Guillory SB, Zhang Y, Barkley S, McLaughlin CS, Levy T, Halpern D, Siper PM, Buxbaum JD, Kolevzon A, Foss-Feig JH. Neural Markers of Auditory Response and Habituation in Phelan-McDermid Syndrome. Front Neurosci 2022; 16:815933. [PMID: 35592263 PMCID: PMC9110667 DOI: 10.3389/fnins.2022.815933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Phelan-McDermid Syndrome (PMS) is a rare genetic disorder caused by deletion or sequence variation in the SHANK3 gene at terminal chromosome 22 that confers high likelihood of comorbid autism spectrum disorder (ASD). Whereas individuals with idiopathic ASD (iASD) can demonstrate diverse patterns of sensory differences, PMS is mainly characterized by sensory hyporesponsiveness. This study used electrophysiology and a passive auditory habituation paradigm to test for neural markers of hyporesponsiveness. EEG was recorded from 15 individuals with PMS, 15 with iASD, and 16 with neurotypical development (NT) while a series of four consecutive 1,000 Hz tones was repeatedly presented. We found intact N1, P2, and N2 event-related potentials (ERPs) and habituation to simple auditory stimuli, both in individuals with iASD and in those with PMS. Both iASD and PMS groups showed robust responses to the initial tone and decaying responses to each subsequent tone, at levels comparable to the NT control group. However, in PMS greater initial N1 amplitude and habituation were associated with auditory hypersensitivity, and P2 habituation correlated with ASD symptomatology. Additionally, further classification of the PMS cohort into genetic groupings revealed dissociation of initial P2 amplitude and habituation of N1 based on whether the deletions included additional genes beyond solely SHANK3 and those not thought to contribute to phenotype. These results provide preliminary insight into early auditory processing in PMS and suggest that while neural response and habituation is generally preserved in PMS, genotypic and phenotypic characteristics may drive some variability. These initial findings provide early evidence that the robust pattern of behavioral hyporesponsiveness in PMS may be due, at least in audition, to higher order factors.
Collapse
Affiliation(s)
- Emily L Isenstein
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, United States
| | - Hannah E Grosman
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, United States
| | - Sylvia B Guillory
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yian Zhang
- Center for Neural Science, New York University, New York, NY, United States
| | - Sarah Barkley
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Christopher S McLaughlin
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tess Levy
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Danielle Halpern
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Paige M Siper
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joseph D Buxbaum
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alexander Kolevzon
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jennifer H Foss-Feig
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
26
|
Takeuchi N, Fujita K, Taniguchi T, Kinukawa T, Sugiyama S, Kanemoto K, Nishihara M, Inui K. Mechanisms of Long-Latency Paired Pulse Suppression: MEG Study. Brain Topogr 2021; 35:241-250. [PMID: 34748108 DOI: 10.1007/s10548-021-00878-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022]
Abstract
Paired pulse suppression is an electrophysiological method used to evaluate sensory suppression and often applied to patients with psychiatric disorders. However, it remains unclear whether the suppression comes from specific inhibitory mechanisms, refractoriness, or fatigue. In the present study, to investigate mechanisms of suppression induced by an auditory paired pulse paradigm in 19 healthy subjects, magnetoencephalography was employed. The control stimulus was a train of 25-ms pure tones of 65 dB SPL for 2500 ms. In order to evoke a test response, the sound pressure of two consecutive tones at 2200 ms in the control sound was increased to 80 dB (Test stimulus). Similar sound pressure changes were also inserted at 1000 (CS2) and 1600 (CS1) ms as conditioning stimuli. Four stimulus conditions were used; (1) Test alone, (2) Test + CS1, (3) Test + CS1 + CS2, and (4) Test + CS2, with the four sound stimuli randomly presented and cortical responses averaged at least 100 times for each condition. The baseline-to-peak and peak-to-peak amplitudes of the P50m, N100m, and P200m components of the test response were compared among the four conditions. In addition, the response to CS1 was compared between conditions (2) and (3). The results showed significant test response suppression by CS1. While the response to CS1 was significantly suppressed when CS2 was present, it did not affect suppression of the test response by CS1. It was thus suggested that the amplitude of the response to a conditioning stimulus is not a factor to determine the inhibitory effects of the test response, indicating that suppression is due to an external influence on the excitatory pathway.
Collapse
Affiliation(s)
- Nobuyuki Takeuchi
- Neuropsychiatric Department, Aichi Medical University, Nagakute, 480-1195, Japan. .,Department of Psychiatry, Okazaki City Hospital, Okazaki, 444-8553, Japan.
| | - Kohei Fujita
- Neuropsychiatric Department, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Tomoya Taniguchi
- Department of Anesthesiology, Nagoya University, Nagoya, 466-8550, Japan
| | - Tomoaki Kinukawa
- Department of Anesthesiology, Nagoya University, Nagoya, 466-8550, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry and Psychotherapy, Gifu University, Gifu, 501-1193, Japan
| | - Kousuke Kanemoto
- Neuropsychiatric Department, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Makoto Nishihara
- Neuropsychiatric Department, Aichi Medical University, Nagakute, 480-1195, Japan.,Multidisciplinary Pain Center, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Koji Inui
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, 480-0392, Japan
| |
Collapse
|
27
|
Jack BN, Chilver MR, Vickery RM, Birznieks I, Krstanoska-Blazeska K, Whitford TJ, Griffiths O. Movement Planning Determines Sensory Suppression: An Event-related Potential Study. J Cogn Neurosci 2021; 33:2427-2439. [PMID: 34424986 DOI: 10.1162/jocn_a_01747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Sensory suppression refers to the phenomenon that sensory input generated by our own actions, such as moving a finger to press a button to hear a tone, elicits smaller neural responses than sensory input generated by external agents. This observation is usually explained via the internal forward model in which an efference copy of the motor command is used to compute a corollary discharge, which acts to suppress sensory input. However, because moving a finger to press a button is accompanied by neural processes involved in preparing and performing the action, it is unclear whether sensory suppression is the result of movement planning, movement execution, or both. To investigate this, in two experiments, we compared ERPs to self-generated tones that were produced by voluntary, semivoluntary, or involuntary button-presses, with externally generated tones that were produced by a computer. In Experiment 1, the semivoluntary and involuntary button-presses were initiated by the participant or experimenter, respectively, by electrically stimulating the median nerve in the participant's forearm, and in Experiment 2, by applying manual force to the participant's finger. We found that tones produced by voluntary button-presses elicited a smaller N1 component of the ERP than externally generated tones. This is known as N1-suppression. However, tones produced by semivoluntary and involuntary button-presses did not yield significant N1-suppression. We also found that the magnitude of N1-suppression linearly decreased across the voluntary, semivoluntary, and involuntary conditions. These results suggest that movement planning is a necessary condition for producing sensory suppression. We conclude that the most parsimonious account of sensory suppression is the internal forward model.
