1
|
Zavišić G, Ristić S, Petričević S, Janković D, Petković B. Microbial Contamination of Food: Probiotics and Postbiotics as Potential Biopreservatives. Foods 2024; 13:2487. [PMID: 39200415 PMCID: PMC11353716 DOI: 10.3390/foods13162487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Microbial contamination of food and alimentary toxoinfection/intoxication in humans are commonly caused by bacteria such as Salmonella spp., Escherichia coli, Yersinia spp., Campylobacter spp., Listeria monocytogenes, and fungi (Aspergillus, Fusarium). The addition of probiotic cultures (bacterial strains Lactobacillus and Bifidobacterium and the yeast Saccharomyces cerevisiae var. boulardii) to food contributes primarily to food enrichment and obtaining a functional product, but also to food preservation. Reducing the number of viable pathogenic microorganisms and eliminating or neutralizing their toxins in food is achieved by probiotic-produced antimicrobial substances such as organic acids (lactic acid, acetic acid, propionic acid, phenylacetic acid, and phenyllactic acid), fatty acids (linoleic acid, butyric acid, caproic acid, and caprylic acid), aromatic compounds (diacetyl, acetaldehyde, reuterin), hydrogen peroxide, cyclic dipeptides, bacteriocins, and salivabactin. This review summarizes the basic facts on microbial contamination and preservation of food and the potential of different probiotic strains and their metabolites (postbiotics), including the mechanisms of their antimicrobial action against various foodborne pathogens. Literature data on this topic over the last three decades was searched in the PubMed, Scopus, and Google Scholar databases, systematically presented, and critically discussed, with particular attention to the advantages and disadvantages of using probiotics and postbiotics as food biopreservatives.
Collapse
Affiliation(s)
- Gordana Zavišić
- Faculty of Pharmacy Novi Sad, University Business Academy in Novi Sad, Heroja Pinkija 4, 21101 Novi Sad, Serbia
| | - Slavica Ristić
- Faculty of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia; (S.R.); (S.P.)
| | - Saša Petričević
- Faculty of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia; (S.R.); (S.P.)
| | - Drina Janković
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, Vinča, 11351 Belgrade, Serbia;
| | - Branka Petković
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia;
| |
Collapse
|
2
|
Prieto-Santiago V, Aguiló-Aguayo I, Ortiz-Solà J, Anguera M, Abadias M. Selection of a Probiotic for Its Potential for Developing a Synbiotic Peach and Grape Juice. Foods 2024; 13:350. [PMID: 38275717 PMCID: PMC10814886 DOI: 10.3390/foods13020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Due to recent interest in the potential of probiotics as health promoters and the impact of health and environmental concerns on eating habits, non-dairy probiotic food products are required. This study aimed to evaluate the viability of different probiotic microorganisms in peach and grape juice (PGJ) with or without the prebiotic inulin and their antimicrobial activity against the foodborne pathogen Listeria monocytogenes and the juice spoilage microorganism Saccharomyces cerevisiae. Firstly, the viability of seven probiotic strains was studied in PGJ with an initial concentration of 107 CFU/mL for 21 days at 4 °C and for 3 days at 37 °C. In parallel, the physicochemical effect, the antimicrobial effect and the lactic acid production in PGJ were evaluated. Secondly, the probiotic with the best viability results was selected to study its antimicrobial effect against L. monocytogenes and S. cerevisiae, as well as ethanol and acetaldehyde production by the latter. L. casei showed the highest viability and grew in both refrigerated and fermentation conditions (1 log), produced the greatest lactic acid (5.12 g/L) and demonstrated in vitro anti-Listeria activity. Although the addition of the prebiotic did not improve the viability, lactic acid production or anti-Listeria activity of the probiotics, under the conditions studied, the prebiotic potential of inulin, support the design of a synbiotic juice. Finally, although none of the probiotic, fermentation products, or postbiotics showed any antimicrobial activity against L. monocytogenes or S. cerevisiae, the addition of L. casei to the PGJ significantly reduced the production of S. cerevisiae metabolite ethanol (29%) and acetaldehyde (50%). L. casei might be a suitable probiotic to deliver a safe and functional PGJ, although further research should be carried out to determine the effect of the probiotic and fermentation on the nutritional profile of PGJ.
Collapse
Affiliation(s)
| | | | | | | | - Maribel Abadias
- Institute of Agrifood Research and Technology (IRTA), Postharvest Program, Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (V.P.-S.); (I.A.-A.); (J.O.-S.); (M.A.)
| |
Collapse
|
3
|
Shayya NW, Bandick R, Busmann LV, Mousavi S, Bereswill S, Heimesaat MM. Metabolomic signatures of intestinal colonization resistance against Campylobacter jejuni in mice. Front Microbiol 2023; 14:1331114. [PMID: 38164399 PMCID: PMC10757985 DOI: 10.3389/fmicb.2023.1331114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Campylobacter jejuni stands out as one of the leading causes of bacterial enteritis. In contrast to humans, specific pathogen-free (SPF) laboratory mice display strict intestinal colonization resistance (CR) against C. jejuni, orchestrated by the specific murine intestinal microbiota, as shown by fecal microbiota transplantation (FMT) earlier. Methods Murine infection models, comprising SPF, SAB, hma, and mma mice were employed. FMT and microbiota depletion were confirmed by culture and culture-independent analyses. Targeted metabolome analyses of fecal samples provided insights into the associated metabolomic signatures. Results In comparison to hma mice, the murine intestinal microbiota of mma and SPF mice (with CR against C. jejuni) contained significantly elevated numbers of lactobacilli, and Mouse Intestinal Bacteroides, whereas numbers of enterobacteria, enterococci, and Clostridium coccoides group were reduced. Targeted metabolome analysis revealed that fecal samples from mice with CR contained increased levels of secondary bile acids and fatty acids with known antimicrobial activities, but reduced concentrations of amino acids essential for C. jejuni growth as compared to control animals without CR. Discussion The findings highlight the role of microbiota-mediated nutrient competition and antibacterial activities of intestinal metabolites in driving murine CR against C. jejuni. The study underscores the complex dynamics of host-microbiota-pathogen interactions and sets the stage for further investigations into the mechanisms driving CR against enteric infections.
Collapse
|
4
|
Garvey SM, Emami NK, Guice JL, Sriranganathan N, Penet C, Rhoads RP, Spears JL, Dalloul RA, El-Kadi SW. The Probiotic Bacillus subtilis MB40 Improves Immunity in a Porcine Model of Listeriosis. Microorganisms 2023; 11:2110. [PMID: 37630670 PMCID: PMC10458092 DOI: 10.3390/microorganisms11082110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Probiotics for humans and direct-fed microbials for livestock are increasingly popular dietary ingredients for supporting immunity. The aim of this study was to determine the effects of dietary supplementation of Bacillus subtilis MB40 (MB40) on immunity in piglets challenged with the foodborne pathogen Listeria monocytogenes (LM). Three-week-old piglets (n = 32) were randomly assigned to four groups: (1) basal diet, (2) basal diet with LM challenge, (3) MB40-supplemented diet, and (4) MB40-supplemented diet with LM challenge. Experimental diets were provided throughout a 14-day (d) period. On d8, piglets in groups 2 and 4 were intraperitoneally inoculated with LM at 108 CFU/mL per piglet. Blood samples were collected at d1, d8, and d15 for biochemical and immune response profiling. Animals were euthanized and necropsied at d15 for liver and spleen bacterial counts and intestinal morphological analysis. At d15, LM challenge was associated with increased spleen weight (p = 0.017), greater circulating populations of neutrophils (p = 0.001) and monocytes (p = 0.008), and reduced ileal villus height to crypt depth ratio (p = 0.009), compared to non-challenged controls. MB40 supplementation reduced LM bacterial counts in the liver and spleen by 67% (p < 0.001) and 49% (p < 0.001), respectively, following the LM challenge, compared to the basal diet. MB40 supplementation was also associated with decreased circulating concentrations of monocytes (p = 0.007). Altogether, these data suggest that MB40 supplementation is a safe and well-tolerated approach to enhance immunity during systemic Listeria infection.
Collapse
Affiliation(s)
- Sean M. Garvey
- Department of Research and Development, BIO-CAT, Inc., Troy, VA 22974, USA
| | - Nima K. Emami
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Justin L. Guice
- Department of Research and Development, BIO-CAT, Inc., Troy, VA 22974, USA
| | | | - Christopher Penet
- Department of Research and Development, BIO-CAT, Inc., Troy, VA 22974, USA
| | - Robert P. Rhoads
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jessica L. Spears
- Department of Research and Development, BIO-CAT Microbials, LLC, Shakopee, MN 55379, USA
| | - Rami A. Dalloul
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Samer W. El-Kadi
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
5
|
Comparison of probiotic Lactobacillus strains isolated from dairy and Iranian traditional food products with those from human source on intestinal microbiota using BALB/C mice model. Braz J Microbiol 2022; 53:1577-1591. [PMID: 35781865 DOI: 10.1007/s42770-022-00790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/17/2022] [Indexed: 11/02/2022] Open
Abstract
This study compares the probiotic Lactobacillus strains isolated from dairy and Iranian traditional food products with those from human sources on intestinal microbiota using BALB/C mice model. First, Lactiplantibacillus plantarum (M11), Limosilactobacillus fermentum (19SH), Lactobacillus acidophilus (AC2), and Lactobacillus gasseri (52b) strains, isolated from either Iranian traditionally fermented products or human (healthy woman vaginal secretions), identified with molecular methods and selected based on the surface hydrophobicity, auto- and co-aggregation, were investigated for their probiotic properties and compared with their standard probiotic strains in vitro. The native strains and their mixtures (MIX) were then orally fed to five groups of female inbred BALB/C mice over the course of 38 days by gavage at 0.5 and 4 McFarland, respectively, equal to 1.5 × 108 and 1 × 109 cfu/ml. Feeding paused for 6 days to test the bacteria's adhesion in vivo. According to the findings, the probiotic Lactobacillus strain isolated from human source (52b) exhibited the best in vitro and in vivo adhesion ability. Probiotic Lactobacillus strains isolated from Iranian traditional food products (19SH and AC2) had the most co-aggregation with Listeria monocytogenes (ATTC 7644), Salmonella enterica subsp. enterica (ATCC 13,076), and Escherichia coli (NCTC 12,900 O157:H7) in vitro. These strains produced the most profound decreasing effect on the mice intestinal microbiota and pathogens in vivo. The difference in the strains and their probiotic potential is related to the sources from which they are isolated as well as their cell walls. The results suggest that (19SH and 52b strains) are the best candidates to investigate the cell wall and its effect on the host immune system.
