1
|
Windyaswari AS, Nugraha MFI, Hartati R, Elfahmi. Isolation and antimicrobial activity of secondary metabolites of pothos tener wall. Nat Prod Res 2024:1-9. [PMID: 39102533 DOI: 10.1080/14786419.2024.2384081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
The Pothos genus is extensively utilised in traditional medicine in China and India. An underexplored species of Pothos tener Wall was identified in Sulawesi, Indonesia. Antimicrobial activity was assessed using microdilutions and streak plates against Staphylococcus aureus, Eschericia coli, Aeromonas hydrophila, Aspergillus niger, and Candida albicans. Significant effectiveness was observed in the methanol extract, as indicated by the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values for three different extracts (methanol, ethyl acetate, and n-hexane) of P. tener. The isolates obtained were structurally analysed using Ultraviolet (UV)-spectroscopy, Fourier-transform Infra Red-Spectroscopy (FT-IR), Mass Spectroscopy (MS), Nuclear Magnetic Resonance (NMR), and antimicrobial testing after undergoing fractionation and subfractionation. The isolate obtained was stigmasterol with moderate antimicrobial activity against A. niger and A. hydrophila, with MIC equivalent to MBC of 500 µg/ml. The first report of stigmasterol from P. tener has potent antimicrobial properties, bolstering empirical data in this field.
Collapse
Affiliation(s)
- Ari Sri Windyaswari
- Department of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
- Department of Biology Pharmacy, Faculty of Pharmacy, University of Jenderal Achmad Yani, Cimahi, Indonesia
| | - Media Fitri Isma Nugraha
- Research Centre for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency, Cibinong, Indonesia
| | - Rika Hartati
- Department of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Elfahmi
- Department of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
- University Centre of Excellence for Nutraceuticals, Bioscience and Biotechnology Research Centre, Bandung Institute of Technology, Bandung, Indonesia
| |
Collapse
|
2
|
Elbarbary NK, Dandrawy MK, Hadad G, Abdelhaseib M, Osman AAA, Alenazy R, Elbagory I, Abdelmotilib NM, Elnoamany F, Ibrahim GA, Gomaa RA. Bacterial Quality and Molecular Detection of Food Poisoning Virulence Genes Isolated from Nasser Lake Fish, Aswan, Egypt. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:6095430. [PMID: 38962099 PMCID: PMC11222005 DOI: 10.1155/2024/6095430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/08/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
The microbial analysis of fish is critical for ensuring overall health. Uncooked fish can serve as a conduit for transmitting several types of microbes; the current investigation sought to assess the bacterial levels in various kinds of fish from Nasser Lake, Aswan, Egypt, considered the chief source of potable water in Egypt. Two hundred and fifty fish samples, including 50 of each Oreochromis niloticus, Sander lucioperca, Lates niloticus, Clarias gariepinus, and Mormyrus kannume, from Nasser Lake, Aswan, Egypt, were collected to detect the bacterial load, isolation, and identification of Aeromonas hydrophila, Pseudomonas aeruginosa, and Vibrio parahaemolyticus and their virulence genes. The findings revealed that Oreochromis niloticus and Clarias gariepinus exhibited higher bacterial loads than other fish species. Incidences of bacterial contamination among examined fishes were 28.8%, 20.4%, and 16% for Aeromonas hydrophila, Pseudomonas aeruginosa, and Vibrio parahaemolyticus, respectively. Additionally, PCR analysis detected the presence of aerA (60%) and Act (40%) genes in A. hydrophila, rpoB (70%) and LasB (30%) genes in P. aeruginosa, and ToxR (70%) and tdh (50%) genes in V. parahaemolyticus. The study suggested that the bacterial contamination levels in Oreochromis niloticus and Clarias gariepinus could be notably more significant than in other species that could potentially be harmful to the consumers, especially considering the identification of particular bacteria known to cause foodborne illnesses. Further recommendations emphasized that regular monitoring and assessments are required to preserve their quality.
Collapse
Affiliation(s)
- Nady Khairy Elbarbary
- Department of Food Hygiene and ControlFaculty of Veterinary MedicineAswan University, Aswan 81528, Egypt
| | - Mohamed K. Dandrawy
- Department of Food Hygiene and ControlFaculty of Veterinary MedicineSouth Valley University, Qena 83522, Egypt
| | - Ghada Hadad
- Department of Animal Hygiene and ZoonosesFaculty of Veterinary MedicineUniversity of Sadat City, Sadat, Egypt
| | - Maha Abdelhaseib
- Department of Food HygieneSafety and TechnologyFaculty of Veterinary MedicineAssiut University, Assiut 71526, Egypt
| | - Amna A. A. Osman
- Department of Food Science and TechnologyFaculty of Agriculture and Natural ResourcesAswan University, Aswan 81528, Egypt
| | - Rawaf Alenazy
- Department of Medical LaboratoryCollege of Applied Medical Sciences-ShaqraShaqra University, Shaqra 11961, Saudi Arabia
| | - Ibrahim Elbagory
- Department of PharmaceuticsFaculty of PharmacyNorthern Border University, Rafhaa 76321, Saudi Arabia
| | - Neveen M. Abdelmotilib
- Department of Food TechnologyArid Lands Cultivation Research Institute (ALCRI)City of Scientific Research and Technological Applications (SRTA-CITY), New Borg El-Arab City 21934, Egypt
| | - Fagelnour Elnoamany
- General Administration for Laboratories AffairsNational Food Safety Authority (NFSA), Cairo, Egypt
| | - Ghada A. Ibrahim
- Department of BacteriologyAgriculture Research Center (ARC)Animal Health Research Institute, Ismailia 41511, Egypt
| | - Reda A. Gomaa
- Department of Food Science and TechnologyFaculty of Agriculture and Natural ResourcesAswan University, Aswan 81528, Egypt
| |
Collapse
|
3
|
Lagadec E, Mjølnerød EB, Jensen ØM, Plarre H, Nylund A. Multiple Aeromonas strains isolated from Atlantic salmon (Salmo salar) displaying red skin disease signs in Scandinavian rivers. JOURNAL OF FISH DISEASES 2024; 47:e13870. [PMID: 37800856 DOI: 10.1111/jfd.13870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
Since 2014, Atlantic salmon (Salmo salar L.) displaying clinical signs of red skin disease (RSD), including haemorrhagic and ulcerative skin lesions, have been repeatedly observed in Swedish rivers. Although the disease has since been reported in other countries, including Norway, Denmark, Ireland and the UK, no pathogen has so far been conclusively associated with RSD. In this study, the presence of 17 fish pathogens was investigated through qPCR in 18 returning Atlantic salmon with clinical signs of the disease in rivers in Sweden and Norway between 2019 and 2021. Several potential pathogens were repeatedly detected, including a protozoan (Ichthyobodo spp.), an oomycete (Saprolegnia spp.) and several bacteria (Yersinia ruckeri, Candidatus Branchiomonas cysticola, Aeromonas spp.). Cultivation on different media from ulcers and internal organs revealed high concentrations of rod-shaped bacteria typical of Aeromonadaceae. Multilocus phylogenetic analysis of different clones and single gene phylogenies of sequences obtained from the fish revealed concurrent isolation of several bacterial strains belonging to the species A. bestiarum, A. piscicola and A. sobria. While these bacterial infections may be secondary, these findings are significant for future studies on RSD and should guide the investigation of future outbreaks. However, the involvement of Aeromonas spp. as putative primary etiological agents of the disease cannot be ruled out and needs to be assessed by challenge experiments.
Collapse
Affiliation(s)
- Erwan Lagadec
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Even Bysveen Mjølnerød
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Øyvind Marius Jensen
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Heidrun Plarre
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Are Nylund
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Zhu X, Qin L, Zhu Y, Qian Q, Gao X, Jiang Q, Wang J, Liu G, Zhang X. Characteristics and Complete Genome Analysis of a Pathogenic Aeromonas Veronii SJ4 from Diseased Siniperca Chuatsi. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:966-982. [PMID: 37947961 DOI: 10.1007/s10126-023-10253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/20/2023] [Indexed: 11/12/2023]
Abstract
As an opportunistic pathogen, Aeromonas veronii can cause hemorrhagic septicemia of various aquatic animals. In our present study, a dominant strain SJ4, isolated from naturally infected mandarin fish (Siniperca chuatsi), was identified as A. veronii according to the morphological, physiological, and biochemical features, as well as molecular identification. Intraperitoneal injection of A. veronii SJ4 into S. chuatsi revealed clinical signs similar to the natural infection, and the median lethal dosage (LD50) of the SJ4 to S. chuatsi in a week was 3.8 × 105 CFU/mL. Histopathological analysis revealed that the isolate SJ4 could cause cell enlargement, obvious hemorrhage, and inflammatory responses in S. chuatsi. Detection of virulence genes showed the isolate SJ4 carried act, fim, flgM, ompA, lip, hly, aer, and eprCAL, and the isolate SJ4 also produce caseinase, dnase, gelatinase, and hemolysin. In addition, the complete genome of A. veronii SJ4 was sequenced, and the size of the genome of A. veronii SJ4 was 4,562,694 bp, within a G + C content of 58.95%, containing 4079 coding genes. Nine hundred ten genes encoding for several virulence factors, such as type III and VI secretion systems, flagella, motility, etc., were determined based on the VFDB database. Besides, 148 antibiotic resistance-related genes in 27 categories related to tetracyclines, fluoroquinolones, aminoglycosides, macrolides, chloramphenicol, and cephalosporins were also annotated. The present results suggested that A. veronii was etiological agent causing the bacterial septicemia of S. chuatsi in this time, as well as provided a valuable base for revealing pathogenesis and resistance mechanism of A. veronii.
