1
|
Kamp D. A physical perspective on lithium therapy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 194:55-74. [PMID: 39547449 DOI: 10.1016/j.pbiomolbio.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024]
Abstract
Lithium salts have strong medical properties in neurological disorders such as bipolar disorder and lithium-responsive headaches. They have recently gathered attention due to their potential preventive effect in viral infections. Though the therapeutic effect of lithium was documented by Cade in the late 1940s, its underlying mechanism of action is still disputed. Acute lithium exposure has an activating effect on excitable organic tissue and organisms, and is highly toxic. Lithium exposure is associated with a strong metabolic response in the organism, with large changes in phospholipid and cholesterol expression. Opposite to acute exposure, this metabolic response alleviates excessive cellular activity. The presence of lithium ions strongly affects lipid conformation and membrane phase unlike other alkali ions, with consequences for membrane permeability, buffer property and excitability. This review investigates how lithium ions affect lipid membrane composition and function, and how lithium response might in fact be the body's attempt to counteract the physical presence of lithium ions at cell level. Ideas for further research in microbiology and drug development are discussed.
Collapse
Affiliation(s)
- Dana Kamp
- The Niels Bohr Institute, Copenhagen University, Copenhagen, Denmark.
| |
Collapse
|
2
|
Asghar H, Ahmed T. Comparative Study of Time-Dependent Aluminum Exposure and Post-Exposure Recovery Shows Better Improvement in Synaptic Changes and Neuronal Pathology in Rat Brain After Short-Term Exposure. Neurochem Res 2023:10.1007/s11064-023-03936-6. [PMID: 37093344 DOI: 10.1007/s11064-023-03936-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023]
Abstract
Aluminum is a ubiquitous metal that causes multiple brain pathologies such as, cognitive dysfunction and Alzheimer's disease like symptoms. Exposure to aluminum through drinking water is responsible for hampering learning and memory. This study aimed to compare (1) the time-dependent effect of aluminum exposure (keeping total exposure of 5850 mg/kg same) in two durations, 30 and 45 days, and (2) to compare post-exposure self-recovery effect after 20 days in both (30 and 45 days exposure) groups. Rats were given 130 and 195 mg/kg of AlCl3·6H2O for 45 and 30 days respectively, to see the time-dependent exposure effect. At the end of exposure, rats were given distilled water and allowed to self-recover for 20 days to study the recovery. Expression levels of synaptic genes (Syp, SNAP25, Nrxn1/2, PSD95, Shank1/2, Homer1, CamkIV, Nrg1/2 and Kalrn) were measured using qPCR and compared in the exposure and recovery groups. Cellular morphology of the rat brain cortex and hippocampus was also investigated. Damage in lipid and protein profile was measured by employing FTIR. Results showed downregulation of mRNA expression of synaptic genes, plaques deposition, disorganization in lipid and protein profile by increasing membrane fluidity, and disorder and alteration of protein secondary structure after both exposure periods. However, better improvement/recovery in these parameters were observed in recovery group of 30 days aluminum exposure compared to 45 days aluminum exposure group. Taken together, these results suggested that short-term exposure resulted in better restoration of lipid and protein profile after time-dependent exposure of aluminum than prolonged exposure.
Collapse
Affiliation(s)
- Humna Asghar
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan.
| |
Collapse
|
3
|
Necrostatin-1 Relieves Learning and Memory Deficits in a Zebrafish Model of Alzheimer's Disease Induced by Aluminum. Neurotox Res 2022; 40:198-214. [PMID: 34982355 DOI: 10.1007/s12640-021-00463-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/21/2022]
Abstract
Aluminum (Al) is considered one of the environmental risk factors for Alzheimer's disease (AD). The present study aims to establish a zebrafish AD model induced by Al and explore if necrostation-1 (Nec-1), a specific inhibitor of necroptosis, is effective in relieving learning and memory deficits in the zebrafish AD models. We treated adult zebrafish with aluminum trichloride at various doses for 1 month, followed by a T-maze test to evaluate learning and memory performance. Al concentration, levels of acetylcholine (Ach), and AD-related protein and gene expression in the brain tissue were evaluated in the zebrafish AD models. Our results demonstrated that in the brain tissue of Al-treated zebrafish, Al accumulated, Ach levels decreased, and AD-related genes and proteins increased. As a result, the learning and memory performance of Al-treated zebrafish was impaired. This suggested that a zebrafish AD model was established. To test the effect of Nec-1 on the zebrafish AD model, we added Nec-1 into the culture medium of the Al-treated adult zebrafish. The results demonstrated that Nec-1 could relive the learning and memory deficits, enhance Ach levels and the numbers of neural cells, and impact necroptosis-related gene expression. We concluded that Nec-1 could reverse Al-induced learning and memory impairment and had potential theoretical value in the zebrafish AD model.
Collapse
|
4
|
Saeed A, Qusti SY, Almarwani RH, Jambi EJ, Alshammari EM, Gusty NF, Balgoon MJ. Effects of aluminum chloride and coenzyme Q10 on the molecular structure of lipids and the morphology of the brain hippocampus cells. RSC Adv 2021; 11:29925-29933. [PMID: 35480272 PMCID: PMC9040883 DOI: 10.1039/d1ra03786b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/08/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Aluminum chloride (AlCl3) is a neurotoxic substance, while coenzyme Q10 (CoQ10) is considered a lipid antioxidant. Herein, their effects on the molecular structure of lipids and the morphology of the hippocampus brain tissue were investigated. Three groups of Wistar albino male rats were used in this study. For four weeks, one group was kept as a control group; the second group was given AlCl3; the third group was given AlCl3/CoQ10. Fourier transform infrared (FTIR) and histopathological examinations were utilized to estimate alterations in the molecular structure of the lipids and the cell morphology, respectively. The FTIR spectra revealed considerable decreases in the CH contents and alterations in the molecular ratios of olefinic[double bond, length as m-dash]CH/νas(CH3), νas(CH2)/νas(CH3), and νas(CH2)/[νas(CH2) + νs(CH2)] in the group given AlCl3. However, no significant changes were detected in those rats given AlCl3/CoQ10. Histopathology images uncovered shrinking and dark centers in the pyramidal cells of brain tissue hippocampal cells. The diameters of the pyramidal cells were estimated to be 4.81 ± 0.55 μm, 4.04 ± 0.71 μm, and 4.63 ± 0.71 μm for the control, AlCl3, and AlCl3/CoQ10 groups, respectively. The study showed that the AlCl3 could cause a shrinking of around 16% in the hippocampus pyramidal cells; besides, CoQ10 is a powerful therapeutic antioxidant to help restore the hippocampal neurons to a regular state.
