1
|
Jiang J, Guo L, Huang X, Zheng K, He S, Shan H. Regulatory role of N6-Methyladenosine on skeletal muscle development in Hu sheep. Front Genet 2024; 15:1449144. [PMID: 39233739 PMCID: PMC11371687 DOI: 10.3389/fgene.2024.1449144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
N6-Methyladenosine (m6A) RNA modification plays an essential role in many biological processes. To investigate the regulatory role of m6A on the skeletal muscle development in Hu sheep, this study took newborn Hu sheep (b_B Group) and six-month-old Hu sheep (s_B Group) as the objects. MeRIP-seq and RNA-Seq analysis techniques were used to detect differentially methylated genes (DMGs) and differentially expressed genes (DEGs) in the longissimus dorsi muscle of Hu sheep at different months of age. Then, conjoint analysis was further employed to screen for key genes involved in skeletal muscle development that are modified by m6A and expressed by mRNA. According to the results of the MeRIP-seq analysis, there were 285 m6A differentially methylated peaks (DMPs) in total between b_B Group and s_B Group, with 192 significant upregulated peaks and 93 significant downregulated peaks. GO and KEGG analysis revealed that DMGs are mainly enriched in actin-binding, cellular transport, and metabolic pathways. According to the results of the RNA-seq analysis, there were 4,349 DEGs in total between b_B Group and s_B Group, with 2010 upregulated genes and 2,339 downregulated genes. DEGs are found to be mainly enriched in the regulation of actin cytoskeleton tissue, AMPK and FoxO signaling pathways, etc. The conjoint analysis demonstrated that 283 genes were both modified by m6A and expressed by mRNA. Among them, three genes relevant to muscle growth (RGMB, MAPK8IP3, and RSPO3) were selected as candidates for quantitative validation, and the results were in line with the sequencing results. The results mentioned above all suggest that m6A plays a certain role in the skeletal muscle development in Hu sheep.
Collapse
Affiliation(s)
- Junfang Jiang
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liangyong Guo
- Huzhou Agricultural Science and Technology Development Center, Institute of animal Science, Huzhou, China
- Huzhou Key Laboratory of Innovation and Application of Agricultural Germplasm Resources, Huzhou, China
| | - Xin Huang
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kaizhi Zheng
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Sangang He
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Huili Shan
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
2
|
Guo XX, An S, Yang Y, Liu Y, Hao Q, Tang T, Xu TR. Emerging role of the Jun N-terminal kinase interactome in human health. Cell Biol Int 2018; 42:756-768. [DOI: 10.1002/cbin.10948] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/03/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao-Xi Guo
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Su An
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Yang Yang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Ying Liu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Qian Hao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Tao Tang
- Faculty of Medicine; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| |
Collapse
|
3
|
JIP3 localises to exocytic vesicles and focal adhesions in the growth cones of differentiated PC12 cells. Mol Cell Biochem 2017; 444:1-13. [PMID: 29159770 PMCID: PMC6002436 DOI: 10.1007/s11010-017-3222-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/15/2017] [Indexed: 02/01/2023]
Abstract
The JNK-interacting protein 3 (JIP3) is a molecular scaffold, expressed predominantly in neurons, that serves to coordinate the activation of the c-Jun N-terminal kinase (JNK) by binding to JNK and the upstream kinases involved in its activation. The JNK pathway is involved in the regulation of many cellular processes including the control of cell survival, cell death and differentiation. JIP3 also associates with microtubule motor proteins such as kinesin and dynein and is likely an adapter protein involved in the tethering of vesicular cargoes to the motors involved in axonal transport in neurons. We have used immunofluorescence microscopy and biochemical fractionation to investigate the subcellular distribution of JIP3 in relation to JNK and to vesicular and organelle markers in rat pheochromocytoma cells (PC12) differentiating in response to nerve growth factor. In differentiated PC12 cells, JIP3 was seen to accumulate in growth cones at the tips of developing neurites where it co-localised with both JNK and the JNK substrate paxillin. Cellular fractionation of PC12 cells showed that JIP3 was associated with a subpopulation of vesicles in the microsomal fraction, distinct from synaptic vesicles, likely to be an anterograde-directed exocytic vesicle pool. In differentiated PC12 cells, JIP3 did not appear to associate with retrograde endosomal vesicles thought to be involved in signalling axonal injury. Together, these observations indicate that JIP3 may be involved in transporting vesicular cargoes to the growth cones of PC12 cells, possibly targeting JNK to its substrate paxillin, and thus facilitating neurite outgrowth.
