1
|
Fortier-Lebel N, Nakajima T. Exploring the Consistent Roles of Motor Areas Across Voluntary Movement and Locomotion. Neuroscientist 2025; 31:279-295. [PMID: 39041460 PMCID: PMC12103638 DOI: 10.1177/10738584241263758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Multiple cortical motor areas are critically involved in the voluntary control of discrete movement (e.g., reaching) and gait. Here, we outline experimental findings in nonhuman primates with clinical reports and research in humans that explain characteristic movement control mechanisms in the primary, supplementary, and presupplementary motor areas, as well as in the dorsal premotor area. We then focus on single-neuron activity recorded while monkeys performed motor sequences consisting of multiple discrete movements, and we consider how area-specific control mechanisms may contribute to the performance of complex movements. Following this, we explore the motor areas in cats that we have considered as analogs of those in primates based on similarities in their cortical surface topology, anatomic connections, microstimulation effects, and activity patterns. Emphasizing that discrete movement and gait modification entail similar control mechanisms, we argue that single-neuron activity in each area of the cat during gait modification is compatible with the function ascribed to the activity in the corresponding area in primates, recorded during the performance of discrete movements. The findings that demonstrate the premotor areas' contribution to locomotion, currently unique to the cat model, should offer highly valuable insights into the control mechanisms of locomotion in primates, including humans.
Collapse
Affiliation(s)
- Nicolas Fortier-Lebel
- Département de neurosciences, Département de médecine, Centre interdisciplinaire de recherche sur le cerveau et l’apprentissage, Groupe de recherche sur la signalisation neurale et la circuiterie, Université de Montréal, Montréal, Canada
| | - Toshi Nakajima
- Department of Physiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| |
Collapse
|
2
|
Zhao Z, Zhang B, Gan R, Xie H, Shao Y, Xu K, Jia Z. Causal relationships between white matter connectome and mental disorders: a large-scale genetic correlation study. J Affect Disord 2025; 386:119469. [PMID: 40419157 DOI: 10.1016/j.jad.2025.119469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 05/18/2025] [Accepted: 05/23/2025] [Indexed: 05/28/2025]
Abstract
BACKGROUND Abnormalities in white matter integrity in mental disorders have attracted widespread attention, yet the genetic correlations and causal effects between white matter structural connectome and various psychiatric conditions remain largely unexplored. METHODS In this study, we employed linkage disequilibrium score (LDSC) and high-definition likelihood (HDL) methods to analyze genetic correlations between white matter connectome and mental disorders, followed by bidirectional two-sample Mendelian randomization (MR) analysis to investigate causal relationships. We utilized 206 white matter connectome magnetic resonance imaging (MRI) phenotypes derived from the processed UK Biobank dataset (n = 26,333 individuals) and 12 mental disorders from the latest FinnGen database (n = 402,965 to 449,029 individuals). RESULTS Using both methods, we observed 26 pairs of brain white matter connectivity phenotypes and mental disorders showing significant correlations. Forward MR analysis identified two white matter structural connectome phenotypes causally associated with psychiatric disorder risk. Increased connectivity in left-hemisphere visual network(VIS) to right-hemisphere limbic network(LIM)white-matter structural connectivity was associated with increased risk of anxiety disorders. Additionally, decreased connectivity in left-hemisphere visual network to hippocampus white-matter structural connectivity was associated with reduced risk of post-traumatic stress disorder (PTSD). However, reverse MR analysis results did not survive multiple testing correction. CONCLUSION These findings provide crucial insights into the complex interplay between white matter structural connectivity and mental disorders, potentially offering new avenues for understanding the neurobiological underpinnings of psychiatric conditions and informing future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Ziru Zhao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Baoshuai Zhang
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Ruoqiu Gan
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Hongsheng Xie
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yingbo Shao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Kun Xu
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
3
|
Paracka L, Heldmann M, Lange F, Saryyeva A, Klietz M, Münte TF, Kopp B, Wegner F, Krauss JK. Subthalamic nucleus dynamics during executive functioning: Insights from local field potentials in Parkinson's disease. Neuroscience 2025; 574:65-73. [PMID: 40210195 DOI: 10.1016/j.neuroscience.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
This study explores the involvement of the subthalamic nucleus (STN) in executive functions, particularly cognitive flexibility, in Parkinson's disease (PD) patients. Utilizing a computerized Wisconsin Card Sorting Task (WCST) and local field potential (LFP) recordings from implanted deep brain stimulation (DBS) electrodes, we investigated task-specific neural dynamics. Behavioural results demonstrated increased error rates and prolonged response times in trials requiring set-shifting and rule induction via cross-temporal information integration. Electrophysiological analyses revealed integration-specific LFP modulations, including enhanced theta-band activity linked to conflict monitoring and cognitive control during high-demand trials, and beta-band suppression associated with motor inhibition and task disengagement. These findings underscore the STN's integrative role in non-motor domains, supporting its function in cross-temporal information integration for cognitive control. The results also highlight the utility of the WCST for assessing multiple executive processes and the potential of LFP-based biomarkers to refine DBS programming. Despite the relatively small sample size, this study provides novel insights into the oscillatory dynamics of the STN, emphasizing its broader role in decision-making and executive control. Future research should expand the understanding of the STN's contributions across cognitive domains.
Collapse
Affiliation(s)
- Lejla Paracka
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Marcus Heldmann
- Department Neurology, University Medical Center Schleswig-Holstein, Lübeck, Germany; Center for Brain Behavior and Metabolism, University of Lübeck, Germany
| | - Florian Lange
- Department of Neurology, Hannover Medical School, Hannover, Germany; Behavioral Economics and Engineering Group, KU Leuven, Belgium
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Martin Klietz
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Thomas F Münte
- Center for Brain Behavior and Metabolism, University of Lübeck, Germany.
| | - Bruno Kopp
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany; Center of Systems Neuroscience, Hannover, Germany
| |
Collapse
|
4
|
Cole RC, Ging-Jehli NR, Vivanco Suarez J, Greenlee JD, Wessel JR, Espinoza AI, Zhang J, Cavanagh JF, Narayanan NS. Theta-frequency subthalamic nucleus stimulation increases decision threshold. Brain Stimul 2025; 18:1021-1027. [PMID: 40374107 DOI: 10.1016/j.brs.2025.05.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/17/2025] Open
Abstract
INTRODUCTION Executive functions are often impaired in patients with Parkinson's disease (PD), and these deficits can be predicted by decreased frontal cortical 4-8 Hz theta activity that is associated with cognitive control. Previous work has shown that stimulating the subthalamic nucleus (STN) at theta frequencies via deep-brain stimulation (DBS) can improve cognitive control. Here we tested the neurocomputational hypothesis that stimulating STN theta activity increases decision thresholds, supporting more deliberate responding and nuanced adaptation under task trials that require cognitive control. METHODS We tested 15 patients with PD receiving STN DBS at standard therapeutic frequencies ∼130 Hz and at 4 Hz while performing a Simon reaction-time task and applied computational diffusion decision modeling analyses to quantify the latent cognitive characteristic of response cautiousness via the well-established model parameter known as the decision threshold. This computational analysis better accounts for the speed-accuracy trade off when making deliberate choices. RESULTS We found that ∼130-Hz STN DBS decreased decision thresholds in line with our prior work, and we report new results showing that 4-Hz STN DBS increased decision thresholds. CONCLUSIONS These findings extend our knowledge of how the STN controls decision thresholds. Future work will study the STN's role in motor and cognitive control and how stimulating this region may modulate cognition in PD.
Collapse
Affiliation(s)
- Rachel C Cole
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Nadja R Ging-Jehli
- Department of Cognitive and Psychological Sciences, Carney Institute for Brain Sciences, Providence, RI, 02912, USA
| | | | - Jeremy D Greenlee
- Department of Neurosurgery, University of Iowa, Iowa City, IA, 52242, USA
| | - Jan R Wessel
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Arturo I Espinoza
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Johnson Zhang
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - James F Cavanagh
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA.
| | | |
Collapse
|
5
|
Vignal L, Vielle C, Williams M, Maurice N, Degoulet M, Baunez C. Subthalamic high-frequency deep brain stimulation reduces addiction-like alcohol use and the possible negative influence of a peer presence. Psychopharmacology (Berl) 2025; 242:1055-1067. [PMID: 38307944 PMCID: PMC12043794 DOI: 10.1007/s00213-024-06532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
RATIONALE The immediate social context significantly influences alcohol consumption in humans. Recent studies have revealed that peer presence could modulate drugs use in rats. The most efficient condition to reduce cocaine intake is the presence of a stranger peer, naive to drugs. Deep brain stimulation (DBS) of the Subthalamic Nucleus (STN), which was shown to have beneficial effects on addiction to cocaine or alcohol, also modulates the protective influence of peer's presence on cocaine use. OBJECTIVES This study aimed to: 1) explore how the presence of an alcohol-naive stranger peer affects recreational and escalated alcohol intake, and 2) assess the involvement of STN on alcohol use and in the modulation induced by the presence of an alcohol-naïve stranger peer. METHODS Rats with STN DBS and control animals self-administered 10% (v/v) ethanol in presence, or absence, of an alcohol-naive stranger peer, before and after escalation of ethanol intake (observed after intermittent alcohol (20% (v/v) ethanol) access). RESULTS Neither STN DBS nor the presence of an alcohol-naive stranger peer modulated significantly recreational alcohol intake. After the escalation procedure, STN DBS reduced ethanol consumption. The presence of an alcohol-naive stranger peer increased consumption only in low drinkers, which effect was suppressed by STN DBS. CONCLUSIONS These results highlight the influence of a peer's presence on escalated alcohol intake, and confirm the role of STN in addiction-like alcohol intake and in the social influence on drug consumption.
Collapse
Affiliation(s)
- Lucie Vignal
- Institut de Neurosciences de La Timone, UMR 7289 CNRS & Aix-Marseille Université, 13005, Marseille, France
| | - Cassandre Vielle
- Institut de Neurosciences de La Timone, UMR 7289 CNRS & Aix-Marseille Université, 13005, Marseille, France
| | - Maya Williams
- Institut de Neurosciences de La Timone, UMR 7289 CNRS & Aix-Marseille Université, 13005, Marseille, France
| | - Nicolas Maurice
- Institut de Neurosciences de La Timone, UMR 7289 CNRS & Aix-Marseille Université, 13005, Marseille, France
| | - Mickael Degoulet
- Institut de Neurosciences de La Timone, UMR 7289 CNRS & Aix-Marseille Université, 13005, Marseille, France
| | - Christelle Baunez
- Institut de Neurosciences de La Timone, UMR 7289 CNRS & Aix-Marseille Université, 13005, Marseille, France.