Collapse
Affiliation(s)
- Xinhai Zhu
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Lijie Qin
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Yujie Zhu
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Qieqi Qian
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Qun Jiang
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Jun Wang
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Guoxing Liu
- Research Center of Characteristic Fish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
5
|
El-Hossary D, Mahdy A, Elariny EYT, Askora A, Merwad AMA, Saber T, Dahshan H, Hakami NY, Ibrahim RA. Antibiotic Resistance, Virulence Gene Detection, and Biofilm Formation in Aeromonas spp. Isolated from Fish and Humans in Egypt. BIOLOGY 2023; 12:biology12030421. [PMID: 36979113 PMCID: PMC10045910 DOI: 10.3390/biology12030421] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
The genus Aeromonas is widely distributed in aquatic environments and is recognized as a potential human pathogen. Some Aeromonas species are able to cause a wide spectrum of diseases, mainly gastroenteritis, skin and soft-tissue infections, bacteremia, and sepsis. The aim of the current study was to determine the prevalence of Aeromonas spp. in raw fish markets and humans in Zagazig, Egypt; identify the factors that contribute to virulence; determine the isolates’ profile of antibiotic resistance; and to elucidate the ability of Aeromonas spp. to form biofilms. The examined samples included fish tissues and organs from tilapia (Oreochromis niloticus, n = 160) and mugil (Mugil cephalus, n = 105), and human skin swabs (n = 51) and fecal samples (n = 27). Based on biochemical and PCR assays, 11 isolates (3.2%) were confirmed as Aeromonas spp. and four isolates (1.2%) were confirmed as A. hydrophila. The virulence genes including haemolysin (hyl A) and aerolysin (aer) were detected using PCR in A. hydrophila in percentages of 25% and 50%, respectively. The antimicrobial resistance of Aeromonas spp. was assessed against 14 antibiotics comprising six classes. The resistance to cefixime (81.8%) and tobramycin (45.4%) was observed. The multiple antibiotic resistance (MAR) index ranged between 0.142–0.642 with 64.2% of the isolates having MAR values equal to 0.642. Biofilm formation capacity was assessed using a microtiter plate assay, and two isolates (18.1%) were classified as biofilm producers. This study establishes a baseline for monitoring and controlling the multidrug-resistant Aeromonas spp. and especially A. hydrophila in marine foods consumed in our country to protect humans and animals.
Collapse
Affiliation(s)
- Dalia El-Hossary
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Asmaa Mahdy
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Eman Y. T. Elariny
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed Askora
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Abdallah M. A. Merwad
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Taisir Saber
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hesham Dahshan
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Nora Y. Hakami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rehab A. Ibrahim
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Correspondence:
| |
Collapse
|
6
|
Zhu X, Qian Q, Wu C, Zhu Y, Gao X, Jiang Q, Wang J, Liu G, Zhang X. Pathogenicity of Aeromonas veronii Causing Mass Mortality of Largemouth Bass ( Micropterus salmoides) and Its Induced Host Immune Response. Microorganisms 2022; 10:2198. [PMID: 36363790 PMCID: PMC9699015 DOI: 10.3390/microorganisms10112198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2023] Open
Abstract
Aeromonas veronii is as an important opportunist pathogen of many aquatic animals, which is wildly distributed in various aquatic environments. In this study, a dominant bacterium GJL1 isolated from diseased M. salmoides was identified as A. veronii according to the morphological, physiological, and biochemical characteristics, as well as molecular identification. Detection of the virulence genes showed the isolate GJL1 carried outer membrane protein A (ompA), flagellin (flgA, flgM, flgN), aerolysin (aer), cytolytic enterotoxin (act), DNases (exu), and hemolysin (hly), and the isolate GJL1 also produced caseinase, lipase, gelatinase, and hemolysin. The virulence of strain GJL1 was confirmed by experimental infection; the median lethal dosage (LD50) of the GJL1 for largemouth bass was 3.6 × 105 CFU/mL, and histopathological analysis revealed that the isolate could cause obvious inflammatory responses in M. salmoides. Additionally, the immune-related gene expression in M. salmoides was evaluated, and the results showed that IgM, HIF-1α, Hep-1, IL-15, TGF-β1, and Cas-3 were significantly upregulated after A. veronii infection. Our results indicated that A. veronii was an etiological agent causing the mass mortality of M. salmoides, which contributes to understanding the immune response of M. salmoides against A. veronii infection.
Collapse
Affiliation(s)
- Xinhai Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qieqi Qian
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Congcong Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yujie Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qun Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jun Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guoxing Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Research Center of Characteristic Fish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
First Record of the Rare Species Aeromonas lusitana from Rainbow Trout (Oncorhynchus mykiss, Walbaum): Comparative Analysis with the Existing Strains. Pathogens 2022; 11:pathogens11111299. [DOI: 10.3390/pathogens11111299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
The species Aeromonas lusitana was first described in 2016 with five strains recovered from untreated water and vegetables from Portugal. Since then, no further records exist of this species. During a surveillance study on the presence of Aeromonas in fish farms in Mexico, a new strain (ESV-351) of the mentioned species isolated from a rainbow trout was recovered. It was identified because it clustered phylogenetically with the type strain of A. lusitana based on the analysis of the rpoD gene sequences. In the present study, phenotypic characteristics, antimicrobial resistance profiles, and the presence of putative virulence genes of this novel strain (ESV-351) were determined in parallel to the five isolates from the original species description. Phenotypic differential characteristics exhibited by A. lusitana ESV-351 depicted an evident similarity to the characteristics exhibited by the other evaluated strains. However, the novel strain was positive for the production of indole using conventional methods, while the rest of the strains, including the type strain, were negative for its production. Furthermore, intermediate resistance to ampicillin, amoxicillin-clavulanic acid and cephalothin was detected in both the novel and the type strain. Five different virulence-related genes were detected in the novel strain and in the previously described strains, with the type strain exhibiting the highest number of virulence-related genes. In addition to this, the genome of the novel strain (ESV-351) was sequenced and compared with the genomes from the type strain (A. lusitana CECT 7828T) and other Aeromonas spp. The genomic analysis defined Aeromonas tecta as the closest species to A. lusitana with a highly similar number of predicted proteins. The genomic size, the number of protein-encoding genes and the number of different tRNAs, among other characteristics, make it possible to propose that the ESV-351 strain could potentially have the capacity to adapt to different environments. Genome comparison of the ESV-351 strain with the type strain revealed that both possess a similar sequence of the citrate synthase gene. In addition to this finding, the chromosomal region containing the citrate synthase locus of the novel strain exhibits some similarity to the chromosomal region in the genome of the A. hydrophila type strain and other known human pathogens, such as Vibrio cholerae. This could suggest a possible virulence role for the citrate synthase gene in A. lusitana (ESV-351).