Collapse
|
4
|
Ma H, Yu H, Li T, Zhao Y, Hou M, Chen Z, Wang Y, Sun T. JIP3 regulates neuronal radial migration by mediating TrkB axonal anterograde transport in the developing cerebral cortex. Biochem Biophys Res Commun 2017; 485:790-795. [PMID: 28259553 DOI: 10.1016/j.bbrc.2017.02.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 02/27/2017] [Indexed: 11/27/2022]
Abstract
Radial migration is essential for the precise lamination and the coordinated function of the cerebral cortex. However, the molecular mechanisms for neuronal radial migration are not clear. Here, we report that c-Jun NH2-terminal kinase (JNK)-interacting protein-3 (JIP3) is highly expressed in the brain of embryonic mice and essential for radial migration. Knocking down JIP3 by in utero electroporation specifically perturbs the radial migration of cortical neurons but has no effect on neurogenesis and neuronal differentiation. Furthermore, we illustrate that JIP3 knockdown delays but does not block the migration of cortical neurons by investigating the distribution of neurons with JIP3 knocked down in the embryo and postnatal mouse. Finally, we find that JIP3 regulates cortical neuronal migration by mediating TrkB axonal anterograde transport during brain development. These findings deepen our understanding of the regulation of neuronal development by JIP3 and provide us a novel view on the regulating mechanisms of neuronal radial migration.
Collapse
Affiliation(s)
- Huixian Ma
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine and the Collaborative Innovation Center for Brain Science, Shandong University, No.44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Hui Yu
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine and the Collaborative Innovation Center for Brain Science, Shandong University, No.44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Ting Li
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine and the Collaborative Innovation Center for Brain Science, Shandong University, No.44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Yan Zhao
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Ming Hou
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Zheyu Chen
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine and the Collaborative Innovation Center for Brain Science, Shandong University, No.44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Yue Wang
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine and the Collaborative Innovation Center for Brain Science, Shandong University, No.44 Wenhua Xi Road, Jinan, Shandong 250012, PR China.
| | - Tao Sun
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine and the Collaborative Innovation Center for Brain Science, Shandong University, No.44 Wenhua Xi Road, Jinan, Shandong 250012, PR China; Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China.
| |
Collapse
|
5
|
Wang Z, Chen Y, Lü Y, Chen X, Cheng L, Mi X, Xu X, Deng W, Zhang Y, Wang N, Li J, Li Y, Wang X. Effects of JIP3 on epileptic seizures: Evidence from temporal lobe epilepsy patients, kainic-induced acute seizures and pentylenetetrazole-induced kindled seizures. Neuroscience 2015; 300:314-24. [PMID: 26002316 DOI: 10.1016/j.neuroscience.2015.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 05/01/2015] [Accepted: 05/05/2015] [Indexed: 11/26/2022]
Abstract
JNK-interacting protein 3 (JIP3), also known as JNK stress-activated protein kinase-associated protein 1 (JSAP1), is a scaffold protein mainly involved in the regulation of the pro-apoptotic signaling cascade mediated by c-Jun N-terminal kinase (JNK). Overexpression of JIP3 in neurons in vitro has been reported to lead to accelerated activation of JNK and enhanced apoptosis response to cellular stress. However, the occurrence and the functional significance of stress-induced modulations of JIP3 levels in vivo remain elusive. In this study, we investigated the expression of JIP3 in temporal lobe epilepsy (TLE) and in a kainic acid (KA)-induced mouse model of epileptic seizures, and determined whether down-regulation of JIP3 can decrease susceptibility to seizures and neuron damage induced by KA. We found that JIP3 was markedly increased in TLE patients and a mouse model of epileptic seizures; mice underexpressing JIP3 through lentivirus bearing LV-Letm1-RNAi showed decreased susceptibility, delayed first seizure and decreased seizure duration response to the epileptogenic properties of KA. Subsequently, a decreased activation of JNK following seizure induction was observed in mice underexpressing JIP3, which also exhibited less neuronal apoptosis in the CA3 region of the hippocampus, as assessed three days after KA administration. We also found that mice underexpressing JIP3 exhibited a delayed pentylenetetrazole (PTZ)-induced kindling seizure process.
Collapse
Affiliation(s)
- Z Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China; Department of Neurology, Fuling Central Hospital, Chongqing 408000, China
| | - Y Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Y Lü
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - X Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - L Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - X Mi
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - X Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - W Deng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Y Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - N Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - J Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Y Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - X Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China.