Collapse
|
6
|
Hoang KL, King KC. Symbiont-mediated immune priming in animals through an evolutionary lens. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35442184 DOI: 10.1099/mic.0.001181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protective symbionts can defend hosts from parasites through several mechanisms, from direct interference to modulating host immunity, with subsequent effects on host and parasite fitness. While research on symbiont-mediated immune priming (SMIP) has focused on ecological impacts and agriculturally important organisms, the evolutionary implications of SMIP are less clear. Here, we review recent advances made in elucidating the ecological and molecular mechanisms by which SMIP occurs. We draw on current works to discuss the potential for this phenomenon to drive host, parasite, and symbiont evolution. We also suggest approaches that can be used to address questions regarding the impact of immune priming on host-microbe dynamics and population structures. Finally, due to the transient nature of some symbionts involved in SMIP, we discuss what it means to be a protective symbiont from ecological and evolutionary perspectives and how such interactions can affect long-term persistence of the symbiosis.
Collapse
Affiliation(s)
- Kim L Hoang
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Kayla C King
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| |
Collapse
|
7
|
Zhao C, Chen H, Liang H, Zhao X, Tang W, Wei M, Li Y, Zhang J, Yu X, Chen G, Zhu H, Jiang L, Zhang X. Lactobacillus plantarum RS-09 Induces M1-Type Macrophage Immunity Against Salmonella Typhimurium Challenge via the TLR2/NF-κB Signalling Pathway. Front Pharmacol 2022; 13:832245. [PMID: 35355723 PMCID: PMC8959098 DOI: 10.3389/fphar.2022.832245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/26/2022] [Indexed: 12/30/2022] Open
Abstract
Lactobacillus plantarum can interact with macrophages against bacterial enteropathy due to its potential ability to modulate macrophage polarization. However, this mechanism is not completely understood. TLR2 can recognize microbial components and trigger macrophage cytokine responses to different gram-positive strains. The aim of this study was to investigate whether probiotic Lactobacillus plantarum RS-09 can induce macrophage polarization against Salmonella Typhimurium infection via TLR2 signalling. BALB/c mice were preadministered RS-09 continuously for 7 days and then infected with Salmonella Typhimurium ATCC14028. Mouse RAW264.7 mononuclear macrophages were stimulated with RS-09 and coincubated with ATCC14028 or PBS controls. The results of the in vivo study indicated that RS-09 could relieve S. Typhimurium-induced splenomegaly, body weight loss and death rate. RS-09 also limited the colonization and translocation of S. Typhimurium in the gastrointestinal tract and thereby protected against infection. We also observed that RS-09 upregulated the production of M1 macrophage characteristics (e.g., CD11c and IL-6) against S. Typhimurium. Furthermore, RS-09 induced the expression of TLR2 in macrophages. In an in vitro study, treatment of RAW264.7 cells with RS-09 either concurrently with or before S. Typhimurium challenge enhanced the secretion of Reactive oxygen species and Nitric oxide. This effect was related to TLR2 and NF-κB activation. Based on these findings, Lactobacillus plantarum RS-09 was shown to modulate M1 macrophage polarization and induce TLR2-linked NF-κB signalling activity in the innate immune response to S. Typhimurium infection.
Collapse
Affiliation(s)
- Chenpei Zhao
- School of Life Sciences, Ludong University, Yantai, China
| | - Huan Chen
- School of Life Sciences, Ludong University, Yantai, China
| | - Hao Liang
- Department of Microbiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoyu Zhao
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
| | - Wenli Tang
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
| | - Maolian Wei
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
| | - Youzhi Li
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
| | - Jianlong Zhang
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
| | - Xin Yu
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| | - Guozhong Chen
- School of Life Sciences, Ludong University, Yantai, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
- Shandong Aquaculture Environmental Control Engineering Laboratory, Yantai, China
| | - Hongwei Zhu
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
- Shandong Aquaculture Environmental Control Engineering Laboratory, Yantai, China
| | - Linlin Jiang
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
- Shandong Aquaculture Environmental Control Engineering Laboratory, Yantai, China
- *Correspondence: Linlin Jiang, ; Xingxiao Zhang,
| | - Xingxiao Zhang
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Aquaculture Environmental Control Engineering Laboratory, Yantai, China
- *Correspondence: Linlin Jiang, ; Xingxiao Zhang,
| |
Collapse
|
8
|
Basak S, Gokhale J. Immunity boosting nutraceuticals: Current trends and challenges. J Food Biochem 2021; 46:e13902. [PMID: 34467553 DOI: 10.1111/jfbc.13902] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022]
Abstract
The immune function of the human body is highly influenced by the dietary intake of certain nutrients and bioactive compounds present in foods. The preventive effects of these bioactive ingredients against various diseases have been well investigated. Functional foods are consumed across various diverse cultures, in some form or the other, which provide benefits greater than the basic nutritional needs. Novel functional foods are being developed using novel bioactive ingredients such as probiotics, polyunsaturated fatty acids, and various phytoconstituents, which have a range of immunomodulatory properties. Apart from immunomodulation, these ingredients also affect immunity by their antioxidant, antibacterial, and antiviral properties. The global pandemic of Severe Acute Respiratory Syndrome Coronavirus-2 has forced the scientific community to race against time to find a proper and effective drug or a vaccine. In this review, various non-pharmacological interventions using nutraceuticals and functional foods have been discussed. PRACTICAL APPLICATIONS: Despite a plethora of research being undertaken to understand the immunity boosting properties of the various bioactive present in food, the findings are not translating to nutraceutical products in the market. Immunity has proved to be one of the most important factors for the health and well-being of an individual, especially when the world has been under the grip of the novel coronavirus Severe Acute Respiratory Syndrome Coronavirus-2. The anti-inflammatory properties of various nutraceuticals can come out as potential inhibitors of the various inflammatory processes such as cytokine storms, usually being observed in COVID 19. This review gives an insight into how various nutraceuticals can help in the prevention of various diseases through different mechanisms. The lack of awareness and proper clinical trials pose a challenge to the nutraceutical industry. This review will help and encourage researchers to further design and develop various functional foods, which might help in building immunity.
Collapse
Affiliation(s)
- Somnath Basak
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | - Jyoti Gokhale
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
9
|
Jin X, He Y, Zhou Y, Chen X, Lee YK, Zhao J, Zhang H, Chen W, Wang G. Lactic acid bacteria that activate immune gene expression in Caenorhabditis elegans can antagonise Campylobacter jejuni infection in nematodes, chickens and mice. BMC Microbiol 2021; 21:169. [PMID: 34090326 PMCID: PMC8180125 DOI: 10.1186/s12866-021-02226-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Campylobacter jejuni is the major micro-bacillary pathogen responsible for human coloenteritis. Lactic acid bacteria (LAB) have been shown to protect against Campylobacter infection. However, LAB with a good ability to inhibit the growth of C. jejuni in vitro are less effective in animals and animal models, and have the disadvantages of high cost, a long cycle, cumbersome operation and insignificant immune response indicators. Caenorhabditis elegans is increasingly used to screen probiotics for their anti-pathogenic properties. However, no research on the use of C. elegans to screen for probiotic candidates antagonistic to C. jejuni has been conducted to date. RESULTS This study established a lifespan model of C. elegans, enabling the preselection of LAB to counter C. jejuni infection. A potential protective mechanism of LAB was identified. Some distinct LAB species offered a high level of protection to C. elegans against C. jejuni. The LAB strains with a high protection rate reduced the load of C. jejuni in C. elegans. The transcription of antibacterial peptide genes, MAPK and Daf-16 signalling pathway-related genes was elevated using the LAB isolates with a high protection rate. The reliability of the lifespan model of C. elegans was verified using mice and chickens infected with C. jejuni. CONCLUSIONS The results showed that different LAB had different abilities to protect C. elegans against C. jejuni. C. elegans provides a reliable model for researchers to screen for LAB that are antagonistic to C. jejuni on a large scale.
Collapse
Affiliation(s)
- Xing Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yufeng He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yonghua Zhou
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, P. R. China
| | - Xiaohua Chen
- College of Life Sciences and Environment, Hengyang Normal University, Hengyang, 421008, P. R. China
| | - Yuan-Kun Lee
- Department of Microbiology & Immunology, National University of Singapore, Singapore, 117597, Singapore
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, 214122, P. R. China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, P. R. China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, 214122, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, P. R. China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, P. R. China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, 214122, P. R. China.
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, P. R. China.
| |
Collapse
|
10
|
Natural bacterial isolates as an inexhaustible source of new bacteriocins. Appl Microbiol Biotechnol 2021; 105:477-492. [PMID: 33394148 DOI: 10.1007/s00253-020-11063-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
Microorganisms isolated from various traditionally fermented food products prepared in households without commercial starter cultures are designated as natural isolates. In addition, this term is also used for microorganisms collected from various natural habitats or products (silage, soil, manure, plant and animal material, etc.) that do not contain any commercial starters or bacterial formulations. They are characterized by unique traits that are the result of the selective pressure of environmental conditions, as well as interactions with other organisms. The synthesis of antimicrobial molecules, including bacteriocins, is an evolutionary advantage and an adaptive feature that sets them apart from other microorganisms from a common environment. This review aims to underline the knowledge of bacteriocins produced by natural isolates, with a particular emphasis on the most common location of their genes and operons, plasmids, and the importance of the relationship between the plasmidome and the adaptive potential of the isolate. Applications of bacteriocins, ranging from natural food preservatives to supplements and drugs in pharmacology and medicine, will also be addressed. The latest challenges faced by researchers in isolating new natural isolates with desired characteristics will be discussed, as well as the production of new antimicrobials, nearly one century since the first discovery of colicins in 1925. KEY POINTS: • Natural bacterial isolates harbor unique properties shaped by diverse interactions. • Horizontal gene transfer enables constant engineering of new antimicrobials. • Fermented food products are important source of bacteriocin-producing natural isolates.