Collapse
|
8
|
Ibrahim D, Shahin SE, Alqahtani LS, Hassan Z, Althobaiti F, Albogami S, Soliman MM, El-Malt RMS, Al-Harthi HF, Alqadri N, Elabbasy MT, El-Hamid MIA. Exploring the Interactive Effects of Thymol and Thymoquinone: Moving towards an Enhanced Performance, Gross Margin, Immunity and Aeromonas sobria Resistance of Nile Tilapia ( Oreochromis niloticus). Animals (Basel) 2022; 12:3034. [PMID: 36359158 PMCID: PMC9658592 DOI: 10.3390/ani12213034] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 08/16/2023] Open
Abstract
Plant-derived bioactive compounds with promising nutritional and therapeutic attributes (phytogenics) are among the top priorities in the aquaculture sector. Therefore, the impact of thymol (Thy) and/or thymoquinone (ThQ) on the growth, immune response antioxidant capacity, and Aeromonas sobria (A. sobria) resistance of Nile tilapia was investigated. Four fish groups were fed a control diet and three basal diets supplemented with 200 mg/kg diet of Thy or ThQ and a blend of both Thy and ThQ at a level of 200 mg/kg diet each. At the end of the feeding trial (12 weeks), the tilapias were challenged intraperitoneally with virulent A. sobria (2.5 × 108 CFU/mL) harboring aerolysin (aero) and hemolysin (hly) genes. The results revealed that tilapias fed diets fortified with a combination of Thy and ThQ displayed significantly enhanced growth rate and feed conversion ratio. Notably, the expression of the genes encoding digestive enzymes (pepsinogen, chymotrypsinogen, α-amylase and lipase) and muscle and intestinal antioxidant enzymes (glutathione peroxidase, catalase and superoxide dismutase) was significantly upregulated in Thy/ThQ-fed fish. An excessive inflammatory response was subsided more prominently in the group administrated Thy/ThQ as supported by the downregulation of il-β, il-6 and il-8 genes and in contrast, the upregulation of the anti-inflammatory il-10 gene. Remarkably, dietary inclusion of Thy/ThQ augmented the expression of autophagy-related genes, whilst it downregulated that of mtor gene improving the autophagy process. Furthermore, Thy/ThQ protective effect against A. sobria was evidenced via downregulating the expression of its aero and hly virulence genes with higher fish survival rates. Overall, the current study encouraged the inclusion of Thy/ThQ in fish diets to boost their growth rates, promote digestive and antioxidant genes expression, improve their immune responses and provide defense against A. sorbia infections with great economic benefits.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Sara E. Shahin
- Department of Animal Wealth Development, Veterinary Economics and Farm Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Leena S. Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Zeinab Hassan
- Fish Disease Department, Faculty of Veterinary Medicine, Aswan University, Aswan 81528, Egypt
| | - Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia
| | - Rania M. S. El-Malt
- Department of Bacteriology, Zagazig Branch, Animal Health Research Institute, Agriculture Research Center, Zagazig 44516, Egypt
| | - Helal F. Al-Harthi
- Department of Biology, Turabah University College, Taif University, Taif 21995, Saudi Arabia
| | - Nada Alqadri
- Department of Biology, Turabah University College, Taif University, Taif 21995, Saudi Arabia
| | - Mohamed Tharwat Elabbasy
- College of Public Health and Molecular Diagnostics and Personalized Therapeutics Center (CMDPT), Ha’il University, Ha’il 2440, Saudi Arabia
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
9
|
Algammal AM, Ibrahim RA, Alfifi KJ, Ghabban H, Alghamdi S, Kabrah A, Khafagy AR, Abou-Elela GM, Abu-Elala NM, Donadu MG, El-Tarabili RM. A First Report of Molecular Typing, Virulence Traits, and Phenotypic and Genotypic Resistance Patterns of Newly Emerging XDR and MDR Aeromonas veronii in Mugil seheli. Pathogens 2022; 11:1262. [PMID: 36365013 PMCID: PMC9695981 DOI: 10.3390/pathogens11111262] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
Aeromonas veronii is associated with substantial economic losses in the fish industry and with food-borne illness in humans. This study aimed to determine the prevalence, antibiogram profiles, sequence analysis, virulence and antimicrobial resistance genes, and pathogenicity of A. veronii recovered from Mugil seheli. A total of 80 fish were randomly gathered from various private farms in Suez Province, Egypt. Subsequently, samples were subjected to clinical, post-mortem, and bacteriological examinations. The retrieved isolates were tested for sequence analysis, antibiogram profile, pathogenicity, and PCR detection of virulence and resistance genes. The prevalence of A. veronii in the examined M. seheli was 22.5 % (18/80). The phylogenetic analyses revealed that the tested A. veronii strains shared high genetic similarity with other A. veronii strains from India, UK, and China. Using PCR it was revealed that the retrieved A. veronii isolates harbored the aerA, alt, ser, ompAII, act, ahp, and nuc virulence genes with prevalence of 100%, 82.9%, 61.7%, 55.3%, 44.7%, 36.17%, and 29.8%, respectively. Our findings revealed that 29.8% (14/47) of the retrieved A. veronii strains were XDR to nine antimicrobial classes and carried blaTEM, blaCTX-M, blaSHV,tetA, aadA1, and sul1 resistance genes. Likewise, 19.1% (9/47) of the obtained A. veronii strains were MDR to eight classes and possessed blaTEM, blaCTX-M, blaSHV,tetA, aadA1, and sul1 genes. The pathogenicity testing indicated that the mortality rates positively correlated with the prevalence of virulence-determinant genes. To our knowledge, this is the first report to reveal the occurrence of XDR and MDR A. veronii in M. seheli, an emergence that represents a risk to public health. Emerging XDR and MDR A. veronii in M. seheli frequently harbored aerA, alt, ser, ompAII, and act virulence genes, and blaTEM, sul1, tetA, blaCTX-M, blaSHV, and aadA1 resistance genes.
Collapse
Affiliation(s)
- Abdelazeem M. Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Reham A. Ibrahim
- National Institute of Oceanography and Fisheries, Cairo 11516, Egypt
| | - Khyreyah J. Alfifi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Hanaa Ghabban
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed Kabrah
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed R. Khafagy
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | | | - Nermeen M. Abu-Elala
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Faculty of Veterinary Medicine, King Salman International University, El Tor 46612, Egypt
| | - Matthew Gavino Donadu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | - Reham M. El-Tarabili
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
10
|
Matys J, Turska-Szewczuk A, Gieroba B, Kurzylewska M, Pękala-Safińska A, Sroka-Bartnicka A. Evaluation of Proteomic and Lipidomic Changes in Aeromonas-Infected Trout Kidney Tissue with the Use of FT-IR Spectroscopy and MALDI Mass Spectrometry Imaging. Int J Mol Sci 2022; 23:ijms232012551. [PMID: 36293421 PMCID: PMC9604335 DOI: 10.3390/ijms232012551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Aeromonas species are opportunistic bacteria causing a vast spectrum of human diseases, including skin and soft tissue infections, meningitis, endocarditis, peritonitis, gastroenteritis, and finally hemorrhagic septicemia. The aim of our research was to indicate the molecular alterations in proteins and lipids profiles resulting from Aeromonas sobria and A. salmonicida subsp. salmonicida infection in trout kidney tissue samples. We successfully applied FT-IR (Fourier transform infrared) spectroscopy and MALDI-MSI (matrix-assisted laser desorption/ionization mass spectrometry imaging) to monitor changes in the structure and compositions of lipids, secondary conformation of proteins, and provide useful information concerning disease progression. Our findings indicate that the following spectral bands’ absorbance ratios (spectral biomarkers) can be used to discriminate healthy tissue from pathologically altered tissue, for example, lipids (CH2/CH3), amide I/amide II, amide I/CH2 and amide I/CH3. Spectral data obtained from 10 single measurements of each specimen indicate numerous abnormalities concerning proteins, lipids, and phospholipids induced by Aeromonas infection, suggesting significant disruption of the cell membranes. Moreover, the increase in the content of lysolipids such as lysophosphosphatidylcholine was observed. The results of this study suggest the application of both methods MALDI-MSI and FT-IR as accurate methods for profiling biomolecules and identifying biochemical changes in kidney tissue during the progression of Aeromonas infection.
Collapse
Affiliation(s)
- Joanna Matys
- Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence: (J.M.); (A.S.-B.)
| | - Anna Turska-Szewczuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Barbara Gieroba
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Maria Kurzylewska
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Agnieszka Pękala-Safińska
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Anna Sroka-Bartnicka
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence: (J.M.); (A.S.-B.)
| |
Collapse
|
11
|
Goudarztalejerdi A, Yavari M, Nouri Kalourazi M, Borzouei F, Manouchehri Tabar A, Tolouei Gilani J. Antibiotic Resistance and Virulence Factor Gene Profile of Aeromonas hydrophila Isolated from Carp (Cyprinidae) Suspected with Hemorrhagic Septicemia in Gilan, Iran. Lett Appl Microbiol 2022; 75:1354-1365. [PMID: 35976044 DOI: 10.1111/lam.13806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022]
Abstract
The present study was conducted to determine the antibacterial resistance profile of Aeromonas hydrophila (n= 42) isolated from the 100 hemorrhagic septicemia-suspected carp in Gilan, Iran. The prevalence of class 1 and 2 integrons, antibiotic resistance genes (ARG), and virulence factor genes (VFG) among these isolates was investigated using PCR. Also, the possible association between the presence of VFGs and the antibiotic resistance profile of isolates was assessed. The majority of A. hydrophila isolates (83.33%) exhibited multi-drug resistance (MDR) profile, and all isolates were resistant to clindamycin, while all isolates were susceptible to amikacin. intI1 and intI2 gene was found in 26.2% and 4.8% isolates, respectively. This is the first report of the presence of the intI2 gene in A. hydrophila isolates in Iran. The blaTEM (40.5%) and tetA (33.3%) genes were found as the predominant ARGs. The most frequently detected VFGs were lip and ahh1(90.5%), while the examined isolates carrying at least three VFGs and the most prevalent VFGs profile was ast+, act+, alt+, ahhl+, aerA+, ahyB+, and lip+. The results of this study indicate a positive association between the presence of VFGs and antibiotic resistance, and most MDR A. hydrophila isolates showed high frequencies of VFGs.