Collapse
Affiliation(s)
- Abdu Saeed
- Department of Physics, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia +96 6563190832
- Department of Physics, Thamar University Thamar 87246 Yemen
| | - Safaa Y Qusti
- Biochemistry Department, Faculty of Science, King Abdulaziz University Jeddah Saudi Arabia
| | - Rawan Hamdan Almarwani
- Biochemistry Department, Faculty of Science, King Abdulaziz University Jeddah Saudi Arabia
| | - Ebtihaj J Jambi
- Biochemistry Department, Faculty of Science, King Abdulaziz University Jeddah Saudi Arabia
- King Fahd Medical Research Center Jeddah Saudi Arabia
| | - Eida M Alshammari
- Department of Chemistry, College of Sciences, University of Ha'il Ha'il 2440 Saudi Arabia
| | - Naeem F Gusty
- Medical Laboratories Department, Faculty of Applied Medical Sciences, Umm Al-Qura University Mecca Saudi Arabia
| | - Maha J Balgoon
- Biochemistry Department, Faculty of Science, King Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
5
|
Abdelmeguid NE, Khalil MIM, Elhabet R, Sultan AS, Salam SA. Combination of docosahexaenoic acid and Ginko biloba extract improves cognitive function and hippocampal tissue damages in a mouse model of Alzheimer's disease. J Chem Neuroanat 2021; 116:101995. [PMID: 34182090 DOI: 10.1016/j.jchemneu.2021.101995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/26/2021] [Accepted: 06/23/2021] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases characterized by a progressive loss of memory and other cognitive functions among elder people. Nowadays, natural antioxidants have been used to recover the quality of life for those with AD. In this study, we investigated, for the first time, the combined effect of docosahexaenoic acid (DHA) and Ginkgo bilobastandardized extract (EGb761) on AD mice. AD was induced in adult male albino mice with AlCl3 (20 mg/kg b.w, i.g.) and D-galactose (D-gal; 120 mg/kg, i.p.) for 90 days. 30 days after induction, mice were treated with DHA (200 mg/kg b.w., i.g.) and EGb761 (200 mg/kg b.w., i.g.) for two months. Our data revealed that the dual treatment of DHA and EGb761 significantly improved cognitive memory and spatial learning abilities in AD-induced mice. The drug treatments preserved the hippocampal CA3 architecture and restored neuronal ultrastructural alterations. Expression of protein phosphatase 2A (PP2A), the most implicated protein phosphatase in AD neurodegeneration, was highly upregulated in the CA3 hippocampus of AD mice treated with DHA and EGb761. Intriguingly, TNF-α expression was significantly reduced in the same group. In conclusion, our findings proved that the combined effect of DHA and EGb761 tended to be potent against the neurodegenerative effect of AlCl3 and D-gal. The applied treatment enhanced neuronal survival and cognitive functions via upregulation of PP2A and restoration of TNF-α expression.
Collapse
Affiliation(s)
- Nabila E Abdelmeguid
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Mahmoud I M Khalil
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt; Department of Biological Sciences, Faculty of Science, Beirut Arab University, Lebanon.
| | - Rasha Elhabet
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Ahmed S Sultan
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Sherine Abdel Salam
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
6
|
Abu-Taweel GM, Al-Mutary MG. Pomegranate juice rescues developmental, neurobehavioral and biochemical disorders in aluminum chloride-treated male mice. J Trace Elem Med Biol 2021; 63:126655. [PMID: 33045674 DOI: 10.1016/j.jtemb.2020.126655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/13/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Aluminum (Al) is a harmful metal to organisms and is capable of entering the human body in multiple ways, such as through drinking, breathing, deodorant use, and vaccination. This study examined the prospective toxicity of Al and the protective attributes of pomegranate juice (PJ) on neurobehavioral and biochemical parameters of male mice. METHODS Six groups of male mice were treated for 35 days with 20 % PJ (group II), 40 % PJ (group III), 400 mg/kg Al (group IV), Al + 20 % PJ (group V), Al + 40 % PJ (group VI) or tap water (control, group I). Behavioral assessments were conducted for learning and memory evaluations at the end of experiment. In addition, the forebrain was isolated for biochemical analysis. RESULTS The exposure of male mice to Al decreased learning and memory retention in the shuttle box, Morris water-maze and T-Maze tests. Biochemical analysis revealed significant depletions in neurotransmitters including DA, 5-HT and AChE and oxidative proteins including GSH, GST, CAT and SOD and increased TBARES levels in Al-treated mice compared to untreated mice. Pomegranate juice provided protection against these effects after Al exposure by ameliorating learning and memory retention and oxidative state in a dose-independent manner. CONCLUSION Our data demonstrated that Al exposure caused behavioral and biochemical disorders. Pomegranate juice in lower dose has beneficial properties for health and can be used as a source of antioxidants to reduce the toxicity of Al and other substances.
Collapse
Affiliation(s)
- Gasem Mohammad Abu-Taweel
- Department of Biology, College of Sciences, Jazan University, P.O. Box 2079, Jazan 45142, Saudi Arabia
| | - Mohsen Ghaleb Al-Mutary
- Department of Basic Sciences, College of Education, Imam Abdulrahman Bin Faisal University, P.O. Box 2375, Dammam, 14513, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.
| |
Collapse
|
7
|
Morales-Martínez A, Zamorano-Carrillo A, Montes S, El-Hafidi M, Sánchez-Mendoza A, Soria-Castro E, Martínez-Lazcano JC, Martínez-Gopar PE, Ríos C, Pérez-Severiano F. Rich fatty acids diet of fish and olive oils modifies membrane properties in striatal rat synaptosomes. Nutr Neurosci 2021; 24:1-12. [PMID: 30822260 DOI: 10.1080/1028415x.2019.1584692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background: Essential fatty acids (EFAs) and non-essential fatty acids (nEFAs) exert experimental and clinical neuroprotection in neurodegenerative diseases. The main EFAs, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), nEFAs, and oleic acid (OA) contained in olive and fish oils are inserted into the cell membranes, but the exact mechanism through which they exert neuroprotection is still unknown. Objectives and Methods: In this study, we assessed the fatty acids content and membrane fluidity in striatal rat synaptosomes after fatty acid-rich diets (olive- or a fish-oil diet, 15% w/w). Then, we evaluated the effect of enriching striatum synaptosomes with fatty acids on the oxidative damage produced by the prooxidants ferrous sulfate (FeSO4) or quinolinic acid (QUIN). Results and Discussion: Lipid profile analysis in striatal synaptosomes showed that EPA content increased in the fish oil group in comparison with control and olive groups. Furthermore, we found that synaptosomes enriched with fatty acids and incubated with QUIN or FeSO4 showed a significant oxidative damage reduction. Results suggest that EFAs, particularly EPA, improve membrane fluidity and confer antioxidant effect.