Collapse
|
11
|
Dushku E, Kotzamanidis C, Avgousti K, Zdragas A, Vafeas G, Giantzi V, Staikou A, Yiangou M. Listeria monocytogenes induced dysbiosis in snails and rebiosis achieved by administration of the gut commensal Lactobacillus plantarum Sgs14 strain. FISH & SHELLFISH IMMUNOLOGY 2020; 104:337-346. [PMID: 32540502 DOI: 10.1016/j.fsi.2020.04.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Listeria monocytogenes strains were isolated from Cornu aspersum maxima snails from farm units experiencing high mortalities and were characterized by phenotypic, molecular and biochemical criteria. A high heterogeneity was observed in the pulsed-field gel electrophoresis (PFGE) pulsotypes as well as in the virulence (13-100% mortality) among the fifteen L. monocytogenes strains. One strain was characterized as non-virulent while three strains exhibited hypervirulent phenotype. Hypervirulence activity was associated with cell surface properties such as hydrophobicity, autoaggregation and biofilm formation, with increased tolerance to snail's gut barriers such as pedal mucus, gastric mucus, gastric juices, and acidic pH as well as with increased capacity to resist the antibacterial activity of snail haemolymph and modulate immune cell populations and functions such as chemotaxis and phagocytoses. L. monocytogenes dysbiosis was characterized by a clinicopathological phenotype including immobilization of snails' headfoot outside the shell, increased mucus-secreting cells in the intestinal epithelium and feces, alteration of intestinal ridges morphology and excessive increase of haemolymph immune cells and cell death. Rebiosis in L. monocytogenes SN3 strain infected snails was achieved by dietary supplementation of the snail-gut commensal probiotic L. plantarum Sgs14 strain by exhibiting anti-Listeria activity, reducing mortality and clinicopathological manifestations as well as exhibiting immunomodulatory activity.
Collapse
Affiliation(s)
- Esmeralda Dushku
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Charalampos Kotzamanidis
- Hellenic Agricultural Organisation-DEMETER, Veterinary Research Institute of Thessaloniki, Campus of Thermi, Thermi, 570 01, Greece
| | - Kalodoti Avgousti
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Antonios Zdragas
- Hellenic Agricultural Organisation-DEMETER, Veterinary Research Institute of Thessaloniki, Campus of Thermi, Thermi, 570 01, Greece
| | - George Vafeas
- Hellenic Agricultural Organisation-DEMETER, Veterinary Research Institute of Thessaloniki, Campus of Thermi, Thermi, 570 01, Greece
| | - Virginia Giantzi
- Hellenic Agricultural Organisation-DEMETER, Veterinary Research Institute of Thessaloniki, Campus of Thermi, Thermi, 570 01, Greece
| | - Alexandra Staikou
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Minas Yiangou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
12
|
Liang Y, Hudson RE, Ballou MA. Supplementing neonatal Jersey calves with a blend of probiotic bacteria improves the pathophysiological response to an oral Salmonella enterica serotype Typhimurium challenge. J Dairy Sci 2020; 103:7351-7363. [PMID: 32475670 DOI: 10.3168/jds.2019-17480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/24/2020] [Indexed: 12/26/2022]
Abstract
The objectives of the current study were to determine the effects of supplementing a blend of probiotic bacteria (Provida Calf, MB Nutritional Sciences, Lubbock, TX) on the pathophysiological response to an oral Salmonella enterica serotype Typhimurium challenge in neonatal Jersey calves. Twenty-four Jersey bull calves within 24 h of birth were acquired from a local calf ranch, blocked by total serum protein and initial body weight, and randomly assigned to 1 of 3 treatments (n = 8). Calves were assigned to either (1) Control (CON); base milk replacer, (2) Control + Salmonella Typhimurium (CON+ST); base milk replacer and challenged with Salmonella Typhimurium on d 7; or (3) Provida Calf probiotics + Salmonella Typhimurium (PRO+ST); same milk replacer supplemented with a proprietary blend of Lactobacillus casei and Enterococcus faecium strains and challenged with Salmonella Typhimurium on d 7. The PRO+ST calves were supplemented for the first 3 d with 2 × 1010 cfu/d and then with 2 × 109 cfu/d for the remainder of the study. The CON+ST and PRO+ST calves were each challenged with approximately 5 × 106 cfu of Salmonella Typhimurium (ATCC# 14028), which was a mild challenge that did not cause scours in the calves. Peripheral blood samples were collected on d 0, 7, 10, 14, and 21 and analyzed for hematology; serum was collected and analyzed for haptoglobin, glucose, and urea N. Rectal temperatures were collected daily from d 6 to 21, when all calves were killed, so that persistent colonization of Salmonella Typhimurium and histomorphology of both the duodenum and ileum could be determined. Serum haptoglobin and urea N concentrations were increased among CON+ST on d 10. In contrast, the peak rectal temperature on d 10 in PRO+ST calves was 40.4°C, which was greater than that for CON and CON-ST (38.9°C and 39.7°C, respectively). The neutrophil percentage in peripheral circulation in PRO+ST calves was 55.4%, which was greater than that for CON and CON+ST (34.8 and 41.8%, respectively). Seven of the 8 PRO+ST calves had elevated neutrophil percentages on d 10 compared with d 7, whereas 4 of the 8 CON+ST calves had reduced neutrophil percentages on d 10 compared with d 7. Villus height-to-crypt depth ratios in the duodenum were greater among CON and PRO+ST calves, being 1.38, 0.84, and 1.43 for CON, CON+ST, and PRO+ST, respectively. In the ileum, the PRO+ST calves had greater villus height-to-crypt depth ratios than both the CON and CON+ST calves (1.64, 1.53, and 2.43 for CON, CON+ST, and PRO+ST, respectively). These data indicate that supplementing neonatal calves with the blend of probiotic bacteria used in the current study can influence the pathophysiological response to a mild enteric Salmonella Typhimurium challenge.
Collapse
Affiliation(s)
- Y Liang
- MB Nutritional Sciences LLC, Lubbock, TX 79403; Department of Veterinary Science, Texas Tech University, Lubbock 79409.
| | - R E Hudson
- Department of Veterinary Science, Texas Tech University, Lubbock 79409
| | - M A Ballou
- MB Nutritional Sciences LLC, Lubbock, TX 79403; Department of Veterinary Science, Texas Tech University, Lubbock 79409
| |
Collapse
|
13
|
Riaz A, Noureen S, Liqat I, Arshad M, Arshad N. Antilisterial efficacy of Lactobacillus brevis MF179529 from cow: an in vivo evidence. Altern Ther Health Med 2019; 19:37. [PMID: 30709347 PMCID: PMC6359795 DOI: 10.1186/s12906-019-2444-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 01/18/2019] [Indexed: 01/14/2023]
Abstract
Background Listeria monocytogenes is an opportunistic foodborne pathogen that causes human Listeriosis and high mortality particularly in immunocompromised individuals. Pregnant women are more prone to L. monocytogenes infection resulting in abortions. In the present study, antilisterial activity of Lactobacillus brevis (LB) MF179529, a probiotic bacterial strain, was investigated in a murine model. Methods Initially a pilot study was conducted to determine the dose of L. monocytogenes required to cause symptomatic listeriosis. In the main trial, mice were divided into 4 groups. Group I was kept as negative control, group II was exposed to L. monocytogenes and maintained as positive control. Group III was fed with L. brevis only, while group IV received L. brevis for 3 days prior to L. monocytogenes infection. A volume of 200 μl of L. monocytogenes ATCC 19115 and L. brevis MF179529 bacterial suspension corresponding to cell density of 109CFU/ml were given to respective groups by intragastric route. Progress of infection was monitored for 7 days including general health scoring, listeria dispersion in organs, bacterial load in intestine and blood biochemistry were recorded on 3rd, 5th and 7th days post infection (dpi). Results Clinical listeriosis was induced by 109CFU/ml of L. monocytogenes ATCC 19115 in mice. Animals of group IV displayed minor signs of infection. L. brevis supplementation resulted in significant reduction in dispersion and propagation of L. monocytogenes in liver, spleen and intestine. L. brevis MF179529 consumption led to a significant elevation of number of lactic acid bacteria and reduction of total plate count, anaerobic count and coliform population in intestine. Moreover, total leukocyte and neutrophil counts of treated animals were similar to the negative control while positive control group displayed higher number. Safety evaluation of L. brevis was performed by monitoring general health, hematological and serological parameters of L. brevis fed and negative control group (group III and I). No significant difference in feed intake, body temperature, body weight and blood picture could be detected in L. brevis supplemented and control groups. Conclusion Our results indicate ameliorative role of L. brevis in L. monocytogenes infection and suggest that L. brevis could be used for prophylactic measure. Electronic supplementary material The online version of this article (10.1186/s12906-019-2444-5) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
V T Nair D, Venkitanarayanan K, Kollanoor Johny A. Antibiotic-Resistant Salmonella in the Food Supply and the Potential Role of Antibiotic Alternatives for Control. Foods 2018; 7:E167. [PMID: 30314348 PMCID: PMC6210005 DOI: 10.3390/foods7100167] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 01/21/2023] Open
Abstract
Salmonella enterica is one of the most ubiquitous enteropathogenic bacterial species on earth, and comprises more than 2500 serovars. Widely known for causing non-typhoidal foodborne infections (95%), and enteric (typhoid) fever in humans, Salmonella colonizes almost all warm- and cold-blooded animals, in addition to its extra-animal environmental strongholds. The last few decades have witnessed the emergence of highly virulent and antibiotic-resistant Salmonella, causing greater morbidity and mortality in humans. The emergence of several Salmonella serotypes resistant to multiple antibiotics in food animals underscores a significant food safety hazard. In this review, we discuss the various antibiotic-resistant Salmonella serotypes in food animals and the food supply, factors that contributed to their emergence, their antibiotic resistance mechanisms, the public health implications of their spread through the food supply, and the potential antibiotic alternatives for controlling them.