| |
Collapse
|
6
|
Yao P, Sharma A, Abdi‐Sargezeh B, Liu T, Tan H, Hahn A, Starr P, Little S, Oswal A. Beta Burst Characteristics and Coupling within the Sensorimotor Cortical-Subthalamic Nucleus Circuit Dynamically Relate to Bradykinesia in Parkinson's Disease. Mov Disord 2025; 40:962-968. [PMID: 40013548 PMCID: PMC12089894 DOI: 10.1002/mds.30163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/20/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Bursts of exaggerated subthalamic nucleus (STN) beta activity are believed to contribute to clinical impairments in Parkinson's disease (PD). No previous studies have explored burst characteristics and coupling across the sensorimotor cortical-STN circuit and determined their relationship to dynamic measurements of bradykinesia. OBJECTIVE We sought to (1) establish the characteristics of sensorimotor cortical and STN bursts during naturalistic behaviors, (2) determine the predictability of STN bursts from motor cortical recordings, and (3) relate burst features to continuous measurements of bradykinesia using wearable sensors. METHODS We analyzed 1046 h of wirelessly streamed bilateral sensorimotor cortical and STN recordings from 5 PD patients with concurrent measurements of bradykinesia. RESULTS STN bursts were longer than cortical bursts and had shorter inter-burst intervals. Long bursts (>200 ms) in both structures displayed temporal overlap (>30%), with cortical bursts tending to lead STN burst onset by 8 ms. Worsening bradykinesia was linked to increased cortical burst rates and durations, whereas STN burst properties had the opposite effect. CONCLUSION Cortical beta bursts tend to precede STN beta bursts with short delays and their occurrence relates to worsening bradykinesia in naturalistic settings. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Pan Yao
- MRC Brain Network Dynamics Unit, University of OxfordOxfordUnited Kingdom
- State Key Laboratory of Transducer TechnologyAerospace Information Research Institute (AIR), Chinese Academy of SciencesBeijingChina
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences (UCAS)BeijingChina
| | - Abhinav Sharma
- MRC Brain Network Dynamics Unit, University of OxfordOxfordUnited Kingdom
| | | | - Tao Liu
- MRC Brain Network Dynamics Unit, University of OxfordOxfordUnited Kingdom
| | - Huiling Tan
- MRC Brain Network Dynamics Unit, University of OxfordOxfordUnited Kingdom
| | - Amelia Hahn
- Department of Neurological SurgeryWeill Institute for Neurosciences, University of California, San FranciscoSan FranciscoCAUSA
| | - Philip Starr
- Department of Neurological SurgeryWeill Institute for Neurosciences, University of California, San FranciscoSan FranciscoCAUSA
| | - Simon Little
- Department of Neurological SurgeryWeill Institute for Neurosciences, University of California, San FranciscoSan FranciscoCAUSA
| | - Ashwini Oswal
- MRC Brain Network Dynamics Unit, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
7
|
Madokoro Y, Inoue H, Fujioka T, Mizuno M, Oomura M, Matsukawa N. [A case of unilateral chorea associated with cortical infarction with transient cortical and striatal hyperperfusion]. Rinsho Shinkeigaku 2025; 65:290-293. [PMID: 40128926 DOI: 10.5692/clinicalneurol.cn-002037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Although disruption of basal ganglia loops due to reduced cortical blood flow has been postulated as a possible mechanism for chorea after cortical infarction, detailed studies have not been conducted. We report a case of cardiogenic cerebral embolism of the right frontal to insular cortex due to occlusion of the right M2 branch, followed by the appearance of chorea in the left upper limb on the next day, recanalization of the occluded vessel, and hyperperfusion detected in the same area of brain via single-photon emission computed tomography (SPECT). Interestingly, the blood flow to the right striatum, which was not infarcted, was increased; however, this was not observed after the disappearance of chorea. We speculated that hyperperfusion after cortical infarction affected the striatum, which resulted in the emergence of chorea. In addition to cortical infarction, increased cortical blood flow due to recanalization should be considered as a possible mechanism for chorea development due to cortical infarction.
Collapse
Affiliation(s)
- Yuta Madokoro
- Department of Neurology, Nagoya City University Hospital
| | - Hiroyasu Inoue
- Department of Neurology, Nagoya City University Hospital
| | - Teppei Fujioka
- Department of Neurology, Nagoya City University Hospital
| | | | | | | |
Collapse
|
8
|
Du D, Fu W, Su S, Mao X, Yang L, Xu M, Yuan Y, Gao Y, Geng Z, Chen Y, Zhao M, Fu Y, Yin F, Han H. Remote Regulation of Molecular Diffusion in Extracellular Space of Parkinson's Disease Rat Model by Subthalamic Nucleus Deep Brain Stimulation. CYBORG AND BIONIC SYSTEMS 2025; 6:0218. [PMID: 40190716 PMCID: PMC11969791 DOI: 10.34133/cbsystems.0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/30/2024] [Accepted: 12/29/2024] [Indexed: 04/09/2025] Open
Abstract
Subthalamic nucleus deep brain stimulation (STN-DBS) is an effective therapy for Parkinson's disease (PD). However, the therapeutic mechanisms remain incompletely understood, particularly regarding the extracellular space (ECS), a critical microenvironment where molecular diffusion and interstitial fluid (ISF) dynamics are essential for neural function. This study aims to explore the regulatory mechanisms of the ECS in the substantia nigra (SN) of PD rats following STN-DBS. To evaluate whether STN-DBS can modulate ECS diffusion and drainage, we conducted quantitative measurements using a tracer-based magnetic resonance imaging. Our findings indicated that, compared to the PD group, STN-DBS treatment resulted in a decreased diffusion coefficient (D*), shorted half-life (T 1/2), and increased clearance coefficient (k') in the SN. To investigate the mechanisms underlying these changes in molecular diffusion, we employed enzyme-linked immunosorbent assay (ELISA), Western blotting (WB), and microdialysis techniques. The results revealed that STN-DBS led to an increase in hyaluronic acid content, elevated expression of excitatory amino acid transporter 2 (EAAT2), and a reduction in extracellular glutamate concentration. Additionally, to further elucidate the mechanisms influencing ISF drainage, we employed immunofluorescence and immunohistochemical techniques for staining aquaporin-4 (AQP-4) and α-synuclein. The results demonstrated that STN-DBS restored the expression of AQP-4 while decreasing the expression of α-synuclein. In conclusion, our findings suggest that STN-DBS improves PD symptoms by modifying the ECS and enhancing ISF drainage in the SN regions. These results offer new insights into the mechanisms and long-term outcomes of DBS in ECS, paving the way for precision therapies.
Collapse
Affiliation(s)
- Dan Du
- Department of Radiology,
Peking University Third Hospital, Beijing 100191, China
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao 066000, China
| | - Wanyi Fu
- Department of Electronic Engineering,
Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology,
Peking University Third Hospital, Beijing 100191, China
| | - Shaoyi Su
- Institute of Medical Technology,
Peking University Health Science Center, Beijing 100191, China
| | - Xin Mao
- Department of Radiology,
Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology,
Peking University Third Hospital, Beijing 100191, China
| | - Liu Yang
- Department of Radiology,
Peking University Third Hospital, Beijing 100191, China
| | - Meng Xu
- Institute of Medical Technology,
Peking University Health Science Center, Beijing 100191, China
| | - Yi Yuan
- School of Electrical Engineering,
Yanshan University, Qinhuangdao 066004, China
| | - Yajuan Gao
- Department of Radiology,
Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology,
Peking University Third Hospital, Beijing 100191, China
- Institute of Medical Technology,
Peking University Health Science Center, Beijing 100191, China
- National Medical Products Administration Key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing 100191, China
| | - Ziyao Geng
- Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology,
Peking University Third Hospital, Beijing 100191, China
| | - Yanjing Chen
- Department of Radiology,
Peking University Third Hospital, Beijing 100191, China
| | - Mingming Zhao
- Department of Neurosurgery, Aerospace Center Hospital, Beijing 100049, China
| | - Yu Fu
- Department of Neurology,
Peking University Third Hospital, Beijing 100191, China
| | - Feng Yin
- Department of Neurosurgery, Aerospace Center Hospital, Beijing 100049, China
| | - Hongbin Han
- Department of Radiology,
Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology,
Peking University Third Hospital, Beijing 100191, China
- Institute of Medical Technology,
Peking University Health Science Center, Beijing 100191, China
- National Medical Products Administration Key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing 100191, China
| |
Collapse
|
9
|
Gao J, Liu M, Qian M, Tang H, Wang J, Ma L, Li Y, Dai X, Wang Z, Lu F, Zhang F. Fine-scale striatal parcellation using diffusion MRI tractography and graph neural networks. Med Image Anal 2025; 101:103482. [PMID: 39954340 DOI: 10.1016/j.media.2025.103482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/17/2025]
Abstract
The striatum, a crucial part of the basal ganglia, plays a key role in various brain functions through its interactions with the cortex. The complex structural and functional diversity across subdivisions within the striatum highlights the necessity for precise striatal segmentation. In this study, we introduce a novel deep clustering pipeline for automated, fine-scale parcellation of the striatum using diffusion MRI (dMRI) tractography. Initially, we employ a voxel-based probabilistic fiber tractography algorithm combined with a fiber-tract embedding technique to capture intricate dMRI connectivity patterns. To maintain critical inter-voxel relationships, our approach employs Graph Neural Networks (GNNs) to create accurate graph representations of the striatum. This involves encoding probabilistic fiber bundle characteristics as node attributes and refining edge weights using activation functions to enhance the graph's interpretability and accuracy. The methodology incorporates a Transformer-based GraphConv autoencoder in the pre-training phase to extract critical spatial features while minimizing reconstruction loss. In the fine-tuning phase, a novel joint loss mechanism markedly improves segmentation precision and anatomical fidelity. Integration of traditional clustering techniques with multi-head self-attention mechanisms further elevates the accuracy and robustness of our segmentation approach. This methodology provides new insights into the striatum's role in cognition and behavior and offers potential clinical applications for neurological disorders.
Collapse
Affiliation(s)
- Jingjing Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.
| | - Mingqi Liu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.
| | - Maomin Qian
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.
| | - Heping Tang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.
| | - Junyi Wang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.
| | - Liang Ma
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States.
| | - Yanling Li
- School of Electrical Engineering and Electronic Information, Xihua University, Chengdu, 610039, Sichuan, China.
| | - Xin Dai
- School of Automation, Chongqing University, Chongqing, 400044, Chongqing, China.
| | - Zhengning Wang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.
| | - Fengmei Lu
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, Chengdu, 611731, Sichuan, China.
| | - Fan Zhang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.
| |
Collapse
|
10
|
Horn A, Li N, Meyer GM, Gadot R, Provenza NR, Sheth SA. Deep Brain Stimulation Response Circuits in Obsessive-Compulsive Disorder. Biol Psychiatry 2025:S0006-3223(25)01096-0. [PMID: 40120789 DOI: 10.1016/j.biopsych.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
In the field of deep brain stimulation (DBS), 2 major themes are currently making significant progress. The first of these is the framework of connectomic DBS, in which circuits that are associated with improvements of specific symptoms are described and targeted to improve and potentially personalize treatment. The second theme is related to the concept of brain sensing and adaptive DBS, which are aimed at identifying neural biomarkers that may guide stimulation in a closed-loop fashion. In DBS for obsessive-compulsive disorder (OCD), substantial progress has been made on both ends over the last 5 years. Together, the results have begun to draw a picture of exactly which circuit is associated with treatment response and how it may be affected by dysfunctional brain activity that may be attenuated using DBS. This knowledge, if further refined and validated, will define where, when, and how to stimulate which patients with OCD. We review the key studies from recent years with the aim of aggregating and condensing findings along both spatial and temporal domains. The result is a concept that anatomically defines a circuit that is likely dysfunctional in patients with typical OCD phenotypes and that may be adaptively targeted using DBS to maximally improve symptoms.
Collapse
Affiliation(s)
- Andreas Horn
- Institute for Network Stimulation, Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, Cologne, Germany; Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts; Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| | - Ningfei Li
- Institute for Network Stimulation, Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, Cologne, Germany; Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Garance M Meyer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ron Gadot
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nicole R Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas; Department of Electrical & Computer Engineering, Rice University, Houston, Texas
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas; Department of Electrical & Computer Engineering, Rice University, Houston, Texas; Department of Neuroscience, Baylor College of Medicine, Houston, Texas; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
11
|
Yu Z, Verstynen T, Rubin JE. How the dynamic interplay of cortico-basal ganglia-thalamic pathways shapes the time course of deliberation and commitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643668. [PMID: 40166196 PMCID: PMC11956933 DOI: 10.1101/2025.03.17.643668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Although the cortico-basal ganglia-thalamic (CBGT) network is identified as a central circuit for decision-making, the dynamic interplay of multiple control pathways within this network in shaping decision trajectories remains poorly understood. Here we develop and apply a novel computational framework - CLAW (Circuit Logic Assessed via Walks) - for tracing the instantaneous flow of neural activity as it progresses through CBGT networks engaged in a virtual decision-making task. Our CLAW analysis reveals that the complex dynamics of network activity is functionally dissectible into two critical phases: deliberation and commitment. These two phases are governed by distinct contributions of underlying CBGT pathways, with indirect and pallidostriatal pathways influencing deliberation, while the direct pathway drives action commitment. We translate CBGT dynamics into the evolution of decision-related policies, based on three previously identified control ensembles (responsiveness, pliancy, and choice) that encapsulate the relationship between CBGT activity and the evidence accumulation process. Our results demonstrate two contrasting strategies for decision-making. Fast decisions, with direct pathway dominance, feature an early response in both boundary height and drift rate, leading to a rapid collapse of decision boundaries and a clear directional bias. In contrast, slow decisions, driven by indirect and pallidostriatal pathway dominance, involve delayed changes in both decision policy parameters, allowing for an extended period of deliberation before commitment to an action. These analyses provide important insights into how the CBGT circuitry can be tuned to adopt various decision strategies and how the decision-making process unfolds within each regime.