Collapse
Affiliation(s)
- Bradley N Jack
- University of New South Wales Sydney, Australia.,Australian National University, Canberra
| | - Miranda R Chilver
- University of New South Wales Sydney, Australia.,Neuroscience Research Australia, Sydney
| | - Richard M Vickery
- University of New South Wales Sydney, Australia.,Neuroscience Research Australia, Sydney
| | - Ingvars Birznieks
- University of New South Wales Sydney, Australia.,Neuroscience Research Australia, Sydney
| | | | | | - Oren Griffiths
- University of New South Wales Sydney, Australia.,Flinders University, Adelaide, Australia
| |
Collapse
|
28
|
Zeng Y, Fiorentino R, Zhang J. Electrophysiological Signatures of Perceiving Alternated Tone in Mandarin Chinese: Mismatch Negativity to Underlying Tone Conflict. Front Psychol 2021; 12:735593. [PMID: 34646215 PMCID: PMC8504678 DOI: 10.3389/fpsyg.2021.735593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
Although phonological alternation is prevalent in languages, the process of perceiving phonologically alternated sounds is poorly understood, especially at the neurolinguistic level. We examined the process of perceiving Mandarin 3rd tone sandhi (T3 + T3 → T2 + T3) with a mismatch negativity (MMN) experiment. Our design has two independent variables (whether the deviant undergoes tone sandhi; whether the standard and the deviant have matched underlying tone). These two independent variables modulated ERP responses in both the first and the second syllables. Notably, despite the apparent segmental conflict between the standard and the deviant in all conditions, MMN is only observed when neither the standard nor the deviant undergoes tone sandhi, suggesting that discovering the underlying representation of an alternated sound could interfere with the generation of MMN. A tentative model with three hypothesized underlying processing mechanisms is proposed to explain the observed latency and amplitude differences across conditions. The results are also discussed in light of the potential electrophysiological signatures involved in the process of perceiving alternated sounds.
Collapse
Affiliation(s)
- Yuyu Zeng
- Phonetics and Psycholinguistics Laboratory, Department of Linguistics, University of Kansas, Lawrence, KS, United States.,Neurolinguistics and Language Processing Laboratory, Department of Linguistics, University of Kansas, Lawrence, KS, United States
| | - Robert Fiorentino
- Neurolinguistics and Language Processing Laboratory, Department of Linguistics, University of Kansas, Lawrence, KS, United States
| | - Jie Zhang
- Phonetics and Psycholinguistics Laboratory, Department of Linguistics, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
29
|
Hanenberg C, Schlüter MC, Getzmann S, Lewald J. Short-Term Audiovisual Spatial Training Enhances Electrophysiological Correlates of Auditory Selective Spatial Attention. Front Neurosci 2021; 15:645702. [PMID: 34276281 PMCID: PMC8280319 DOI: 10.3389/fnins.2021.645702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Audiovisual cross-modal training has been proposed as a tool to improve human spatial hearing. Here, we investigated training-induced modulations of event-related potential (ERP) components that have been associated with processes of auditory selective spatial attention when a speaker of interest has to be localized in a multiple speaker ("cocktail-party") scenario. Forty-five healthy participants were tested, including younger (19-29 years; n = 21) and older (66-76 years; n = 24) age groups. Three conditions of short-term training (duration 15 min) were compared, requiring localization of non-speech targets under "cocktail-party" conditions with either (1) synchronous presentation of co-localized auditory-target and visual stimuli (audiovisual-congruency training) or (2) immediate visual feedback on correct or incorrect localization responses (visual-feedback training), or (3) presentation of spatially incongruent auditory-target and visual stimuli presented at random positions with synchronous onset (control condition). Prior to and after training, participants were tested in an auditory spatial attention task (15 min), requiring localization of a predefined spoken word out of three distractor words, which were presented with synchronous stimulus onset from different positions. Peaks of ERP components were analyzed with a specific focus on the N2, which is known to be a correlate of auditory selective spatial attention. N2 amplitudes were significantly larger after audiovisual-congruency training compared with the remaining training conditions for younger, but not older, participants. Also, at the time of the N2, distributed source analysis revealed an enhancement of neural activity induced by audiovisual-congruency training in dorsolateral prefrontal cortex (Brodmann area 9) for the younger group. These findings suggest that cross-modal processes induced by audiovisual-congruency training under "cocktail-party" conditions at a short time scale resulted in an enhancement of correlates of auditory selective spatial attention.
Collapse
Affiliation(s)
| | | | - Stephan Getzmann
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Jörg Lewald
- Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
30
|
Wang A, Zhou H, Yu W, Zhang F, Sang H, Tang X, Zhang T, Zhang M. Repetition Suppression in Visual and Auditory Modalities Affects the Sound-Induced Flash Illusion. Perception 2021; 50:489-507. [PMID: 34034565 DOI: 10.1177/03010066211018614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sound-induced flash illusion (SiFI) refers to the illusion that the number of visual flashes is equal to the number of auditory sounds when the visual flashes are accompanied by an unequal number of auditory sounds presented within 100 ms. The effect of repetition suppression (RS), an adaptive effect caused by stimulus repetition, upon the SiFI has not been investigated. Based on the classic SiFI paradigm, the present study investigated whether RS would affect the SiFI differently by adding preceding stimuli in visual and auditory modalities prior to the appearance of audiovisual stimuli. The results showed the auditory RS effect on the SiFI varied with the number of preceding auditory stimuli. The hit rate was higher with two preceding auditory stimuli than one preceding auditory stimulus in fission illusion, but it did not affect the size of the fusion illusion. However, the visual RS had no effect on the size of the fission and fusion illusions. The present study suggested that RS could affect the SiFI, indicating that the RS effect in different modalities would differentially affect the magnitude of the SiFI. In the process of multisensory integration, the visual and auditory modalities had asymmetrical RS effects.