Collapse
Affiliation(s)
- Divek V T Nair
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108 USA.
| | | | - Anup Kollanoor Johny
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108 USA.
| |
Collapse
|
15
|
Wan MLY, Forsythe SJ, El-Nezami H. Probiotics interaction with foodborne pathogens: a potential alternative to antibiotics and future challenges. Crit Rev Food Sci Nutr 2018; 59:3320-3333. [PMID: 29993263 DOI: 10.1080/10408398.2018.1490885] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antibiotics are a key tool used nowadays in health care industry to fight against bacterial infections; however, repeated antibiotic use or misuses, have led to bacterial resistance, causing significant threats for many people with common bacterial infections. The use of probiotics to enhance gastrointestinal health has been proposed for many years. In recent years, there has been an increasing interest in the use of probiotic bacteria as alternatives for antibiotics for preventing or treating various intestinal infections. Several important underlying mechanisms responsible for the antagonistic effects of probiotics on different microorganisms include: (1) competitive exclusion for adhesion sites and nutritional sources; (2) secretion of antimicrobial substances; (3) enhancement of intestinal barrier function; and (4) immunomodulation. However, their mode of action is not very well understood and therefore a clearer understanding of these mechanisms is necessitated. This will enable appropriate probiotic strains to be selected for particular applications and may reveal new probiotic functions. The goal of this review was to highlight some studies from literature describing the probiotic interaction with several major foodborne pathogens, as well as explore the mechanisms for such probiotic-pathogen interaction. The review will conclude by presenting future perspective and challenges of probiotic application in food products.
Collapse
Affiliation(s)
- Murphy Lam Yim Wan
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | | | - Hani El-Nezami
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong S.A.R.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
16
|
Hsu CN, Lin YJ, Hou CY, Tain YL. Maternal Administration of Probiotic or Prebiotic Prevents Male Adult Rat Offspring against Developmental Programming of Hypertension Induced by High Fructose Consumption in Pregnancy and Lactation. Nutrients 2018; 10:nu10091229. [PMID: 30181501 PMCID: PMC6163452 DOI: 10.3390/nu10091229] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022] Open
Abstract
Excessive intake of fructose is associated with hypertension. Gut microbiota and their metabolites are thought to be associated with the development of hypertension. We examined whether maternal high-fructose (HF) diet-induced programmed hypertension via altering gut microbiota, regulating short-chain fatty acids (SCFAs) and their receptors, and mediating nutrient-sensing signals in adult male offspring. Next, we aimed to determine whether early gut microbiota-targeted therapies with probiotic Lactobacillus casei and prebiotic inulin can prevent maternal HF-induced programmed hypertension. Pregnant rats received 60% high-fructose (HF) diet, with 2 × 108 CFU/day Lactobacillus casei via oral gavage (HF+Probiotic), or with 5% w/w long chain inulin (HF+prebiotic) during pregnancy and lactation. Male offspring (n = 7–8/group) were assigned to four groups: control, HF, HF+Probiotic, and HF+Prebiotic. Rats were sacrificed at 12 weeks of age. Maternal probiotic Lactobacillus casei and prebiotic inulin therapies protect against hypertension in male adult offspring born to fructose-fed mothers. Probiotic treatment prevents HF-induced hypertension is associated with reduced plasma acetate level and decreased renal mRNA expression of Olfr78. While prebiotic treatment increased plasma propionate level and restored HF-induced reduction of Frar2 expression. Maternal HF diet has long-term programming effects on the adult offspring’s gut microbiota. Probiotic and prebiotic therapies exerted similar protective effects on blood pressure but they showed different mechanisms on modulation of gut microbiota. Maternal HF diet induced developmental programming of hypertension, which probiotic Lactobacillus casei or prebiotic inulin therapy prevented. Maternal gut microbiota-targeted therapies could be reprogramming strategies to prevent the development of hypertension caused by maternal consumption of fructose-rich diet.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yu-Ju Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City 811, Taiwan.
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| |
Collapse
|
17
|
V T Nair D, Kollanoor-Johny A. Effect of Propionibacterium freudenreichii on Salmonella multiplication, motility, and association with avian epithelial cells1. Poult Sci 2018; 96:1376-1386. [PMID: 27738122 DOI: 10.3382/ps/pew367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 09/01/2016] [Indexed: 11/20/2022] Open
Abstract
We investigated the effects of a probiotic bacterium, Propionibacterium freudenreichii, on Salmonella multiplication, motility, and association to and invasion of avian epithelial cells in vitro. Two subspecies of P. freudenreichii (P. freudenreichii subsp. freudenreichii and P. freudenreichii subsp. shermanii) were tested against 3 Salmonella serotypes in poultry, namely, S. Enteritidis, S. Typhimurium, and S. Heidelberg, using co-culture-, motility, multiplication, cell association, and invasion assays. Both strains of P. freudenreichii were effective in reducing or inhibiting multiplication of all 3 Salmonella serotypes in co-culture and turkey cecal contents (P ≤ 0.05). P. freudenreichii significantly reduced Salmonella motility (P ≤ 0.05). Cell culture studies revealed that P. freudenreichii associated with the avian epithelial cells effectively and reduced S. Enteritidis, S. Heidelberg, and S. Typhimurium cell association in the range of 1.0 to 1.6 log10 CFU/mL, and invasion in the range of 1.3 to 1.5 log10 CFU/mL (P ≤ 0.05), respectively. Our current in vitro results indicate the potential of P. freudenreichii against Salmonella in poultry. Follow-up in vivo studies are underway to evaluate this possibility.
Collapse
|
18
|
Lukic J, Jancic I, Mirkovic N, Bufan B, Djokic J, Milenkovic M, Begovic J, Strahinic I, Lozo J. Lactococcus lactis and Lactobacillus salivarius differently modulate early immunological response of Wistar rats co-administered with Listeria monocytogenes. Benef Microbes 2017; 8:809-822. [PMID: 28856909 DOI: 10.3920/bm2017.0007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the light of the increasing resistance of bacterial pathogens to antibiotics, one of the main global strategies in applied science is development of alternative treatments, which would be safe both for the host and from the environmental perspective. Accordingly, the aim of this study was to test whether two lactic acid bacteria (LAB) strains, Lactococcus lactis BGBU1-4 and Lactobacillus salivarius BGHO1, could be applied as safe supplements for Listeria infection. Two major research objectives were set: to compare the effects of BGBU1-4 and BGHO1 on early immune response in gut tissue of Wistar rats co-administered with Listeria monocytogenes ATCC19111 and next, to test how this applies to their usage as therapeutics in acute ATCC19111 infection. Intestinal villi (IV), Peyer's patches (PP) and mesenteric lymph nodes (MLN) were used for the analysis. The results showed that BGHO1 increased the mRNA expression of innate immune markers CD14, interleukin (IL)-1β and tumour necrosis factor (TNF)-α in PP and IV, and, in parallel, caused a decrease of listeriolysin O (LLO) mRNA expression in same tissues. In MLN of BGHO1 treated rats, LLO expression was increased, along with an increase of the expression of OX-62 mRNA and CD69, pointing to the activation of adaptive immunity. On the other hand, in BGBU1-4 treated rats, there was no reduction of LLO mRNA expression and no induction of innate immunity markers in intestinal tissue. Additionally, CD14 and IL-1β, as well as LLO, but not OX-62 mRNA and CD69 expression, were elevated in MLN of BGBU1-4 treated rats. However, when applied therapeutically, both, BGBU1-4 and BGHO1, lowered Listeria count in spleens of infected rats. Our results not only reveal the potential of LAB to ameliorate Listeria infections, but suggest different immunological effects of two different LAB strains, both of which could be effective in Listeria elimination.
Collapse
Affiliation(s)
- J Lukic
- 1 Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia
| | - I Jancic
- 2 Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11010 Belgrade, Serbia
| | - N Mirkovic
- 1 Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia
| | - B Bufan
- 2 Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11010 Belgrade, Serbia
| | - J Djokic
- 1 Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia
| | - M Milenkovic
- 2 Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11010 Belgrade, Serbia
| | - J Begovic
- 1 Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia
| | - I Strahinic
- 1 Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia
| | - J Lozo
- 1 Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia.,3 Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| |
Collapse
|
19
|
Mϋller MJ, Paul T, Seeliger S. Necrotizing enterocolitis in premature infants and newborns. J Neonatal Perinatal Med 2017; 9:233-42. [PMID: 27589549 DOI: 10.3233/npm-16915130] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Necrotizing enterocolitis (NEC) is the most common acquired disease of the gastrointestinal tract (GIT) in premature infants and newborns. It is defined as an ulcerative inflammation of the intestinal wall. The clinical signs of incipient NEC are often very discrete, and range from localized intestinal symptoms to generalized signs of sepsis. NEC is classified depending on its severity into disease states according to the modified Bell's Classification. Treatment of NEC ranges, depending on its severity, from a conservative therapeutic approach to surgery with resection of the affected parts of the intestine. Mortality is considerably high in extremely small preterm infants reaching up to 42% of the affected children. Measures such as breastfeeding or alternatively nutrition with pasteurized human donor milk from a milk bank, administration of probiotics, avoidance of histamine type II receptor antagonists, and restrictive antibiotic treatment should be considered early on for prevention of NEC.
Collapse
Affiliation(s)
- M J Mϋller
- Department of Pediatric Cardiology and Intensive Care Medicine, Medical Center Georg August University Göttingen, Germany
| | - T Paul
- Department of Pediatric Cardiology and Intensive Care Medicine, Medical Center Georg August University Göttingen, Germany
| | - S Seeliger
- Department of Pediatric Cardiology and Intensive Care Medicine, Medical Center Georg August University Göttingen, Germany.,St. Elisabeth Children's Hospital, Neuburg/Donau, Germany
| |
Collapse
|
20
|
Anti-infective activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clin Microbiol Rev 2016; 27:167-99. [PMID: 24696432 DOI: 10.1128/cmr.00080-13] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A vast and diverse array of microbial species displaying great phylogenic, genomic, and metabolic diversity have colonized the gastrointestinal tract. Resident microbes play a beneficial role by regulating the intestinal immune system, stimulating the maturation of host tissues, and playing a variety of roles in nutrition and in host resistance to gastric and enteric bacterial pathogens. The mechanisms by which the resident microbial species combat gastrointestinal pathogens are complex and include competitive metabolic interactions and the production of antimicrobial molecules. The human intestinal microbiota is a source from which Lactobacillus probiotic strains have often been isolated. Only six probiotic Lactobacillus strains isolated from human intestinal microbiota, i.e., L. rhamnosus GG, L. casei Shirota YIT9029, L. casei DN-114 001, L. johnsonii NCC 533, L. acidophilus LB, and L. reuteri DSM 17938, have been well characterized with regard to their potential antimicrobial effects against the major gastric and enteric bacterial pathogens and rotavirus. In this review, we describe the current knowledge concerning the experimental antibacterial activities, including antibiotic-like and cell-regulating activities, and therapeutic effects demonstrated in well-conducted, placebo-controlled, randomized clinical trials of these probiotic Lactobacillus strains. What is known about the antimicrobial activities supported by the molecules secreted by such probiotic Lactobacillus strains suggests that they constitute a promising new source for the development of innovative anti-infectious agents that act luminally and intracellularly in the gastrointestinal tract.