Collapse
Affiliation(s)
- Zhuojun Yu
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Timothy Verstynen
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States of America
| | - Jonathan E. Rubin
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States of America
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
12
|
Nieuwenhuys A, Wadsley CG, Sullivan R, Cirillo J, Byblow WD. Tired and out of control? Effects of total and partial sleep deprivation on response inhibition under threat and no-threat conditions. Sleep 2025; 48:zsae275. [PMID: 39579337 PMCID: PMC11893544 DOI: 10.1093/sleep/zsae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/30/2024] [Indexed: 11/25/2024] Open
Abstract
STUDY OBJECTIVES Sleep deprivation may impair top-down inhibitory control over emotional responses (e.g. under threat). The current study examined the behavioral consequences of this phenomenon and manipulated the magnitude of individuals' sleep deficit to determine effect thresholds. METHODS Twenty-four healthy human participants were provided with 0, 2, 4, and 8 hours of sleep opportunity and, subsequently, performed a bimanual anticipatory response inhibition task under threat and no-threat conditions. Behavioral responses (button presses) and surface electromyography (EMG) from task effectors were collected to examine going and stopping processes. RESULTS Bayesian analyses revealed that compared to 8 hours of sleep, go-trial accuracy was reduced with 0 hours of sleep. Stopping speed was reduced with 0 and 2 hours of sleep, as evidenced by longer stop-signal delays, but only in a selective stopping context. None of the outcome measures were impacted by 4 hours of sleep. Under threat, go-trial accuracy was maintained, while responses were slightly delayed and characterized by amplified EMG bursts. Stopping speed was increased under threat across both stop-all and selective stopping contexts. No evidence was observed for interactions between sleep and threat. CONCLUSIONS Sleep deprivation negatively affected response inhibition in a selective stopping context, with stopping speed reduced following a single night of ≤2 hours of sleep. Performance-contingent threat improved response inhibition, possibly due to a prioritizing of stopping. No evidence was observed for increased threat-related responses after sleep deprivation, suggesting that sleep deprivation and threat may impact inhibitory control via independent mechanisms.
Collapse
Affiliation(s)
- Arne Nieuwenhuys
- Movement Neuroscience Laboratory, Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| | - Corey G Wadsley
- Department of Human Physiology, University of Oregon, Eugene, USA
| | - Robyn Sullivan
- Movement Neuroscience Laboratory, Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| | - John Cirillo
- Discipline of Physiology, University of Adelaide, Adelaide, Australia
| | - Winston D Byblow
- Movement Neuroscience Laboratory, Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Shadli SM, Russell BR, Lodhia V, Kirk IJ, Glue P, McNaughton N. Frontal localisation of a theory-based anxiety disorder biomarker - Goal conflict specific rhythmicity. J Affect Disord 2025; 372:287-295. [PMID: 39644930 DOI: 10.1016/j.jad.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/07/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
PURPOSE Anxiety disorders are a major global issue. Diagnosis via symptoms, not biological causes, delivers poor treatment outcomes. Our frontal EEG biomarker, Goal Conflict Specific Rhythmicity (GCSR; 4-12 Hz), developed from our long-standing detailed neuropsychological theory of anxiety processes, is reduced by all chemical types of selective anxiolytic and is high in cases across a range of currently diagnosed anxiety disorders. METHODS We assessed frontal sources of GCSR, recording scalp EEG at either low resolution (Experiment 1, 32 channels, University of Otago, ♀:33, ♂:16) or high resolution (Experiment 2, 128 channels, University of Auckland, ♀:10, ♂:8) in healthy participants performing a Stop Signal Task to generate GCSR as previously. PRINCIPAL RESULTS sLORETA demonstrated GCSR sources consistently in the right inferior frontal gyrus and, more strongly but less consistently, medial frontal gyrus. Variation was consistent with that of stopping in the same Stop Signal Task, depending on task demands. MAJOR CONCLUSIONS The sources of GCSR are consistent with our theory that hippocampal output receives goal information, detects conflict, and returns a negative biasing signal to the areas encoding goals in the current task. They match the variation in the control of stopping when response urgency changes. GCSR appears to index a biological type of anxiety unlike any current diagnosis and should help improve accuracy of diagnosis - anchored to actions of selective anxiolytic drugs. This task-related frontal "theta" rhythmicity provides proof-of-concept for further development of our theory of the neuropsychology of anxiety in direct human tests.
Collapse
Affiliation(s)
- Shabah M Shadli
- Dept. Psychology, New Zealand; School of Psychology, Charles Sturt University, Bathurst, NSW, Australia
| | | | - Veema Lodhia
- Dept. Psychology, University of Auckland, Auckland, New Zealand
| | - Ian J Kirk
- Dept. Psychology, University of Auckland, Auckland, New Zealand
| | - Paul Glue
- Dept. Psychological Medicine, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
14
|
Wadsley CG, Nguyen T, Horton C, Greenhouse I. Goal-directed action preparation in humans entails a mixture of corticospinal neural computations. J Physiol 2025; 603:1589-1605. [PMID: 39949052 DOI: 10.1113/jp287939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/28/2025] [Indexed: 02/19/2025] Open
Abstract
The seemingly effortless ability of humans to transition from thinking about actions to initiating them relies on sculpting corticospinal (CS) output from the primary motor cortex. The present study tested whether canonical additive and multiplicative neural computations, well-described in sensory systems, generalize to the CS pathway during human action preparation. We used non-invasive brain stimulation to measure CS input-output across varying action preparation contexts during instructed-delay finger response tasks. Goal-directed action preparation was marked by increased multiplicative gain of CS projections to task-relevant muscles and additive suppression of CS projections to non-selected and task-irrelevant muscles. Individuals who modulated CS gain to a greater extent were faster to initiate prepared responses. Our findings provide physiological evidence of combined additive suppression and gain modulation in the human motor system. We propose that these computations support action preparation by enhancing the contrast between selected motor representations and surrounding background activity to facilitate response selection and execution. KEY POINTS: Neural computations determine what information is transmitted through brain circuits. We investigated whether the motor system uses computations similar to those observed in sensory systems by non-invasively stimulating the corticospinal pathway in humans during goal-directed action preparation. We discovered physiological evidence indicating that corticospinal projections to behaviourally relevant muscles exhibit non-linear gain computations, whereas projections to behaviourally irrelevant muscles exhibit linear suppression. Our findings suggest that certain computational principles generalize to the human motor system and serve to enhance the contrast between relevant and background neural activity. These results indicate that neural computations during goal-directed action preparation may support motor control by increasing signal-to-noise within the corticospinal pathway.
Collapse
Affiliation(s)
- Corey G Wadsley
- Action Control Lab, Department of Human Physiology, University of Oregon, Eugene, OR, USA
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Thuan Nguyen
- School of Public Health, Portland State University-Oregon Health and Science University, Portland, OR, USA
| | - Chris Horton
- Action Control Lab, Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Ian Greenhouse
- Action Control Lab, Department of Human Physiology, University of Oregon, Eugene, OR, USA
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| |
Collapse
|
15
|
Werner LM, Schnitzler A, Hirschmann J. Subthalamic Nucleus Deep Brain Stimulation in the Beta Frequency Range Boosts Cortical Beta Oscillations and Slows Down Movement. J Neurosci 2025; 45:e1366242024. [PMID: 39788738 PMCID: PMC11867002 DOI: 10.1523/jneurosci.1366-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/14/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
Recordings from Parkinson's disease (PD) patients show strong beta-band oscillations (13-35 Hz), which can be modulated by deep brain stimulation (DBS). While high-frequency DBS (>100 Hz) ameliorates motor symptoms and reduces beta activity in the basal ganglia and motor cortex, the effects of low-frequency DBS (<30 Hz) are less clear. Clarifying these effects is relevant for the debate about the role of beta oscillations in motor slowing, which might be causal or epiphenomenal. Here, we investigated how subthalamic nucleus (STN) beta-band DBS affects cortical beta oscillations and motor performance. We recorded the magnetoencephalogram of 14 PD patients (nine males) with DBS implants while on their usual medication. Following a baseline recording (DBS OFF), we applied bipolar DBS at beta frequencies (10, 16, 20, 26, and 30 Hz) via the left electrode in a cyclic fashion, turning stimulation on (5 s) and off (3 s) repeatedly. Cyclic stimulation was applied at rest and during right-hand finger tapping. In the baseline recording, we observed a negative correlation between the strength of hemispheric beta power lateralization and the tap rate. Importantly, beta-band DBS accentuated the lateralization and reduced the tap rate proportionally. The change in lateralization was specific to the alpha/beta range (8-26 Hz), outlasted stimulation, and did not depend on the stimulation frequency, suggesting a remote-induced response rather than entrainment. Our study demonstrates that cortical beta oscillations can be manipulated by STN beta-band DBS. This manipulation has consequences for motor performance, supporting a causal role of beta oscillations.
Collapse
Affiliation(s)
- Lucy M Werner
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Jan Hirschmann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| |
Collapse
|
16
|
Lee LHN, Ngan CY, Yang CK, Wang RW, Lai HJ, Chen CH, Yang YC, Kuo CC. Motor cortex stimulation ameliorates parkinsonian locomotor deficits: effectual and mechanistic differences from subthalamic modulation. NPJ Parkinsons Dis 2025; 11:32. [PMID: 39971974 PMCID: PMC11840011 DOI: 10.1038/s41531-025-00879-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
Subthalamic deep brain stimulation (STN DBS) has been a therapeutic choice for Parkinson's disease (PD). We found that epidural motor cortex stimulation (MCS) with sustained positive (hyperpolarizing) currents could also consistently ameliorate the locomotor deficits in parkinsonian animals, rectifying the pathological paucity in both discharging unit varieties and movement-dependent spatiotemporal activity pattern changes in motor cortex (MC). Mechanistically, MCS hyperpolarizes both glutamatergic pyramidal neurons (PN) and GABAergic interneurons (IN) and consequently partly relieves PN from IN's control. MC discharging units are thus enlarged with enhanced PN burst discharges against a relatively silenced background, presumably compensating for the hypoactive striatal selection to restore the MC activity changes upon movement. Behaviorally, MCS retains interim short pauses like normal locomotor behaviors, in contrast to the propensity of abnormal "restlessness" with STN DBS. Individually designed MCS, alone or in combination with STN DBS and dopaminergic therapy, may provide an optimal therapeutic approach for PD.
Collapse
Grants
- CMRPD1M0811-3 Chang Gung Medical Foundation
- MOST 110-2311-B-182-002-MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- NSTC 113-2311-B-182-004-MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- NSTC 112-2321-B-001-012 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- NSTC 112-2321-B-001-007 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- MOST 110-2320-B-002-012-MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- MOST 111-2326-B-002-012 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- NSTC 112-2326-B-002-003 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- NSTC 113-2326-B-002-003 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- NSTC 112-2321-B-001-007 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- NSTC 112-2321-B-001-012 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
Collapse
Affiliation(s)
- Lan-Hsin Nancy Lee
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Neurology, Fu Jen Catholic University Hospital, New Taipei, Taiwan
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chen Yuan Ngan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Kai Yang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Ren-Wei Wang
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsing-Jung Lai
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Ya-Chin Yang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.
| | - Chung-Chin Kuo
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
17
|
Monti MM. The subcortical correlates of self-reported sleep quality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.29.596530. [PMID: 38854024 PMCID: PMC11160773 DOI: 10.1101/2024.05.29.596530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Study objectives To assess the association between self-reported measures of sleep quality and cortical and subcortical local morphometry. Methods Sleep quality, operationalized with the Pittsburgh Sleep Quality Index (PSQI), and neuroanatomical data from the full release of the young adult Human Connectome Project dataset were analyzed (N=1,112; 46% female; mean age: 28.8 years old). Local cortical and subcortical morphometry was measured with subject-specific segmentations resulting in voxelwise gray matter difference (i.e., voxel based morephometry) measurements for cortex and local shape measurements for subcortical regions. Associations between the total score of PSQI, two statistical groupings of its subcomponents (obtained with a principal component analysis), and their interaction with demographic (i.e., sex, age, handedness, years of education) and biometric (i.e., BMI) variables were assessed using a general linear model and a nonparametric permutation approach. Results Sleep quality-related variance was significantly associated with subcortical morphometry, particularly in the bilateral caudate, putamen, and left pallidum, where smaller shape measures correlated with worse sleep quality. Notably, these associations were independent of demographic and biometric factors. In contrast, cortical morphometry, along with additional subcortical sites, showed no direct associations with sleep quality but demonstrated interactions with demographic and biometric variables. Conclusions This study reveals a specific link between self-reported sleep quality and subcortical morphometry, particularly within the striatum and pallidum, reinforcing the role of these regions in sleep regulation. These findings underscore the importance of considering subcortical morphology in sleep research and highlight potential neuromodulatory targets for sleep-related interventions.