Collapse
Affiliation(s)
| | | | - Wei Yu
- Changchun University of Chinese Medicine, China
| | | | | | | | | | | |
Collapse
|
31
|
Francisco AA, Berruti AS, Kaskel FJ, Foxe JJ, Molholm S. Assessing the integrity of auditory processing and sensory memory in adults with cystinosis (CTNS gene mutations). Orphanet J Rare Dis 2021; 16:177. [PMID: 33849633 PMCID: PMC8045394 DOI: 10.1186/s13023-021-01818-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Cystinosis, a rare lysosomal storage disease, is characterized by cystine crystallization and accumulation within tissues and organs, including the kidneys and brain. Its impact on neural function appears mild relative to its effects on other organs, but therapeutic advances have led to substantially increased life expectancy, necessitating deeper understanding of its impact on neurocognitive function in adulthood. We previously demonstrated intact auditory sensory processing, accompanied by mild sensory memory difficulties, in children and adolescents with cystinosis. Methods We investigated whether further progressive decrements in these processes would be observed in adults with cystinosis, comparing high-density auditory-evoked potential (AEP) recordings from adults with cystinosis (N = 15; ages: 19–38 years) to those of age-matched controls (N = 17). We employed a duration oddball paradigm with different stimulation rates, in which participants passively listened to regularly occurring standard tones interspersed with infrequently occurring deviant tones. Analyses focused on AEP components reflecting auditory sensory-perceptual processing (N1 and P2), sensory memory (mismatch negativity, MMN), and attentional orienting (P3a). Results Overall, adults with cystinosis produced highly similar sensory-perceptual AEP responses to those observed in controls suggesting intact early auditory cortical processing. However, significantly increased P2 and P3a amplitudes and reduced MMN at slower stimulation rates were observed, suggesting mild-to-moderate changes in auditory sensory memory and attentional processing. While cognitive testing revealed lower scores on verbal IQ and perceptual reasoning in cystinosis, these did not correlate with the AEP measures. Conclusions These neurophysiological data point to the emergence of subtle auditory processing deficits in early adulthood in cystinosis, warranting further investigation of memory and attentional processes in this population, and of their consequences for perceptual and cognitive function.
Collapse
Affiliation(s)
- Ana A Francisco
- Department of Pediatrics, Albert Einstein College of Medicine, Van Etten Building, Suite 1C, 1225 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - Alaina S Berruti
- Department of Pediatrics, Albert Einstein College of Medicine, Van Etten Building, Suite 1C, 1225 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Frederick J Kaskel
- Department of Pediatrics, Albert Einstein College of Medicine, Van Etten Building, Suite 1C, 1225 Morris Park Avenue, Bronx, NY, 10461, USA
| | - John J Foxe
- Department of Pediatrics, Albert Einstein College of Medicine, Van Etten Building, Suite 1C, 1225 Morris Park Avenue, Bronx, NY, 10461, USA.,Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Neuroscience, The Ernest J. Del Monde Institute for Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Sophie Molholm
- Department of Pediatrics, Albert Einstein College of Medicine, Van Etten Building, Suite 1C, 1225 Morris Park Avenue, Bronx, NY, 10461, USA. .,Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Neuroscience, The Ernest J. Del Monde Institute for Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
32
|
Krylova M, Ristow I, Marr V, Borchardt V, Li M, Witzel J, Drumkova K, Harris JA, Zacharias N, Schiltz K, Amelung T, Beier KM, Kruger THC, Ponseti J, Schiffer B, Walter H, Kärgel C, Walter M. MEG reveals preference specific increases of sexual-image-evoked responses in paedophilic sexual offenders and healthy controls. World J Biol Psychiatry 2021; 22:257-270. [PMID: 32623929 DOI: 10.1080/15622975.2020.1789216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Paedophilic disorder is characterised by sexual attraction towards children. Classification of a counterpart as sexually attractive likely occurs rapidly, and involves both conscious and unconscious attentional and cognitive processes. Magnetoencephalography (MEG) is an imaging method especially well-suited to examine visual and attentional processes triggered by sexual images within the range of milliseconds. METHODS We investigated brain responses to sexual images depicting adults (frequent) and children (infrequent stimulus) in seventeen paedophilic patients with a history of child sexual offending (P + CSO) and twenty healthy controls (HC) during a passive visual oddball paradigm. Event-related fields (ERF) were measured to extract the magnetic visual mismatch negativity (vMMNm), and how it relates to the processing of different classes of sexual stimuli. RESULTS P + CSO exhibited significantly longer vMMNm latencies (100-180 ms post-stimulus) than HC. Moreover, P + CSO showed widespread increased amplitudes in response to child images starting from P3a and P3b components and lasting up to 400 ms post-stimulus presentation localised in frontal and temporal brain regions. CONCLUSIONS This study uncovers the first MEG differences in automatic change detection between P + CSO and HC during the presentation of subliminal sexual images of adults and children, contributing towards a better understanding of the neurobiological processes of P + CSO.
Collapse
Affiliation(s)
- Marina Krylova
- Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany.,Department of Psychiatry, Eberhard Karls University, Tübingen, Germany
| | - Inka Ristow
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.,Leibniz Institute for Neurobiology, Department for Behavioral Neurology, Magdeburg, Germany.,Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa Marr
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.,Leibniz Institute for Neurobiology, Department for Behavioral Neurology, Magdeburg, Germany
| | - Viola Borchardt
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.,Leibniz Institute for Neurobiology, Department for Behavioral Neurology, Magdeburg, Germany
| | - Meng Li
- Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany
| | - Joachim Witzel
- Forensic Psychiatric State Hospital of Saxony-Anhalt, Stendal-Uchtspringe, Germany
| | - Krasimira Drumkova
- Forensic Psychiatric State Hospital of Saxony-Anhalt, Stendal-Uchtspringe, Germany
| | - Joseph A Harris
- Department of Psychology, Bradley University, Peoria, IL, USA
| | - Norman Zacharias
- Clinical Neuroscience Research Group, Experimental and Clinical Research Center (ECRC), Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kolja Schiltz
- Section of Forensic Psychiatry, Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany.,Department of Psychiatry and Psychotherapy, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| | - Till Amelung
- Institute of Sexology and Sexual Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Klaus M Beier
- Institute of Sexology and Sexual Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tillmann H C Kruger
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Section of Clinical Psychology and Sexual Medicine, Hannover Medical School, Hannover, Germany
| | - Jorge Ponseti
- Institute of Sexual Medicine and Forensic Psychiatry and Psychotherapy, Christian-Albrechts-University of Kiel, Medical School, Kiel, Germany
| | - Boris Schiffer
- Division of Forensic Psychiatry, LWL-University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Henrik Walter
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Christian Kärgel
- Division of Forensic Psychiatry, LWL-University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany.,Department of Psychiatry, Eberhard Karls University, Tübingen, Germany.,Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.,Leibniz Institute for Neurobiology, Department for Behavioral Neurology, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany.,Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
33
|
Kamal F, Morrison C, Campbell K, Taler V. Event-Related Potential Measures of the Passive Processing of Rapidly and Slowly Presented Auditory Stimuli in MCI. Front Aging Neurosci 2021; 13:659618. [PMID: 33867972 PMCID: PMC8046914 DOI: 10.3389/fnagi.2021.659618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/12/2021] [Indexed: 11/13/2022] Open
Abstract
Much research effort is currently devoted to the development of a simple, low-cost method to determine early signs of Alzheimer’s disease (AD) pathology. The present study employs a simple paradigm in which event-related potentials (ERPs) were recorded to a single auditory stimulus that was presented rapidly or very slowly while the participant was engaged in a visual task. A multi-channel EEG was recorded in 20 healthy older adults and 20 people with mild cognitive impairment (MCI). In two different conditions, a single 80 dB sound pressure level (SPL) auditory stimulus was presented every 1.5 s (fast condition) or every 12.0 s (slow condition). Participants were instructed to watch a silent video and ignore the auditory stimuli. Auditory processing thus occurred passively. When the auditory stimuli were presented rapidly (every 1.5 s), N1 and P2 amplitudes did not differ between the two groups. When the stimuli were presented very slowly, the amplitude of N1 and P2 increased in both groups and their latencies were prolonged. The amplitude of N1 did not significantly differ between the two groups. However, the subsequent positivity was reduced in people with MCI compared to healthy older adults. This late positivity in the slow condition may reflect a delayed P2 or a summation of a composite P2 + P3a. In people with MCI, the priority of processing may not be switched from the visual task to the potentially much more relevant auditory input. ERPs offer promise as a means to identify the pathology underlying cognitive impairment associated with MCI.