Collapse
|
21
|
Likotrafiti E, Tuohy KM, Gibson GR, Rastall RA. Antimicrobial activity of selected synbiotics targeted for the elderly against pathogenic Escherichia coli strains. Int J Food Sci Nutr 2016; 67:83-91. [PMID: 26754553 DOI: 10.3109/09637486.2015.1134444] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The aim of the present study was to evaluate the antimicrobial activity of two synbiotic combinations, Lactobacillus fermentum with short-chain fructooligosaccharides (FOS-LF) and Bifidobacterium longum with isomaltooligosaccharides (IMO-BL), against enterohaemorrhagic Escherichia coli O157:H7 and enteropathogenic E. coli O86. Antimicrobial activity was determined (1) by co-culturing the synbiotics and pathogens in batch cultures, and (2) with the three-stage continuous culture system (gut model), inoculated with faecal slurry from an elderly donor. In the co-culture experiments, IMO-BL was significantly inhibitory to both E. coli strains, while FOS-LF was slightly inhibitory or not inhibitory. Factors other than acid production appeared to play a role in the inhibition. In the gut models, both synbiotics effectively inhibited E. coli O157 in the first vessel, but not in vessels 2 and 3. E. coli O86 was not significantly inhibited.
Collapse
Affiliation(s)
- E Likotrafiti
- a Department of Food Technology, Laboratory of Food Microbiology , A.T.E.I. of Thessaloniki , Thessaloniki , Greece
| | - K M Tuohy
- b Department of Food Quality and Nutrition , Research and Innovation Centre - Fondazione Edmund Mach , S. Michele ( TN ) , Italy
| | - G R Gibson
- c Department of Food and Nutritional Sciences , University of Reading , Reading , UK
| | - R A Rastall
- c Department of Food and Nutritional Sciences , University of Reading , Reading , UK
| |
Collapse
|
22
|
Di Cerbo A, Palmieri B, Aponte M, Morales-Medina JC, Iannitti T. Mechanisms and therapeutic effectiveness of lactobacilli. J Clin Pathol 2015; 69:187-203. [PMID: 26578541 PMCID: PMC4789713 DOI: 10.1136/jclinpath-2015-202976] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 09/14/2015] [Indexed: 12/11/2022]
Abstract
The gut microbiome is not a silent ecosystem but exerts several physiological and immunological functions. For many decades, lactobacilli have been used as an effective therapy for treatment of several pathological conditions displaying an overall positive safety profile. This review summarises the mechanisms and clinical evidence supporting therapeutic efficacy of lactobacilli. We searched Pubmed/Medline using the keyword ‘Lactobacillus’. Selected papers from 1950 to 2015 were chosen on the basis of their content. Relevant clinical and experimental articles using lactobacilli as therapeutic agents have been included. Applications of lactobacilli include kidney support for renal insufficiency, pancreas health, management of metabolic imbalance, and cancer treatment and prevention. In vitro and in vivo investigations have shown that prolonged lactobacilli administration induces qualitative and quantitative modifications in the human gastrointestinal microbial ecosystem with encouraging perspectives in counteracting pathology-associated physiological and immunological changes. Few studies have highlighted the risk of translocation with subsequent sepsis and bacteraemia following probiotic administration but there is still a lack of investigations on the dose effect of these compounds. Great care is thus required in the choice of the proper Lactobacillus species, their genetic stability and the translocation risk, mainly related to inflammatory disease-induced gut mucosa enhanced permeability. Finally, we need to determine the adequate amount of bacteria to be delivered in order to achieve the best clinical efficacy decreasing the risk of side effects.
Collapse
Affiliation(s)
- Alessandro Di Cerbo
- School of Specialization in Clinical Biochemistry, "G. d'Annunzio" University, Chieti, Italy
| | - Beniamino Palmieri
- Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, Italy
| | - Maria Aponte
- Department of Agriculture, University of Naples "Federico II", Portici, Naples, Italy
| | - Julio Cesar Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV- Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Tommaso Iannitti
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
23
|
Aazmi S, Teh LK, Ramasamy K, Rahman T, Salleh MZ. Comparison of the anti-obesity and hypocholesterolaemic effects of singleLactobacillus caseistrain Shirota and probiotic cocktail. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12810] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shafiq Aazmi
- Integrative Pharmacogenomics Institute (iPROMISE); Universiti Teknologi MARA; Puncak Alam Campus 42300 Puncak Alam Malaysia
- Faculty of Pharmacy; Universiti Teknologi MARA; Puncak Alam Campus 42300 Puncak Alam Malaysia
| | - Lay Kek Teh
- Integrative Pharmacogenomics Institute (iPROMISE); Universiti Teknologi MARA; Puncak Alam Campus 42300 Puncak Alam Malaysia
- Faculty of Pharmacy; Universiti Teknologi MARA; Puncak Alam Campus 42300 Puncak Alam Malaysia
| | - Kalavathy Ramasamy
- Faculty of Pharmacy; Universiti Teknologi MARA; Puncak Alam Campus 42300 Puncak Alam Malaysia
- Collaborative Drug Discovery Research (CDDR) Group; Brain and Neuroscience Communities of Research; Faculty of Pharmacy; Universiti Teknologi MARA; Puncak Alam Campus 42300 Puncak Alam Malaysia
| | - Thuhairah Rahman
- Faculty of Medicine; Universiti Teknologi MARA; 47000 Sungai Buloh Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute (iPROMISE); Universiti Teknologi MARA; Puncak Alam Campus 42300 Puncak Alam Malaysia
- Faculty of Pharmacy; Universiti Teknologi MARA; Puncak Alam Campus 42300 Puncak Alam Malaysia
| |
Collapse
|
24
|
Galactooligosaccharides reduce infection caused by Listeria monocytogenes and modulate IgG and IgA levels in mice. Int Dairy J 2015. [DOI: 10.1016/j.idairyj.2014.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Wang G, Zhao Y, Tian F, Jin X, Chen H, Liu X, Zhang Q, Zhao J, Chen Y, Zhang H, Chen W. Screening of adhesive lactobacilli with antagonistic activity against Campylobacter jejuni. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.03.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Abstract
Probiotic organisms are claimed to offer several functional properties including stimulation of immune system. This review is presented to provide detailed informations about how probiotics stimulate our immune system. Lactobacillus rhamnosus GG, Lactobacillus casei Shirota, Bifidobacterium animalis Bb-12, Lactobacillus johnsonii La1, Bifidobacterium lactis DR10, and Saccharomyces cerevisiae boulardii are the most investigated probiotic cultures for their immunomodulation properties. Probiotics can enhance nonspecific cellular immune response characterized by activation of macrophages, natural killer (NK) cells, antigen-specific cytotoxic T-lymphocytes, and the release of various cytokines in strain-specific and dose-dependent manner. Mixture and type (gram-positive and gram-negative) of probiotic organisms may induce different cytokine responses. Supplementation of probiotic organisms in infancy could help prevent immune-mediated diseases in childhood, whereas their intervention in pregnancy could affect fetal immune parameters, such as cord blood interferon (IFN)-γ levels, transforming growth factor (TGF)-β1 levels, and breast milk immunoglobulin (Ig)A. Probiotics that can be delivered via fermented milk or yogurt could improve the gut mucosal immune system by increasing the number of IgA(+) cells and cytokine-producing cells in the effector site of the intestine.
Collapse
Affiliation(s)
- Rabia Ashraf
- a Faculty of Health Engineering and Science, School of Biomedical and Health Sciences , Victoria University , Werribee Campus, P.O. Box 14428 , Melbourne , Victoria , 8001 , Australia
| | | |
Collapse
|
27
|
Yoda K, He F, Kawase M, Miyazawa K, Hiramatsu M. Oral administration of Lactobacillus gasseri TMC0356 stimulates peritoneal macrophages and attenuates general symptoms caused by enteropathogenic Escherichia coli infection. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2014; 47:81-6. [DOI: 10.1016/j.jmii.2012.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/26/2012] [Accepted: 08/14/2012] [Indexed: 11/17/2022]
|
28
|
Saadatzadeh A, Fazeli MR, Jamalifar H, Dinarvand R. Probiotic Properties of Lyophilized Cell Free Extract of Lactobacillus casei. Jundishapur J Nat Pharm Prod 2013; 8:131-7. [PMID: 24624202 PMCID: PMC3941898 DOI: 10.17795/jjnpp-8564] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/14/2013] [Accepted: 02/23/2013] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND In recent years there have been considerable interests in the use of probiotic live cells for nutritional and therapeutic purposes. This strategy can be concomitant with some limitations such as survival of live cell during the GI-transit and their effective delivery to target tissues upon ingestion. Several attempts have been made to overcome these limitations such as their microencapsulation, spray-drying and lyophilization. OBJECTIVES In this study extract of cultured probiotics without cells was evaluated for its antimicrobial effects, antioxidant activity, and its stability. MATERIALS AND METHODS In this work the potential of lyophilized-cell-free-probiotic-extract (LPE) as a suitable alternative strategy for the preparation of probiotic-products was investigated. The main aim of this study was to find out the antibacterial and antioxidant activity of LPE and also its stability. LPE was obtained by centrifugation and subsequent lyophilization of the collected supernatant from culture media of Lactobacillus casei. An enzymatic reagent-kit was used for detection of its content of lactic acid. Antibacterial test was performed using agar cup-plat-method, the DPPH scavenging -assay was used to determine its antioxidant activity and during a storage course, LPE was under a long-term stability study. RESULTS Results showed that, LPE had more antipathogenic effects, antioxidant activity, and stability during storage-time when compared to fresh probiotic-extract. CONCLUSIONS Employing the LPE as a new approach, gives novel concept of probiotic-products in food and medical marketing.