Collapse
Affiliation(s)
- Martin M. Monti
- Department of Psychology, University of California Los Angeles, 502 Portola Plaza, Los Angeles, 90095, CA, USA
- Brain Injury Research Center (BIRC), Department of Neurosurgery, University of California Los Angeles, 300 Stein Plaza Driveway, Los Angeles, 90095, CA, USA
| |
Collapse
|
18
|
Kang S, Yang MA, Bennett A, Kang S, Lee SW, Choi DS. Pallidal prototypic neuron and astrocyte activities regulate flexible reward-seeking behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637554. [PMID: 39990452 PMCID: PMC11844423 DOI: 10.1101/2025.02.10.637554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Behavioral flexibility allows animals to adjust actions to changing environments. While the basal ganglia are critical for adaptation, the specific role of the external globus pallidus (GPe) is unclear. This study examined the contributions of two major GPe cell types-prototypic neurons projecting to the subthalamic nucleus (ProtoGPe→STN neurons) and astrocytes-to behavioral flexibility. Using longitudinal operant conditioning with context reversals, we found that ProtoGPe→STN neurons dynamically represent contextual information correlating with behavioral optimality. In contrast, GPe astrocytes exhibited gradual contextual encoding independent of performance. Deleting ProtoGPe→STN neurons impaired adaptive responses to changing action-outcome contingencies without altering initial reward-seeking acquisition, highlighting their specific role in enabling behavioral flexibility. Furthermore, we discovered that ProtoGPe→STN neurons integrate inhibitory striatal and excitatory subthalamic inputs, modulating downstream basal ganglia circuits to support flexible behavior. This research elucidates the complementary roles of ProtoGPe→STN neurons and astrocytes in cellular mechanisms of flexible reward-seeking behavior.
Collapse
Affiliation(s)
- Shinwoo Kang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, 31151, Cheonan-si
| | - Minsu Abel Yang
- Department of Bio and Brain Engineering
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea
| | - Aubrey Bennett
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, USA
| | - Seungwoo Kang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, USA
| | - Sang Wan Lee
- Department of Bio and Brain Engineering
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea
- Department of Brain & Cognitive Sciences
- Kim Jaechul Graduate School of AI, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA
- Department of Psychiatry and Psychology
- Neuroscience Program, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA
| |
Collapse
|
19
|
Asadi A, Koirala N, Muthuraman M. Navigating neural pathways: how stimulation polarity shapes deep brain stimulation efficacy. Brain Commun 2025; 7:fcaf061. [PMID: 39980738 PMCID: PMC11839837 DOI: 10.1093/braincomms/fcaf061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
This scientific commentary refers to 'Neural pathway activation in the subthalamic region depends on stimulation polarity' by Borgheai et al. (https://doi.org/10.1093/braincomms/fcaf006).
Collapse
Affiliation(s)
- Atefeh Asadi
- Department of Neurology, University Hospital Würzburg, Würzburg 97080, Germany
| | - Nabin Koirala
- Brain Imaging Research Core, University of Connecticut, Storrs, CT 06269, USA
- School of Medicine, Yale University, New Haven, CT 06511, USA
- Center for Biomedical Imaging & Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Muthuraman Muthuraman
- Department of Neurology, University Hospital Würzburg, Würzburg 97080, Germany
- Informatics for Medical Technology, Institute of Computer Science, University Augsburg, Augsburg 86159, Germany
| |
Collapse
|
20
|
Wadsley CG, Nguyen T, Horton C, Greenhouse I. Goal-directed action preparation in humans entails a mixture of corticospinal neural computations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.08.602530. [PMID: 39026882 PMCID: PMC11257418 DOI: 10.1101/2024.07.08.602530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The seemingly effortless ability of humans to transition from thinking about actions to initiating them relies on sculpting corticospinal output from primary motor cortex. This study tested whether canonical additive and multiplicative neural computations, well-described in sensory systems, generalize to the corticospinal pathway during human action preparation. We used non-invasive brain stimulation to measure corticospinal input-output across varying action preparation contexts during instructed-delay finger response tasks. Goal-directed action preparation was marked by increased multiplicative gain of corticospinal projections to task-relevant muscles and additive suppression of corticospinal projections to non-selected and task-irrelevant muscles. Individuals who modulated corticospinal gain to a greater extent were faster to initiate prepared responses. Our findings provide physiological evidence of combined additive suppression and gain modulation in the human motor system. We propose these computations support action preparation by enhancing the contrast between selected motor representations and surrounding background activity to facilitate response selection and execution.
Collapse
Affiliation(s)
- Corey G. Wadsley
- Action Control Lab, Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - Thuan Nguyen
- School of Public Health, Portland State University-Oregon Health and Science University, Portland, Oregon, USA
| | - Chris Horton
- Action Control Lab, Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Ian Greenhouse
- Action Control Lab, Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
21
|
Florio TM. Emergent Aspects of the Integration of Sensory and Motor Functions. Brain Sci 2025; 15:162. [PMID: 40002495 PMCID: PMC11853489 DOI: 10.3390/brainsci15020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
This article delves into the intricate mechanisms underlying sensory integration in the executive control of movement, encompassing ideomotor activity, predictive capabilities, and motor control systems. It examines the interplay between motor and sensory functions, highlighting the role of the cortical and subcortical regions of the central nervous system in enhancing environmental interaction. The acquisition of motor skills, procedural memory, and the representation of actions in the brain are discussed emphasizing the significance of mental imagery and training in motor function. The development of this aspect of sensorimotor integration control can help to advance our understanding of the interactions between executive motor control, cortical mechanisms, and consciousness. Bridging theoretical insights with practical applications, it sets the stage for future innovations in clinical rehabilitation, assistive technology, and education. The ongoing exploration of these domains promises to uncover new pathways for enhancing human capability and well-being.
Collapse
Affiliation(s)
- Tiziana M Florio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
22
|
Candelori B, Bardella G, Spinelli I, Ramawat S, Pani P, Ferraina S, Scardapane S. Spatio-temporal transformers for decoding neural movement control. J Neural Eng 2025; 22:016023. [PMID: 39870043 DOI: 10.1088/1741-2552/adaef0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 01/27/2025] [Indexed: 01/29/2025]
Abstract
Objective. Deep learning tools applied to high-resolution neurophysiological data have significantly progressed, offering enhanced decoding, real-time processing, and readability for practical applications. However, the design of artificial neural networks to analyze neural activityin vivoremains a challenge, requiring a delicate balance between efficiency in low-data regimes and the interpretability of the results.Approach. To address this challenge, we introduce a novel specialized transformer architecture to analyze single-neuron spiking activity. The model is tested on multi-electrode recordings from the dorsal premotor cortex of non-human primates performing a motor inhibition task.Main results. The proposed architecture provides an early prediction of the correct movement direction, achieving accurate results no later than 230 ms after the Go signal presentation across animals. Additionally, the model can forecast whether the movement will be generated or withheld before a stop signal, unattended, is actually presented. To further understand the internal dynamics of the model, we compute the predicted correlations between time steps and between neurons at successive layers of the architecture, with the evolution of these correlations mirrors findings from previous theoretical analyses.Significance. Overall, our framework provides a comprehensive use case for the practical implementation of deep learning tools in motor control research, highlighting both the predictive capabilities and interpretability of the proposed architecture.
Collapse
Affiliation(s)
- Benedetta Candelori
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Giampiero Bardella
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Indro Spinelli
- Department of Computer Science, Sapienza University of Rome, Rome, Italy
| | - Surabhi Ramawat
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Stefano Ferraina
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Simone Scardapane
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
23
|
Isherwood S, Kemp SA, Miletić S, Stevenson N, Bazin PL, Forstmann B. Multi-study fMRI outlooks on subcortical BOLD responses in the stop-signal paradigm. eLife 2025; 12:RP88652. [PMID: 39841120 PMCID: PMC11753779 DOI: 10.7554/elife.88652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
This study investigates the functional network underlying response inhibition in the human brain, particularly the role of the basal ganglia in successful action cancellation. Functional magnetic resonance imaging (fMRI) approaches have frequently used the stop-signal task to examine this network. We merge five such datasets, using a novel aggregatory method allowing the unification of raw fMRI data across sites. This meta-analysis, along with other recent aggregatory fMRI studies, does not find evidence for the innervation of the hyperdirect or indirect cortico-basal-ganglia pathways in successful response inhibition. What we do find, is large subcortical activity profiles for failed stop trials. We discuss possible explanations for the mismatch of findings between the fMRI results presented here and results from other research modalities that have implicated nodes of the basal ganglia in successful inhibition. We also highlight the substantial effect smoothing can have on the conclusions drawn from task-specific general linear models. First and foremost, this study presents a proof of concept for meta-analytical methods that enable the merging of extensive, unprocessed, or unreduced datasets. It demonstrates the significant potential that open-access data sharing can offer to the research community. With an increasing number of datasets being shared publicly, researchers will have the ability to conduct meta-analyses on more than just summary data.
Collapse
Affiliation(s)
- Scott Isherwood
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of AmsterdamAmsterdamNetherlands
| | - Sarah A Kemp
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of AmsterdamAmsterdamNetherlands
- Sensorimotor Neuroscience and Ageing Research Lab, School of Psychological Sciences, University of TasmaniaHobartAustralia
| | - Steven Miletić
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of AmsterdamAmsterdamNetherlands
- Department of Psychology, Faculty of Social Sciences, Leiden UniversityLeidenNetherlands
| | - Niek Stevenson
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of AmsterdamAmsterdamNetherlands
| | | | - Birte Forstmann
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of AmsterdamAmsterdamNetherlands
| |
Collapse
|
24
|
Clapp M, Bahuguna J, Giossi C, Rubin JE, Verstynen T, Vich C. CBGTPy: An extensible cortico-basal ganglia-thalamic framework for modeling biological decision making. PLoS One 2025; 20:e0310367. [PMID: 39808625 PMCID: PMC11731724 DOI: 10.1371/journal.pone.0310367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/29/2024] [Indexed: 01/16/2025] Open
Abstract
Here we introduce CBGTPy, a virtual environment for designing and testing goal-directed agents with internal dynamics that are modeled on the cortico-basal-ganglia-thalamic (CBGT) pathways in the mammalian brain. CBGTPy enables researchers to investigate the internal dynamics of the CBGT system during a variety of tasks, allowing for the formation of testable predictions about animal behavior and neural activity. The framework has been designed around the principle of flexibility, such that many experimental parameters in a decision making paradigm can be easily defined and modified. Here we demonstrate the capabilities of CBGTPy across a range of single and multi-choice tasks, highlighting the ease of set up and the biologically realistic behavior that it produces. We show that CBGTPy is extensible enough to apply to a range of experimental protocols and to allow for the implementation of model extensions with minimal developmental effort.
Collapse
Affiliation(s)
- Matthew Clapp
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Jyotika Bahuguna
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Cristina Giossi
- Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Spain
- Institute of Applied Computing and Community Code, Palma, Spain
| | - Jonathan E. Rubin
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States of America
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Timothy Verstynen
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States of America
| | - Catalina Vich
- Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Spain
- Institute of Applied Computing and Community Code, Palma, Spain
| |
Collapse
|
25
|
Lu M, Zhang J, Zhang Q, Sun J, Zou D, Huang J, Liu W. The parasubthalamic nucleus: A novel eating center in the brain. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111250. [PMID: 39788409 DOI: 10.1016/j.pnpbp.2025.111250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/21/2024] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
Eating behavior stands as a fundamental determinant of animal survival and growth, intricately regulated by an amalgamation of internal and external stimuli. Coordinated movements of facial muscles and the mandible orchestrate prey capture and food processing, propelled by the allure of taste and rewarding food properties. Conversely, satiation, pain, aversion, negative emotion or perceived threats can precipitate the cessation or avoidance of eating activities. In recent years, the parasubthalamic nucleus (PSTN), located in the lateral hypothalamic area, has emerged as a focal point in feeding research. PSTN neurons assume pivotal roles within multiple feeding circuits, bridging central feeding centers with peripheral organs. They intricately modulate regulation of oral sensorimotor functions, hedonic feeding, appetite motivation and the processing of satiation and aversive signals, thereby orchestrating the initiation or termination of feeding behaviors. This review delves into the distinctive neuronal subpopulations within the PSTN and their associated neural networks, aiming to refine our comprehension of the neural underpinnings of feeding while also seeking to unearth more efficacious therapeutic avenues for feeding and eating disorders.