Collapse
Affiliation(s)
- Farooq Kamal
- School of Psychology, University of Ottawa, Ontario, ON, Canada.,Bruyère Research Institute, Ottawa, ON, Canada
| | - Cassandra Morrison
- School of Psychology, University of Ottawa, Ontario, ON, Canada.,Bruyère Research Institute, Ottawa, ON, Canada
| | | | - Vanessa Taler
- School of Psychology, University of Ottawa, Ontario, ON, Canada.,Bruyère Research Institute, Ottawa, ON, Canada
| |
Collapse
|
34
|
Kamal F, Morrison C, Campbell K, Taler V. Event-related potential evidence that very slowly presented auditory stimuli are passively processed differently in younger and older adults. Neurobiol Aging 2021; 103:12-21. [PMID: 33774574 DOI: 10.1016/j.neurobiolaging.2021.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/31/2022]
Abstract
The occurrence of a very infrequent and unattended auditory stimulus is highly salient and may result in an interruption of the frontoparietal network controlling processing priorities. Research has suggested that older adults may be unable to compute the level of salience of unattended stimulus inputs. A multi-channel EEG was recorded in 20 younger adults and 20 older adults. In different conditions, a single 80 dB SPL auditory stimulus was presented relatively rapidly, every 1.5 s or very slowly, every 12.0 s. Participants ignored the auditory stimuli while watching a silent video. When the stimuli were presented rapidly, group differences were not observed for the amplitudes of N1 and P2, which peaked at 100 and 180 ms respectively. When stimuli were presented very slowly, their amplitudes were much enhanced for younger adults, but did not increase for older adults. The failure to observe a large increase in the amplitude of N1 and P2 in older adults for very slowly presented auditory stimuli provides strong evidence of a dysfunction of the salience network in this group.
Collapse
Affiliation(s)
- Farooq Kamal
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada; Bruyère Research Institute, Ottawa, Ontario, Canada
| | - Cassandra Morrison
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada; Bruyère Research Institute, Ottawa, Ontario, Canada
| | - Kenneth Campbell
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada; Bruyère Research Institute, Ottawa, Ontario, Canada
| | - Vanessa Taler
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada; Bruyère Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
35
|
Volosin M, Czigler I, Horváth J. Pre-attentive auditory change detection for rapid auditory transient combinations: Insight from age-related processing changes. Biol Psychol 2021; 159:108024. [PMID: 33460782 DOI: 10.1016/j.biopsycho.2021.108024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/02/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
The N1 event-related potential (ERP) enhancement to auditory transients preceded briefly by another transient has been interpreted as a reflection of latent inhibition, or alternatively, as a superimposing mismatch negativity (MMN) to rare transient event combinations. In a previous study (Volosin, Gaál, & Horváth, 2017a), when rare glides preceded frequent gaps by 150 ms in continuous tones, gap-related N1 was enhanced in younger adults while P2 was attenuated both in younger and older adults, which could be parsimoniously explained by MMN overlap which was delayed with aging. The present study replicated and extended these results with a condition in which the roles of the two event types were reversed. Transients separated by 150 ms elicited delayed MMN in older adults, supporting the MMN interpretation over the latent inhibition account. Furthermore, the divergence of N1 and MMN elicitation patterns demonstrated the independence of N1 and MMN.
Collapse
Affiliation(s)
- Márta Volosin
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, H-1117, Budapest, Magyar Tudósok körútja 2, Hungary; Institute of Psychology, University of Szeged, H-6722, Szeged, Egyetem utca 2, Hungary.
| | - István Czigler
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, H-1117, Budapest, Magyar Tudósok körútja 2, Hungary.
| | - János Horváth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, H-1117, Budapest, Magyar Tudósok körútja 2, Hungary; Institute of Psychology, Károli Gáspár University of the Reformed Church in Hungary, H-1037, Budapest, Bécsi út 324, Hungary.
| |
Collapse
|
36
|
Mayer K, Krylova M, Alizadeh S, Jamalabadi H, van der Meer J, Vester JC, Naschold B, Schultz M, Walter M. Nx4 Reduced Susceptibility to Distraction in an Attention Modulation Task. Front Psychiatry 2021; 12:746215. [PMID: 34912250 PMCID: PMC8667722 DOI: 10.3389/fpsyt.2021.746215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Stress adversely affects the attentional focus, the active concentration on stimuli, and increases susceptibility to distraction. To experimentally explore the susceptibility to distraction, the Attention Modulation by Salience Task (AMST) is a validated paradigm measuring reaction times (RT) for processing auditory information while presenting task-irrelevant visual distractors of high or low salience. We extended the AMST by an emotional dimension of distractors and an EEG-based evaluation. We then investigated the effect of the stress-relieving medication Neurexan (Nx4) on the participants' susceptibility to distraction. Methods: Data from a randomized, placebo-controlled, crossover trial (NEURIM study; ClinicalTrials.gov: NCT02602275) were exploratively reanalyzed post-hoc. In this trial, 39 participants received a single dose of placebo or Nx4 immediately before the AMST. Participants had to discriminate two different tone modulations (ascending or descending) while simultaneously perceiving task-irrelevant pictures of different salience (high or low) or valence (negative or positive) as distractors. Using EEG recordings, RT and the event-related potential (ERP) components N1, N2, and N3 were analyzed as markers for susceptibility to distraction. Results: In the placebo condition, we could replicate the previously reported task effects of salient distractors with longer RT for high salient distractors on the behavioral level. On the electrophysiological level, we observed significantly increased amplitudes of the N2 and N3 ERP components for positive emotional pictures. In terms of drug effect, we found evidence that Nx4 reduced distractibility by emotional distractors. The effect was shown by significantly reduced amplitudes of N2 and N3 ERP components and reduced RT for the positive valence domain under Nx4 compared to placebo. The Nx4 effects on RT and ERP components also showed a significant correlation. Conclusion: Emotional distractors in addition to the previously used salience distractors and the EEG based evaluation of ERPs valuably complement the AMST. Salient distractors were affecting attentional processes earlier, while valent distractors show modulatory effects later. Our results suggest that Nx4 has beneficial effects on attention by inhibiting the effect of task-irrelevant information and reducing susceptibility to emotionally distracting stimuli. The observation of a beneficial impact of Nx4 on attention regulation is supportive of Nx4's claim as a stress-relieving medication.