Collapse
Affiliation(s)
- Adriana Morales-Martínez
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
- Laboratorio de Investigación de Bioquímica y Biofísica Computacional, ENMH, Instituto Politécnico Nacional, Ciudad de México, México
| | - Absalom Zamorano-Carrillo
- Laboratorio de Investigación de Bioquímica y Biofísica Computacional, ENMH, Instituto Politécnico Nacional, Ciudad de México, México
| | - Sergio Montes
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
| | - Mohammed El-Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Alicia Sánchez-Mendoza
- Departamento de Farmacología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Elizabeth Soria-Castro
- Departamento de Patología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | | | | | - Camilo Ríos
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
| | - Francisca Pérez-Severiano
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
| |
Collapse
|
8
|
Ahmed GAR, Khalil SKH, Hotaby WE, Abbas L, Farrag ARH, Aal WEA, Sherif HHA, Abdel-Rahman EA, Saber SH, Hassan M, Hassan MH, Balgoon M, Qusti S, Kotb M, Ali SS. ATR-IR and EPR spectroscopy for following the membrane restoration of isolated cortical synaptosomes in aluminium-induced Alzheimer's disease - Like rat model. Chem Phys Lipids 2020; 231:104931. [PMID: 32619464 DOI: 10.1016/j.chemphyslip.2020.104931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/22/2020] [Accepted: 06/01/2020] [Indexed: 01/03/2023]
Abstract
Synaptosomal membrane peroxidation and alteration in its biophysical properties are associated with Aluminium (Al) toxicity that may lead to cognitive dysfunction and Alzheimer's disease (AD) like pathogenesis. Here we investigated the therapeutic potential of Lepedium sativum (LS) as a natural anti-inflammatory, antioxidant and as acetyl cholinesterase inhibitor in treating Al induced AD-like in rat model. We utilized ATR-IR spectroscopy to follow the restoration in the damaged membrane structure of isolated rat cortical synaptosomes and its biophysical properties, electron paramagnetic resonance (EPR) spin trapping to follow NADPH oxidase activity (NOX), and EPR spin labelling in response to LS treatment after Al intoxication. We measured the concentration of Ca2+ ions in rat cortical tissue by inductively coupled plasma (ICP), the brain atrophy/curing and hydrocephalus by magnetic resonance imaging (MRI) besides light microscope histopathology. Our results revealed significant increase in synaptosomal membrane rgidification, order, lipid packing, reactive oxygen species (ROS) production and Ca2+ ion concentration as a result of Al intoxication. The dramatic increase in Ca2+ ion concentration detected in AD group associated with the increase in synaptic membrane polarity and EPR-detected order S-parameter suggest that release of synaptic vesicles into synaptic cleft might be hindered. LS treatment reversed these changes in synaptic membranes, and rescued an observed deficit in the exploratory behaviour of AD group. Our results also strongly suggest that the synaptosomal membrane phospholipids that underwent free radical attacks mediated by AlCl3, due to greater NOX activity, was prevented in the LS group. The results of ATR-IR and EPR spectroscopic techniques recommend LS as a promising therapeutic agent against synaptic membrane alterations opening a new window for AD drug developers.
Collapse
Affiliation(s)
- Gehan A-R Ahmed
- Spectroscopy Dept., Physics Division, National Research Centre, 33 El Bohouth St., (former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt; Biochemistry Dept., Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Safaa K H Khalil
- Spectroscopy Dept., Physics Division, National Research Centre, 33 El Bohouth St., (former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - W El Hotaby
- Spectroscopy Dept., Physics Division, National Research Centre, 33 El Bohouth St., (former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - Lamyaa Abbas
- Spectroscopy Dept., Physics Division, National Research Centre, 33 El Bohouth St., (former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | | | - Wafaa E Abdel Aal
- Pathology Dept., Medical Research Div., National Research Centre, Giza, Egypt
| | - Hadeer H A Sherif
- Spectroscopy Dept., Physics Division, National Research Centre, 33 El Bohouth St., (former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - Engy A Abdel-Rahman
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; Pharmacology Department, Faculty of Medicine, Assuit University, Assuit, Egypt; Children's Cancer Hospital 57357, Cair, Egypt
| | - Saber H Saber
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Mahmoud Hassan
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed H Hassan
- Centre for Materials Science, Zewail City of Science and Technology, Giza, Egypt
| | - Maha Balgoon
- Biochemistry Dept., Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Safaa Qusti
- Biochemistry Dept., Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mamdooh Kotb
- Department of Radiology, King Abdulaziz University, Hospital, Jeddah, Saudi Arabia
| | - Sameh S Ali
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; Children's Cancer Hospital 57357, Cair, Egypt.
| |
Collapse
|
9
|
A-R Ahmed G, Khalil SKH, El Hotaby W, Abbas L, Sherif HHA, Abdel-Rahman EA, Saber SH, Hassan M, Hassan MH, Ali SS. ATR-IR and EPR spectroscopy for detecting the alterations in cortical synaptosomes induced by aluminium stress. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117535. [PMID: 31748152 DOI: 10.1016/j.saa.2019.117535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/13/2019] [Accepted: 09/15/2019] [Indexed: 05/26/2023]
Abstract
Aluminium (Al) is reported to promote free radical production, decrease the antioxidant enzyme status and disturb the enzyme activity involved in acetylcholine metabolism leading to cognitive dysfunction that are strongly associated with Alzheimer's disease (AD) pathogenesis. This work aimed at investigating the effect of Al-toxicity on synaptosomal membrane biophysical properties and lipid peroxidation during 65 days. We utilized ATR-IR spectroscopy to study the changes in membrane biochemical structure and biophysical properties of isolated rat cortical synaptosomes, and EPR spin trapping and labeling to follow NADPH oxidase activity and changes of membrane order parameter, respectively. The results showed increase in membrane fluidity and disorder in early 21d of AlCl3 treatment, while after 42d the membrane rigidity, packing, and order increased. The late (65d) an increase in the amount of unsaturated fatty acids, the accumulation of lipid peroxide end products, and ROS production were detected in rat cortex synaptosomes mediated by Al toxicity and oxidative stress (OS). A dramatic increase was also detected in Ca2+ level, synaptic membrane polarity, and EPR-detected order S-parameter. These outcomes strongly suggest that the synaptosomal membrane phospholipids underwent free radical attacks mediated by AlCl3 due to greater NOX activity, and the release of synaptic vesicles into synaptic cleft might be hindered. The adopted spectroscopic techniques have shed light on the biomolecular structure and membrane biophysical changes of isolated cortical synaptosomes for the first time, allowing researchers to move closer to a complete understanding of pathological tissues.