Collapse
Affiliation(s)
- Mingxuan Lu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Jiayao Zhang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Qi Zhang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Shanghai Changning Mental Health Center, Shanghai 200335, China
| | - Jiyu Sun
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Danni Zou
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Jinyin Huang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Weicai Liu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China.
| |
Collapse
|
26
|
Theron V, Lochner C, Stein DJ, Harvey BH, Wolmarans DW. The deer mouse (Peromyscus maniculatus bairdii) as a model organism to explore the naturalistic psychobiological mechanisms contributing to compulsive-like rigidity: A narrative overview of advances and opportunities. Compr Psychiatry 2025; 136:152545. [PMID: 39515287 DOI: 10.1016/j.comppsych.2024.152545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Deer mice (Peromyscus maniculatus bairdii), a wildtype species native to North America, have been investigated for their spontaneous compulsive-like behaviour. The repetitive and persistence nature of three unique compulsive-like phenotypes in deer mice, i.e., high stereotypy (HS), large nesting behaviour (LNB) and high marble burying (HMB), are characterized by behavioural and cognitive rigidity. In this narrative review, we summarize key advances in the model's application to study obsessive-compulsive disorder (OCD), emphasizing how it may be used to investigate neurobiological and neurocognitive aspects of rigidity. Indeed, deer mice provide the field with a unique naturalistic and spontaneous model system of behavioural and cognitive rigidity that is useful for investigating the psychobiological mechanisms that underpin a range of compulsive-like phenotypes. Throughout the review, we highlight new opportunities for future research.
Collapse
Affiliation(s)
- Vasti Theron
- Centre of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, South Africa
| | - Chrstine Lochner
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, South Africa
| | - Dan J Stein
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Rondebosch 7700, South Africa
| | - Brian H Harvey
- Centre of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, South Africa; SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Rondebosch 7700, South Africa; The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| | - De Wet Wolmarans
- Centre of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, South Africa.
| |
Collapse
|
27
|
Matsuzono K, Onuki Y, Otsuka K, Hiki H, Anan Y, Mashiko T, Koide R, Kunii N, Kawai K, Fujimoto S. Complex striate-frontal projection and specific frontal gyrus dysfunctions concern with the delusional misidentification syndrome: A case report and literature review. Sci Prog 2025; 108:368504251322083. [PMID: 39973080 PMCID: PMC11840838 DOI: 10.1177/00368504251322083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Delusional misidentification, a rare syndrome in which a patient displays persistent delusional misidentification of individuals or objects, occurs in several types of dementia. However, the pathology of delusional misidentification is still unclear, and there was no data pertaining to striate-frontal projection. Here, we report a case of delusional misidentification following frontotemporal dementia in which complex striate-frontal and some specific frontal gyrus dysfunction were observed. In our presented case, delusional misidentification progressed following frontal atrophy. Believing that her actual daughter had been replaced by her niece, her symptoms of delusional misidentification and frontal atrophy progressed in the short term, and social arrangement was necessary three months after the onset. There were no abnormal neurological findings including parkinsonism and general cognitive function test scores were preserved. Validated by dopamine transporter single-photon emission computed tomography, right unilateral striatal uptake decreased significantly without parkinsonism or Parkinson's disease. In addition, of specific concern, functional magnetic resonance images showed left opercular inferior frontal gyrus and right superior frontal gyrus dysfunctions. Our case study highlights complex striate-frontal projection and specific frontal gyrus dysfunctions associated with the pathology of delusional misidentification syndrome.
Collapse
Affiliation(s)
- Kosuke Matsuzono
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Yoshiyuki Onuki
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Kyoko Otsuka
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Honoka Hiki
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Yuhei Anan
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Takafumi Mashiko
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Reiji Koide
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Naoto Kunii
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Shigeru Fujimoto
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
28
|
Yoshida A, Hikosaka O. Contribution of glutamatergic projections to neurons in the nonhuman primate lateral substantia nigra pars reticulata for the reactive inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.25.630331. [PMID: 39763854 PMCID: PMC11703221 DOI: 10.1101/2024.12.25.630331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The basal ganglia play a crucial role in action selection by facilitating desired movements and suppressing unwanted ones. The substantia nigra pars reticulata (SNr), a key output nucleus, facilitates movement through disinhibition of the superior colliculus (SC). However, its role in action suppression, particularly in primates, remains less clear. We investigated whether individual SNr neurons in three male macaque monkeys bidirectionally modulate their activity to both facilitate and suppress actions and examined the role of glutamatergic inputs in suppression. Monkeys performed a sequential choice task, selecting or rejecting visually presented targets. Electrophysiological recordings showed SNr neurons decreased firing rates during target selection and increased firing rates during rejection, demonstrating bidirectional modulation. Pharmacological blockade of glutamatergic inputs to the lateral SNr disrupted saccadic control and impaired suppression of reflexive saccades, providing causal evidence for the role of excitatory input in behavioral inhibition. These findings suggest that glutamatergic projections, most likely from the subthalamic nucleus, drive the increased SNr activity during action suppression. Our results highlight conserved basal ganglia mechanisms across species and offer insights into the neural substrates of action selection and suppression in primates, with implications for understanding disorders such as Parkinson's disease.
Collapse
Affiliation(s)
- Atsushi Yoshida
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Systems Neuroscience Laboratory, Department of Physiology, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Hokkaido, Japan
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
29
|
Yousif N, Bain PG, Nandi D, Borisyuk R. Non-conventional deep brain stimulation in a network model of movement disorders. Biomed Phys Eng Express 2024; 11:015042. [PMID: 39657261 DOI: 10.1088/2057-1976/ad9c7d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Conventional deep brain stimulation (DBS) for movement disorders is a well-established clinical treatment. Over the last few decades, over 200,000 people have been treated by DBS worldwide for several neurological conditions, including Parkinson's disease and Essential Tremor. DBS involves implanting electrodes into disorder-specific targets in the brain and applying an electric current. Although the hardware has developed in recent years, the clinically used stimulation pattern has remained as a regular frequency square pulse. Recent studies have suggested that phase-locking, coordinated reset or irregular patterns may be as or more effective at desynchronising the pathological neural activity. Such studies have shown efficacy using detailed neuron models or highly simplified networks and considered one frequency band. We previously described a population level model which generates oscillatory activity in both the beta band (20 Hz) and the tremor band (4 Hz). Here we use this model to look at the impact of applying regular, irregular and phase dependent bursts of stimulation, and show how this influences both tremor- and beta-band activity. We found that bursts are as or more effective at suppressing the pathological oscillations compared to continuous DBS. Importantly however, at higher amplitudes we found that the stimulus drove the network activity, as seen previously. Strikingly, this suppression was most apparent for the tremor band oscillations, with beta band pathological activity being more resistant to the burst stimulation compared to continuous, conventional DBS. Furthermore, our simulations showed that phase-locked bursts of stimulation did not convey much improvement on regular bursts of oscillation. Using a genetic algorithm optimisation approach to find the best stimulation parameters for regular, irregular and phase-locked bursts, we confirmed that tremor band oscillations could be more readily suppressed. Our results allow exploration of stimulation mechanisms at the network level to formulate testable predictions regarding parameter settings in DBS.
Collapse
Affiliation(s)
- Nada Yousif
- School of Physics, Engineering and Computer Science, University of Hertfordshire, United Kingdom
| | - Peter G Bain
- Department of Brain Sciences, Imperial College London, United Kingdom
- Imperial College Healthcare NHS Trust, United Kingdom
| | - Dipankar Nandi
- Department of Brain Sciences, Imperial College London, United Kingdom
- Imperial College Healthcare NHS Trust, United Kingdom
| | - Roman Borisyuk
- Department of Mathematics and Statistics, University of Exeter, United Kingdom
| |
Collapse
|
30
|
Yates JR. Aberrant glutamatergic systems underlying impulsive behaviors: Insights from clinical and preclinical research. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111107. [PMID: 39098647 PMCID: PMC11409449 DOI: 10.1016/j.pnpbp.2024.111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Impulsivity is a broad construct that often refers to one of several distinct behaviors and can be measured with self-report questionnaires and behavioral paradigms. Several psychiatric conditions are characterized by one or more forms of impulsive behavior, most notably the impulsive/hyperactive subtype of attention-deficit/hyperactivity disorder (ADHD), mood disorders, and substance use disorders. Monoaminergic neurotransmitters are known to mediate impulsive behaviors and are implicated in various psychiatric conditions. However, growing evidence suggests that glutamate, the major excitatory neurotransmitter of the mammalian brain, regulates important functions that become dysregulated in conditions like ADHD. The purpose of the current review is to discuss clinical and preclinical evidence linking glutamate to separate aspects of impulsivity, specifically motor impulsivity, impulsive choice, and affective impulsivity. Hyperactive glutamatergic activity in the corticostriatal and the cerebro-cerebellar pathways are major determinants of motor impulsivity. Conversely, hypoactive glutamatergic activity in frontal cortical areas and hippocampus and hyperactive glutamatergic activity in anterior cingulate cortex and nucleus accumbens mediate impulsive choice. Affective impulsivity is controlled by similar glutamatergic dysfunction observed for motor impulsivity, except a hyperactive limbic system is also involved. Loss of glutamate homeostasis in prefrontal and nucleus accumbens may contribute to motor impulsivity/affective impulsivity and impulsive choice, respectively. These results are important as they can lead to novel treatments for those with a condition characterized by increased impulsivity that are resistant to conventional treatments.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41099, USA.
| |
Collapse
|
31
|
Osada T, Nakajima K, Shirokoshi T, Ogawa A, Oka S, Kamagata K, Aoki S, Oshima Y, Tanaka S, Konishi S. Multiple insular-prefrontal pathways underlie perception to execution during response inhibition in humans. Nat Commun 2024; 15:10380. [PMID: 39627197 PMCID: PMC11615282 DOI: 10.1038/s41467-024-54564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024] Open
Abstract
Inhibiting prepotent responses in the face of external stop signals requires complex information processing, from perceptual to control processing. However, the cerebral circuits underlying these processes remain elusive. In this study, we used neuroimaging and brain stimulation to investigate the interplay between human brain regions during response inhibition at the whole-brain level. Magnetic resonance imaging suggested a sequential four-step processing pathway: initiating from the primary visual cortex (V1), progressing to the dorsal anterior insula (daINS), then involving two essential regions in the inferior frontal cortex (IFC), namely the ventral posterior IFC (vpIFC) and anterior IFC (aIFC), and reaching the basal ganglia (BG)/primary motor cortex (M1). A combination of ultrasound stimulation and time-resolved magnetic stimulation elucidated the causal influence of daINS on vpIFC and the unidirectional dependence of aIFC on vpIFC. These results unveil asymmetric pathways in the insular-prefrontal cortex and outline the macroscopic cerebral circuits for response inhibition: V1→daINS→vpIFC/aIFC→BG/M1.