Collapse
Affiliation(s)
- Kathrin Mayer
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Marina Krylova
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Sarah Alizadeh
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Hamidreza Jamalabadi
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Johan van der Meer
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| | | | | | - Myron Schultz
- Biologische Heilmittel Heel GmbH, Baden-Baden, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| |
Collapse
|
37
|
Rosburg T, Mager R. The reduced auditory evoked potential component N1 after repeated stimulation: Refractoriness hypothesis vs. habituation account. Hear Res 2020; 400:108140. [PMID: 33316574 DOI: 10.1016/j.heares.2020.108140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/02/2020] [Accepted: 11/30/2020] [Indexed: 01/13/2023]
Abstract
Similar to other event-related potential (ERP) components, the amplitude of the auditory evoked N1 depends on the interstimulus interval (ISI). At ISIs > 0.4 s, the amplitude of the N1 increases with longer ISIs, until it saturates at ISIs around 10 s. This amplitude increase with increasing ISI has been conceptualized as a function of N1 recovery or N1 refractoriness. Habituation (as a simple form of learning) represents an elaborated, opposing account for such stimulus repetition effects. For passive oddball experiments (stimulation protocols with frequent standards and rare deviants), the two accounts make different predictions. According to the habituation account, the presentation of small deviants should lead to an increased N1 for subsequent standards (= dishabituation); according to the N1 refractoriness account, there should be no or just minor effects on the N1. In the current study, we tested these predictions and compared the ERPs to standards after small deviants and to standards preceded by other standards. We observed that the ERPs to standards after small deviants were characterized by a small mismatch negativity with an onset latency > 150 ms, but the N1 to standards after deviants did not differ from the N1 to standards preceded by other standards. This negative finding is in line with other previous studies that were also not able to reveal evidence for N1 dishabituation. Aside from this repeated lack of evidence for dishabituation, the N1 habituation account is challenged by the finding that the N1 decrease is stronger for more intense stimuli. Overall, the current and previous findings are more compatible with the N1 refractoriness account, although the mechanisms underlying N1 refractoriness remain to be elucidated. Knowledge about these mechanisms would also help to understand why N1 deficits in schizophrenia are more pronounced at longer ISIs.
Collapse
Affiliation(s)
- Timm Rosburg
- Basel University Hospital, Department of Clinical Research, Evidence-based Insurance Medicine (EbIM), Spitalstrasse 12, CH-4031 Basel, Switzerland.
| | - Ralph Mager
- Basel University, University Psychiatric Clinics, Forensic Department, Basel, Switzerland
| |
Collapse
|
38
|
Cortical processing of location and frequency changes of sounds in normal hearing listeners. Hear Res 2020; 400:108110. [PMID: 33220506 DOI: 10.1016/j.heares.2020.108110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 10/09/2020] [Accepted: 11/06/2020] [Indexed: 11/21/2022]
Abstract
Sounds we hear in our daily life contain changes in the acoustic features (e.g., frequency, intensity, and duration or "what" information) and/or changes in location ("where" information). The purpose of this study was to examine the cortical auditory evoked potentials (CAEPs) to the change within a stimulus, the acoustic change complex (ACC), in frequency (F) and location (L) of the sound in normal hearing listeners. Fifteen right-handed young normal hearing listeners participated in the electroencephalographic (EEG) recordings. The acoustic stimuli were pure tones (base frequency at 250 Hz) of 1 s, with a perceivable change either in location (L, 180°), frequency (F, 5% and 50%), or both location and frequency (L+F) in the middle of the tone. Additionally, the 250 Hz tone of 1 sec without any change was used as a reference. The participants were asked to listen passively to the stimuli and not to move their heads during the testing. Compared to the reference tone, by which only the onset-CAEP was elicited, the tones containing changes (L, F, or L+F) elicited both onset-CAEP and the ACC. The waveform analysis of ACCs from the vertex electrode (electrode Cz) showed that, larger sound changes evoked larger peak amplitudes [e.g., (L+50%F)- > L-change; (L+50%F)- > 5%F-change] and shorter the peak latencies ([(L+5%F)- < 5%F-change; 50%F- < 5%F-change; (L+50%F)- < 5%F-change] . The current density patterns for the ACC N1' peak displayed some differences between L-change vs. F-change, supporting different cortical processing for "where" and "what" information of the sound; regardless of the nature of the sound change, larger changes evoked a stronger activation than smaller changes [e.g., L- > 5%F-change; (L+5%F)- > 5%F-change; 50%F- > 5%F-change] in frontal lobe regions including the cingulate gyrus, medial frontal gyrus (MFG), superior frontal gyrus (SFG), the limbic lobe cingulate gyrus, and the parietal lobe postcentral gyrus. The results suggested that sound change-detection involves memory-based acoustic comparison (the neural encoding for the sound change vs. neural encoding for the pre-change stimulus stored in memory) and involuntary attention switch.
Collapse
|
39
|
Marklund E, Gustavsson L, Kallioinen P, Schwarz IC. N1 Repetition-Attenuation for Acoustically Variable Speech and Spectrally Rotated Speech. Front Hum Neurosci 2020; 14:534804. [PMID: 33192385 PMCID: PMC7658466 DOI: 10.3389/fnhum.2020.534804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
The amplitude of the event-related N1 wave decreases with repeated stimulation. This repetition-attenuation has not previously been investigated in response to variable auditory stimuli, nor has the relative impact of acoustic vs. perceptual category repetition been studied. In the present study, N1 repetition-attenuation was investigated for speech and spectrally rotated speech with varying degrees of acoustic and perceptual category variation. In the speech condition, participants (n = 19) listened to stimulus trains consisting of either the same vowel exemplar (no variability condition), different exemplars of the same vowel (low variability condition), or different exemplars of two different vowels (high variability condition). In the rotated speech condition, the spectrally rotated counterparts of the vowels were presented. Findings show N1 repetition-attenuation in the face of acoustic and perceptual category variability, but no impact of the degree of variability on the degree of N1 attenuation. Speech stimuli resulted in less attenuation than the acoustically matched non-speech stimuli, which is in line with previous findings. It remains unclear if the attenuation of the N1 wave is reduced as a result of stimuli being perceived as belonging to perceptual categories or as a result of some other characteristic of speech.