| |
Collapse
|
6
|
Sun T, Yu N, Zhai LK, Li N, Zhang C, Zhou L, Huang Z, Jiang XY, Shen Y, Chen ZY. c-Jun NH2-terminal kinase (JNK)-interacting protein-3 (JIP3) regulates neuronal axon elongation in a kinesin- and JNK-dependent manner. J Biol Chem 2013; 288:14531-14543. [PMID: 23576431 DOI: 10.1074/jbc.m113.464453] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of neuronal polarity is essential for the establishment of the accurate patterning of neuronal circuits in the brain. However, little is known about the underlying molecular mechanisms that control rapid axon elongation during neuronal development. Here, we report that c-Jun NH2-terminal kinase (JNK)-interacting protein-3 (JIP3) is highly expressed at axon tips during the critical period for axon development. Using gain- and loss-of-function approaches, immunofluorescence analysis, and in utero electroporation, we find that JIP3 can enhance axon elongation in primary hippocampal neurons and cortical neurons in vivo. We further demonstrate that JIP3 promotes axon elongation in a kinesin- and JNK-dependent manner using several deletion mutants of JIP3. Next, we demonstrate that the successful transportation of JIP3 to axon tips by kinesin is a prerequisite for enhancing JNK phosphorylation in this area and therefore promotes axon elongation, constituting a novel mechanism for coupling JIP3 anterograde transport with JNK signaling at the distal axons and axon elongation. Finally, our immunofluorescence data suggest that the activation of JNK at axon tips facilitates axon elongation by modulating cofilin activity and actin filament dynamics. These findings may have important implications for our understanding of neuronal axon elongation during development.
Collapse
Affiliation(s)
- Tao Sun
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, No. 4 Wenhua Xi Road, Jinan, Shandong 250012
| | - Nuo Yu
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, No. 4 Wenhua Xi Road, Jinan, Shandong 250012
| | - Lu-Kai Zhai
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, No. 4 Wenhua Xi Road, Jinan, Shandong 250012
| | - Na Li
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, No. 4 Wenhua Xi Road, Jinan, Shandong 250012
| | - Chao Zhang
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, No. 4 Wenhua Xi Road, Jinan, Shandong 250012
| | - Liang Zhou
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058
| | - Zhuo Huang
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Xing-Yu Jiang
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying Shen
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058
| | - Zhe-Yu Chen
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, No. 4 Wenhua Xi Road, Jinan, Shandong 250012.
| |
Collapse
|
7
|
The interaction of Kinesin-1 with its adaptor protein JIP1 can be regulated via proteins binding to the JIP1-PTB domain. BMC Cell Biol 2013; 14:12. [PMID: 23496950 PMCID: PMC3599065 DOI: 10.1186/1471-2121-14-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/06/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The regulatory mechanisms of motor protein-dependent intracellular transport are still not fully understood. The kinesin-1-binding protein, JIP1, can function as an adaptor protein that links kinesin-1 and other JIP1-binding "cargo" proteins. However, it is unknown whether these "cargo" proteins influence the JIP1-kinesin-1 binding. RESULTS We show here that JIP1-kinesin-1 binding in Neuro2a cells was dependent on conserved amino acid residues in the JIP1-phosphotyrosine binding (PTB) domain, including F687. In addition, mutation of F687 severely affected the neurite tip localization of JIP1. Proteomic analysis revealed another kinesin-1 binding protein, JIP3, as a major JIP1 binding protein. The association between JIP1 and JIP3 was dependent on the F687 residue in JIP1, and this association induced the formation of a stable ternary complex with kinesin-1. On the other hand, the binding of JIP1 and JIP3 was independent of kinesin-1 binding. We also show that other PTB binding proteins can interrupt the formation of the ternary complex. CONCLUSIONS The formation of the JIP1-kinesin-1 complex depends on the protein binding-status of the JIP1 PTB domain. This may imply a regulatory mechanism of kinesin-1-dependent intracellular transport.
Collapse
|
8
|
Sunday Driver/JIP3 binds kinesin heavy chain directly and enhances its motility. EMBO J 2011; 30:3416-29. [PMID: 21750526 DOI: 10.1038/emboj.2011.229] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 06/21/2011] [Indexed: 01/03/2023] Open
Abstract
Neuronal development, function and repair critically depend on axonal transport of vesicles and protein complexes, which is mediated in part by the molecular motor kinesin-1. Adaptor proteins recruit kinesin-1 to vesicles via direct association with kinesin heavy chain (KHC), the force-generating component, or via the accessory light chain (KLC). Binding of adaptors to the motor is believed to engage the motor for microtubule-based transport. We report that the adaptor protein Sunday Driver (syd, also known as JIP3 or JSAP1) interacts directly with KHC, in addition to and independently of its known interaction with KLC. Using an in vitro motility assay, we show that syd activates KHC for transport and enhances its motility, increasing both KHC velocity and run length. syd binding to KHC is functional in neurons, as syd mutants that bind KHC but not KLC are transported to axons and dendrites similarly to wild-type syd. This transport does not rely on syd oligomerization with itself or other JIP family members. These results establish syd as a positive regulator of kinesin activity and motility.