Collapse
Affiliation(s)
- Gehan A-R Ahmed
- Spectroscopy Dept., Physics Division, National Research Centre, Cairo, Egypt, P.O.12622, 33 El Bohouth St. (former El Tahrir St.), Dokki, Giza, Egypt.
| | - Safaa K H Khalil
- Spectroscopy Dept., Physics Division, National Research Centre, Cairo, Egypt, P.O.12622, 33 El Bohouth St. (former El Tahrir St.), Dokki, Giza, Egypt
| | - W El Hotaby
- Spectroscopy Dept., Physics Division, National Research Centre, Cairo, Egypt, P.O.12622, 33 El Bohouth St. (former El Tahrir St.), Dokki, Giza, Egypt
| | - Lamyaa Abbas
- Spectroscopy Dept., Physics Division, National Research Centre, Cairo, Egypt, P.O.12622, 33 El Bohouth St. (former El Tahrir St.), Dokki, Giza, Egypt
| | - Hadeer H A Sherif
- Spectroscopy Dept., Physics Division, National Research Centre, Cairo, Egypt, P.O.12622, 33 El Bohouth St. (former El Tahrir St.), Dokki, Giza, Egypt
| | - Engy A Abdel-Rahman
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; Pharmacology Department, Faculty of Medicine, Assuit University, Assuit, Egypt; Children's Cancer Hospital, 57357, Cairo, Egypt
| | - Saber H Saber
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Mahmoud Hassan
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed H Hassan
- Centre for Materials Science, Zewail City of Science and Technology, Giza, Egypt
| | - Sameh S Ali
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; Children's Cancer Hospital, 57357, Cairo, Egypt.
| |
Collapse
|
10
|
Colomina MT, Peris-Sampedro F. Aluminum and Alzheimer’s Disease. ADVANCES IN NEUROBIOLOGY 2017; 18:183-197. [DOI: 10.1007/978-3-319-60189-2_9] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Effect of lysine acetylsalicylate on aluminium accumulation and (Na+/K+)ATPase activity in rat brain cortex synaptosomes after aluminium ingestion. Toxicol Lett 2015; 232:167-74. [DOI: 10.1016/j.toxlet.2014.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 10/09/2014] [Accepted: 10/09/2014] [Indexed: 11/21/2022]
|
12
|
Xiu C, Ren L, Li M, Liu S, Zhu Y, Liu J, Li Y. Aluminum chloride- and norepinephrine-induced immunotoxicity on splenic lymphocytes by activating β2-AR/cAMP/PKA/NF-κB signal pathway in rats. Biol Trace Elem Res 2014; 162:168-74. [PMID: 25326265 DOI: 10.1007/s12011-014-0149-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
We found in our previous research that aluminum (Al) exposure induced immunotoxicity on spleen and increased norepinephrine (NE) content in serum from rats. However, it is unclear how NE is involved in the AlCl3 immunotoxicity on rats. Therefore, this experiment was designed to explore the mechanism of AlCl3 and NE-induced immunotoxicity on the splenic lymphocytes. Eighty male Wistar rats were orally exposed to AlCl3 (0, 64, 128, and 256 mg/kg BW) through drinking water for 120 days. Al contents in brain and spleen; NE contents in serum and in the hypothalamus; β2-AR density; cAMP content; β2-AR, PKA, and NF-κB mRNA expression levels; and protein expressions of PKA and nuclear NF-κB in splenic lymphocytes of AlCl3-treated rats were examined. The results showed that AlCl3 increased NE content in serum, the β2-AR density, the β2-AR and PKA (C-subunits) mRNA expression levels, cAMP content and the PKA (C-subunits) protein expression levels in lymphocytes, whereas, decreased NE content in the hypothalamus, the NF-κB (p65) mRNA expression level and nuclear NF-κB (p65) protein expression level in lymphocytes. These results indicated that the accumulated AlCl3 in spleen and the increased NE in serum induced the immunotoxicity on splenic lymphocytes by activating β2-AR/cAMP/PKA/NF-κB signal pathway in rats.
Collapse
Affiliation(s)
- Chunyu Xiu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Morsy GM, El-Ala KSA, Ali AA. Studies on fate and toxicity of nanoalumina in male albino rats. Toxicol Ind Health 2013; 32:634-55. [DOI: 10.1177/0748233713504022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The work aimed to evaluate the nanoalumina toxicity on the histological architecture, some haematological and biochemical aspects in male albino rats, during acute and sublethal experiments. Rats, in acute experiments, were injected with a single-acute dose of 3.9 g or 6.4 g or 8.5 g of aluminium oxide (Al2O3) kg−1, whereas those of sublethal were injected with 1.3 g of Al2O3 kg−1 2 days−1. One-way analysis of variance indicated that injected doses and the experimental periods were significantly affected by haemoglobin (Hb) content; haematocrit value (Hct); white blood cell (WBC) count; blood platelet (Plt) count; mean corpuscular volume (MCV); mean corpuscular Hb (MCH) and MCH concentration (MCHC). In acute experiments, Hct, WBC count, MCV and Plt were significantly higher than the corresponding controls, whereas Hb, MCH and MCHC markedly decreased. In comparison with the related controls after 1, 3 and 7 days post-injection, red blood cell count, Hb, Hct, WBC count, Plt and MCV were significantly increased, but begun to decrease after 14 or/and 28 days and were associated with a marked decrease in MCH and MCHC. In serum of rats injected with acute or sublethal dose, the concentrations of total protein (TP) and total lipid (TL) were significantly lesser than the corresponding controls, whereas the levels of urea, uric acid, creatinine and the activities of aspartate aminotransferase and alanine aminotransferase were markedly increased. The injected doses were directly proportional with all the studied biochemical parameter, except the TL and TP that exhibited a negative correlation. Histologically, the highest acute and sublethal doses of nanoalumina caused hepatic irregular disarray, necrosis to the hepatic and Kupffer cells that are associated with congested blood sinusoids. The renal tissues characterized by the appearance of inter-tubular congestion that is accompanied by the dilation of the vascular glomeruli that completely occupied Bowman’s capsule and accompanied with partial disappearance of the renal tubule’s brush border. The brain showed a progressive degeneration of neurons in both the experiments.