Collapse
|
40
|
Odor habituation can modulate very early olfactory event-related potential. Sci Rep 2020; 10:18117. [PMID: 33093624 PMCID: PMC7582193 DOI: 10.1038/s41598-020-75263-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/08/2020] [Indexed: 11/08/2022] Open
Abstract
Odor habituation is a phenomenon that after repeated exposure to an odor, is characterized by decreased responses to it. The central nervous system is involved in odor habituation. To study odor habituation in humans, measurement of event-related potentials (ERPs) has been widely used in the olfactory system and other sensory systems, because of their high temporal resolution. Most previous odor habituation studies have measured the olfactory ERPs of (200-800) ms. However, several studies have shown that the odor signal is processed in the central nervous system earlier than at 200 ms. For these reasons, we studied whether when odors were habituated, olfactory ERP within 200 ms of odors could change. To this end, we performed an odor habituation behavior test and electroencephalogram experiments. In the behavior test, under habituation conditions, odor intensity was significantly decreased. We found significant differences in the negative and positive potentials within 200 ms across the conditions, which correlated significantly with the results of the behavior test. We also observed that ERP latency depended on the conditions. Our study suggests that odor habituation can involve the olfactory ERP of odors within 200 ms in the brain.
Collapse
|
41
|
Mathias B, Zamm A, Gianferrara PG, Ross B, Palmer C. Rhythm Complexity Modulates Behavioral and Neural Dynamics During Auditory–Motor Synchronization. J Cogn Neurosci 2020; 32:1864-1880. [DOI: 10.1162/jocn_a_01601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
We addressed how rhythm complexity influences auditory–motor synchronization in musically trained individuals who perceived and produced complex rhythms while EEG was recorded. Participants first listened to two-part auditory sequences (Listen condition). Each part featured a single pitch presented at a fixed rate; the integer ratio formed between the two rates varied in rhythmic complexity from low (1:1) to moderate (1:2) to high (3:2). One of the two parts occurred at a constant rate across conditions. Then, participants heard the same rhythms as they synchronized their tapping at a fixed rate (Synchronize condition). Finally, they tapped at the same fixed rate (Motor condition). Auditory feedback from their taps was present in all conditions. Behavioral effects of rhythmic complexity were evidenced in all tasks; detection of missing beats (Listen) worsened in the most complex (3:2) rhythm condition, and tap durations (Synchronize) were most variable and least synchronous with stimulus onsets in the 3:2 condition. EEG power spectral density was lowest at the fixed rate during the 3:2 rhythm and greatest during the 1:1 rhythm (Listen and Synchronize). ERP amplitudes corresponding to an N1 time window were smallest for the 3:2 rhythm and greatest for the 1:1 rhythm (Listen). Finally, synchronization accuracy (Synchronize) decreased as amplitudes in the N1 time window became more positive during the high rhythmic complexity condition (3:2). Thus, measures of neural entrainment corresponded to synchronization accuracy, and rhythmic complexity modulated the behavioral and neural measures similarly.
Collapse
Affiliation(s)
- Brian Mathias
- McGill University
- Max Planck Institute for Human Cognitive and Brain Science
| | - Anna Zamm
- McGill University
- Central European University, Budapest, Hungary
| | | | | | | |
Collapse
|
42
|
Uhrig S, Perkis A, Behne DM. Effects of speech transmission quality on sensory processing indicated by the cortical auditory evoked potential. J Neural Eng 2020; 17:046021. [PMID: 32422617 DOI: 10.1088/1741-2552/ab93e1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Degradations of transmitted speech have been shown to affect perceptual and cognitive processing in human listeners, as indicated by the P3 component of the event-related brain potential (ERP). However, research suggests that previously observed P3 modulations might actually be traced back to earlier neural modulations in the time range of the P1-N1-P2 complex of the cortical auditory evoked potential (CAEP). This study investigates whether auditory sensory processing, as reflected by the P1-N1-P2 complex, is already systematically altered by speech quality degradations. APPROACH Electrophysiological data from two studies were analyzed to examine effects of speech transmission quality (high-quality, noisy, bandpass-filtered) for spoken words on amplitude and latency parameters of individual P1, N1 and P2 components. MAIN RESULTS In the resultant ERP waveforms, an initial P1-N1-P2 manifested at stimulus onset, while a second N1-P2 occurred within the ongoing stimulus. Bandpass-filtered versus high-quality word stimuli evoked a faster and larger initial N1 as well as a reduced initial P2, hence exhibiting effects as early as the sensory stage of auditory information processing. SIGNIFICANCE The results corroborate the existence of systematic quality-related modulations in the initial N1-P2, which may potentially have carried over into P3 modulations demonstrated by previous studies. In future psychophysiological speech quality assessments, rigorous control procedures are needed to ensure the validity of P3-based indication of speech transmission quality. An alternative CAEP-based assessment approach is discussed, which promises to be more efficient and less constrained than the established approach based on P3.
Collapse
Affiliation(s)
- Stefan Uhrig
- Quality and Usability Lab, Technische Universität Berlin, D-10587 Berlin, Germany. Department of Electronic Systems, Norwegian University of Science and Technology, 7491 Trondheim, Norway. Author to whom any correspondence should be addressed
| | | | | |
Collapse
|
43
|
Dauer T, Nerness B, Fujioka T. Predictability of higher-order temporal structure of musical stimuli is associated with auditory evoked response. Int J Psychophysiol 2020; 153:53-64. [PMID: 32325078 DOI: 10.1016/j.ijpsycho.2020.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
Sound predictability resulting from repetitive patterns can be implicitly learned and often neither requires nor captures our conscious attention. Recently, predictive coding theory has been used as a framework to explain how predictable or expected stimuli evoke and gradually attenuate obligatory neural responses over time compared to those elicited by unpredictable events. However, these results were obtained using the repetition of simple auditory objects such as pairs of tones or phonemes. Here we examined whether the same principle would hold for more abstract temporal structures of sounds. If this is the case, we hypothesized that a regular repetition schedule of a set of musical patterns would reduce neural processing over the course of listening compared to stimuli with an irregular repetition schedule (and the same set of musical patterns). Electroencephalography (EEG) was recorded while participants passively listened to 6-8 min stimulus sequences in which five different four-tone patterns with temporally regular or irregular repetition were presented successively in a randomized order. N1 amplitudes in response to the first tone of each musical pattern were significantly less negative at the end of the regular sequence compared to the beginning, while such reduction was absent in the irregular sequence. These results extend previous findings by showing that N1 reflects automatic learning of the predictable higher-order structure of sound sequences, while continuous engagement of preattentive auditory processing is necessary for the unpredictable structure.