Collapse
|
9
|
Bilimoria PM, de la Torre-Ubieta L, Ikeuchi Y, Becker EBE, Reiner O, Bonni A. A JIP3-regulated GSK3β/DCX signaling pathway restricts axon branching. J Neurosci 2010; 30:16766-76. [PMID: 21159948 PMCID: PMC3409248 DOI: 10.1523/jneurosci.1362-10.2010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/21/2010] [Accepted: 06/27/2010] [Indexed: 01/26/2023] Open
Abstract
Axon branching plays a critical role in establishing the accurate patterning of neuronal circuits in the brain. However, the mechanisms that control axon branching remain poorly understood. Here we report that knockdown of the brain-enriched signaling protein JNK-interacting protein 3 (JIP3) triggers exuberant axon branching and self-contact in primary granule neurons of the rat cerebellar cortex. JIP3 knockdown in cerebellar slices and in postnatal rat pups in vivo leads to the formation of ectopic branches in granule neuron parallel fiber axons in the cerebellar cortex. We also find that JIP3 restriction of axon branching is mediated by the protein kinase glycogen synthase kinase 3β (GSK3β). JIP3 knockdown induces the downregulation of GSK3β in neurons, and GSK3β knockdown phenocopies the effect of JIP3 knockdown on axon branching and self-contact. Finally, we establish doublecortin (DCX) as a novel substrate of GSK3β in the control of axon branching and self-contact. GSK3β phosphorylates DCX at the distinct site of Ser327 and thereby contributes to DCX function in the restriction of axon branching. Together, our data define a JIP3-regulated GSK3β/DCX signaling pathway that restricts axon branching in the mammalian brain. These findings may have important implications for our understanding of neuronal circuitry during development, as well as the pathogenesis of neurodevelopmental disorders of cognition.
Collapse
Affiliation(s)
- Parizad M. Bilimoria
- Department of Pathology and
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Luis de la Torre-Ubieta
- Department of Pathology and
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, and
| | | | | | - Orly Reiner
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Azad Bonni
- Department of Pathology and
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, and
| |
Collapse
|
10
|
Salaria S, Badkoobehi H, Rockenstein E, Crews L, Chana G, Masliah E, Everall IP. Toll-like receptor pathway gene expression is associated with human immunodeficiency virus-associated neurodegeneration. J Neurovirol 2008; 13:496-503. [PMID: 18097881 DOI: 10.1080/13550280701558616] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The innate immune system is a significant component of the brain's defense against infection, especially as the blood-brain barrier restricts access of the members of the adaptive immune system, such as T and B cells. The innate immune system includes Toll-like receptors (TLRs) that recognize pathogen-associated molecular patterns. Within the central nervous system, they are expressed on glial cells and their expression can be modulated by pathological states. Although their function is to recognize foreign pathogens and stimulate a protective immune response through the production of cytokines and interferons, there is emerging evidence that activation of these receptors can result in neurodegeneration. In the current study, the authors assessed the expression of TLR-related genes, using a customized Superarray gene chip, and correlated the expression findings with indices of neurodegeneration. We found that, using a stringent threshold for statistical significance to overcome the potential problem of multiple statistical testing, there were significant correlations between the expression of nine TLR-related genes and reduction in dendritic and synaptic staining. Two of these genes, TLR4 and SIGIRR, were validated by quantitative real-time polymerase chain reaction. Additionally, the authors demonstrated in vitro at the protein level that human primary astrocytes exposed to the toxic human immunodeficiency virus (HIV) envelope protein gp120 had a significant increase in TLR4 protein expression. In conclusion, these findings indicate that TLR-related gene expression may contribute to the development of HIV-related neurodegeneration.
Collapse
Affiliation(s)
- Shahid Salaria
- Department of Psychiatry, University of California, San Diego, La Jolla, California 92093-0603, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Iwanaga A, Sato T, Sugihara K, Hirao A, Takakura N, Okamoto H, Asano M, Yoshioka K. Neural-specific ablation of the scaffold protein JSAP1 in mice causes neonatal death. Neurosci Lett 2007; 429:43-8. [PMID: 17977657 DOI: 10.1016/j.neulet.2007.09.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 09/25/2007] [Accepted: 09/26/2007] [Indexed: 10/22/2022]
Abstract
We previously identified c-Jun NH(2)-terminal kinase (JNK)/stress-activated protein kinase-associated protein 1 (JSAP1, also known as JNK-interacting protein 3) as a scaffolding factor for JNK intracellular signaling pathways. Targeted gene-disruption studies have shown that JSAP1-null mice are unable to breathe and die shortly after birth. Although neural defects might be responsible for their death, there has been no convincing evidence for this. Here we first generated genetically engineered mice carrying a loxP-flanked (floxed) jsap1 gene. To evaluate the validity of this deletion as a jsap1 conditional knockout (KO), we created mice in which the same exon was deleted in all cell lineages, and compared their phenotypes with those of the jsap1 conventional KO mice reported previously. The two KO lines showed indistinguishable phenotypes, i.e., neonatal death and morphological defects in the telencephalon, indicating that the conditional deletion was a true null mutation. We then introduced the floxed jsap1 deletion mutant specifically into the neural lineage, and found that the jsap1 conditional KO mice showed essentially the same phenotypes as the JSAP1-null mice. These results strongly suggest that the neonatal death of jsap1-deficient mice is caused by defects in the nervous system.