Collapse
Affiliation(s)
- Gamal M Morsy
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | | | - Atef A Ali
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
14
|
Silva V, Oliveira L, Gonçalves P. Alteration of aluminium inhibition of synaptosomal (Na+/K+)ATPase by colestipol administration. J Inorg Biochem 2013; 128:208-14. [DOI: 10.1016/j.jinorgbio.2013.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/11/2013] [Accepted: 06/17/2013] [Indexed: 12/13/2022]
|
15
|
Singla N, Dhawan D. Zinc protection against aluminium induced altered lipid profile and membrane integrity. Food Chem Toxicol 2013; 55:18-28. [DOI: 10.1016/j.fct.2012.12.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 12/25/2012] [Accepted: 12/27/2012] [Indexed: 12/14/2022]
|
16
|
Han S, Lemire J, Appanna VP, Auger C, Castonguay Z, Appanna VD. How aluminum, an intracellular ROS generator promotes hepatic and neurological diseases: the metabolic tale. Cell Biol Toxicol 2013; 29:75-84. [PMID: 23463459 DOI: 10.1007/s10565-013-9239-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/04/2013] [Indexed: 01/10/2023]
Abstract
Metal pollutants are a global health risk due to their ability to contribute to a variety of diseases. Aluminum (Al), a ubiquitous environmental contaminant is implicated in anemia, osteomalacia, hepatic disorder, and neurological disorder. In this review, we outline how this intracellular generator of reactive oxygen species (ROS) triggers a metabolic shift towards lipogenesis in astrocytes and hepatocytes. This Al-evoked phenomenon is coupled to diminished mitochondrial activity, anerobiosis, and the channeling of α-ketoacids towards anti-oxidant defense. The resulting metabolic reconfiguration leads to fat accumulation and a reduction in ATP synthesis, characteristics that are common to numerous medical disorders. Hence, the ability of Al toxicity to create an oxidative environment promotes dysfunctional metabolic processes in astrocytes and hepatocytes. These molecular events triggered by Al-induced ROS production are the potential mediators of brain and liver disorders.
Collapse
Affiliation(s)
- Sungwon Han
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Modulatory effects of vitamin E, acetyl-l-carnitine and α-lipoic acid on new potential biomarkers for Alzheimer's disease in rat model. ACTA ACUST UNITED AC 2012; 64:549-56. [DOI: 10.1016/j.etp.2010.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 11/12/2010] [Indexed: 02/01/2023]
|
18
|
Willhite CC, Ball GL, McLellan CJ. Total allowable concentrations of monomeric inorganic aluminum and hydrated aluminum silicates in drinking water. Crit Rev Toxicol 2012; 42:358-442. [DOI: 10.3109/10408444.2012.674101] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Belaïd-Nouira Y, Bakhta H, Bouaziz M, Flehi-Slim I, Haouas Z, Ben Cheikh H. Study of lipid profile and parieto-temporal lipid peroxidation in AlCl₃ mediated neurotoxicity. Modulatory effect of fenugreek seeds. Lipids Health Dis 2012; 11:16. [PMID: 22280491 PMCID: PMC3296590 DOI: 10.1186/1476-511x-11-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 01/26/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Peroxidation of lipid (LPO) membrane and cholesterol metabolism have been involved in the physiopathology of many diseases of aging brain. Therefore, this prospective animal study was carried firstly to find out the correlation between LPO in posterior brain and plasmatic cholesterol along with lipoprotein levels after chronic intoxication by aluminium chloride (AlCl₃). Chronic aluminum-induced neurotoxicity has been in fact related to enhanced brain lipid peroxidation together with hypercholesterolemia and hypertriglyceridemia, despite its controversial etiological role in neurodegenerative diseases. Secondly an evaluation of the effectiveness of fenugreek seeds in alleviating the engendered toxicity through these biochemical parameters was made. RESULTS Oral administration of AlCl₃ to rats during 5 months (500 mg/kg bw i.g for one month then 1600 ppm via the drinking water) enhanced the levels of LPO in posterior brain, liver and plasma together with lactate dehydrogenase (LDH) activities, total cholesterol (TC), triglycerides (TG) and LDL-C (Low Density Lipoproteins) levels. All these parameters were decreased following fenugreek seeds supplementation either as fenugreek seed powder (FSP) or fenugreek seed extract (FSE). A notable significant correlation was observed between LPObrain and LDL-C on one hand and LDHliver on the other hand. This latter was found to correlate positively with TC, TG and LDL-C. Furthermore, high significant correlations were observed between LDHbrain and TC, TG, LDL-C, LPObrain as well as LDHliver. CONCLUSION Aluminium-induced LPO in brain could arise from alteration of lipid metabolism particularly altered lipoprotein metabolism rather than a direct effect of cholesterol oxidation. Fenugreek seeds could play an anti-peroxidative role in brain which may be attributed in part to its modulatory effect on plasmatic lipid metabolism.
Collapse
Affiliation(s)
- Yosra Belaïd-Nouira
- Research unit of Genetic (02/UR/08-03), Laboratory of Histology and Cytogenetic, Faculty of Medicine, Monastir, Tunisia.
| | | | | | | | | | | |
Collapse
|
20
|
Calejo AI, Jorgačevski J, Silva VS, Stenovec M, Kreft M, Gonçalves PP, Zorec R. Aluminium-induced changes of fusion pore properties attenuate prolactin secretion in rat pituitary lactotrophs. Neuroscience 2011; 201:57-66. [PMID: 22123165 DOI: 10.1016/j.neuroscience.2011.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/04/2011] [Accepted: 11/08/2011] [Indexed: 02/09/2023]
Abstract
Hormone secretion is mediated by Ca(2+)-regulated exocytosis. The key step of this process consists of the merger of the vesicle and the plasma membranes, leading to the formation of a fusion pore. This is an aqueous channel through which molecules stored in the vesicle lumen exit into the extracellular space on stimulation. Here we studied the effect of sub-lethal dose of aluminium on prolactin secretion in isolated rat pituitary lactotrophs with an enzyme immunoassay and by monitoring electrophysiologically the interaction of a single vesicle with the plasma membrane in real time, by monitoring membrane capacitance. After 24-h exposure to sub-lethal AlCl(3) (30 μM), the secretion of prolactin was reduced by 14±8% and 46±11% under spontaneous and K(+)-stimulated conditions, respectively. The frequency of unitary exocytotic events, recorded by the high-resolution patch-clamp monitoring of membrane capacitance, a parameter linearly related to the membrane area, under spontaneous and stimulated conditions, was decreased in aluminium-treated cells. Moreover, while the fusion pore dwell-time was increased in the presence of aluminium, the fusion pore conductance, a measure of fusion pore diameter, was reduced, both under spontaneous and stimulated conditions. These results suggest that sub-lethal aluminium concentrations reduce prolactin secretion downstream of the stimulus secretion coupling by decreasing the frequency of unitary exocytotic events and by stabilizing the fusion pore diameter to a value smaller than prolactin molecule, thus preventing its discharge into the extracellular space.