Collapse
Affiliation(s)
- Tysen Dauer
- Department of Music, Stanford University, United States.
| | - Barbara Nerness
- Department of Music, Stanford University, United States; Center for Computer Research in Music and Acoustics, Department of Music, Stanford University, United States
| | - Takako Fujioka
- Department of Music, Stanford University, United States; Center for Computer Research in Music and Acoustics, Department of Music, Stanford University, United States; Wu Tsai Neurosciences Institute, Stanford University, United States
| |
Collapse
|
44
|
Sun Y, Liu X, Li B, Sava-Segal C, Wang A, Zhang M. Effects of Repetition Suppression on Sound Induced Flash Illusion With Aging. Front Psychol 2020; 11:216. [PMID: 32153456 PMCID: PMC7047336 DOI: 10.3389/fpsyg.2020.00216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 01/30/2020] [Indexed: 11/13/2022] Open
Abstract
The sound-induced flash illusion (SiFI) is a classical auditory-dominated multisensory integration phenomenon in which the observer misperceives the number of visual flashes due to the simultaneous presentation of a different number of auditory beeps. Although the SiFI has been documented to correlate with perceptual sensitivity, to date there is no consensus as to how it corresponds to sensitivity with aging. The present study was based on the SiFI paradigm (Shams et al., 2000), adding repeated auditory stimuli prior to the appearance of audiovisual stimuli to investigate the effects of repetition suppression (RS) on the SiFI with aging. The repeated auditory stimuli consisted of one or two of the same auditory stimuli presented twice in succession, which were then followed by the audiovisual stimuli. By comparing the illusions in old and young adults, we aimed to explore the influence of aging on the RS of auditory stimuli on the SiFI. The results showed that both age groups showed SiFI effects, however, the RS performance of the two age groups had different effects on the fusion and fission illusions. The illusion effect in old adults was weaker than in young adults. Specifically, RS only affected fission illusions in the old adults but both fission and fusion illusions in young adults. Thus, the present study indicated that the decreased perceptual sensitivity based on auditory RS could weaken the SiFI effect in multisensory integration and that old adults are more susceptible to RS, showing that old adults perceived the SiFI effect weakly under auditory RS.
Collapse
Affiliation(s)
- Yawen Sun
- Department of Psychology, Soochow University, Suzhou, China
| | - Xiaole Liu
- Department of Psychology, Soochow University, Suzhou, China
- Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, China
| | - Biqin Li
- Laboratory of Psychology and Cognition Science, School of Psychology, Jiangxi Normal University, Nanchang, China
| | - Clara Sava-Segal
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, United States
| | - Aijun Wang
- Department of Psychology, Soochow University, Suzhou, China
- Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, China
| | - Ming Zhang
- Department of Psychology, Soochow University, Suzhou, China
- Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, China
| |
Collapse
|
45
|
Ruusuvirta T. The release from refractoriness hypothesis of N1 of event-related potentials needs reassessment. Hear Res 2020; 399:107923. [PMID: 32089324 DOI: 10.1016/j.heares.2020.107923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 12/01/2022]
Abstract
N1 of event-related potentials (ERPs) is augmented in amplitude in ∼50-150 ms by occasional changes (deviants) in the physical features of a sound repeated at intervals of from ∼400 ms to seconds (standard). The release-from-refractoriness hypothesis links the N1 augmentation to a deviant-feature-specific neural population that is fresh to fully respond as opposed to a standard-feature-specific neural population that is unresponsive due to its post-response refractoriness. The present work explored this hypothesis in the context of ERP studies, behavioral habituation studies and studies on stimulus-specific adaptation (SSA). The idea of hundreds of milliseconds neural population-level refractoriness was observed to be founded upon negative N1 evidence (no observable effect of dishabituating stimuli on N1 to standards - the null hypothesis retained) and merely supported by positive N1 evidence (null hypotheses rejected). This idea was also found to be directly challenged by positive N1 evidence. No conclusive network- or single-neuron-level evidence was found for the refractoriness. Therefore, the validity of the release-from-refractoriness hypothesis of N1 to guide psychophysiological research needs reassessment.
Collapse
Affiliation(s)
- Timo Ruusuvirta
- University of Turku, Department of Teacher Education, Seminaarinkatu 1, FIN-26100, Rauma, Finland.
| |
Collapse
|
46
|
Hsu YF, Xu W, Parviainen T, Hämäläinen JA. Context-dependent minimisation of prediction errors involves temporal-frontal activation. Neuroimage 2020; 207:116355. [DOI: 10.1016/j.neuroimage.2019.116355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 10/16/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022] Open
|
47
|
Francisco AA, Foxe JJ, Horsthuis DJ, Molholm S. Impaired auditory sensory memory in Cystinosis despite typical sensory processing: A high-density electrical mapping study of the mismatch negativity (MMN). NEUROIMAGE-CLINICAL 2020; 25:102170. [PMID: 31954986 PMCID: PMC6965721 DOI: 10.1016/j.nicl.2020.102170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/13/2019] [Accepted: 01/10/2020] [Indexed: 11/24/2022]
Abstract
Children and adolescents with Cystinosis show similar N1 responses to their age-matched peers. Children and adolescents with Cystinosis show reduced MMNs for longer SOAs. Our results suggest typical auditory processing, but impaired sensory memory in Cystinosis.
Cystinosis, a genetic rare disease characterized by cystine accumulation and crystallization, results in significant damage in a multitude of tissues and organs, such as the kidney, thyroid, eye, and brain. While Cystinosis’ impact on brain function is relatively mild compared to its effects on other organs, the increased lifespan of this population and thus potential for productive societal contributions have led to increased interest on the effects on brain function. Nevertheless, and despite some evidence of structural brain differences, the neural impact of the mutation is still not well characterized. Here, using a passive duration oddball paradigm (with different stimulus onset asynchronies (SOAs), representing different levels of demand on memory) and high-density electrophysiology, we tested basic auditory processing in a group of 22 children and adolescents diagnosed with Cystinosis (age range: 6-17 years old) and in neurotypical age-matched controls (N = 24). We examined whether the N1 and mismatch negativity (MMN) significantly differed between the groups and if those neural measures correlated with verbal and non-verbal IQ. Individuals diagnosed with Cystinosis presented similar N1 responses to their age-matched peers, indicating typical basic auditory processing in this population. However, whereas both groups showed similar MMN responses for the shortest (450 ms) SOA, suggesting intact change detection and sensory memory, individuals diagnosed with Cystinosis presented clearly reduced responses for the longer (900 ms and 1800 ms) SOAs. This could indicate reduced duration auditory sensory memory traces, and thus sensory memory impairment, in children and adolescents diagnosed with Cystinosis. Future work addressing other aspects of sensory and working memory is needed to understand the underlying bases of the differences described here, and their implication for higher order processing.