Collapse
Affiliation(s)
- Asuka Iwanaga
- Division of Molecular Cell Signaling, Department of Molecular and Cellular Biology, Cancer Research Institute, Kanazawa University, Ishikawa 920-0934, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Bayarsaikhan M, Takino T, Gantulga D, Sato H, Ito T, Yoshioka K. Regulation of N-cadherin-based cell–cell interaction by JSAP1 scaffold in PC12h cells. Biochem Biophys Res Commun 2007; 353:357-62. [PMID: 17188238 DOI: 10.1016/j.bbrc.2006.12.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 12/05/2006] [Indexed: 12/16/2022]
Abstract
We previously reported that the level of c-Jun NH2-terminal kinase (JNK)/stress-activated protein kinase-associated protein 1 (JSAP1), a scaffold protein for JNK signaling, increases dramatically during nerve growth factor (NGF)-induced differentiation of PC12h cells. In the present study, we investigated the function of JSAP1 during PC12h cell differentiation by knocking down the level of JSAP1. The depletion of JSAP1 caused NGF-treated PC12h cells to form aggregates and impaired their differentiation. The aggregation was not observed in JSAP1-depleted cells that were untreated or treated with epidermal growth factor. Immunocytochemical studies indicated that N-cadherin, but not E-cadherin, was localized to sites of cell-cell contact in the aggregated cells. Furthermore, an inhibitory anti-N-cadherin antibody completely blocked the aggregation. Taken together, these results suggest that JSAP1 regulates cell-cell interactions in PC12h cells specifically in the NGF-induced signaling pathway, and does so by modulating N-cadherin.
Collapse
Affiliation(s)
- Munkhuu Bayarsaikhan
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-0934, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Waetzig V, Zhao Y, Herdegen T. The bright side of JNKs-Multitalented mediators in neuronal sprouting, brain development and nerve fiber regeneration. Prog Neurobiol 2006; 80:84-97. [PMID: 17045385 DOI: 10.1016/j.pneurobio.2006.08.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 08/25/2006] [Accepted: 08/30/2006] [Indexed: 12/11/2022]
Abstract
The c-Jun N-terminal kinases (JNKs) are important regulators of physiological and pathological processes in the central and peripheral nervous system. In general, JNKs are considered as mediators of neuronal degeneration in response to stress and injury. However, recent data have provided substantial evidence that JNKs are also essential for physiological and regenerative signalling in neurons. This review summarizes the importance of JNKs for neurite formation and outgrowth, brain development, dendritic architecture and regeneration of nerve fibers after injury. We discuss putative mechanisms which control the bipartite actions of individual JNK isoforms for neuronal death and repair after nerve fiber injury with a particular focus on the role of the transcription factor c-Jun.
Collapse
Affiliation(s)
- Vicki Waetzig
- Institute of Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Hospitalstrasse 4, 24105 Kiel, Germany
| | | | | |
Collapse
|
14
|
Yamada K, Kanda H, Tanaka S, Takamatsu N, Shiba T, Ito M. Sox15 enhances trophoblast giant cell differentiation induced by Hand1 in mouse placenta. Differentiation 2006; 74:212-21. [PMID: 16759287 DOI: 10.1111/j.1432-0436.2006.00070.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Some members of the Sry-type HMG box (Sox) protein family play important roles in embryogenesis as transcription factors. Here, we report that Sox15 transcripts were much more abundant in mouse placenta than in the fetus, the yolk sac, or several adult tissues. In situ hybridization analysis of the mouse E8.0 conceptus indicated that Sox15 mRNA was predominantly expressed in the trophoblast giant cells of the placenta. We also observed that the amount of Sox15 mRNA dramatically increased during the differentiation of mouse trophoblast stem cells. Ectopic expression of Sox15 in Rat choriocarcinoma cells enhanced the giant cell differentiation induced by a bHLH transcription factor, Hand1. Binding experiments in cotransfected 293 T cells and in vitro revealed that Sox15 interacted with Hand1. We next examined the effects of this interaction on the transcriptional activity of Hand1 and Sox15 using the luciferase reporter assay. Overexpression of Hand1 repressed the Sox15-driven reporter expression, but Sox15 enhanced the Hand1-driven transcription. This enhancement required both the Hand1-binding region and the transactivation domain of Sox15. These results may suggest that the increased transcriptional activity of Hand1 caused by Sox15 might promote the transcription of the target gene resulting in the trophoblast giant cell differentiation in the mouse placenta.