Collapse
Affiliation(s)
- A I Calejo
- Departamento de Biologia and CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | | | | | | |
Collapse
|
21
|
Kawahara M, Kato-Negishi M. Link between Aluminum and the Pathogenesis of Alzheimer's Disease: The Integration of the Aluminum and Amyloid Cascade Hypotheses. Int J Alzheimers Dis 2011; 2011:276393. [PMID: 21423554 PMCID: PMC3056430 DOI: 10.4061/2011/276393] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/29/2010] [Accepted: 01/05/2011] [Indexed: 12/21/2022] Open
Abstract
Whilst being environmentally abundant, aluminum is not essential for life. On the contrary, aluminum is a widely recognized neurotoxin that inhibits more than 200 biologically important functions and causes various adverse effects in plants, animals, and humans. The relationship between aluminum exposure and neurodegenerative diseases, including dialysis encephalopathy, amyotrophic lateral sclerosis and Parkinsonism dementia in the Kii Peninsula and Guam, and Alzheimer's disease (AD) has been suggested. In particular, the link between aluminum and Alzheimer's disease has been the subject of scientific debate for several decades. However, the complex characteristics of aluminum bioavailability make it difficult to evaluate its toxicity and therefore, the relationship remains to be established. Mounting evidence has suggested that significance of oligomerization of β-amyloid protein and neurotoxicity in the molecular mechanism of AD pathogenesis. Aluminum may play crucial roles as a cross-linker in β-amyloid oligomerization. Here, we review the detailed characteristics of aluminum neurotoxicity based on our own studies and the recent literatures. Our aim is to revisit the link between aluminum and AD and to integrate aluminum and amyloid cascade hypotheses in the context of β-amyloid oligomerization and the interactions with other metals.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Department of Analytical Chemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshino-cho, Nobeoka-shi, Miyazaki 882-8508, Japan
| | | |
Collapse
|
22
|
Verstraeten SV, Aimo L, Oteiza PI. Aluminium and lead: molecular mechanisms of brain toxicity. Arch Toxicol 2008; 82:789-802. [DOI: 10.1007/s00204-008-0345-3] [Citation(s) in RCA: 333] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 07/15/2008] [Indexed: 10/21/2022]
|
23
|
Martins NM, Santos NAG, Curti C, Bianchi MLP, Santos AC. Cisplatin induces mitochondrial oxidative stress with resultant energetic metabolism impairment, membrane rigidification and apoptosis in rat liver. J Appl Toxicol 2008; 28:337-44. [PMID: 17604343 DOI: 10.1002/jat.1284] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cisplatin is a potent and widely used chemotherapeutic agent. Nephrotoxicity induced by this drug has been well documented. However, very little information is available on cisplatin-induced hepatotoxicity and its underlying mechanism remains unclear. High doses of cisplatin have been known to produce hepatotoxicity. Additionally, elevated expression of CYP 2E1 has been associated with enhanced cisplatin-induced hepatotoxicity. Several studies suggest that cisplatin toxicity occurs by the increased generation of reactive oxygen species (ROS) in mitochondria. Therefore, the present study examined, in vivo, the cisplatin-induced effects on hepatic mitochondrial structure and function as well as the occurrence of hepatocellular death by apoptosis. Adult male Wistar rats (200-220 g) were divided into two groups (n=8) treated as follows: (1) control group (saline solution, 1 ml 100 g(-1) body weight, i.p.) and (2) cisplatin group (10 mg kg(-1) body weight, i.p.). The animals were killed 72 h after the treatment. Hepatotoxicity was evidenced in the cisplatin group by the increased serum levels of alanine (ALT) and aspartate (AST) aminotransferases. The mechanism of cisplatin-induced hepatotoxicity was found to involve membrane rigidification; decreased GSH/GSSG ratio, ATP, GSH and NADPH levels; lipid peroxidation; oxidative damage of cardiolipin and protein sulfhydryl groups. Moreover, cell death by apoptosis was also demonstrated and the findings strongly suggest the participation of the mitochondrial signaling pathway in this process. Therefore, the results show the key role of mitochondria in the hepatotoxicity induced by cisplatin and delineate several mitochondrial processes that could be targeted in future cytoprotective therapy approaches.
Collapse
Affiliation(s)
- N M Martins
- Departmento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Avenida do Café s/n, 14040-903 Ribeirão Preto, SP, Brasil
| | | | | | | | | |
Collapse
|
24
|
Kaizer RR, Corrêa MC, Gris LRS, da Rosa CS, Bohrer D, Morsch VM, Schetinger MRC. Effect of long-term exposure to aluminum on the acetylcholinesterase activity in the central nervous system and erythrocytes. Neurochem Res 2008; 33:2294-301. [PMID: 18470612 DOI: 10.1007/s11064-008-9725-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 04/21/2008] [Indexed: 11/25/2022]
Abstract
Aluminum (Al), a neurotoxic agent, has been associated with Alzheimer's disease (AD), which is characterized by cholinergic dysfunction in the central nervous system. In this study, we evaluated the effect of long-term exposure to aluminum on acetylcholinesterase (AChE) activity in the central nervous system in different brain regions, in synaptosomes of the cerebral cortex and in erythrocytes. The animals were loaded by gavage with AlCl(3) 50 mg/kg/day, 5 days per week, totalizing 60 administrations. Rats were divided into four groups: (1) control (C); (2) 50 mg/kg of citrate solution (Ci); (3) 50 mg/kg of Al plus citrate (Al + Ci), and (4) 50 mg/kg of Al (Al). AChE activity in striatum was increased by 15% for Ci, 19% for Al + Ci and 30% for Al, when compared to control (P < 0.05). The activity in hypothalamus increased 23% for Ci, 26% for Al + Ci and 28% for Al, when compared to control (P < 0.05). AChE activity in cerebellum, hippocampus and cerebral cortex was decreased by 11%, 23% and 21% respectively, for Al, when compared to the respective controls (P < 0.05). AChE activity in synaptosomes was increased by 14% for Al, when compared to control (P < 0.05). Erythrocyte AChE activity was increased by 17% for Al + Ci and 11% for Al, when compared to control (P < 0.05). These results indicate that Al affects at the same way AChE activity in the central nervous system and erythrocyte. AChE activity in erythrocytes may be considered a marker of easy access of the central cholinergic status.
Collapse
Affiliation(s)
- R R Kaizer
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário, Camobi, Av. Roraima, 97105-900, Santa Maria, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
25
|
Chiu KH, Ou KL, Lee SY, Lin CT, Chang WJ, Chen CC, Huang HM. Static Magnetic Fields Promote Osteoblast-Like Cells Differentiation Via Increasing the Membrane Rigidity. Ann Biomed Eng 2007; 35:1932-9. [PMID: 17721730 DOI: 10.1007/s10439-007-9370-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 08/13/2007] [Indexed: 10/22/2022]
Abstract
The aim of this study was to test the differentiative effects of osteoblasts after treatment with a static magnetic field (SMF). MG63 osteoblast-like cells were exposed to a 0.4-T SMF. The differentiation markers were assessed by observing the changes in alkaline phosphatase activity and electron microscopy images. Membrane fluidity was used to evaluate alterations in the biophysical properties of the cellular membranes after the SMF simulation. Our results show that SMF exposure increases alkaline phosphatase activity and extracellular matrix release in MG63 cells. On the other hand, MG63 cells exposed to a 0.4-T SMF exhibited a significant increase in fluorescence anisotropy at 6 h, with a significant reduction in the proliferation effects of growth factors noted at 24 h. Based on these findings, the authors suggest that one of the possible mechanisms that SMF affects osteoblastic maturation is by increasing the membrane rigidity and reducing the proliferation-promoting effects of growth factors at the membrane domain.