Collapse
Affiliation(s)
- Ali Goudarztalejerdi
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Morteza Yavari
- Department of Clinical Sciences, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Mahdi Nouri Kalourazi
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Fatemeh Borzouei
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Arash Manouchehri Tabar
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Javad Tolouei Gilani
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
12
|
Teodoro JR, Carvalho GG, Queiroz MM, Levy CE, Kabuki DY. Incidence, evaluation of detection and identification methods, and antimicrobial resistance of Aeromonas spp. in ready-to-eat foods. Int J Food Microbiol 2022; 379:109862. [DOI: 10.1016/j.ijfoodmicro.2022.109862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/18/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022]
|
13
|
Pessoa RBG, de Oliveira WF, Correia MTDS, Fontes A, Coelho LCBB. Aeromonas and Human Health Disorders: Clinical Approaches. Front Microbiol 2022; 13:868890. [PMID: 35711774 PMCID: PMC9195132 DOI: 10.3389/fmicb.2022.868890] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
The genus Aeromonas comprises more than 30 Gram-negative bacterial species and naturally inhabitants from aquatic environments. These microorganisms, commonly regarded as pathogens of fish and several other animals, have been gaining prominence on medical trial due to its ability to colonize and infect human beings. Besides water, Aeromonas are widely spreaded on most varied sources like soil, vegetables, and food; Although its opportunistic nature, they are able to cause infections on immunocompromised or immunocompetent patients. Aeromonas species regarded as potential human pathogens are usually A. hydrophila, A. caviae, and A. veronii biovar sobria. The main clinical manifestations are gastrointestinal tract disorders, wound, and soft tissue infections, as well as septicemia. Regarding to antibiotic responses, the bacteria present a diversified susceptibility profile and show inherence resistance to ampicillin. Aeromonas, as an ascending genus in microbiology, has been carefully studied aiming comprehension and development of methods for detection and medical intervention of infectious processes, not fully elucidated in medicine. This review focuses on current clinical knowledge related to human health disorders caused by Aeromonas to contribute on development of efficient approaches able to recognize and impair the pathological processes.
Collapse
Affiliation(s)
| | - Weslley Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | | |
Collapse
|
14
|
Sheng T, Song G, Yue T, Zhang J, Wang W, Yang Z, Lu Q. Whole-genome sequencing and antimicrobial resistance analysis of multidrug-resistant Aeromonas veronii strain JC529 from a common carp. J Glob Antimicrob Resist 2021; 27:118-122. [PMID: 34508865 DOI: 10.1016/j.jgar.2021.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/06/2021] [Accepted: 08/19/2021] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Aeromonas veronii can cause infections in humans and a wide variety of aquatic and terrestrial animals as well as causing serious economic losses in aquaculture worldwide. Aeromonas veronii strain JC529 was isolated from an infected common carp in a fish pond in Jilin Province. In this study, we identified the multidrug resistance genes and traced the source of the strain in order to lay the foundation for research on the resistance mechanisms of other Aeromonas isolates. METHODS The isolated strain was sequenced using PacBio RS II and Illumina HiSeq 4000 platforms. Corrected reads were assembled using Celera and Falcon software and genes were predicted using Glimmer software. Seven databases were used for general function annotation. Virulence factors and resistance genes were identified based on the core data set in the VFDB and ARDB databases. Concurrently, 68 publicly available A. veronii genomes (including A. veronii JC529) were compared to reveal the clustering relationship of JC529. RESULTS Aeromonas veronii strain JC529 has a circular chromosome of 4 834 659 bp with a GC content of 59.64%, including 4264 protein-coding genes, 2 prophages, 482 virulence factors and 27 antibiotic resistance genes, indicating that strain JC529 is a multidrug-resistant strain. The phylogenetic tree showed that strains JC529 and NS, PDB, AG5.28.6 and VCK1 appear to be inherited from a common ancestor and affect aquaculture in China and Greece. CONCLUSION Strain JC529 is a multidrug-resistant A. veronii strain and has been inherited from a common ancestor with Greece.
Collapse
Affiliation(s)
- Tiange Sheng
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Gege Song
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Taotao Yue
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Junhui Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wendong Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhenguo Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qiang Lu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
15
|
Mohamed H, Marusich E, Afanasev Y, Leonov S. Fatty Acids-Enriched Fractions of Hermetia illucens (Black Soldier Fly) Larvae Fat Can Combat MDR Pathogenic Fish Bacteria Aeromonas spp. Int J Mol Sci 2021; 22:ijms22168829. [PMID: 34445533 PMCID: PMC8396364 DOI: 10.3390/ijms22168829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022] Open
Abstract
Aeromonas spp. cause many diseases in aquaculture habitats. Hermetia illucens (Hi) larvae were used as feed-in aquacultures and in eradicating pathogenic fish bacteria. In the present study, we applied consecutive extractions of the same biomass of BSFL fat using the acidic water–methanol solution. The major constituents of the sequential extracts (SEs) were free fatty acids (FFAs), and fatty acids derivatives as identified by gas chromatography spectrometry (GC-MS). Our improved procedure enabled gradual enrichment in the unsaturated fatty acids (USFAs) content in our SEs. The present study aimed to compare the composition and antimicrobial properties of SEs. Among actual fish pathogens, A. hydrophila and A. salmonicida demonstrated multiple drug resistance (MDR) against different recommended standard antibiotics: A. salmonicida was resistant to six, while A. hydrophila was resistant to four antibiotics from ten used in the present study. For the first time, we demonstrated the high dose-dependent antibacterial activity of each SE against Aeromonas spp., especially MDR A. salmonicida. The bacteriostatic and bactericidal (MIC/MBC) activity of SEs was significantly enhanced through the sequential extractions. The third sequential extract (AWME3) possessed the highest activity against Aeromonas spp.: inhibition zone diameters were in the range (21.47 ± 0.14–20.83 ± 0.22 mm) at a concentration of 40 mg/mL, MIC values ranged between 0.09 and 0.38 mg/mL for A. hydrophila and A. salmonicida, respectively. AWME3 MBC values recorded 0.19 and 0.38 mg/mL, while MIC50 values were 0.065 ± 0.004 and 0.22 ± 0.005 mg/mL against A. hydrophila and A. salmonicida, respectively. Thus, the larvae fat from Hermitia illucens may serve as an excellent reservoir of bioactive molecules with good capacity to eradicate the multidrug-resistant bacteria, having promising potential for practical application in the aquaculture field.
Collapse
Affiliation(s)
- Heakal Mohamed
- Moscow Institute of Physics and Technology, School of Biological and Medical Physics, 141700 Dolgoprudny, Russia; (H.M.); (Y.A.)
| | - Elena Marusich
- Moscow Institute of Physics and Technology, School of Biological and Medical Physics, 141700 Dolgoprudny, Russia; (H.M.); (Y.A.)
- Correspondence: (E.M.); (S.L.); Tel.: +7-965-247-1982 (E.M.); +7-915-055-5643 (S.L.)
| | - Yuriy Afanasev
- Moscow Institute of Physics and Technology, School of Biological and Medical Physics, 141700 Dolgoprudny, Russia; (H.M.); (Y.A.)
| | - Sergey Leonov
- Moscow Institute of Physics and Technology, School of Biological and Medical Physics, 141700 Dolgoprudny, Russia; (H.M.); (Y.A.)
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence: (E.M.); (S.L.); Tel.: +7-965-247-1982 (E.M.); +7-915-055-5643 (S.L.)
| |
Collapse
|
16
|
Park SM, Kim HW, Choi C, Rhee MS. Pathogenicity and seasonal variation of Aeromonas hydrophila isolated from seafood and ready-to-eat sushi in South Korea. Food Res Int 2021; 147:110484. [PMID: 34399480 DOI: 10.1016/j.foodres.2021.110484] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/29/2022]
Abstract
Aeromonas hydrophila is an emerging foodborne pathogen capable of causing human gastroenteritis, and the main reservoir is the aquatic environment. In this study, the prevalence and virulence of A. hydrophila in seafoods and ready-to-eat (RTE) sushi distributed in various conditions (refrigerated, dried, or frozen) or seasons was investigated. Strains were isolated from seafood (refrigerated or frozen oysters, sashimi, and processed fish; n = 333) and RTE sushi (n = 88) samples collected in South Korea and then genetically analyzed for gastroenteritis-related virulence genes (aer, ast, and alt). Raw oysters showed the highest prevalence of A. hydrophila (57.1%; 47/91) among all seafoods. Among the sashimi samples, flatfish sashimi (54.8%; 34/62) and salmon sushi (51.4%; 18/35) were the most prevalent. A. hydrophila was not detected in the oysters or anchovies distributed as either frozen or dried products. Seasonal investigations of sashimi and sushi showed that the summer prevalence of A. hydrophila with putative virulence genes was significantly lower in sashimi but highest in sushi. These results indicated that sushi could have been contaminated from several sources during the manufacturing or distribution processes. Significant correlations among the prevalence of putative virulence genes were confirmed, although no combination of genes presented a Phi correlation coefficient above 0.5 (0.26-0.43). To our knowledge, this is the first study to investigate the prevalence of A. hydrophila in various types of retail seafoods and RTE sushi in the East Asia region and then relate the prevalence to the distribution conditions of the samples. This study provides background information on the level of potential risk posed by A. hydrophila in retail seafoods and RTE sushi.