Collapse
Affiliation(s)
- Kayo Yamada
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Miura E, Fukaya M, Sato T, Sugihara K, Asano M, Yoshioka K, Watanabe M. Expression and distribution of JNK/SAPK-associated scaffold protein JSAP1 in developing and adult mouse brain. J Neurochem 2006; 97:1431-46. [PMID: 16606357 DOI: 10.1111/j.1471-4159.2006.03835.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The c-Jun N-terminal kinase (JNK) is one of the three major mitogen-activated protein kinases (MAPKs) playing key roles in various cellular processes in response to both extracellular and intracellular stimuli. JNK/SAPK-associated protein 1 (JSAP1 also referred to as JIP3) is a JNK-associated scaffold that controls the specificity and efficiency of JNK signaling cascades. Here we studied its expression in mouse brains. JSAP1 mRNA was expressed in developing and adult brains, showing spatial patterns similar to JNK1-3 mRNAs. In embryos, JSAP1 immunolabeling was intense for progenitor cells in the ventricular zone throughout the brain and in the external granular layer of the cerebellum, and for neurons and glial cells differentiating in the mantle zone. In adults, JSAP1 was distributed in various neurons and Bergmann glia, with higher levels in striatal cholinergic interneurons, telencephalic parvalbumin-positive interneurons and cerebellar Purkinje cells. In these neurons, JSAP1 was observed as tiny particulate staining in spines, dendrites, perikarya and axons, where it was often associated with the smooth endoplasmic reticulum (sER) and cell membrane. Immunoblots revealed enriched distribution in the microsomal fraction and cytosolic fraction. Therefore, the characteristic cellular expression and subcellular distribution of JSAP1 might be beneficial for cells to efficiently link external stimuli to the JNK MAPK pathway and other intracellular machineries.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Axons/metabolism
- Axons/ultrastructure
- Brain/cytology
- Brain/embryology
- Brain/metabolism
- Cell Differentiation/physiology
- Cell Membrane/metabolism
- Cell Membrane/ultrastructure
- Cerebellum/cytology
- Cerebellum/embryology
- Cerebellum/metabolism
- Cytosol/metabolism
- Cytosol/ultrastructure
- Dendritic Spines/metabolism
- Dendritic Spines/ultrastructure
- Endoplasmic Reticulum, Smooth/metabolism
- Endoplasmic Reticulum, Smooth/ultrastructure
- Fluorescent Antibody Technique
- Gene Expression Regulation, Developmental/physiology
- In Situ Hybridization
- JNK Mitogen-Activated Protein Kinases/metabolism
- MAP Kinase Kinase 4/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Electron, Transmission
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neuroglia/cytology
- Neuroglia/metabolism
- Neurons/cytology
- Neurons/metabolism
- RNA, Messenger/metabolism
- Stem Cells/cytology
- Stem Cells/metabolism
- Telencephalon/cytology
- Telencephalon/embryology
- Telencephalon/metabolism
Collapse
Affiliation(s)
- Eriko Miura
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Ha HY, Cho IH, Lee KW, Lee KW, Song JY, Kim KS, Yu YM, Lee JK, Song JS, Yang SD, Shin HS, Han PL. The axon guidance defect of the telencephalic commissures of the JSAP1-deficient brain was partially rescued by the transgenic expression of JIP1. Dev Biol 2005; 277:184-99. [PMID: 15572149 DOI: 10.1016/j.ydbio.2004.09.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 09/12/2004] [Accepted: 09/13/2004] [Indexed: 11/17/2022]
Abstract
The JNK interacting protein, JSAP1, has been identified as a scaffold protein for mitogen-activated protein kinase (MAPK) signaling pathways and as a linker protein for the cargo transport along the axons. To investigate the physiological function of JSAP1 in vivo, we generated mice lacking JSAP1. The JSAP1 null mutation produced various developmental deficits in the brain, including an axon guidance defect of the corpus callosum, in which phospho-FAK and phospho-JNK were distributed at reduced levels. The axon guidance defect of the corpus callosum in the jsap1-/- brain was correlated with the misplacement of glial sling cells, which reverted to their normal position after the transgenic expression of JNK interacting protein 1(JIP1). The transgenic JIP1 partially rescued the axon guidance defect of the corpus callosum and the anterior commissure of the jsap1-/- brain. The JSAP1 null mutation impaired the normal distribution of the Ca+2 regulating protein, calretinin, but not the synaptic vesicle marker, SNAP-25, along the axons of the thalamocortical tract. These results suggest that JSAP1 is required for the axon guidance of the telencephalic commissures and the distribution of cellular protein(s) along axons in vivo, and that the signaling network organized commonly by JIP1 and JSAP1 regulates the axon guidance in the developing brain.