Collapse
Affiliation(s)
- Kang-Hsuan Chiu
- Department of Otolaryngology, Taipei Municipal Wan-Fang Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
26
|
dos Santos NAG, Martins NM, Curti C, Pires Bianchi MDL, dos Santos AC. Dimethylthiourea protects against mitochondrial oxidative damage induced by cisplatin in liver of rats. Chem Biol Interact 2007; 170:177-86. [PMID: 17850778 DOI: 10.1016/j.cbi.2007.07.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/30/2007] [Accepted: 07/31/2007] [Indexed: 12/30/2022]
Abstract
Cisplatin is one of the most effective chemotherapeutic agents. However, at higher doses liver injury may occur. The purpose of this study was to explore whether the hydroxyl radical scavenger dimethylthiourea (DMTU) protects against cisplatin-induced oxidative damage in vivo and to define the mitochondrial pathways involved in cytoprotection. Adult male Wistar rats (200-220 g) were divided into four groups of eight animals each. The control group was treated only with an intraperitoneal (i.p.) injection of saline solution (1 ml/100 g body weight). The DMTU group was given only DMTU (500 mg/kg body weight, i.p), followed by 125 mg/kg body weight, i.p. (twice a day) until sacrifice. The cisplatin group was given a single injection of cisplatin (10 mg/kg body weight, i.p.). The DMTU+cisplatin group was given DMTU (500 mg/kg body weight, i.p.), just before the cisplatin injection (10 mg/kg body weight, i.p.), followed by injections of DMTU (125 mg/kg body weight, i.p.) twice a day until sacrifice (72 h after the treatment). DMTU did not present any direct effect on mitochondria and substantially inhibited cisplatin-induced mitochondrial damage in liver, therefore preventing elevation of AST and ALT serum levels. DMTU protected against (a) decreased hepatic ATP levels; (b) lipid peroxidation; (c) cardiolipin oxidation; (d) sulfhydryl protein oxidation; (e) mitochondrial membrane rigidification; (f) GSH oxidation; (g) NADPH oxidation; (h) apoptosis. Results suggest that antioxidants, particularly hydroxyl radical scavengers, protect liver mitochondria against cisplatin-induced oxidative damage. Several mitochondrial changes were delineated and proposed as interesting targets for cytoprotective strategy.
Collapse
Affiliation(s)
- Neife Aparecida Guinaim dos Santos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Avenida do Café s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| | | | | | | | | |
Collapse
|
27
|
Kaizer RR, Maldonado PA, Spanevello RM, Corrêa MC, Gonçalves JF, Becker LV, Morsch VM, Schetinger MRC. The effect of aluminium on NTPDase and 5'-nucleotidase activities from rat synaptosomes and platelets. Int J Dev Neurosci 2007; 25:381-6. [PMID: 17686601 DOI: 10.1016/j.ijdevneu.2007.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 06/29/2007] [Indexed: 11/18/2022] Open
Abstract
Aluminium (Al), a neurotoxic compound, has been investigated in a large number of studies both in vivo and in vitro. In this study, we investigated the effect in vivo of long-term exposure to Al on NTPDase (nucleoside triphosphate diphosphohydrolase) and 5'-nucleotidase activities in the synaptosomes (obtained from the cerebral cortex and hippocampus) and platelets of rats. Here, we investigated a possible role of platelets as peripheral markers in rats. Rats were loaded by gavage with AlCl(3) 50 mg/(kg day), 5 days per week, totalizing 60 administrations. The animals were divided into four groups: (1) control (C), (2) 50 mg/kg of citrate solution (Ci), (3) 50 mg/kg of Al plus citrate (Al+Ci) solution and (4) 50 mg/kg of Al (Al). ATP hydrolysis was increased in the synaptosomes from the cerebral cortex by 42.9% for Al+Ci and 39.39% for Al, when compared to their respective control (p<0.05). ADP hydrolysis was increased by 13.15% for both Al and Al+Ci, and AMP hydrolysis increased by 32.7% for Al and 27.25% for Al+Ci (p<0.05). In hippocampal synaptosomes, the hydrolysis of ATP, ADP and AMP, was increased by 58.5%, 28.5% and 25.92%, respectively, for Al (p<0.05) and 36.7%, 22.5% and 37.64% for Al+Ci, both when compared to their respective controls. ATP, ADP and AMP hydrolysis, in platelets, was increased by 172.3%, 188.52% and 92.1%, respectively in Al+Ci, and 317.9%, 342.8% and 177.9%, respectively, for Al, when compared to their respective controls (p<0.05). Together, these results indicate that Al increases NTPDase and 5'-nucleotidase activities, in synaptosomal fractions and platelets. Thus, we suggest that platelets could be sensitive peripheral markers of Al toxicity of the central nervous system.
Collapse
Affiliation(s)
- Rosilene Rodrigues Kaizer
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av Roraima, 97105-900, Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Sánchez-Iglesias S, Soto-Otero R, Iglesias-González J, Barciela-Alonso MC, Bermejo-Barrera P, Méndez-Alvarez E. Analysis of brain regional distribution of aluminium in rats via oral and intraperitoneal administration. J Trace Elem Med Biol 2007; 21 Suppl 1:31-4. [PMID: 18039493 DOI: 10.1016/j.jtemb.2007.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 09/10/2007] [Indexed: 11/22/2022]
Abstract
In the present work, accumulation and distribution of aluminium in the rat brain following both intraperitoneal and oral administration were studied. Electrothermal atomic absorption spectrometry was used to determine aluminium concentration in different brain areas (cerebellum, ventral midbrain, cortex, hippocampus, and striatum). Most of the brain areas showed accumulation of aluminium, but a greater and more significant increase was noted in the group receiving aluminium via intraperitoneal administration. Aluminium distribution was also dependent on the administration route.