Collapse
Affiliation(s)
- Takahiro Osada
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
| | - Koji Nakajima
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Tomohiko Shirokoshi
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Akitoshi Ogawa
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Oka
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yasushi Oshima
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Seiki Konishi
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
- Sportology Center, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
- Advanced Research Institute for Health Science, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
32
|
Shi Y, Zhang J, Xiu M, Xie R, Liu Y, Xie J, Shi L. The zona incerta system: Involvement in Parkinson's disease. Exp Neurol 2024; 382:114992. [PMID: 39393673 DOI: 10.1016/j.expneurol.2024.114992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Parkinson's disease (PD) is characterized by degeneration of the nigrostriatal dopamine system, resulting in progressive motor and nonmotor symptoms. Although most studies have focused on the basal ganglia network, recent evidence suggests that the zona incerta (ZI), a subthalamic structure composed of 4 neurochemically defined regions, is emerging as a therapeutic target in PD. This review summarizes the clinical and animal studies that indicate the importance of ZI in PD. Human clinical studies have shown that subthalamotomy or deep brain stimulation (DBS) of the ZI alleviates muscle rigidity, bradykinesia, tremors and speech dysfunction in patients with PD. Researchers have also studied the impact of DBS of the ZI on nonmotor signs such as pain, anxiety, and depression. Animal studies combining optogenetics, chemogenetics, behavioral assays, and neural activity recordings reveal the functional roles of ZI GABAergic and glutamatergic neurons in locomotion, gait, and coordination of the symptoms of PD, all of which are discussed in this review. Controversies and possible future studies are also discussed.
Collapse
Affiliation(s)
- Yaying Shi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Jing Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Minxia Xiu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Ruyi Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Yanhong Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China.
| | - Limin Shi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China.
| |
Collapse
|
33
|
Giossi C, Bahuguna J, Rubin JE, Verstynen T, Vich C. Arkypallidal neurons in the external globus pallidus can mediate inhibitory control by altering competition in the striatum. Proc Natl Acad Sci U S A 2024; 121:e2408505121. [PMID: 39536079 PMCID: PMC11588131 DOI: 10.1073/pnas.2408505121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Reactive inhibitory control is crucial for survival. Traditionally, this control in mammals was attributed solely to the hyperdirect pathway, with cortical control signals flowing unidirectionally from the subthalamic nucleus (STN) to basal ganglia output regions. Yet recent findings have put this model into question, suggesting that the STN is assisted in stopping actions through ascending control signals to the striatum mediated by the external globus pallidus (GPe). Here, we investigate this suggestion by harnessing a biologically constrained spiking model of the cortico-basal ganglia-thalamic (CBGT) circuit that includes pallidostriatal pathways originating from arkypallidal neurons. Through a series of experiments probing the interaction between three critical inhibitory nodes (the STN, arkypallidal cells, and indirect pathway spiny projection neurons), we find that the GPe acts as a critical mediator of both ascending and descending inhibitory signals in the CBGT circuit. In particular, pallidostriatal pathways regulate this process by weakening the direct pathway dominance of the evidence accumulation process driving decisions, which increases the relative suppressive influence of the indirect pathway on basal ganglia output. These findings delineate how pallidostriatal pathways can facilitate action cancellation by managing the bidirectional flow of information within CBGT circuits.
Collapse
Affiliation(s)
- Cristina Giossi
- Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma07122, Spain
- Institute of Applied Computing and Community Code, Palma07122, Spain
| | - Jyotika Bahuguna
- Laboratoire de Neurosciences Cognitives et Adaptatives, Universite of Strasbourg, Strasbourg67000, France
| | - Jonathan E. Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA15213
- Center for the Neural Basis of Cognition, Pittsburgh, PA15213
| | - Timothy Verstynen
- Center for the Neural Basis of Cognition, Pittsburgh, PA15213
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA15213
| | - Catalina Vich
- Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma07122, Spain
- Institute of Applied Computing and Community Code, Palma07122, Spain
| |
Collapse
|
34
|
Herz DM, Frank MJ, Tan H, Groppa S. Subthalamic control of impulsive actions: insights from deep brain stimulation in Parkinson's disease. Brain 2024; 147:3651-3664. [PMID: 38869168 PMCID: PMC11531846 DOI: 10.1093/brain/awae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Control of actions allows adaptive, goal-directed behaviour. The basal ganglia, including the subthalamic nucleus, are thought to play a central role in dynamically controlling actions through recurrent negative feedback loops with the cerebral cortex. Here, we summarize recent translational studies that used deep brain stimulation to record neural activity from and apply electrical stimulation to the subthalamic nucleus in people with Parkinson's disease. These studies have elucidated spatial, spectral and temporal features of the neural mechanisms underlying the controlled delay of actions in cortico-subthalamic networks and demonstrated their causal effects on behaviour in distinct processing windows. While these mechanisms have been conceptualized as control signals for suppressing impulsive response tendencies in conflict tasks and as decision threshold adjustments in value-based and perceptual decisions, we propose a common framework linking decision-making, cognition and movement. Within this framework, subthalamic deep brain stimulation can lead to suboptimal choices by reducing the time that patients take for deliberation before committing to an action. However, clinical studies have consistently shown that the occurrence of impulse control disorders is reduced, not increased, after subthalamic deep brain stimulation surgery. This apparent contradiction can be reconciled when recognizing the multifaceted nature of impulsivity, its underlying mechanisms and modulation by treatment. While subthalamic deep brain stimulation renders patients susceptible to making decisions without proper forethought, this can be disentangled from effects related to dopamine comprising sensitivity to benefits versus costs, reward delay aversion and learning from outcomes. Alterations in these dopamine-mediated mechanisms are thought to underlie the development of impulse control disorders and can be relatively spared with reduced dopaminergic medication after subthalamic deep brain stimulation. Together, results from studies using deep brain stimulation as an experimental tool have improved our understanding of action control in the human brain and have important implications for treatment of patients with neurological disorders.
Collapse
Affiliation(s)
- Damian M Herz
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Michael J Frank
- Department of Cognitive, Linguistic and Psychological Sciences, Carney Institute for Brain Science, Brown University, Providence, RI 02903, USA
| | - Huiling Tan
- MRC Brain Network Dynamics Unit at the University of Oxford, Nuffield Department of Clinical Neurosciences, University of Oxford, OX1 3TH Oxford, UK
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| |
Collapse
|
35
|
Popescu BO, Batzu L, Ruiz PJG, Tulbă D, Moro E, Santens P. Neuroplasticity in Parkinson's disease. J Neural Transm (Vienna) 2024; 131:1329-1339. [PMID: 39102007 PMCID: PMC11502561 DOI: 10.1007/s00702-024-02813-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disorder, affecting millions of people and rapidly increasing over the last decades. Even though there is no intervention yet to stop the neurodegenerative pathology, many efficient treatment methods are available, including for patients with advanced PD. Neuroplasticity is a fundamental property of the human brain to adapt both to external changes and internal insults and pathological processes. In this paper we examine the current knowledge and concepts concerning changes at network level, cellular level and molecular level as parts of the neuroplastic response to protein aggregation pathology, synapse loss and neuronal loss in PD. We analyse the beneficial, compensatory effects, such as augmentation of nigral neurons efficacy, as well as negative, maladaptive effects, such as levodopa-induced dyskinesia. Effects of physical activity and different treatments on neuroplasticity are considered and the opportunity of biomarkers identification and use is discussed.
Collapse
Affiliation(s)
- Bogdan Ovidiu Popescu
- Department of Clinical Neurosciences, 'Carol Davila' University of Medicine and Pharmacy Bucharest, Bucharest, Romania.
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, 'Victor Babeș' National Institute of Pathology, Bucharest, Romania.
| | - Lucia Batzu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK
| | | | - Delia Tulbă
- Department of Clinical Neurosciences, 'Carol Davila' University of Medicine and Pharmacy Bucharest, Bucharest, Romania
| | - Elena Moro
- Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble Alpes University, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France
| | - Patrick Santens
- Department of Neurology, University Hospital Ghent, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
36
|
Giossi C, Rubin JE, Gittis A, Verstynen T, Vich C. Rethinking the external globus pallidus and information flow in cortico-basal ganglia-thalamic circuits. Eur J Neurosci 2024; 60:6129-6144. [PMID: 38659055 DOI: 10.1111/ejn.16348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
For decades, the external globus pallidus (GPe) has been viewed as a passive way-station in the indirect pathway of the cortico-basal ganglia-thalamic (CBGT) circuit, sandwiched between striatal inputs and basal ganglia outputs. According to this model, one-way descending striatal signals in the indirect pathway amplify the suppression of downstream thalamic nuclei by inhibiting GPe activity. Here, we revisit this assumption, in light of new and emerging work on the cellular complexity, connectivity and functional role of the GPe in behaviour. We show how, according to this new circuit-level logic, the GPe is ideally positioned for relaying ascending and descending control signals within the basal ganglia. Focusing on the problem of inhibitory control, we illustrate how this bidirectional flow of information allows for the integration of reactive and proactive control mechanisms during action selection. Taken together, this new evidence points to the GPe as being a central hub in the CBGT circuit, participating in bidirectional information flow and linking multifaceted control signals to regulate behaviour.
Collapse
Affiliation(s)
- Cristina Giossi
- Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Illes Balears, Spain
- Institute of Applied Computing and Community Code, Universitat de les Illes Balears, Palma, Illes Balears, Spain
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aryn Gittis
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Timothy Verstynen
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Catalina Vich
- Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Illes Balears, Spain
- Institute of Applied Computing and Community Code, Universitat de les Illes Balears, Palma, Illes Balears, Spain
| |
Collapse
|
37
|
Kleven H, Schlegel U, Groenewegen HJ, Leergaard TB, Bjerke IE. Comparison of basal ganglia regions across murine brain atlases using metadata models and the Waxholm Space. Sci Data 2024; 11:1036. [PMID: 39333155 PMCID: PMC11437236 DOI: 10.1038/s41597-024-03863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/04/2024] [Indexed: 09/29/2024] Open
Abstract
The murine basal ganglia regions are targets for research into complex brain functions such as motor control and habit formation. However, there are several ways to name and annotate these regions, posing challenges for interpretation and comparison of data across studies. Here, we give an overview of basal ganglia terms and boundaries in the literature and reference atlases, and describe the criteria used for annotating these regions in the Waxholm Space rat brain atlas. We go on to compare basal ganglia annotations in stereotaxic rat brain atlases and the Allen Mouse brain Common Coordinate Framework to those in the Waxholm Space rat brain atlas. We demonstrate and describe considerable differences in the terms and boundaries of most basal ganglia regions across atlases and their versions. We also register information about atlases and regions in the openMINDS metadata framework, facilitating integration of data in neuroscience databases. The comparisons of terms and boundaries across rat and mouse atlases support analysis and interpretation of existing and new data from the basal ganglia.
Collapse
Affiliation(s)
- H Kleven
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - U Schlegel
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - H J Groenewegen
- Department of Anatomy and Neurosciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - T B Leergaard
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - I E Bjerke
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
38
|
Ricci A, Rubino E, Serra GP, Wallén-Mackenzie Å. Concerning neuromodulation as treatment of neurological and neuropsychiatric disorder: Insights gained from selective targeting of the subthalamic nucleus, para-subthalamic nucleus and zona incerta in rodents. Neuropharmacology 2024; 256:110003. [PMID: 38789078 DOI: 10.1016/j.neuropharm.2024.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Neuromodulation such as deep brain stimulation (DBS) is advancing as a clinical intervention in several neurological and neuropsychiatric disorders, including Parkinson's disease, dystonia, tremor, and obsessive-compulsive disorder (OCD) for which DBS is already applied to alleviate severely afflicted individuals of symptoms. Tourette syndrome and drug addiction are two additional disorders for which DBS is in trial or proposed as treatment. However, some major remaining obstacles prevent this intervention from reaching its full therapeutic potential. Side-effects have been reported, and not all DBS-treated individuals are relieved of their symptoms. One major target area for DBS electrodes is the subthalamic nucleus (STN) which plays important roles in motor, affective and associative functions, with impact on for example movement, motivation, impulsivity, compulsivity, as well as both reward and aversion. The multifunctionality of the STN is complex. Decoding the anatomical-functional organization of the STN could enhance strategic targeting in human patients. The STN is located in close proximity to zona incerta (ZI) and the para-subthalamic nucleus (pSTN). Together, the STN, pSTN and ZI form a highly heterogeneous and clinically important brain area. Rodent-based experimental studies, including opto- and chemogenetics as well as viral-genetic tract tracings, provide unique insight into complex neuronal circuitries and their impact on behavior with high spatial and temporal precision. This research field has advanced tremendously over the past few years. Here, we provide an inclusive review of current literature in the pre-clinical research fields centered around STN, pSTN and ZI in laboratory mice and rats; the three highly heterogeneous and enigmatic structures brought together in the context of relevance for treatment strategies. Specific emphasis is placed on methods of manipulation and behavioral impact.