Collapse
Affiliation(s)
- Hye-Yeong Ha
- Department of Neuroscience, Neuroscience Research Center and Medical Research Institute, Ewha Womans University School of Medicine, Seoul 110-783, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sakamoto R, Byrd DT, Brown HM, Hisamoto N, Matsumoto K, Jin Y. The Caenorhabditis elegans UNC-14 RUN domain protein binds to the kinesin-1 and UNC-16 complex and regulates synaptic vesicle localization. Mol Biol Cell 2004; 16:483-96. [PMID: 15563606 PMCID: PMC545882 DOI: 10.1091/mbc.e04-07-0553] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Kinesin-1 is a heterotetramer composed of kinesin heavy chain (KHC) and kinesin light chain (KLC). The Caenorhabditis elegans genome has a single KHC, encoded by the unc-116 gene, and two KLCs, encoded by the klc-1 and klc-2 genes. We show here that UNC-116/KHC and KLC-2 form a complex orthologous to conventional kinesin-1. KLC-2 also binds UNC-16, the C. elegans JIP3/JSAP1 JNK-signaling scaffold protein, and the UNC-14 RUN domain protein. The localization of UNC-16 and UNC-14 depends on kinesin-1 (UNC-116 and KLC-2). Furthermore, mutations in unc-16, klc-2, unc-116, and unc-14 all alter the localization of cargos containing synaptic vesicle markers. Double mutant analysis is consistent with these four genes functioning in the same pathway. Our data support a model whereby UNC-16 and UNC-14 function together as kinesin-1 cargos and regulators for the transport or localization of synaptic vesicle components.
Collapse
Affiliation(s)
- Rie Sakamoto
- Department of Molecular Biology, Graduate School of Science, Nagoya University and Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Nagoya 464-8602, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Sato S, Ito M, Ito T, Yoshioka K. Scaffold protein JSAP1 is transported to growth cones of neurites independent of JNK signaling pathways in PC12h cells. Gene 2004; 329:51-60. [PMID: 15033528 DOI: 10.1016/j.gene.2003.12.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 12/05/2003] [Accepted: 12/30/2003] [Indexed: 11/27/2022]
Abstract
The c-Jun NH(2)-terminal kinase (JNK)/stress-activated protein kinase-associated protein 1 [JSAP1; also known as JNK-interacting protein 3 (JIP3)] has been identified as a scaffold protein for JNK mitogen-activated protein kinase signal transduction pathways and as a cargo adapter in the conventional kinesin-mediated transport system. Furthermore, a functional relationship between UNC-16, the C. elegans ortholog of JSAP1, and JNK signaling has been established genetically. In this study, we first demonstrated that the kinesin light chain is required for the targeting and localization of JSAP1 to the tips of neurites in PC12h cells. Furthermore, to understand whether JNK signaling is involved in kinesin-mediated JSAP1 trafficking, we established stable PC12h cell lines that expressed wild-type JSAP1 or its mutant lacking the JNK-binding domain (JBD). Immunocytochemical studies of the cell lines indicated that the mutant JSAP1 was localized to the growth cones of differentiating PC12h cells in a similar manner to wild-type JSAP1. Taken together, these results suggest that the proper subcellular localization of JSAP1 along microtubules probably does not require JNK signaling.
Collapse
Affiliation(s)
- Shinji Sato
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan
| | | | | | | |
Collapse
|
19
|
Abstract
Cellular response to genotoxic stress is a very complex process, and it usually starts with the “sensing” or “detection” of the DNA damage, followed by a series of events that include signal transduction and activation of transcription factors. The activated transcription factors induce expressions of many genes which are involved in cellular functions such as DNA repair, cell cycle arrest, and cell death. There have been extensive studies from multiple disciplines exploring the mechanisms of cellular genotoxic responses, which have resulted in the identification of many cellular components involved in this process, including the mitogen-activated protein kinases (MAPKs) cascade. Although the initial activation of protein kinase cascade is not fully understood, human protein kinases ATM (ataxia-telangiectasia, mutated) and ATR (ATM and Rad3-related) are emerging as potential sensors of DNA damage. Current progresses in ATM/ATR research and related signaling pathways are discussed in this review, in an effort to facilitate a better understanding of genotoxic stress response.
Collapse
Affiliation(s)
- Jun Yang
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, 353 Yanan Road, Hangzhou, 310031, Zhejiang Province, China
| | | | | | | | | | | |
Collapse
|
20
|
Kelkar N, Delmotte MH, Weston CR, Barrett T, Sheppard BJ, Flavell RA, Davis RJ. Morphogenesis of the telencephalic commissure requires scaffold protein JNK-interacting protein 3 (JIP3). Proc Natl Acad Sci U S A 2003; 100:9843-8. [PMID: 12897243 PMCID: PMC187860 DOI: 10.1073/pnas.1733944100] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The murine JNK-interacting protein 3 (JIP3) protein (also known as JSAP1) is expressed exclusively in neurons and has been identified as a scaffold protein for the c-Jun NH2-terminal kinase (JNK) signaling pathway and as an adapter protein for cargo transport by the microtubule motor protein kinesin. To investigate the physiological function of JIP3, we examined the effect of Jip3 gene disruption in mice. The Jip3-/- mice were unable to breathe and died shortly after birth. Microscopic analysis demonstrated that Jip3 gene disruption causes severe defects in the morphogenesis of the telencephalon. Jip3-/- mice lack the telencephalic commissure, a major connection between the left and right hemispheres of the brain. The central nervous system abnormalities of Jip3-/- mice may be accounted for in part by a reduction in signal transduction by RhoA and its effector ROCK.