Collapse
Affiliation(s)
- Sofía Sánchez-Iglesias
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Santiago de Compostela, San Francisco 1, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J, Harry J, Kacew S, Lindsay J, Mahfouz AM, Rondeau V. Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2007; 10 Suppl 1:1-269. [PMID: 18085482 PMCID: PMC2782734 DOI: 10.1080/10937400701597766] [Citation(s) in RCA: 521] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Daniel Krewski
- Department of Epidemiology and Community Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tuneva J, Chittur S, Boldyrev AA, Birman I, Carpenter DO. Cerebellar Granule Cell Death Induced by Aluminum. Neurotox Res 2006; 9:297-304. [PMID: 16782589 DOI: 10.1007/bf03033320] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Using flow cytometry of acutely isolated cerebellar granule cell neurons, we have determined the effects of Al (III) on viability, membrane potential, intracellular calcium concentration and generation of reactive oxygen species (ROS). Al (III) killed granule cells in a time- and concentration-dependent fashion when monitored by use of the DNA-binding dye, propidium iodide. The threshold concentration was about 50 micromolar, and cell death at 100 micromolar was apparent after 30 min exposure and increased over time. Cell death was accompanied by cell swelling and a decrease in membrane potential, and was not dependent on external calcium concentration. While exposure to Al (III) was accompanied by an increase in ROS and an elevation of intracellular calcium concentration, calcium chelators and ROS scavengers did not reduce cell death. The action of Al (III) was not accompanied by activation of caspase-3 or an increase in annexin-V binding, both indicators of apoptosis. In the presence of intracellular O,O'-bis(2-aminophenyl)ethyleneglycol-N,N,N',N'-tetraacetic acid (BAPTA) and absence of extracellular calcium there was still a fluo-3 signal, which likely reflects an accumulation of intracellular Al (III). These observations suggest that the cell death is subsequent to intracellular accumulation of Al (III) and subsequent perturbation of cellular metabolism.
Collapse
Affiliation(s)
- Jelena Tuneva
- Institute for Health and the Environment, University at Albany, SUNY, Rensselaer, NY 12144, USA
| | | | | | | | | |
Collapse
|
31
|
Zhang F, Ji M, Xu Q, Yang L, Bi S. Linear scan voltammetric indirect determination of AlIII by the catalytic cathodic response of norepinephrine at the hanging mercury drop electrode. J Inorg Biochem 2005; 99:1756-61. [PMID: 16039719 DOI: 10.1016/j.jinorgbio.2005.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 05/24/2005] [Accepted: 06/09/2005] [Indexed: 10/25/2022]
Abstract
The biological effects of aluminum (Al) have received much attention in recent years. Al is of basic relevance as concern with its reactivity and bioavailability. In this paper, the electrochemical behaviors of norepinephrine (NE) in the absence and presence of Al(III) at the hanging mercury drop electrode have been studied and applied to the practical analysis. Highly selective catalytic cathodic peak of NE is yielded by linear scan voltammetry (LSV) at -1.32 V (vs. SCE). A linear relationship holds between the cathodic peak current and the Al(III) concentration. It has been successfully applied to the determination of Al(III) in real waters and synthetic biological samples with satisfying results, which are in accordance with those obtained by ICP-AES method. The electrochemical properties and the mechanisms of the peaks in the presence and absence of Al(III) have been explored. The results show that they are irreversible adsorptive hydrogen catalytic waves. These studies not only enrich the methods of determining Al, but also lay foundations of further understanding of the mechanisms of neurodementia.
Collapse
Affiliation(s)
- Fuping Zhang
- Department of Chemistry, State Key Laboratory of Coordination Chemistry of China, Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | |
Collapse
|
32
|
Kaizer RR, Corrêa MC, Spanevello RM, Morsch VM, Mazzanti CM, Gonçalves JF, Schetinger MRC. Acetylcholinesterase activation and enhanced lipid peroxidation after long-term exposure to low levels of aluminum on different mouse brain regions. J Inorg Biochem 2005; 99:1865-70. [PMID: 16055195 DOI: 10.1016/j.jinorgbio.2005.06.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 06/09/2005] [Accepted: 06/16/2005] [Indexed: 11/23/2022]
Abstract
Aluminum (Al), oxidative stress and impaired cholinergic functions have all been related to Alzheimer's disease (AD). The present study evaluates the effect of aluminum on acetylcholinesterase (AChE) and lipid peroxidation in the mouse brain. Mice were loaded by gavage with Al 0.1 mmol/kg/day 5 days per week during 12 weeks. The mice were divided into four groups: (1) control; (2) 10 mg/mL of citrate solution; (3) 0.1 mmol/kg of Al solution; (4) 0.1 mmol/kg of Al plus 10 mg/mL of citrate solution. AChE activity was determined in the hippocampus, striatum, cortex, hypothalamus and cerebellum and lipid peroxidation was determined in the hippocampus, striatum and cortex. An increase of AChE activity was observed in the fourth group (Al + Ci) in the hippocampus (36%), striatum (54%), cortex (44%) and hypothalamus (22%) (p<0.01). The third group (Al) presented a decrease of AChE activity in the hypothalamus (20%) and an enhancement in the striatum (27%). Lipid peroxidation, measured by TBARS (thiobarbituric acid reactive substances), was elevated in the hippocampus and cerebral cortex when compared with the control (p < 0.01). The effect of aluminum on AChE activity may be due to a direct neurotoxic effect of the metal or perhaps a disarrangement of the plasmatic membrane caused by increased lipid peroxidation.
Collapse
Affiliation(s)
- Rosilene R Kaizer
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
33
|
Huffman SW, Schlücker S, Levin IW. Reorganizational dynamics of multilamellar lipid bilayer assemblies using continuously scanning Fourier transform infrared spectroscopic imaging. Chem Phys Lipids 2004; 130:167-74. [PMID: 15172833 DOI: 10.1016/j.chemphyslip.2004.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 03/02/2004] [Accepted: 03/02/2004] [Indexed: 11/15/2022]
Abstract
We employ an implementation of rapid-scan Fourier transform infrared (FT-IR) microspectroscopic imaging to acquire time-resolved images for assessing the non-repetitive reorganizational dynamics of aqueous dispersions of multilamellar lipid vesicles (MLVs) derived from distearoylphosphatidylcholine (DSPC). The spatially and temporally resolved images allow direct and simultaneous determinations of various physical and chemical properties of the MLVs, including the main thermal gel to liquid crystalline phase transition, comparisons of vesicle diffusion rates in both phases and the variation in lipid bilayer packing properties between the inner and outer lamellae defining the vesicle. Specifically, in the lipid liquid crystalline phase, the inner bilayers of the MLVs are more intermolecularly ordered than the outer regions, while the intramolecular acyl chain order/disorder parameters, reflecting the overall characteristics of the fluid phase, remain uniform across the vesicle diameter. In contrast, the lipid vesicle gel phase displays no intermolecular or intramolecular dependence as a function of distance from the MLV center.
Collapse
Affiliation(s)
- Scott W Huffman
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|