Collapse
Affiliation(s)
- Sun Min Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hye Won Kim
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, IL 61820, USA
| | - Changsun Choi
- Department of Food and Nutrition, School of Food Science and Technology, Chung-Ang University, Gyeonggi Province 17546, Republic of Korea
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
17
|
Zaher HA, Nofal MI, Hendam BM, Elshaer MM, Alothaim AS, Eraqi MM. Prevalence and Antibiogram of Vibrio parahaemolyticus and Aeromonas hydrophila in the Flesh of Nile Tilapia, with Special Reference to Their Virulence Genes Detected Using Multiplex PCR Technique. Antibiotics (Basel) 2021; 10:654. [PMID: 34070815 PMCID: PMC8229650 DOI: 10.3390/antibiotics10060654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 01/25/2023] Open
Abstract
Vibrio parahaemolyticus and Aeromonas hydrophila are major public health problems and the main cause of bacterial disease in Nile tilapia (Oreochromis niloticus). This study was conducted to determine the prevalence, antibiotic resistance and some virulence genes of both V. parahaemolyticus and A. hydrophila isolates from Nile tilapia. From Manzala Farm at Dakahlia governorate, 250 freshwater fish samples were collected. The confirmed bacterial isolates from the examined Nile tilapia samples in the study were 24.8% (62/250) for V. parahaemolyticus and 19.2% (48/250) for A. hydrophila. multiplex PCR, revealing that the tlh gene was found in 46.7% (29/62) of V. parahaemolyticus isolates, while the tdh and trh virulence genes were found in 17.2% (5/29). Meanwhile, 39.5% (19/48) of A. hydrophila isolates had the 16s rRNA gene and 10.5% (2/19) had the aerA and ahh1 virulence genes. The Multiple Antibiotic Resistance indices of V. parahaemolyticus and A. hydrophila were 0.587 and 0.586, respectively. In conclusion, alternative non-antibiotic control strategies for bacterial infections in farmed fish should be promoted to avoid multidrug-resistant bacteria. Therefore, it is suggested that farmers should be skilled in basic fish health control and that molecular detection methods are more rapid and cost-effective than bacteriological methods.
Collapse
Affiliation(s)
- Hanan A. Zaher
- Food Hygiene and Control Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Mohamad I. Nofal
- General Authority of Fish Resources and Development (GAFRD), Manzala Fish Farm, Manzala 35642, Egypt;
| | - Basma M. Hendam
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Moustafa M. Elshaer
- Department of Microbiology at Specialized Medical Hospital, Mansoura University, Mansoura 35516, Egypt;
| | - Abdulaziz S. Alothaim
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Mostafa M. Eraqi
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
- Microbiology and Immunology Department, Veterinary Research Division, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
18
|
Helsens N, Calvez S, Prevost H, Bouju-Albert A, Maillet A, Rossero A, Hurtaud-Pessel D, Zagorec M, Magras C. Antibiotic Resistance Genes and Bacterial Communities of Farmed Rainbow Trout Fillets ( Oncorhynchus mykiss). Front Microbiol 2020; 11:590902. [PMID: 33343530 PMCID: PMC7744637 DOI: 10.3389/fmicb.2020.590902] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/11/2020] [Indexed: 01/28/2023] Open
Abstract
The rise of antibiotic resistance is not only a challenge for human and animal health treatments, but is also posing the risk of spreading among bacterial populations in foodstuffs. Farmed fish-related foodstuffs, the food of animal origin most consumed worldwide, are suspected to be a reservoir of antibiotic resistance genes and resistant bacterial hazards. However, scant research has been devoted to the possible sources of diversity in fresh fillet bacterial ecosystems (farm environment including rivers and practices, and factory environment). In this study bacterial communities and the antibiotic resistance genes of fresh rainbow trout fillet were described using amplicon sequencing of the V3-V4 region of the 16S rRNA gene and high-throughput qPCR assay. The antibiotic residues were quantified using liquid chromatography/mass spectrometry methods. A total of 56 fillets (composed of muscle and skin tissue) from fish raised on two farms on the same river were collected and processed under either factory or laboratory sterile filleting conditions. We observed a core-bacterial community profile on the fresh rainbow trout fillets, but the processing conditions of the fillets has a great influence on their mean bacterial load (3.38 ± 1.01 log CFU/g vs 2.29 ± 0.72 log CFU/g) and on the inter-individual diversity of the bacterial community. The bacterial communities were dominated by Gamma- and Alpha-proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. The most prevalent genera were Pseudomonas, Escherichia-Shigella, Chryseobacterium, and Carnobacterium. Of the 73 antibiotic residues searched, only oxytetracycline residues were detected in 13/56 fillets, all below the European Union maximum residue limit (6.40–40.20 μg/kg). Of the 248 antibiotic resistance genes searched, 11 were found to be present in at least 20% of the fish population (tetracycline resistance genes tetM and tetV, β-lactam resistance genes blaDHA and blaACC, macrolide resistance gene mphA, vancomycin resistance genes vanTG and vanWG and multidrug-resistance genes mdtE, mexF, vgaB and msrA) at relatively low abundances calculated proportionally to the 16S rRNA gene.
Collapse
Affiliation(s)
- Nicolas Helsens
- INRAE, Oniris, SECALIM, Nantes, France.,INRAE, Oniris, BIOEPAR, Nantes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sheng L, Wang L. The microbial safety of fish and fish products: Recent advances in understanding its significance, contamination sources, and control strategies. Compr Rev Food Sci Food Saf 2020; 20:738-786. [PMID: 33325100 DOI: 10.1111/1541-4337.12671] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
Microorganisms play a crucial and unique role in fish and fish product safety. The presence of human pathogens and the formation of histamine caused by spoilage bacteria make the control of both pathogenic and spoilage microorganisms critical for fish product safety. To provide a comprehensive and updated overview of the involvement of microorganisms in fish and fish product safety, this paper reviewed outbreak and recall surveillance data obtained from government agencies from 1998 to 2018 and identified major safety concerns associated with both domestic and imported fish products. The review also summarized all available literature about the prevalence of major and emerging microbial safety concerns, including Salmonella spp., Listeria monocytogenes, and Aeromonas hydrophila, in different fish and fish products and the survival of these pathogens under different storage conditions. The prevalence of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs), two emerging food safety concerns, is also reviewed. Pathogenic and spoilage microorganisms as well as ARB and ARGs can be introduced into fish and fish products in both preharvest and postharvest stages. Many novel intervention strategies have been proposed and tested for the control of different microorganisms on fish and fish products. One key question that needs to be considered when developing and implementing novel control measures is how to ensure that the measures are cost and environment friendly as well as sustainable. Over the years, regulations have been established to provide guidance documents for good farming and processing practices. To be more prepared for the globalization of the food chain, harmonization of regulations is still needed.
Collapse
Affiliation(s)
- Lina Sheng
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
| | - Luxin Wang
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
| |
Collapse
|
20
|
Tang J, Wang W, Chu W. Antimicrobial and Anti-Quorum Sensing Activities of Phlorotannins From Seaweed ( Hizikia fusiforme). Front Cell Infect Microbiol 2020; 10:586750. [PMID: 33194827 PMCID: PMC7662131 DOI: 10.3389/fcimb.2020.586750] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Multidrug-resistant bacteria (MDR) are becoming a global health problem, and scientists are continuously investigating new strategies to fight against MDR. Seaweeds are an important source of biological compounds and can serve as natural sources for bacterial infection control. This study evaluated the antimicrobial and anti-quorum sensing (QS) activities of phlorotannins from Hizikia fusiforme. The phlorotannins exhibited antimicrobial activity against selected bacterial pathogens and inhibited QS activity of the reporter strain Chromobacterium violaceum 12472 by inhibiting purple pigment production. Phlorotannins can decrease the bacterial motility, reduce the production of extracellular protease, hemolysin, and pyocyanin and inhibit biofilm formation of Pseudomonas aeruginosa. In vivo studies showed that phlorotannins can reduce P. aeruginosa inflicted mortality in Caenorhabditis elegans. This study shows that phlorotannins from H. fusiforme have certain antimicrobial and anti-quorum sensing activities and have the potential to control bacterial infection for pharmaceutical usage.