Collapse
Affiliation(s)
- Nyaya Kelkar
- Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Jurewicz A, Matysiak M, Tybor K, Selmaj K. TNF-induced death of adult human oligodendrocytes is mediated by c-jun NH2-terminal kinase-3. Brain 2003; 126:1358-70. [PMID: 12764057 DOI: 10.1093/brain/awg146] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Tumour necrosis factor (TNF) induces death of oligodendrocytes, the putative cell target in multiple sclerosis. We defined that the intracellular transduction pathway involved in TNF-induced death of human adult oligodendrocytes (hOLs) is dependent on c-jun NH(2)-terminal kinase (JNK) activation, but not the other mitogen-activated protein kinase (MAPK), p38. JNK activation, measured by c-jun phosphorylation and induction of the phosphorylated form of JNK, was enhanced, prolonged and correlated with cell death in hOLs exposed to TNF. Comparative autoradiographic analysis revealed that JNK-3, but not JNK-1 or JNK-2, is responsible for prolonged JNK activation in TNF exposed hOLs. Expression of a dominant-negative mutant of JNK upstream kinase, MKK4/SEK1, inhibited apoptosis induced by TNF, whereas expression of a constitutive active mutant of MEKK1, an upstream kinase to JNK, accelerates TNF-induced apoptosis. JNK activation occurred prior to changes of mitochondrial membrane potential in hOLs exposed to TNF. These results demonstrate that TNF-induced death in adult hOLs depends on prolonged JNK-3 activation, and that this apoptosis requires the mitochondrial dysfunction that occurs after JNK activation. This is the first evidence that a JNK-3 isoform is involved in oligodendrocyte death and might have significant importance in designing new molecules to protect hOLs demise in multiple sclerosis.
Collapse
Affiliation(s)
- Anna Jurewicz
- Department of Neurology, Medical University of Lodz, Lodz, Poland
| | | | | | | |
Collapse
|
22
|
Yang J, Yu Y, Duerksen-Hughes PJ. Protein kinases and their involvement in the cellular responses to genotoxic stress. Mutat Res 2003; 543:31-58. [PMID: 12510016 DOI: 10.1016/s1383-5742(02)00069-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cells are constantly subjected to genotoxic stress, and much has been learned regarding their response to this type of stress during the past year. In general, the cellular genotoxic response can be thought to occur in three stages: (1) damage sensing; (2) activation of signal transduction pathways; (3) biological consequences and attenuation of the response. The biological consequences, in particular, include cell cycle arrest and cell death. Although our understanding of the molecular mechanisms underlying cellular genotoxic stress responses remains incomplete, many cellular components have been identified over the years, including a group of protein kinases that appears to play a major role. Various DNA-damaging agents can activate these protein kinases, triggering a protein phosphorylation cascade that leads to the activation of transcription factors, and altering gene expression. In this review, the involvement of protein kinases, particularly the mitogen-activated protein kinases (MAPKs), at different stages of the genotoxic response is discussed.
Collapse
Affiliation(s)
- Jun Yang
- Department of Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310031, China
| | | | | |
Collapse
|
23
|
Byrd DT, Kawasaki M, Walcoff M, Hisamoto N, Matsumoto K, Jin Y. UNC-16, a JNK-signaling scaffold protein, regulates vesicle transport in C. elegans. Neuron 2001; 32:787-800. [PMID: 11738026 DOI: 10.1016/s0896-6273(01)00532-3] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transport of synaptic components is a regulated process. Loss-of-function mutations in the C. elegans unc-16 gene result in the mislocalization of synaptic vesicle and glutamate receptor markers. unc-16 encodes a homolog of mouse JSAP1/JIP3 and Drosophila Sunday Driver. Like JSAP1/JIP3, UNC-16 physically interacts with JNK and JNK kinases. Deletion mutations in Caenorhabditis elegans JNK and JNK kinases result in similar mislocalization of synaptic vesicle markers and enhance weak unc-16 mutant phenotypes. unc-116 kinesin heavy chain mutants also mislocalize synaptic vesicle markers, as well as a functional UNC-16::GFP. Intriguingly, unc-16 mutations partially suppress the vesicle retention defect in unc-104 KIF1A kinesin mutants. Our results suggest that UNC-16 may regulate the localization of vesicular cargo by integrating JNK signaling and kinesin-1 transport.
Collapse
Affiliation(s)
- D T Byrd
- Department of MCD Biology, Sinsheimer Laboratories, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | |
Collapse
|