Collapse
Affiliation(s)
- Afrooz Saadatzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Mohamma Reza Fazeli
- Department of Food and Drug Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Hossein Jamalifar
- Department of Food and Drug Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
29
|
Le Moal VL, Fayol-Messaoudi D, Servin AL. Compound(s) secreted by Lactobacillus casei strain Shirota YIT9029 irreversibly and reversibly impair the swimming motility of Helicobacter pylori and Salmonella enterica serovar Typhimurium, respectively. MICROBIOLOGY-SGM 2013; 159:1956-1971. [PMID: 23873784 DOI: 10.1099/mic.0.067678-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We conducted experiments in order to examine whether the probiotic Lactobacillus casei strain Shirota YIT9029 (LcS) in vitro and in vivo antagonism of Helicobacter pylori and Salmonella, involves inhibition of the swimming motility of these pathogens. We report the irreversible inhibition of the swimming motility of H. pylori strain 1101 and reversible inhibition of Salmonella enterica serovar Typhimurium (S. Typhimurium) strain SL1344 by compound(s) secreted by LcS. In H. pylori 1101, irreversible inhibition results in the helical cells being progressively replaced by cells with 'c'-shaped and coccoid morphologies, accompanied by a loss of FlaA and FlaB flagellin expression. In S. Typhimurium SL1344, transient inhibition develops after membrane depolarization and without modification of expression of FliC flagellin. The inhibitory activity of strain LcS against both S. Typhimurium and H. pylori swimming motilities is linked with a small sized, heat-sensitive, and partially trypsin-sensitive, secreted compound(s), and needed the cooperation of the secreted membrane permeabilizing lactic acid metabolite. The inhibition of S. Typhimurium SL1344 swimming motility leads to delayed cell entry into human enterocyte-like Caco-2/TC7 cells and a strong decrease of cell entry into human mucus-secreting HT29-MTX cells.
Collapse
Affiliation(s)
- Vanessa Liévin Le Moal
- Faculté de Pharmacie, Université Paris-Sud, Châtenay-Malabry 92296, France.,UMR 8076 (BioCIS), CNRS, Faculté de Pharmacie, Université Paris-Sud, Châtenay-Malabry 92296, France
| | - Domitille Fayol-Messaoudi
- Faculté de Pharmacie, Université Paris-Sud, Châtenay-Malabry 92296, France.,UMR 8076 (BioCIS), CNRS, Faculté de Pharmacie, Université Paris-Sud, Châtenay-Malabry 92296, France
| | - Alain L Servin
- Faculté de Pharmacie, Université Paris-Sud, Châtenay-Malabry 92296, France.,UMR 8076 (BioCIS), CNRS, Faculté de Pharmacie, Université Paris-Sud, Châtenay-Malabry 92296, France
| |
Collapse
|
30
|
Isolation, identification and characterisation of three novel probiotic strains (Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036) from the faeces of exclusively breast-fed infants. Br J Nutr 2013; 109 Suppl 2:S51-62. [PMID: 23360881 DOI: 10.1017/s0007114512005211] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of the present study was to isolate, identify and characterise novel strains of lactic acid bacteria and bifidobacteria with probiotic properties from the faeces of exclusively breast-fed infants. Of the 4680 isolated colonies, 758 exhibited resistance to low pH and tolerance to high concentrations of bile salts; of these, only forty-two exhibited a strong ability to adhere to enterocytes in vitro. The identities of the isolates were confirmed by 16S ribosomal RNA (rRNA) sequencing, which permitted the grouping of the forty-two bacteria into three different strains that showed more than 99 % sequence identity with Lactobacillus paracasei, Lactobacillus rhamnosus and Bifidobacterium breve, respectively. The strain identification was confirmed by sequencing the 16S-23S rRNA intergenic spacer regions. Strains were assayed for enzymatic activity and carbohydrate utilisation, and they were deposited in the Collection Nationale de Cultures de Microorganismes (CNCM) of the Institute Pasteur and named L. paracasei CNCM I-4034, B. breve CNCM I-4035 and L. rhamnosus CNCM I-4036. The strains were susceptible to antibiotics and did not produce undesirable metabolites, and their safety was assessed by acute ingestion in immunocompetent and immunosuppressed BALB/c mouse models. The three novel strains inhibited in vitro the meningitis aetiological agent Listeria monocytogenes and human rotavirus infections. B. breve CNCM I-4035 led to a higher IgA concentration in faeces and plasma of mice. Overall, these results suggest that L. paracasei CNCM I-4034, B. breve CNCM I-4035 and L. rhamnosus CNCM I-4036 should be considered as probiotic strains, and their human health benefits should be further evaluated.
Collapse
|
31
|
Choi HJ, Shin MS, Lee SM, Lee WK. Immunomodulatory properties of Enterococcus faecium JWS 833 isolated from duck intestinal tract and suppression of Listeria monocytogenes infection. Microbiol Immunol 2013; 56:613-20. [PMID: 22709265 DOI: 10.1111/j.1348-0421.2012.00486.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of this study was to evaluate the immunomodulatory properties of Enterococcus faecium JWS 833 (JWS 833) isolated from duck intestine and compare them to those of Lactobacillus rhamnosus GG (LGG), a proven immunity-enhancing probiotic. To investigate the immune-enhancing properties of JWS 833, production of nitric oxide (NO) and cytokines was measured in mouse peritoneal macrophages. In addition, a Listeria monocytogenes challenge model was used in the assessment. It was found that heat-killed JWS 833 stimulates mouse peritoneal macrophages to produce NO, interleukin-1 β (IL-1β) and tumor necrosis factor-α (TNF-α) and that oral administration of viable JWS833 enhances NO, IL-1β and TNF-α synthesis upon L. monocytogenes challenge. Moreover, mice fed with JWS 833 were partially protected against lethal challenge with L. monocytogenes. JWS 833 strain has significantly greater immunostimulatory properties than LGG. Moreover, JWS 833 strain partially protects mice against lethal challenge with L. monocytogenes. JWS 833, a novel strain of E. faecium isolated from duck intestine, is potentially a useful feed supplement for controlling pathogens and enhancing host immune responses.
Collapse
Affiliation(s)
- Hyun Jong Choi
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | | | | | | |
Collapse
|
32
|
Silva VDO, Foureaux RDC, Araujo TS, Peconick AP, Zangeronimo MG, Pereira LJ. Effect of probiotic administration on the immune response: a systematic review of experimental models in rats. BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY 2012; 55:685-694. [DOI: 10.1590/s1516-89132012000500007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
33
|
Tsai YT, Cheng PC, Pan TM. The immunomodulatory effects of lactic acid bacteria for improving immune functions and benefits. Appl Microbiol Biotechnol 2012; 96:853-62. [DOI: 10.1007/s00253-012-4407-3] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 08/30/2012] [Accepted: 09/04/2012] [Indexed: 12/12/2022]
|
34
|
Amalaradjou MAR, Bhunia AK. Modern approaches in probiotics research to control foodborne pathogens. ADVANCES IN FOOD AND NUTRITION RESEARCH 2012; 67:185-239. [PMID: 23034117 PMCID: PMC7150249 DOI: 10.1016/b978-0-12-394598-3.00005-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Foodborne illness is a serious public health concern. There are over 200 known microbial, chemical, and physical agents that are known to cause foodborne illness. Efforts are made for improved detection, control and prevention of foodborne pathogen in food, and pathogen associated diseases in the host. Several commonly used approaches to control foodborne pathogens include antibiotics, natural antimicrobials, bacteriophages, bacteriocins, ionizing radiations, and heat. In addition, probiotics offer a potential intervention strategy for the prevention and control of foodborne infections. This review focuses on the use of probiotics and bioengineered probiotics to control foodborne pathogens, their antimicrobial actions, and their delivery strategies. Although probiotics have been demonstrated to be effective in antagonizing foodborne pathogens, challenges exist in the characterization and elucidation of underlying molecular mechanisms of action and in the development of potential delivery strategies that could maintain the viability and functionality of the probiotic in the target organ.
Collapse
|
35
|
Nakamura S, Kuda T, An C, Kanno T, Takahashi H, Kimura B. Inhibitory effects of Leuconostoc mesenteroides 1RM3 isolated from narezushi, a fermented fish with rice, on Listeria monocytogenes infection to Caco-2 cells and A/J mice. Anaerobe 2011; 18:19-24. [PMID: 22193553 DOI: 10.1016/j.anaerobe.2011.11.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 11/24/2011] [Indexed: 10/14/2022]
Abstract
Listeria monocytogenes causes listeriosis in humans mainly through consumption of ready-to-eat foods. Immunocompromised persons, the elderly, and pregnant women and their fetuses or newborns are at highest risk for the infection. To isolate probiotic lactic acid bacteria (LAB) with inhibitory effects against L. monocytogenes, we screened for acid and bile resistant LABs from narezushi, a traditional salted and long-fermented fish with cooked rice. Then, inhibitory effects of the selected LABs on L. monocytogenes invasion and infection of human enterocyte Caco-2 cells and Listeria-susceptible A/J mice were determined. From a total of 231 LAB isolates, we selected five acid and bile resistant isolates (four were Lactobacillus plantarum and one was Leuconostoc mesenteroides). Among the five isolates, Ln. mesenteroides (Lnm-1RM3) showed the highest inhibition against L. monocytogenes invasion into Caco-2 cells. In the case of L. monocytogenes orally infected A/J mice, recovery of the pathogen from the spleen was suppressed by drinking water containing 9 log CFU/ml of Lnm-1RM3 cells. The inhibitory effects were also shown by heat-killed Lnm-1RM3 cells. These results suggest that live and also heat-killed Lnm-1RM3 cell intake might prevent L. monocytogenes entero-gastric invasion and infection.
Collapse
Affiliation(s)
- Shinsuke Nakamura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Konan, Tokyo 108-8477, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Dicks LMT, Botes M. Probiotic lactic acid bacteria in the gastro-intestinal tract: health benefits, safety and mode of action. Benef Microbes 2011; 1:11-29. [PMID: 21831747 DOI: 10.3920/bm2009.0012] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lactic acid bacteria (LAB) have received considerable attention as probiotics over the past few years. This concept has grown from traditional dairy products to a profitable market of probiotic health supplements and functional foods. Extensive research is done on novel potential probiotic strains, with specific emphasis on their health benefits and mode of action. Criteria for the selection of probiotic strains have only recently been formulated by the Food and Agriculture Organization of the United Nations and the World Health Organization (FAO/WHO). Several in vitro techniques have been developed to evaluate the probiotic properties of strains. In many cases, this is followed by in vivo tests. Safety studies are also obligatory, as a few cases of bacteremia caused by LAB have been reported. This review focuses on the health benefits and safety of LAB probiotics, the criteria used to select a probiotic, mode of action and the impact these organisms have on natural microbiota in the gastro-intestinal tract.