Collapse
Affiliation(s)
- Alessia Ricci
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Eleonora Rubino
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Gian Pietro Serra
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Åsa Wallén-Mackenzie
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
39
|
Isaias IU, Caffi L, Borellini L, Ampollini AM, Locatelli M, Pezzoli G, Mazzoni A, Palmisano C. Case report: Improvement of gait with adaptive deep brain stimulation in a patient with Parkinson's disease. Front Bioeng Biotechnol 2024; 12:1428189. [PMID: 39323762 PMCID: PMC11423205 DOI: 10.3389/fbioe.2024.1428189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024] Open
Abstract
Gait disturbance is a common and severe symptom of Parkinson's disease that severely impairs quality of life. Current treatments provide only partial benefits with wide variability in outcomes. Also, deep brain stimulation of the subthalamic nucleus (STN-DBS), a mainstay treatment for bradykinetic-rigid symptoms and parkinsonian tremor, is poorly effective on gait. We applied a novel DBS paradigm, adjusting the current amplitude linearly with respect to subthalamic beta power (adaptive DBS), in one parkinsonian patient with gait impairment and chronically stimulated with conventional DBS. We studied the kinematics of gait and gait initiation (anticipatory postural adjustments) as well as subthalamic beta oscillations with both conventional and adaptive DBS. With adaptive DBS, the patient showed a consistent and long-lasting improvement in walking while retaining benefits on other disease-related symptoms. We suggest that adaptive DBS can benefit gait in Parkinson's disease possibly by avoiding overstimulation and dysfunctional entrainment of the supraspinal locomotor network.
Collapse
Affiliation(s)
- Ioannis U. Isaias
- Parkinson Institute of Milan, ASST G.Pini-CTO, Milano, Italy
- University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Laura Caffi
- Parkinson Institute of Milan, ASST G.Pini-CTO, Milano, Italy
- University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
- The BioRobotics Institute, Sant’Anna School of Advanced Studies, Pisa, Italy
| | - Linda Borellini
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | | | - Marco Locatelli
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Gianni Pezzoli
- Parkinson Institute of Milan, ASST G.Pini-CTO, Milano, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute, Sant’Anna School of Advanced Studies, Pisa, Italy
- Department of Excellence in Robotics and AI, Sant’Anna School of Advanced Studies, Pisa, Italy
| | - Chiara Palmisano
- Parkinson Institute of Milan, ASST G.Pini-CTO, Milano, Italy
- University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| |
Collapse
|
40
|
Inagawa Y, Inagawa S, Takenoshita N, Yamamoto R, Tsugawa A, Yoshimura M, Saito K, Shimizu S. Utility of neuromelanin-sensitive MRI in the diagnosis of dementia with Lewy bodies. PLoS One 2024; 19:e0309885. [PMID: 39250493 PMCID: PMC11383205 DOI: 10.1371/journal.pone.0309885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024] Open
Abstract
OBJECTIVE Dementia with Lewy bodies (DLB) is recognized as the second most common cause of degenerative dementia in older people with Alzheimer's disease (AD), and distinguishing between these 2 diseases may be challenging in clinical practice. However, accurate differentiation is important because these 2 diseases have different prognoses and require different care. Recently, several studies have reported that neuromelanin-sensitive MRI can detect neurodegeneration in the substantia nigra pars compacta (SNc). DLB patients are considered to demonstrate degeneration and a reduction of dopaminergic neurons in the SNc. Therefore, neuromelanin-sensitive MRI may be useful for the diagnosis of DLB. Therefore, in this study, we aimed to investigate the usefulness of neuromelanin-sensitive MRI in the distinguishing DLB from AD. METHODS A total of 21 probable DLB and 22 probable AD patients were enrolled. All participants underwent both DaT-SPECT and neuromelanin-sensitive MRI. A combined model of neuromelanin-sensitive MRI and Dopamine transporter single-photon emission computed tomography (DaT-SPECT) was created using logistic regression analysis (forced entry method). RESULTS There was no difference in the diagnostic utility of neuromelanin-sensitive MRI and DaT-SPECT in distinguishing DLB from AD. There was no significant correlation between the results of neuromelanin-sensitive MRI and DaT-SPECT in DLB patients. The combination of neuromelanin-sensitive MRI and DaT-SPECT demonstrated higher diagnostic performance in distinguishing between DLB and AD compared with neuromelanin-sensitive MRI alone. Additionally, although the combination of both modalities showed a larger AUC compared with DaT-SPECT alone, the difference was not statistically significant. CONCLUSIONS Neuromelanin-sensitive MRI may be equally or even more useful than DaT-SPECT in the clinical differentiation of DLB from AD. Furthermore, the combination of neuromelanin-sensitive MRI and DaT-SPECT may be a highly sensitive imaging marker for distinguishing DLB from AD.
Collapse
Affiliation(s)
- Yuta Inagawa
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Shoya Inagawa
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Naoto Takenoshita
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Ryo Yamamoto
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Akito Tsugawa
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Mana Yoshimura
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
| | - Kazuhiro Saito
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
| | - Soichiro Shimizu
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
41
|
Soh C, Hervault M, Chalkley NH, Moore CM, Rohl A, Zhang Q, Uc EY, Greenlee JDW, Wessel JR. The human subthalamic nucleus transiently inhibits active attentional processes. Brain 2024; 147:3204-3215. [PMID: 38436939 PMCID: PMC11370801 DOI: 10.1093/brain/awae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
The subthalamic nucleus (STN) of the basal ganglia is key to the inhibitory control of movement. Consequently, it is a primary target for the neurosurgical treatment of movement disorders like Parkinson's disease, where modulating the STN via deep brain stimulation (DBS) can release excess inhibition of thalamocortical motor circuits. However, the STN is also anatomically connected to other thalamocortical circuits, including those underlying cognitive processes like attention. Notably, STN-DBS can also affect these processes. This suggests that the STN may also contribute to the inhibition of non-motor activity and that STN-DBS may cause changes to this inhibition. Here we tested this hypothesis in humans. We used a novel, wireless outpatient method to record intracranial local field potentials (LFP) from STN DBS implants during a visual attention task (Experiment 1, n = 12). These outpatient measurements allowed the simultaneous recording of high-density EEG, which we used to derive the steady state visual evoked potential (SSVEP), a well established neural index of visual attentional engagement. By relating STN activity to this neural marker of attention (instead of overt behaviour), we avoided possible confounds resulting from STN's motor role. We aimed to test whether the STN contributes to the momentary inhibition of the SSVEP caused by unexpected, distracting sounds. Furthermore, we causally tested this association in a second experiment, where we modulated STN via DBS across two sessions of the task, spaced at least 1 week apart (n = 21, no sample overlap with Experiment 1). The LFP recordings in Experiment 1 showed that reductions of the SSVEP after distracting sounds were preceded by sound-related γ-frequency (>60 Hz) activity in the STN. Trial-to-trial modelling further showed that this STN activity statistically mediated the sounds' suppressive effect on the SSVEP. In Experiment 2, modulating STN activity via DBS significantly reduced these sound-related SSVEP reductions. This provides causal evidence for the role of the STN in the surprise-related inhibition of attention. These findings suggest that the human STN contributes to the inhibition of attention, a non-motor process. This supports a domain-general view of the inhibitory role of the STN. Furthermore, these findings also suggest a potential mechanism underlying some of the known cognitive side effects of STN-DBS treatment, especially on attentional processes. Finally, our newly established outpatient LFP recording technique facilitates the testing of the role of subcortical nuclei in complex cognitive tasks, alongside recordings from the rest of the brain, and in much shorter time than peri-surgical recordings.
Collapse
Affiliation(s)
- Cheol Soh
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
- Cognitive Control Collaborative, University of Iowa, Iowa City, IA 52242, USA
| | - Mario Hervault
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
- Cognitive Control Collaborative, University of Iowa, Iowa City, IA 52242, USA
| | - Nathan H Chalkley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
- Cognitive Control Collaborative, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - Cathleen M Moore
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Andrea Rohl
- Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA
| | - Qiang Zhang
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - Ergun Y Uc
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
- Neurology Service, Iowa City VA Medical Center, Iowa City, IA 52246, USA
| | | | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
- Cognitive Control Collaborative, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
42
|
Happer JP, Beaton LE, Wagner LC, Hodgkinson CA, Goldman D, Marinkovic K. Neural indices of heritable impulsivity: Impact of the COMT Val158Met polymorphism on frontal beta power during early motor preparation. Biol Psychol 2024; 191:108826. [PMID: 38862067 PMCID: PMC11853962 DOI: 10.1016/j.biopsycho.2024.108826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Studies of COMT Val158Met suggest that the neural circuitry subserving inhibitory control may be modulated by this functional polymorphism altering cortical dopamine availability, thus giving rise to heritable differences in behaviors. Using an anatomically-constrained magnetoencephalography method and stratifying the sample by COMT genotype, from a larger sample of 153 subjects, we examined the spatial and temporal dynamics of beta oscillations during motor execution and inhibition in 21 healthy Met158/Met158 (high dopamine) or 21 Val158/Val158 (low dopamine) genotype individuals during a Go/NoGo paradigm. While task performance was unaffected, Met158 homozygotes demonstrated an overall increase in beta power across regions essential for inhibitory control during early motor preparation (∼100 ms latency), suggestive of a global motor "pause" on behavior. This increase was especially evident on Go trials with slow response speed and was absent during inhibition failures. Such a pause could underlie the tendency of Met158 allele carriers to be more cautious and inhibited. In contrast, Val158 homozygotes exhibited a beta drop during early motor preparation, indicative of high response readiness. This decrease was associated with measures of behavioral disinhibition and consistent with greater extraversion and impulsivity observed in Val homozygotes. These results provide mechanistic insight into genetically-determined interindividual differences of inhibitory control with higher cortical dopamine associated with momentary response hesitation, and lower dopamine leading to motor impulsivity.
Collapse
Affiliation(s)
- Joseph P Happer
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Lauren E Beaton
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Laura C Wagner
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | | | - David Goldman
- Laboratory of Neurogenetics, NIAAA, NIH, Bethesda, MD, USA
| | - Ksenija Marinkovic
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA; Department of Psychology, San Diego State University, San Diego, CA, USA; Department of Radiology, University of California, La Jolla, San Diego, CA, USA.
| |
Collapse
|
43
|
Hapakova L, Necpal J, Kosutzka Z. The antisaccadic paradigm: A complementary neuropsychological tool in basal ganglia disorders. Cortex 2024; 178:116-140. [PMID: 38991475 DOI: 10.1016/j.cortex.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/20/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024]
Abstract
This review explores the role of the antisaccadic task in understanding inhibitory mechanisms in basal ganglia disorders. It conducts a comparative analysis of saccadic profiles in conditions such as Parkinson's disease, Tourette syndrome, obsessive-compulsive disorder, Huntington's disease, and dystonia, revealing distinct patterns and proposing mechanisms for impaired performance. The primary focus is on two inhibitory mechanisms: global, pre-emptive inhibition responsible for suppressing prepotent responses, and slower, selective response inhibition. The antisaccadic task demonstrates practicality in clinical applications, aiding in differential diagnoses, treatment monitoring and reflecting gait control. To further enhance its differential diagnostic value, future directions should address issues such as the standardization of eye-tracking protocol and the integration of eye-tracking data with other disease indicators in a comprehensive dataset.
Collapse
Affiliation(s)
- Lenka Hapakova
- 2nd Department of Neurology, Comenius University Faculty of Medicine, University Hospital Bratislava, Bratislava, Slovakia.
| | - Jan Necpal
- Neurology Department, Hospital Zvolen, a. s., Zvolen, Slovakia.
| | - Zuzana Kosutzka
- 2nd Department of Neurology, Comenius University Faculty of Medicine, University Hospital Bratislava, Bratislava, Slovakia.
| |
Collapse
|
44
|
Ai S. STN-PFC circuit related to attentional fluctuations during non-movement decision-making. Neuroscience 2024; 553:110-120. [PMID: 38972448 DOI: 10.1016/j.neuroscience.2024.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/06/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Decision-making is a cognitive process, in which participants need to attend to relevant information and ignore the irrelevant information. Previous studies have described a set of cortical areas important for attention. It is unclear whether subcortical areas also serve a role. The subthalamic nucleus (STN), a part of basal ganglia, is traditionally considered a critical node in the cortico-basal ganglia-thalamus-cortico network. Given the location of the STN and its widespread connections with cortical and subcortical brain regions, the STN plays an important role in motor and non-motor cognitive processing. We would like to know if STN is also related to fluctuations in attentional task performance, and how the STN interacts with prefrontal cortical regions during the process. We examined neural activities within STN covaried with lapses of attention (defined as behavior error). We found that decreased neural activities in STN were associated with sustained attention. By examining connectivity across STN and various sub-regions of the prefrontal cortex (PFC), we found that decreased connectivity across areas was associated with sustained attention. Our results indicated that decreased STN activities were associated with sustained attention, and the STN-PFC circuit supported this process.