Collapse
Affiliation(s)
- Ana A Francisco
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA.; Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, New York, USA..
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA.; Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, New York, USA.; The Cognitive Neurophysiology Laboratory, Department of Neuroscience, The Ernest J. Del Monde Institute for Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Douwe J Horsthuis
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA.; Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, New York, USA.; The Cognitive Neurophysiology Laboratory, Department of Neuroscience, The Ernest J. Del Monde Institute for Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA..
| |
Collapse
|
48
|
Silva DMR, Rothe-Neves R, Melges DB. Long-latency event-related responses to vowels: N1-P2 decomposition by two-step principal component analysis. Int J Psychophysiol 2019; 148:93-102. [PMID: 31863852 DOI: 10.1016/j.ijpsycho.2019.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 11/26/2022]
Abstract
The N1-P2 complex of the auditory event-related potential (ERP) has been used to examine neural activity associated with speech sound perception. Since it is thought to reflect multiple generator processes, its functional significance is difficult to infer. In the present study, a temporospatial principal component analysis (PCA) was used to decompose the N1-P2 response into latent factors underlying covariance patterns in ERP data recorded during passive listening to pairs of successive vowels. In each trial, one of six sounds drawn from an /i/-/e/ vowel continuum was followed either by an identical sound, a different token of the same vowel category, or a token from the other category. Responses were examined as to how they were modulated by within- and across-category vowel differences and by adaptation (repetition suppression) effects. Five PCA factors were identified as corresponding to three well-known N1 subcomponents and two P2 subcomponents. Results added evidence that the N1 peak reflects both generators that are sensitive to spectral information and generators that are not. For later latency ranges, different patterns of sensitivity to vowel quality were found, including category-related effects. Particularly, a subcomponent identified as the Tb wave showed release from adaptation in response to an /i/ followed by an /e/ sound. A P2 subcomponent varied linearly with spectral shape along the vowel continuum, while the other was stronger the closer the vowel was to the category boundary, suggesting separate processing of continuous and category-related information. Thus, the PCA-based decomposition of the N1-P2 complex was functionally meaningful, revealing distinct underlying processes at work during speech sound perception.
Collapse
Affiliation(s)
- Daniel M R Silva
- Phonetics Lab, Faculty of Letters, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rui Rothe-Neves
- Phonetics Lab, Faculty of Letters, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Danilo B Melges
- Graduate Program in Electrical Engineering, Department of Electrical Engineering, Federal University of Minas Gerais
| |
Collapse
|
49
|
Cortesa CS, Hudac CM, Molfese DL. Dynamic effects of habituation and novelty detection on newborn event-related potentials. BRAIN AND LANGUAGE 2019; 199:104695. [PMID: 31610478 DOI: 10.1016/j.bandl.2019.104695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 08/28/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Newborns habituate to repeated auditory stimuli, and discriminate syllables, generating opportunities for early language learning. This study investigated trial-by-trial changes in newborn electrophysiological responses to auditory speech syllables as an index of habituation and novelty detection. Auditory event-related potentials (ERPs) were recorded from 16 term newborn infants, aged 1-3 days, in response to monosyllabic speech syllables presented during habituation and novelty detection tasks. Multilevel models demonstrated that newborns habituated to repeated auditory syllables, as ERP amplitude attenuated for a late-latency component over successive trials. Subsequently, during the novelty detection task, early- and late-latency component amplitudes decreased over successive trials for novel syllables only, indicating encoding of the novel speech syllable. We conclude that newborns dynamically encoded novel syllables over relatively short time periods, as indicated by a systematic change in response patterns with increased exposure. These results have important implications for understanding early precursors of learning and memory in newborns.
Collapse
Affiliation(s)
- Cathryn S Cortesa
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln NE 68588, USA; University of Nebraska-Lincoln Center for Brain, Biology and Behavior, C89 East Stadium, Lincoln NE 68588, USA.
| | - Caitlin M Hudac
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln NE 68588, USA; University of Nebraska-Lincoln Center for Brain, Biology and Behavior, C89 East Stadium, Lincoln NE 68588, USA
| | - Dennis L Molfese
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln NE 68588, USA; University of Nebraska-Lincoln Center for Brain, Biology and Behavior, C89 East Stadium, Lincoln NE 68588, USA
| |
Collapse
|
50
|
MacDonald B, Barry RJ. Integration of three investigations of Novelty, Intensity, and Significance in dishabituation paradigms: A study of the phasic Orienting Reflex. Int J Psychophysiol 2019; 147:113-127. [PMID: 31778726 DOI: 10.1016/j.ijpsycho.2019.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 11/07/2019] [Accepted: 11/15/2019] [Indexed: 11/15/2022]
Abstract
Data from three published studies examining autonomic and ERP measures in variants of a dishabituation paradigm were re-analysed to clarify ambiguous novelty results. The three studies manipulated 1. Novelty, 2. Novelty and Intensity, and 3. Novelty and Significance, in auditory dishabituation paradigms at very long interstimulus intervals (ISIs). The question of whether any single ERP matches SCR as the benchmark for the phasic Orienting Reflex (OR) was also addressed. Finally, we aimed to align the re-analysed measures of this and the previous analyses with processes of Preliminary Process Theory (PPT). The SCR demonstrated decrement, recovery, and dishabituation. A summary temporal PCA extracted PN (Processing Negativity), P3a, P3b, Novelty P3, and classic SW for detailed analysis. P3b and SW showed decrement but no recovery at the change trial, while Respiratory pause (RP) and Novelty P3 demonstrated decrement and recovery, but no dishabituation. Post hoc exploration of observed power versus sample size for each of these findings confirmed their robustness. No decrement for PN was also confirmed. Five autonomic and ERP groupings emerged and aligned with modules of processing in PPT: ECR1 (cardiac deceleration), P1, N1-3, and PN - stimulus registration; RP and Novelty P3 - Novelty registration; Peripheral Vasoconstriction (PVC) and P3b - Intensity registration; and ECR2 (cardiac acceleration) and classic SW - Response system. The SCR was confirmed as the sole index of the phasic OR. The pattern of results for the Late Positive Complex (LPC) components (P3a, P3b, Novelty P3, and SW) suggests each is differentially sensitivity to selective determinants of the phasic OR, and consequently the summary LPC is presented as the most appropriate central index of the phasic OR.
Collapse
Affiliation(s)
- Brett MacDonald
- Brain & Behaviour Research Institute, and School of Psychology, University of Wollongong, Wollongong 2522, Australia.
| | - Robert J Barry
- Brain & Behaviour Research Institute, and School of Psychology, University of Wollongong, Wollongong 2522, Australia
| |
Collapse
|