Collapse
Affiliation(s)
- Jiali Tang
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Wenqian Wang
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Weihua Chu
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
21
|
El-Gohary FA, Zahran E, Abd El-Gawad EA, El-Gohary AH, M. Abdelhamid F, El-Mleeh A, Elmahallawy EK, Elsayed MM. Investigation of the Prevalence, Virulence Genes, and Antibiogram of Motile Aeromonads Isolated from Nile Tilapia Fish Farms in Egypt and Assessment of their Water Quality. Animals (Basel) 2020; 10:ani10081432. [PMID: 32824393 PMCID: PMC7459692 DOI: 10.3390/ani10081432] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
The aquaculture industry is a fast-growing sector in Egypt; however, the progress of this industry is impeded by many challenges such as poor water quality and associated bacterial infections. Among others, Motile Aeromonas Septicemia (MAS), caused by aeromonads, is among the most important bacterial diseases affecting aquaculture due to its zoonotic potential. In the present work, motile aeromonads were isolated from water samples (n= 8) and Nile tilapia (n= 240) in four fish farms (farms I, II, III, and IV) in Kafr El-Sheikh province during the period March to August 2017. This step was followed by investigation of the prevalence and phenotypic, molecular, and histopathological characterization of aeromonads. In addition, antimicrobial susceptibility and virulence gene detection were analyzed. Interestingly, physicochemical water analysis revealed different ranges in relation to the fish farms and seasons. More importantly, Aeromonas isolates were phenotypically identified in 33.3% and 12.5% from fish and water samples, respectively. The highest prevalence of motile aeromonads (46.7%) was recorded from farm IV, and only 12.5% of water samples were positive for them. Out of 80 isolates, 65 (81.25%) were molecularly identified at the genus level using gyrase B (gyrB). The prevalence of the virulence genes detected in the isolated motile aeromonads was aerolysin (aer), 52.2%; elastase (ahp), 26.25%; hemolysin (hyl), 35%; and lipase (lip), 3.75%. The antibiogram profile revealed that the highest resistance of aeromonads isolates (80%) was recorded to chloramphenicol, kanamycin, and azithromycin. Meanwhile, lower resistance levels of 40%, 30%, and 20% were found for streptomycin, cefotaxime, and amoxicillin, respectively. The multiple antibiotic resistance (MAR) index values ranged between 0.27 and 0.82 of motile aeromonads isolates. Furthermore, the histopathological examinations of naturally diseased tilapia revealed widespread hepatocellular necrosis with diffuse, numerous rod-shaped bacteria in liver with melanomacrophages and lymphocytic depletion with edema and hemosiderosis in the spleen. Our findings provide an updated epidemiological baseline for future reference and highlight the likely role of the adverse impact of water quality in the outbreaks of motile aeromonads with special reference to virulence genes and antibiotic resistant traits.
Collapse
Affiliation(s)
- Fatma A. El-Gohary
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (A.H.E.-G.); (M.M.E.)
- Correspondence: (F.A.E.-G.); (E.K.E.)
| | - Eman Zahran
- Department of Internal medicine, Infectious and Fish diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Eman A. Abd El-Gawad
- Aquatic animals diseases and management department, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt;
| | - Adel H. El-Gohary
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (A.H.E.-G.); (M.M.E.)
| | - Fatma M. Abdelhamid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Amany El-Mleeh
- Department of Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Sheibin Elkom 32511, Egypt;
| | - Ehab Kotb Elmahallawy
- Department of Biomedical Sciences, University of León, 24071 León, Spain
- Department of Zoonotic diseases, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
- Correspondence: (F.A.E.-G.); (E.K.E.)
| | - Mona Mohieldin Elsayed
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (A.H.E.-G.); (M.M.E.)
| |
Collapse
|
22
|
Li T, Raza SHA, Yang B, Sun Y, Wang G, Sun W, Qian A, Wang C, Kang Y, Shan X. Aeromonas veronii Infection in Commercial Freshwater Fish: A Potential Threat to Public Health. Animals (Basel) 2020; 10:ani10040608. [PMID: 32252334 PMCID: PMC7222775 DOI: 10.3390/ani10040608] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 11/16/2022] Open
Abstract
Aeromonas veronii is an important pathogen causing freshwater fish sepsis and ulcer syndrome. An increasing number of cases have demonstrated its significance as an aquatic zoonotic agent. The purpose of this study was to ensure the safety of freshwater products by evaluating the infection status of edible freshwater fish. In this experiment, we isolated A. veronii from several species of apparently healthy freshwater fish, including Carassius auratus, Cyprinus carpio, Ctenopharyngodon idella, and Silurus asotus. A. veronii was identified through bacterial staining, culture characteristics, and 16S rDNA gene sequence. In addition, polymerase chain reaction (PCR) was used to investigate the distribution of seven major virulence genes, including aerolysin (aer: 88.51%), cytotoxic enterotoxin (act: 71.26%), serine proteinase (ser: 54.02%), adhesin (Aha: 40.23%), phospholipase (lip: 45.98%), nuclease (exu: 51.72%), and quorum sensing-controlled virulence factor (LuxS: 59.77%). In total, 496 strains of Aeromonas were isolated, including 87 strains of A. veronii. The isolates of A. veronii were Gram-negative, rod-shaped bacteria, and the colonies are yellow on Rimler-Shotts (RS) medium and showed greater than 99% homology with A. veronii ATCC35624 according to analyses of the 16S rDNA sequence. Nearly 50% of the A. veronii isolates carried at least four or more virulence genes, 25% of the isolates carried at least five types of virulence genes, and 59.77% isolates carried the LuxS gene, and the isolates carrying more virulence genes were found to be more virulent. These results are of great significance for further improving the food safety assessment of freshwater aquatic products.
Collapse
Affiliation(s)
- Tong Li
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, China; (T.L.); (B.Y.); (Y.S.); (G.W.); (W.S.); (A.Q.); (C.W.)
| | | | - Bintong Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, China; (T.L.); (B.Y.); (Y.S.); (G.W.); (W.S.); (A.Q.); (C.W.)
- College of Life Science, Changchun Sci-Tech University, Shuangyang District, Changchun 130600, China
| | - Yufeng Sun
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, China; (T.L.); (B.Y.); (Y.S.); (G.W.); (W.S.); (A.Q.); (C.W.)
| | - Guiqin Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, China; (T.L.); (B.Y.); (Y.S.); (G.W.); (W.S.); (A.Q.); (C.W.)
| | - Wuwen Sun
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, China; (T.L.); (B.Y.); (Y.S.); (G.W.); (W.S.); (A.Q.); (C.W.)
| | - Aidong Qian
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, China; (T.L.); (B.Y.); (Y.S.); (G.W.); (W.S.); (A.Q.); (C.W.)
| | - Chunfeng Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, China; (T.L.); (B.Y.); (Y.S.); (G.W.); (W.S.); (A.Q.); (C.W.)
| | - Yuanhuan Kang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, China; (T.L.); (B.Y.); (Y.S.); (G.W.); (W.S.); (A.Q.); (C.W.)
- Correspondence: (Y.K.); (X.S.); Tel.: +86-0431-84533426 (Y.K.)
| | - Xiaofeng Shan
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, China; (T.L.); (B.Y.); (Y.S.); (G.W.); (W.S.); (A.Q.); (C.W.)
- Correspondence: (Y.K.); (X.S.); Tel.: +86-0431-84533426 (Y.K.)
| |
Collapse
|
23
|
Hossain S, Wickramanayake MVKS, Dahanayake PS, Heo GJ. Species identification, virulence markers and antimicrobial resistance profiles of Aeromonas sp. isolated from marketed hard-shelled mussel (Mytilus coruscus) in Korea. Lett Appl Microbiol 2020; 70:221-229. [PMID: 31854000 DOI: 10.1111/lam.13266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022]
Abstract
Hard-shelled mussel (Mytilus coruscus) is a popular seafood in Korea. This study aimed to determine the virulence markers and antimicrobial resistance patterns of 33 Aeromonas strains isolated from mussels. The isolates were identified as A. salmonicida (n = 14), A. veronii (n = 9), A. enteropelogenes (n = 4), A. caviae (n = 3), A. allosaccharophila (n = 2) and A. bivalvium (n = 1) by gyrB gene sequencing. The sequence divergence between and within the species ranged from 3·70 to 10·40% and 0-1·50% respectively. Every species formed a distinct group in a neighbour-joining phylogenetic tree. The DNase, gelatinase, caseinase, β-haemolysis, biofilm and lipase activities were observed in 33 (100·00%), 31 (93·93%), 30 (90·90%), 27 (81·81%), 21 (63·63%) and 17 (51·51%) isolates respectively. The virulence genes were detected by PCR in the following frequencies: fla (90·09%), aer (87·88%), hlyA (87·88%), ahyB (81·19%), gcaT (75·76%), ser (69·70%), lip (66·67%), alt (57·58%), ast (51·51%) and act (21·21%). Every isolate was resistant to at least three of 18 antimicrobials in the disk diffusion test. The multiple antimicrobial resistance index values ranged from 0·11 to 0·44 among the isolates. Our study suggests that mussels can be a potential reservoir of virulent and multidrug-resistant Aeromonas sp. SIGNIFICANCE AND IMPACT OF THE STUDY: Aeromonas sp. are known as common pathogenic bacteria isolated from seafood. The virulence factors and antimicrobial resistance profiles of mussel-borne Aeromonas sp. are poorly understood. This study demonstrated for the first time the existence of virulence markers and antimicrobial resistance of Aeromonas sp. from mussels in Korea. Majority of the isolates were positive for phenotypic virulence characteristics and harboured several virulence genes which reveal the potential virulence of mussel-borne Aeromonas sp. Multiple antimicrobial resistance was also observed among the isolates. Our study highlights the importance of food safety standards in mussel consumption.