Collapse
Affiliation(s)
- L M T Dicks
- Department of Microbiology, University of Stellenbosch, South Africa.
| | | |
Collapse
|
37
|
Satish Kumar R, Kanmani P, Yuvaraj N, Paari K, Pattukumar V, Arul V. Lactobacillus plantarum AS1 binds to cultured human intestinal cell line HT-29 and inhibits cell attachment by enterovirulent bacterium Vibrio parahaemolyticus. Lett Appl Microbiol 2011; 53:481-7. [DOI: 10.1111/j.1472-765x.2011.03136.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Tsai YT, Cheng PC, Pan TM. Immunomodulating activity of Lactobacillus paracasei subsp. paracasei NTU 101 in enterohemorrhagic Escherichia coli O157H7-infected mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:11265-72. [PMID: 20942489 DOI: 10.1021/jf103011z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The present study investigated the immunomodulating activity of Lactobacillus paracasei subsp. paracasei NTU 101 in enterohemorrhagic Escherichia coli O157:H7-infected BALB/c mice. Mice were given L. paracasei subsp. paracasei NTU 101 (10(8) colony-forming units) for 7 days, before and after the challenge with E. coli O157:H7. Feeding Lactobacillus for 7 days resulted in an increased postchallenge weight gain and lower cumulative morbidity rates. We observed the upregulation of dendritic cells, helper T cell activation, and antibody production in post- and pretreated mice, compared with untreated mice in the E. coli O157:H7 infection group. Moreover, Lactobacillus can down-regulate the expression of toll-like receptors (TLRs) on macrophages and proinflammatory cytokines, and chemokines in the post- or prefeeding mice induce by E. coli O157:H7 infection. These results demonstrated the inhibition of inflammation among the mice in the pretreated group than in the post-treated group by modulating their immune response. These findings suggest that L. paracasei subsp. paracasei NTU 101 may be an effective candidate for use as a probiotic in the prevention of infection caused by E. coli O157:H7 in humans.
Collapse
Affiliation(s)
- Yueh-Ting Tsai
- Department of Biochemical Science & Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | | | | |
Collapse
|
39
|
Monoassociation with probiotic Lactobacillus delbrueckii UFV-H2b20 stimulates the immune system and protects germfree mice against Listeria monocytogenes infection. Med Microbiol Immunol 2010; 200:29-38. [PMID: 20838807 DOI: 10.1007/s00430-010-0170-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Indexed: 02/07/2023]
Abstract
In the present study, we investigated the protective effects of Lactobacillus delbrueckii UFV-H2b20 on the resistance to Listeria monocytogenes infection in gnotobiotic mice. Germfree mice or monoassociated mice were infected with L. monocytogenes, and the microbiological and immunological responses were evaluated after 1, 3, and 5 days of infection. Monoassociation with L. delbrueckii was capable of protecting mice against death caused by L. monocytogenes and induced a faster clearance of the bacteria in the liver, spleen, and peritoneal cavity at days 1, 3, and 5 post-infection. Also, monoassociated mice displayed less liver injury than germfree mice. The production of TNF-α in the serum, peritoneal cavity, and gut was augmented in monoassociated mice. Likewise, the levels of IFN-γ found on supernatants of spleen cells cultures were higher after the monoassociation. In addition, increased production of nitric oxide in peritoneal cell cultures supernatants and in serum was observed in mice that received L. delbrueckii. The monoassociation with L. delbrueckii induced higher production of IL-10 in the mucosal immune system. We conclude that monoassociation with L. delbrueckii UFV-H2b20 protects mice from death caused by L. monocytogenes infection by favoring effector responses while preventing their immunopathological consequences.
Collapse
|
40
|
Kobayashi T, Kato I, Nanno M, Shida K, Shibuya K, Matsuoka Y, Onoue M. Oral administration of probiotic bacteria, Lactobacillus casei and Bifidobacterium breve, does not exacerbate neurological symptoms in experimental autoimmune encephalomyelitis. Immunopharmacol Immunotoxicol 2010; 32:116-24. [PMID: 19831500 DOI: 10.3109/08923970903200716] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To evaluate the safety of two probiotic bacterial strains, Lactobacillus casei strain Shirota (LcS) and Bifidobacterium breve strain Yakult (BbY), these probiotics were orally administered to Lewis rats with experimental autoimmune encephalomyelitis (EAE), the experimental model of human multiple sclerosis. We examined three experimental designs by combining different antigen types and probiotic administration periods: (1) EAE was induced with a homogenate of guinea pig spinal cord as the sensitizing antigen, and LcS was orally administered from one week before this sensitization until the end of the experiment; (2) EAE was induced using guinea pig originated myelin basic protein (MBP) as the sensitizing antigen, and LcS was orally administered from one week before this sensitization to the end of the experiment; (3) EAE was induced using guinea pig MBP as the sensitizing antigen, and the probiotic strains (LcS and BbY) were administered starting in infancy (two weeks old) and continued until the end of the experiment. In experiment 1, oral administration of LcS tended to suppress the development of neurological symptoms. Differences in neurological symptoms between the control group and the administration groups did not reach statistical significance in experiments 2 and 3. These results support the notion that neither LcS nor BbY exacerbates autoimmune disease.
Collapse
|
41
|
Yang HY, Liu SL, Ibrahim SA, Zhao L, Jiang JL, Sun WF, Ren FZ. Oral administration of live Bifidobacterium substrains isolated from healthy centenarians enhanced immune function in BALB/c mice. Nutr Res 2009; 29:281-9. [DOI: 10.1016/j.nutres.2009.03.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 03/22/2009] [Accepted: 03/26/2009] [Indexed: 12/23/2022]
|
42
|
KORBEKANDI HASSAN, JAHADI MAHSHID, MARACY MOHAMMAD, ABEDI DARYOUSH, JALALI MOHAMMAD. Production and evaluation of a probiotic yogurt usingLactobacillus caseissp.casei. INT J DAIRY TECHNOL 2009. [DOI: 10.1111/j.1471-0307.2008.00436.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Jain S, Yadav H, Sinha PR, Naito Y, Marotta F. Dahi containing probiotic Lactobacillus acidophilus and Lactobacillus casei has a protective effect against Salmonella enteritidis infection in mice. Int J Immunopathol Pharmacol 2008; 21:1021-9. [PMID: 19144289 DOI: 10.1177/039463200802100428] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Salmonella enteritidis infection has received attention during recent years owing to its high prevalence worldwide. In the present study, the protective effect of probiotic dahi (curd) supplemented with Lactobacillus acidophilus and L. casei against Salmonella enteritidis infection in mice is investigated. Seven days pre-feeding with probiotic dahi significantly increased anti-S. enteritidis sIgA (secretary IgA) antibodies and lymphocyte proliferation in S. enteritidis infected mice. IL-2, IL-6 and IFN-gamma production were significantly increased in supernatant of cultured splenocytes collected from mice pre-fed with probiotic dahi, while IL-4 levels were not changed significantly. Moreover, activities of beta-galactosidase and beta-glucuronidase, and counts of S. enteritidis in intestine, liver and spleen were decreased, whereas total lactobacilli in faeces were increased in mice pre-fed with probiotic dahi. Pre-feeding of probiotic dahi for 7 days was more effective than 2 days pre-feeding. Thus, the results indicate that, pre-feeding with probiotic dahi ameliorated S. enteritidis infection by stimulating specific and non-specific immune response. Above all, it lowered colonization of gastrointestinal tract as well as translocation of S. enteritidis.
Collapse
Affiliation(s)
- S Jain
- Animal Biochemistry Division, National Dairy Research Institute, Haryana, India.
| | | | | | | | | |
Collapse
|
44
|
Panigrahi P, Braileanu GT, Chen H, Stine OC. Probiotic bacteria change Escherichia coli-induced gene expression in cultured colonocytes: Implications in intestinal pathophysiology. World J Gastroenterol 2007; 13:6370-8. [PMID: 18081226 PMCID: PMC4205456 DOI: 10.3748/wjg.v13.i47.6370] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the change in eukaryotic gene expression profile in Caco-2 cells after infection with strains of Escherichia coli and commensal probiotic bacteria.
METHODS: A 19200 gene/expressed sequence tag gene chip was used to examine expression of genes after infection of Caco-2 cells with strains of normal flora E. coli, Lactobacillus plantarum, and a combination of the two.
RESULTS: The cDNA microarray revealed up-regulation of 155 and down-regulation of 177 genes by E. coli. L. plantarum up-regulated 45 and down-regulated 36 genes. During mixed infection, 27 genes were up-regulated and 59 were down-regulated, with nullification of stimulatory/inhibitory effects on most of the genes. Expression of several new genes was noted in this group.
CONCLUSION: The commensal bacterial strains used in this study induced the expression of a large number of genes in colonocyte-like cultured cells and changed the expression of several genes involved in important cellular processes such as regulation of transcription, protein biosynthesis, metabolism, cell adhesion, ubiquitination, and apoptosis. Such changes induced by the presence of probiotic bacteria may shape the physiologic and pathologic responses they trigger in the host.
Collapse
|
45
|
Matsumoto T, Ishikawa H, Tateda K, Yaeshima T, Ishibashi N, Yamaguchi K. Oral administration of Bifidobacterium longum prevents gut-derived Pseudomonas aeruginosa sepsis in mice. J Appl Microbiol 2007; 104:672-80. [PMID: 17927741 DOI: 10.1111/j.1365-2672.2007.03593.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS The aim of the study was to evaluate the efficacy of probiotics on gut-derived sepsis caused by Pseudomonas aeruginosa in immunocompromised mice. METHODS AND RESULTS After oral inoculation of P. aeruginosa, mice were treated with cyclophosphamide to induce leucopenia and translocation of the intestinal P. aeruginosa into blood, thereby producing gut-derived sepsis. In this model, administration of 1 x 10(9) CFU of Bifidobacterium longum strain BB536 for 10 days significantly (P < 0.01) increased the survival rate compared with groups of mice administered either with Bifidobacterium breve strain ATCC 15700 or excipients contained in the probiotic bacterial powder. Administration of B. longum significantly decreased viable counts of P. aeruginosa in the liver and blood compared with other groups. Culture of intestinal contents revealed a significantly lower viable count of P. aeruginosa in the jejunum of B. longum-treated mice compared with other groups of mice. Furthermore, in vitro data demonstrated that B. longum possessed apparently higher adherent activity to Caco-2 cell monolayers and significantly suppressed the adherence of P. aeruginosa to the monolayers of cells compared with other groups. CONCLUSION Oral administration of B. longum protects mice against gut-derived sepsis caused by P. aeruginosa, and the effect may be due to interference of P. aeruginosa adherence to intestinal epithelial cells. SIGNIFICANCE AND IMPACT OF THIS STUDY: This study demonstrated that oral administration of B. longum BB536 is effective to protect against opportunistic infection with drug-resistant bacteria such as P. aeruginosa. The results suggest that probiotics may play an important role even in the immunocompromised patients.