Collapse
Affiliation(s)
- Shengnan Ai
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
45
|
Ter Horst J, Boillot M, Cohen MX, Englitz B. Decreased Beta Power and OFC-STN Phase Synchronization during Reactive Stopping in Freely Behaving Rats. J Neurosci 2024; 44:e0463242024. [PMID: 38866485 PMCID: PMC11308328 DOI: 10.1523/jneurosci.0463-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/30/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
During natural behavior, an action often needs to be suddenly stopped in response to an unexpected sensory input-referred to as reactive stopping. Reactive stopping has been mostly investigated in humans, which led to hypotheses about the involvement of different brain structures, in particular the hyperdirect pathway. Here, we directly investigate the contribution and interaction of two key regions of the hyperdirect pathway, the orbitofrontal cortex (OFC) and subthalamic nucleus (STN), using dual-area, multielectrode recordings in male rats performing a stop-signal task. In this task, rats have to initiate movement to a go-signal, and occasionally stop their movement to the go-signal side after a stop-signal, presented at various stop-signal delays. Both the OFC and STN show near-simultaneous field potential reductions in the beta frequency range (12-30 Hz) compared with the period preceding the go-signal and the movement period. These transient reductions (∼200 ms) only happen during reactive stopping, which is when the stop-signal was received after action initiation, and are well timed after stop-signal onset and before the estimated time of stopping. Phase synchronization analysis also showed a transient attenuation of synchronization between the OFC and STN in the beta range during reactive stopping. The present results provide the first direct quantification of local neural oscillatory activity in the OFC and STN and interareal synchronization specifically timed during reactive stopping.
Collapse
Affiliation(s)
- Jordi Ter Horst
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen 6525 EN, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 EN, The Netherlands
| | - Morgane Boillot
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen 6525 EN, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 EN, The Netherlands
| | - Michael X Cohen
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen 6525 EN, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 EN, The Netherlands
| | - Bernhard Englitz
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 EN, The Netherlands
| |
Collapse
|
46
|
Clapp M, Bahuguna J, Giossi C, Rubin JE, Verstynen T, Vich C. CBGTPy: An extensible cortico-basal ganglia-thalamic framework for modeling biological decision making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.05.556301. [PMID: 37732280 PMCID: PMC10508778 DOI: 10.1101/2023.09.05.556301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Here we introduce CBGTPy, a virtual environment for designing and testing goal-directed agents with internal dynamics that are modeled on the cortico-basal-ganglia-thalamic (CBGT) pathways in the mammalian brain. CBGTPy enables researchers to investigate the internal dynamics of the CBGT system during a variety of tasks, allowing for the formation of testable predictions about animal behavior and neural activity. The framework has been designed around the principle of flexibility, such that many experimental parameters in a decision making paradigm can be easily defined and modified. Here we demonstrate the capabilities of CBGTPy across a range of single and multi-choice tasks, highlighting the ease of set up and the biologically realistic behavior that it produces. We show that CBGTPy is extensible enough to apply to a range of experimental protocols and to allow for the implementation of model extensions with minimal developmental effort.
Collapse
Affiliation(s)
- Matthew Clapp
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Jyotika Bahuguna
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Cristina Giossi
- Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Spain
- Institute of Applied Computing and Community Code, Palma, Spain
| | - Jonathan E. Rubin
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States of America
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Timothy Verstynen
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States of America
| | - Catalina Vich
- Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Spain
- Institute of Applied Computing and Community Code, Palma, Spain
| |
Collapse
|
47
|
Obeso I, Loayza FR, González-Redondo R, Villagra F, Luis E, Jahanshahi M, Obeso JA, Pastor MA. The causal role of the subthalamic nucleus in the inhibitory network. Ann N Y Acad Sci 2024; 1538:117-128. [PMID: 39116019 DOI: 10.1111/nyas.15193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The neural network mediating successful response inhibition mainly includes right hemisphere activation of the pre-supplementary motor area, inferior frontal gyrus (IFG), subthalamic nucleus (STN), and caudate nucleus. However, the causal role of these regions in the inhibitory network is undefined. Five patients with Parkinson's disease were assessed prior to and after therapeutic thermal ablation of the right STN in two separate functional magnetic resonance imaging (fMRI) sessions while performing a stop-signal task. Initiation times were faster but motor inhibition with the left hand (contralateral to the lesion) was significantly impaired as evident in prolonged stop-signal reaction times. Reduced inhibition after right subthalamotomy was associated (during successful inhibition) with the recruitment of basal ganglia regions outside the established inhibitory network. They included the putamen and caudate together with the anterior cingulate cortex and IFG of the left hemisphere. Subsequent network connectivity analysis (with the seed over the nonlesioned left STN) revealed a new inhibitory network after right subthalamotomies. Our results highlight the causal role of the right STN in the neural network for motor inhibition and the possible basal ganglia mechanisms for compensation upon losing a key node of the inhibition network.
Collapse
Affiliation(s)
| | - Francis R Loayza
- Neuroimaging and BioEngineering Laboratory, Faculty of Mechanical Engineering, Polytechnic University (ESPOL), Guayaquil, Ecuador
- Neuroimaging Laboratory, Neurosciences Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | - Federico Villagra
- Neuroimaging Laboratory, Neurosciences Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Elkin Luis
- Neuroimaging Laboratory, Neurosciences Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Marjan Jahanshahi
- Cognitive-Motor Neuroscience Group, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology & The National Hospital for Neurology and Neurosurgery, London, UK
| | - José A Obeso
- CIBERNED, Instituto Carlos III, Madrid, Spain
- HM-CINAC, Hospital Universitario HM Puerta del Sur, Madrid, Spain
| | - Maria A Pastor
- Neuroimaging Laboratory, Neurosciences Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
48
|
Williams D. Why so slow? Models of parkinsonian bradykinesia. Nat Rev Neurosci 2024; 25:573-586. [PMID: 38937655 DOI: 10.1038/s41583-024-00830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
Bradykinesia, or slowness of movement, is a defining feature of Parkinson disease (PD) and a major contributor to the negative effects on quality of life associated with this disorder and related conditions. A dominant pathophysiological model of bradykinesia in PD has existed for approximately 30 years and has been the basis for the development of several therapeutic interventions, but accumulating evidence has made this model increasingly untenable. Although more recent models have been proposed, they also appear to be flawed. In this Perspective, I consider the leading prior models of bradykinesia in PD and argue that a more functionally related model is required, one that considers changes that disrupt the fundamental process of accurate information transmission. In doing so, I review emerging evidence of network level functional connectivity changes, information transfer dysfunction and potential motor code transmission error and present a novel model of bradykinesia in PD that incorporates this evidence. I hope that this model may reconcile inconsistencies in its predecessors and encourage further development of therapeutic interventions.
Collapse
Affiliation(s)
- David Williams
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
- Department of Neurology, Whipps Cross University Hospital, Barts Health NHS Trust, London, UK.
| |
Collapse
|
49
|
Rangel BO, Novembre G, Wessel JR. Measuring the nonselective effects of motor inhibition using isometric force recordings. Behav Res Methods 2024; 56:4486-4503. [PMID: 37550468 DOI: 10.3758/s13428-023-02197-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
Inhibition is a key cognitive control mechanism humans use to enable goal-directed behavior. When rapidly exerted, inhibitory control has broad, nonselective motor effects, typically demonstrated using corticospinal excitability measurements (CSE) elicited by transcranial magnetic stimulation (TMS). For example, during rapid action-stopping, CSE is suppressed at both stopped and task-unrelated muscles. While such TMS-based CSE measurements have provided crucial insights into the fronto-basal ganglia circuitry underlying inhibitory control, they have several downsides. TMS is contraindicated in many populations (e.g., epilepsy or deep-brain stimulation patients), has limited temporal resolution, produces distracting auditory and haptic stimulation, is difficult to combine with other imaging methods, and necessitates expensive, immobile equipment. Here, we attempted to measure the nonselective motor effects of inhibitory control using a method unaffected by these shortcomings. Thirty male and female human participants exerted isometric force on a high-precision handheld force transducer while performing a foot-response stop-signal task. Indeed, when foot movements were successfully stopped, force output at the task-irrelevant hand was suppressed as well. Moreover, this nonselective reduction of isometric force was highly correlated with stop-signal performance and showed frequency dynamics similar to established inhibitory signatures typically found in neural and muscle recordings. Together, these findings demonstrate that isometric force recordings can reliably capture the nonselective effects of motor inhibition, opening the door to many applications that are hard or impossible to realize with TMS.
Collapse
Affiliation(s)
- Benjamin O Rangel
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, 52245, USA.
- Cognitive Control Collaborative, University of Iowa, Iowa City, IA, 52245, USA.
- University of Iowa, 444 Medical Research Center, Iowa City, IA, 52242, USA.
| | - Giacomo Novembre
- Neuroscience of Perception & Action Laboratory, Italian Institute of Technology, Rome, Italy
| | - Jan R Wessel
- Cognitive Control Collaborative, University of Iowa, Iowa City, IA, 52245, USA
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52245, USA
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| |
Collapse
|
50
|
Chung RS, Martin del Campo Vera R, Sundaram S, Cavaleri J, Gilbert ZD, Leonor A, Shao X, Zhang S, Kammen A, Mason X, Heck C, Liu CY, Kellis SS, Lee B. Beta-band power modulation in the human amygdala differentiates between go/no-go responses in an arm-reaching task. J Neural Eng 2024; 21:046019. [PMID: 38959877 PMCID: PMC11369913 DOI: 10.1088/1741-2552/ad5ebe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/22/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
Objective. Traditionally known for its involvement in emotional processing, the amygdala's involvement in motor control remains relatively unexplored, with sparse investigations into the neural mechanisms governing amygdaloid motor movement and inhibition. This study aimed to characterize the amygdaloid beta-band (13-30 Hz) power between 'Go' and 'No-go' trials of an arm-reaching task.Approach. Ten participants with drug-resistant epilepsy implanted with stereoelectroencephalographic (SEEG) electrodes in the amygdala were enrolled in this study. SEEG data was recorded throughout discrete phases of a direct reach Go/No-go task, during which participants reached a touchscreen monitor or withheld movement based on a colored cue. Multitaper power analysis along with Wilcoxon signed-rank and Yates-correctedZtests were used to assess significant modulations of beta power between the Response and fixation (baseline) phases in the 'Go' and 'No-go' conditions.Main results. In the 'Go' condition, nine out of the ten participants showed a significant decrease in relative beta-band power during the Response phase (p⩽ 0.0499). In the 'No-go' condition, eight out of the ten participants presented a statistically significant increase in relative beta-band power during the response phase (p⩽ 0.0494). Four out of the eight participants with electrodes in the contralateral hemisphere and seven out of the eight participants with electrodes in the ipsilateral hemisphere presented significant modulation in beta-band power in both the 'Go' and 'No-go' conditions. At the group level, no significant differences were found between the contralateral and ipsilateral sides or between genders.Significance.This study reports beta-band power modulation in the human amygdala during voluntary movement in the setting of motor execution and inhibition. This finding supplements prior research in various brain regions associating beta-band power with motor control. The distinct beta-power modulation observed between these response conditions suggests involvement of amygdaloid oscillations in differentiating between motor inhibition and execution.
Collapse
Affiliation(s)
- Ryan S Chung
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Roberto Martin del Campo Vera
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Jonathon Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Zachary D Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Andrea Leonor
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Xiecheng Shao
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Selena Zhang
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Alexandra Kammen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Xenos Mason
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States of America
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Christi Heck
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States of America
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States of America
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Spencer S Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States of America
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States of America
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|