Collapse
Affiliation(s)
- S Hossain
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - M V K S Wickramanayake
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - P S Dahanayake
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - G-J Heo
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
24
|
Fernández-Bravo A, Figueras MJ. An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity. Microorganisms 2020; 8:microorganisms8010129. [PMID: 31963469 PMCID: PMC7022790 DOI: 10.3390/microorganisms8010129] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
The genus Aeromonas belongs to the Aeromonadaceae family and comprises a group of Gram-negative bacteria widely distributed in aquatic environments, with some species able to cause disease in humans, fish, and other aquatic animals. However, bacteria of this genus are isolated from many other habitats, environments, and food products. The taxonomy of this genus is complex when phenotypic identification methods are used because such methods might not correctly identify all the species. On the other hand, molecular methods have proven very reliable, such as using the sequences of concatenated housekeeping genes like gyrB and rpoD or comparing the genomes with the type strains using a genomic index, such as the average nucleotide identity (ANI) or in silico DNA–DNA hybridization (isDDH). So far, 36 species have been described in the genus Aeromonas of which at least 19 are considered emerging pathogens to humans, causing a broad spectrum of infections. Having said that, when classifying 1852 strains that have been reported in various recent clinical cases, 95.4% were identified as only four species: Aeromonas caviae (37.26%), Aeromonas dhakensis (23.49%), Aeromonas veronii (21.54%), and Aeromonas hydrophila (13.07%). Since aeromonads were first associated with human disease, gastroenteritis, bacteremia, and wound infections have dominated. The literature shows that the pathogenic potential of Aeromonas is considered multifactorial and the presence of several virulence factors allows these bacteria to adhere, invade, and destroy the host cells, overcoming the immune host response. Based on current information about the ecology, epidemiology, and pathogenicity of the genus Aeromonas, we should assume that the infections these bacteria produce will remain a great health problem in the future. The ubiquitous distribution of these bacteria and the increasing elderly population, to whom these bacteria are an opportunistic pathogen, will facilitate this problem. In addition, using data from outbreak studies, it has been recognized that in cases of diarrhea, the infective dose of Aeromonas is relatively low. These poorly known bacteria should therefore be considered similarly as enteropathogens like Salmonella and Campylobacter.
Collapse
|
25
|
Phylogenetic characteristics, virulence properties and antibiogram profile of motile Aeromonas spp. isolated from ornamental guppy (Poecilia reticulata). Arch Microbiol 2019; 202:501-509. [PMID: 31707424 DOI: 10.1007/s00203-019-01762-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/28/2019] [Accepted: 10/31/2019] [Indexed: 02/08/2023]
Abstract
Aeromonas spp. are opportunistic pathogenic bacteria related to an assembly of infectious diseases in ornamental fish. In the present study, virulence properties and antibiotic susceptibility of 52 guppy-borne Aeromonas spp. were investigated. The isolates were identified as A. veronii (n = 34), A. dhakensis (n = 10), A. hydrophila (n = 3), A. caviae (n = 3) and A. enteropelogenes (n = 2) by gyrB gene sequencing. The gyrB sequence deviation within and among the species ranged from 0 to 2.6% and 2.7-9.2%. Each species formed a distinct group in the unrooted neighbor-joining phylogenetic tree. The phenotypic virulence factors such as β-hemolysis, slime, caseinase, DNase, gelatinase and lipase production were observed in 28 (53.9%), 33 (63.5%), 28 (53.9%), 42 (80.8%), 37 (71.2%) and 42 (80.8%) isolates, respectively. The virulence genes were detected by PCR assay in the following proportions- act (84.6%), hly (80.8%), aer (73.1%), lip (73.1%), gcaT (73.1%), ascV (53.8%), ahyB (53.8%) fla (51.9%), alt (48.1%), ast (36.5%) and ser (34.6%), respectively. The amoxicillin, ampicillin, imipenem, nalidixic acid, oxytetracycline and rifampicin were resistant to more than 70.0% of the isolates in antibiotic susceptibility test. Our study suggests that the ornamental guppy can be a potential reservoir of virulent and multi-drug resistant Aeromonas spp.
Collapse
|
26
|
El-Mahdy R, El-Kannishy G. Virulence Factors Of Carbapenem-Resistant Pseudomonas aeruginosa In Hospital-Acquired Infections In Mansoura, Egypt. Infect Drug Resist 2019; 12:3455-3461. [PMID: 31819540 PMCID: PMC6844229 DOI: 10.2147/idr.s222329] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/24/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose The problem of carbapenem-resistant Pseudomonas aeruginosa in health-care settings is growing worse. This study was conducted to investigate the rate of carbapenemase genes, antibiotic resistance, and virulence factors in carbapenem-resistant P. aeruginosa associated with hospital-acquired infections. Patients and methods Isolates of P. aeruginosa were collected from patients with hospital-acquired infections at Mansoura University Hospital in Mansoura. Carbapenem susceptibility was done by broth dilution. The presence of carbapenemase genes and quorum-sensing genes was assessed by PCR. Production of protease, pyocyanin, twitching motility, hemolytic activity and biofilm formation was evaluated. Results Out of 80 P. aeruginosa isolates, 34 (42.5%) were resistant to carbapenem. Among carbapenem-resistant P. aeruginosa isolates, 21 (61.8%) were carbapenemase producers. The most prevalent gene detected was blaVIM. The frequency of protease, pyocyanin, twitching motility, hemolytic activity and biofilm formation was 76.2%, 58.8%, 83.8%, 93.8% and 77.5%, respectively. Biofilm formation was significantly associated with carbapenem-resistant P. aeruginosa. On the other hand, pyocyanin production was significantly lower in carbapenem-resistant isolates. No correlation existed between carbapenem resistance and any other studied virulence factors or quorum-sensing genes. Conclusion Association of carbapenem-resistant P. aeruginosa with other antibiotic resistance or the presence of virulence factors in hospital-acquired infection may represent a warning that enhances the need for a stringent surveillance program.
Collapse
Affiliation(s)
- Rasha El-Mahdy
- Department of Medical Microbiology And Immunology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ghada El-Kannishy
- Department of Internal Medicine, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
27
|
Aeromonas Isolates from Fish and Patients in Tainan City, Taiwan: Genotypic and Phenotypic Characteristics. Appl Environ Microbiol 2019; 85:AEM.01360-19. [PMID: 31420346 DOI: 10.1128/aem.01360-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/12/2019] [Indexed: 11/20/2022] Open
Abstract
The present study aimed to isolate Aeromonas from fish sold in the markets as well as in sushi and seafood shops and compare their virulence factors and antimicrobial characteristics with those of clinical isolates. Among the 128 fish isolates and 47 clinical isolates, Aeromonas caviae, A. dhakensis, and A. veronii were the principal species. A. dhakensis isolates carried at least 5 virulence genes, more than other Aeromonas species. The predominant genotype of virulence genes was hlyA lip alt col ela in both A. dhakensis and A. hydrophila isolates, alt col ela in A. caviae isolates, and act in A. veronii isolates. A. dhakensis, A. hydrophila, and A. veronii isolates more often exhibited hemolytic and proteolytic activity and showed greater virulence than A. caviae isolates in Caenorhabditis elegans and the C2C12 cell line. However, the link between the genotypes and phenotypes of the studied virulence genes in Aeromonas species was not evident. Among the four major clinical Aeromonas species, nearly all (99.0%) A. dhakensis, A. hydrophila, and A. veronii isolates harbored bla CphA, which encodes a carbapenemase, but only a minority (6.7%, 7/104) were nonsusceptible to carbapenem. Regarding AmpC β-lactamase genes, bla AQU-1 was exclusively found in A. dhakensis isolates, and bla MOX3 was found only in A. caviae isolates, but only 7.6% (n = 6) of the 79 Aeromonas isolates carrying bla AQU-1 or bla MOX3 exhibited a cefotaxime resistance phenotype. In conclusion, fish Aeromonas isolates carry a variety of combinations of virulence and β-lactamase resistance genes and exhibit virulence phenotypes and antimicrobial resistance profiles similar to those of clinical isolates.IMPORTANCE Aeromonas species can cause severe infections in immunocompromised individuals upon exposure to virulent pathogens in the environment, but the characteristics of environmental Aeromonas species remain unclear. Our study showed that several pathogenic Aeromonas species possessing virulence traits and antimicrobial resistance similar to those of Aeromonas isolates causing clinical diseases were present in fish intended for human consumption in Tainan City, Taiwan.
Collapse
|
28
|
John N, Vidyalakshmi VB, Hatha AAM. Effect of pH and Salinity on the Production of Extracellular Virulence Factors by Aeromonas from Food Sources. J Food Sci 2019; 84:2250-2255. [PMID: 31313323 DOI: 10.1111/1750-3841.14729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 11/29/2022]
Abstract
The ability to produce various extracellular enzymes is considered as an important virulence feature in Aeromonas spp., in addition to producing specific virulence factors such as aerolysin and hemolysin. In this study, the effect of salinity and pH on the production of extracellular virulence factors by Aeromonas was investigated. Aeromonas was obtained from different food sources. A comparative study of the activities of extracellular enzymes secreted by these bacteria at different environmental conditions can widen our understanding on their pathogenicity. The activities of various extracellular enzymes such as amylase, gelatinase, and caseinase, which are implicated as virulence factors, were measured in vitro by calculating the enzymatic activity index (EAI) of each enzyme using standard laboratory protocols. For all enzymes, a significant change (P < 0.05) in the EAI was observed when the concentration of NaCl in the media increased from 0.5% to 3%. Among three enzymes tested, caseinase was found to be affected the most by salinity, with a significant difference in EAI when NaCl concentration in the media increased from 0.5% to 2%. Similarly, amylase was found to be affected the most by acidity. The pH values ranging from 6 to 9 did not exert any significant change in EAI of amylase; however, a pH value of 5 had a significant effect. Overall, compared to salinity, the change in pH was found to be less effective in controlling the extracellular virulence factor production in Aeromonas. PRACTICAL APPLICATIONS: The practical application is to minimize the extracellular virulence factor production by Aeromonas in food commodities by altering the salt content and pH. The results demonstrate that an increase in salinity and a decrease in pH can minimize the extracellular virulence factor production by Aeromonas spp.