Collapse
Affiliation(s)
- T Matsumoto
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Puertollano E, Puertollano MA, Cruz-Chamorro L, Alvarez de Cienfuegos G, Ruiz-Bravo A, de Pablo MA. Orally administeredLactobacillus plantarumreduces pro-inflammatory interleukin secretion in sera fromListeria monocytogenesinfected mice. Br J Nutr 2007; 99:819-25. [PMID: 17894920 DOI: 10.1017/s0007114507832533] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lactic acid bacteria have traditionally been thought to have immunomodulating effects. To verify this property,Lactobacillus plantarumwas orally administered to mice (5 × 107colony forming units (c.f.u.)), prior to infection withListeria monocytogenesin order to evaluate the host resistance against an infectious micro-organism and to better define the influence ofL. plantarumon such responses. Balb/c mice were treated daily withL. plantarumor received PBS (sham-treated mice as controls) for 4 weeks. Subsequently, mice were intravenously infected with a clinical isolate ofL. monocytogenes. Our study revealed that the administration ofL. plantarumdid not significantly increase the survival (P = 0·13) of mice (fifteen in each group) afterL. monocytogenesinfection (106 c.f.u./ml), whereas a sub-lethal dose ofL. monocytogenes(105 c.f.u./ml) was eliminated from liver and spleen 5 d after the challenge in bothL. plantarum- and sham-treated mice (n5). Nevertheless, the levels of IL-1β and IL-6 from sera of orally administeredL. plantarumwere drastically reduced at 0, 4 (P < 0·01) and 6 d afterL. monocytogenesinfection, whereas TNF-α production was unaltered. In conclusion, administration ofL. plantarumreduced pro-inflammatory IL production after challenge withL. monocytogenes, although it did not significantly impact the survival of mice. We speculate thatL. plantarumcould exert anti-inflammatory effects, which may represent an important model to reduce inflammatory disorders. Therefore, further studies in human subjects should determine the role ofL. plantarumas an immunomodulatory micro-organism and its relationship in the host protection to pathogens.
Collapse
Affiliation(s)
- Elena Puertollano
- Unit of Microbiology, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Fayol-Messaoudi D, Coconnier-Polter MH, Moal VLL, Atassi F, Berger CN, Servin AL. The Lactobacillus plantarum strain ACA-DC287 isolated from a Greek cheese demonstrates antagonistic activity in vitro and in vivo against Salmonella enterica serovar Typhimurium. J Appl Microbiol 2007; 103:657-65. [PMID: 17714399 DOI: 10.1111/j.1365-2672.2007.03293.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS The purpose of this study was to investigate the antibacterial activity of the Xynotyri cheese isolate Lactobacillus plantarum ACA-DC287 using a set of in vitro and in vivo assays. METHODS AND RESULTS The co-culture of L. plantarum strain ACA-DC287 and Salmonella enterica serovar Typhimurium strain SL1344 results in the killing of the pathogen. The killing activity was produced mainly by non-lactic acid molecule(s) that were present in the cell-free culture supernatant of the L. plantarum strain ACA-DC287. The culture of the L. plantarum strain ACA-DC287 inhibited the penetration of S. typhimurium SL1344 into cultured human enterocyte-like Caco-2/TC7 cells. In conventional mice infected with S. typhimurium SL1344, the intake of L. plantarum strain ACA-DC287 results in a decrease in the levels of Salmonella associated with intestinal tissues or those present in the intestinal contents. In germ-free mice, the L. plantarum strain ACA-DC287 colonized the gastrointestinal tract. CONCLUSIONS The L. plantarum strain ACA-DC287 strain exerts anti-Salmonella activity similar that of the established probiotic strains Lactobacillus rhamnosus GG, Lactobacillus casei Shirota YIT9029 and Lactobacillus johnsonii La1. SIGNIFICANCE AND IMPACT OF THE STUDY The observation that a selected cheese Lactobacillus strain exerted antibacterial activity that was similar to those of probiotic Lactobacillus strains, is of interest for the use of this strain as an adjunct strain for the production of health-giving cheeses.
Collapse
Affiliation(s)
- D Fayol-Messaoudi
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 756, Faculté de Pharmacie, Université Paris-Sud, Châtenay-Malabry, France
| | | | | | | | | | | |
Collapse
|
48
|
Ezendam J, van Loveren H. Lactobacillus caseiShirota administered during lactation increases the duration of autoimmunity in rats and enhances lung inflammation in mice. Br J Nutr 2007; 99:83-90. [PMID: 17678568 DOI: 10.1017/s0007114507803412] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Probiotics are considered to have beneficial effects on the immune system. An association between the composition of microflora and allergies has been demonstrated and modulation of microflora of infants by probiotics might reduce the risk of allergies. To investigate immune effects of probiotics administered early after birth two animal models were used: a mouse model for respiratory allergy; a rat model for experimental autoimmune encephalomyelitis (EAE). Administration of the probioticLactobacillus caseiShirota (LcS) started during lactation and allergy or autoimmunity were induced at an adult age. Results were compared with similar studies in rats and mice that were exposed from an adult age. Early administration of LcS significantly increased lymphocytes in the lungs of female mice and eosinophils in the lungs of male mice. LcS had no effects on ovalbumin-specific serum IgE levels and on ovalbumin-specific cytokine production by spleen cells. In adult mice, LcS enhanced ovalbumin-specific cytokine production by the spleen, whereas other parameters were not affected. Early administration of LcS to rats significantly increased the duration of clinical symptoms of EAE. This was also demonstrated previously in adult rats exposed to LcS. Timing of administration of LcS induced divergent effects on respiratory allergy and only early administration of LcS exacerbated lung inflammation. In the EAE model, LcS stimulated autoimmunity independent of the timing of administration. Our data show that immune effects of probiotics do not necessarily induce beneficial effects. It is therefore important that, in the evaluation of probiotics, efficacy and safety should be demonstrated.
Collapse
Affiliation(s)
- Janine Ezendam
- National Institute for Public Health and the Environment (RIVM), Laboratory for Health Protection Research, Bilthoven, The Netherlands.
| | | |
Collapse
|
49
|
Baken KA, Ezendam J, Gremmer ER, de Klerk A, Pennings JLA, Matthee B, Peijnenburg AACM, van Loveren H. Evaluation of immunomodulation by Lactobacillus casei Shirota: immune function, autoimmunity and gene expression. Int J Food Microbiol 2006; 112:8-18. [PMID: 16875751 DOI: 10.1016/j.ijfoodmicro.2006.06.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 05/19/2006] [Accepted: 06/02/2006] [Indexed: 11/24/2022]
Abstract
Lactic acid bacteria are claimed to have immunomodulating effects. Stimulation as well as suppression of T helper (Th)1 mediated immune responses, have been described for various strains. Experiments involving Lactobacillus casei Shirota (LcS) detected mainly enhancement of innate immune responses and promotion of Th1 mediated immune reactivity. To confirm and further investigate modulation of Th1 responses and development of autoimmune disease by LcS, the consequences of oral administration of LcS were assessed in several experiments. The effect of LcS varied between the different models. No modulation was found in the mitogen-induced cell proliferation and cytokine release assays in mesenteric lymph nodes of Wistar rats. LcS inhibited the Th1 mediated immune response in an adapted murine Local Lymph Node Assay (LLNA) in BALB/c mice, whereas experimental autoimmune encephalomyelitis (EAE) in Lewis rats was aggravated. These varying effects on Th1 responses indicate that beneficial as well as harmful effects on immune related disorders could occur after LcS consumption. Since microarray analysis is suggested to be more sensitive and predictive than functional tests, gene expression profiling was included as an alternative endpoint in the testing of immunomodulation. The detected gene expression profiles did not reflect the effects of LcS on the immune system. Microarray analysis may therefore have no more predictive value than immune function assays when investigating immunomodulation by probiotics. To gain further insight into effects of probiotics on immune function, experiments including cytokine assays and gene expression analysis combined with disease models could be useful.
Collapse
Affiliation(s)
- Kirsten A Baken
- Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Department of Health Risk Analysis and Toxicology (GRAT), Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Liévin-Le Moal V, Servin AL. The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin Microbiol Rev 2006; 19:315-37. [PMID: 16614252 PMCID: PMC1471992 DOI: 10.1128/cmr.19.2.315-337.2006] [Citation(s) in RCA: 353] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The intestinal tract is a complex ecosystem that combines resident microbiota and the cells of various phenotypes with complex metabolic activities that line the epithelial wall. The intestinal cells that make up the epithelium provide physical and chemical barriers that protect the host against the unwanted intrusion of microorganisms that hijack the cellular molecules and signaling pathways of the host and become pathogenic. Some of the organisms making up the intestinal microbiota also have microbicidal effects that contribute to the barrier against enteric pathogens. This review describes the two cell lineages present in the intestinal epithelium: the goblet cells and the Paneth cells, both of which play a pivotal role in the first line of enteric defense by producing mucus and antimicrobial peptides, respectively. We also analyze recent insights into the intestinal microbiota and the mechanisms by which some resident species act as a barrier to enteric pathogens. Moreover, this review examines whether the cells producing mucins or antimicrobial peptides and the resident microbiota act in partnership and whether they function individually and/or synergistically to provide the host with an effective front line of defense against harmful enteric pathogens.
Collapse
Affiliation(s)
- Vanessa Liévin-Le Moal
- Unité 756 INSERM, Faculté de Pharmacie Paris XI, Signalisation et Physiopathologie des Cellules Epithéliales, Institut National de la Santé et de la Recherche Médicale, F-92296 Chātenay-Malabry, France
| | | |
Collapse
|