Collapse
Affiliation(s)
- Nifty John
- Dept. of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Lakeside Campus, Cochin Univ. of Science and Technology, Cochin, 682 016, Kerala, India
| | - V B Vidyalakshmi
- Dept. of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Lakeside Campus, Cochin Univ. of Science and Technology, Cochin, 682 016, Kerala, India
| | - A A Mohamed Hatha
- Dept. of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Lakeside Campus, Cochin Univ. of Science and Technology, Cochin, 682 016, Kerala, India
| |
Collapse
|
29
|
|
30
|
Gonçalves Pessoa RB, de Oliveira WF, Marques DSC, Dos Santos Correia MT, de Carvalho EVMM, Coelho LCBB. The genus Aeromonas: A general approach. Microb Pathog 2019; 130:81-94. [PMID: 30849490 DOI: 10.1016/j.micpath.2019.02.036] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023]
Abstract
The genus Aeromonas comprises more than thirty Gram-negative bacterial species which mostly act as opportunistic microorganisms. These bacteria are distributed naturally in diverse aquatic ecosystems, where they are easily isolated from animals such as fish and crustaceans. A capacity for adaptation also makes Aeromonas able to colonize terrestrial environments and their inhabitants, so these microorganisms can be identified from different sources, such as soils, plants, fruits, vegetables, birds, reptiles, amphibians, among others. Infectious processes usually develop in immunocompromised humans; in fish and other marine animals this process occurs under conditions of stress. Such events are most often associated with incorrect practices in aquaculture. Aeromonas has element diverse ranges, denominated virulence factors, which promote adhesion, colonization and invasion into host cells. These virulence factors, such as membrane components, enzymes and toxins, for example, are differentially expressed among species, making some strains more virulent than others. Due to their diversity, no single virulence factor was considered determinant in the infectious process generated by these microorganisms. Unlike other genera, Aeromonas species are erroneously differentiated by conventional biochemical tests. Therefore, molecular assays are necessary for this purpose. Nevertheless, new means of identification have been considered in order to generate methods that, like molecular tests, can correctly identify these microorganisms. The main objectives of this review are to explain environmental and structural characteristics of the Aeromonas genus and to discuss virulence mechanisms that these bacteria use to infect aquatic organisms and humans, which are important aspects for aquaculture and public health, respectively. In addition, this review aims to clarify new tests for the precise identification of the species of Aeromonas, contributing to the exact and specific diagnosis of infections by these microorganisms and consequently the treatment.
Collapse
Affiliation(s)
- Rafael Bastos Gonçalves Pessoa
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Weslley Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Diego Santa Clara Marques
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Maria Tereza Dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Elba Verônica Matoso Maciel de Carvalho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Luana Cassandra Breitenbach Barroso Coelho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil.
| |
Collapse
|
31
|
Hammad AM, Moustafa AEH, Mansour MM, Fahmy BM, Hamada MG, Shimamoto T, Shimamoto T. Molecular and Phenotypic Analysis of Hemolytic Aeromonas Strains Isolated from Food in Egypt Revealed Clinically Important Multidrug Resistance and Virulence Profiles. J Food Prot 2018; 81:1015-1021. [PMID: 29757009 DOI: 10.4315/0362-028x.jfp-17-360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this study was to determine the public health significance of hemolytic Aeromonas species isolated from 213 food samples in Egypt, based on their virulence and antimicrobial-resistance potential. We recovered 63 strains, isolated from fish, raw milk, karish cheeses, and ras cheese in 29 (31.18%) of 93, 10 (25.00%) of 40, 13 (32.50%) of 40, and 11 (27.50%) of 40 samples, respectively. The most prevalent virulence gene was alt (50.79%), followed by aerA (34.92%), asa1 (39.68%), ahh1 (20.63%), act (11.11%), and ast (3.17%). Thirteen strains screened in this study carried no hemolysin gene, but only the alt gene, and another eight hemolytic strains screened, carried no virulence gene. The virulence signatures " ahh1+ aerA" and " alt+ act," in which the genes interact synergistically to induce severe diarrhea, were detected in two and four strains, respectively. Most showed resistance to third-generation cephalosporins, aztreonam, and imipenem, which indicates the complexity of the β-lactamase production in our hemolytic Aeromonas strains. Fourteen (22.22%) of 63 strains carried one or more antimicrobial-resistance markers, including the blaCTX-M, blaTEM, tet(A), tet(E), and intI1 genes, which were detected in 6.34, 3.17, 3.17, 4.76, and 14.28% of isolates, respectively. In conclusion, the majority of hemolytic Aeromonas strains isolated from the intestinal contents of healthy fish and naturally contaminated milk and cheeses were not commensal but had developed multidrug-resistance and virulence profiles, indicating an emerging potential health risk. Importantly, screening for certain hemolysin genes may not be reliable in predicting the pathogenic potential of Aeromonas species and, thereby, the safety of analyzed foods. Our findings indicate that specific criteria are required for the phenotypic and molecular analysis of Aeromonas species in food items, particularly those eaten without further treatment, to ensure their safety.
Collapse
Affiliation(s)
| | - Alaa-Eldin H Moustafa
- 2 Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt; and
| | - Maha M Mansour
- 2 Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt; and
| | - Bashier M Fahmy
- 2 Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt; and
| | | | - Toshi Shimamoto
- 3 Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan (ORCID: http://orcid.org/0000-0002-5538-0595 [Ta.S.])
| | - Tadashi Shimamoto
- 3 Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan (ORCID: http://orcid.org/0000-0002-5538-0595 [Ta.S.])
| |
Collapse
|
32
|
Giarratana F, Ziino G, D'Andrea V, Panebianco A, Giuffrida A. Quality assessment of Zeus faber (Peter's fish) ovaries regularly commercialized for human consumption. Ital J Food Saf 2018; 7:6997. [PMID: 29732333 PMCID: PMC5913707 DOI: 10.4081/ijfs.2018.6997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
In the last few years, the consumption of fish eggs has increased rapidly, finding widespread use also in mass catering. This increase has involved also those of the Peter's fish (Zeus faber). Females of this species, by their reproductive characteristics, have highly developed gonads in different periods of the year, making the raw material easy to find. The aim of the present study was to perform a quality assessment of Zeus faber ovaries regularly commercialized for human consumption. A total number of 34 samples, divided in fresh (11) and frozen (23), were processed for microbiological characterization, parasitological and histological evaluations. Fresh and frozen samples have significant (P<0.01) differences in total bacterial charge, with values of 4.75±0.5 Log CFU/g and 3.65±0.7 Log CFU/g respectively. The mean value of Enterobacteriaceae was 2.58±0.7 Log CFU/g in fresh products, while 52.17% (12) of frozen samples reported loads of <1 Log CFU/g. No Salmonella spp. and Listeria monocytogenes were found. Aeromonas spp. was detected in two frozen sample (with loads of 2.2 and <1 Log CFU/g) and in 5 fresh ovaries with value ranged from 1.70 to 3.48 Log CFU/g. Vibrio spp. was found in 4 (36.36%) and 3 (13.04%) of fresh and frozen samples respectively, with loads always <1 Log CFU/g. All 31 Vibrio strains isolated, were identified as Vibrio alginolyticus, and 61.29% (19) of them was positive for the ToxRS factor and 6.45% (2) for ToxR. The 47.06% (16) of total samples showed infestations by larvae of Anisakis Type 1 in the serous and inside the ovary. In this last case, histologically it was found to be free larvae. This study attested satisfactory hygiene conditions for Zeus faber ovaries currently marked for human consumption. The presence of potentially pathogenic strains of V. alginolyticus and Aeromonas spp., but above all the frequent infestation by Anisakis larvae, represent a potentially hazard for the consumer.
Collapse
Affiliation(s)
| | - Graziella Ziino
- Department of Veterinary Science, University of Messina, Italy
| | | | | | | |
Collapse
|
33
|
Genotypic Detection of Some Virulence Factors Among Aeromonas hydrophila Isolated from Diarrhea Cases (Iraq). JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.1.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
34
|
Ramadan H, Ibrahim N, Samir M, Abd El-Moaty A, Gad T. Aeromonas hydrophilafrom marketed mullet (Mugil cephalus) in Egypt: PCR characterization ofβ-lactam resistance and virulence genes. J Appl Microbiol 2018; 124:1629-1637. [DOI: 10.1111/jam.13734] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/01/2018] [Accepted: 02/13/2018] [Indexed: 11/28/2022]
Affiliation(s)
- H. Ramadan
- Hygiene and Zoonoses Department; Faculty of Veterinary Medicine; Mansoura University; Mansoura 35516 Egypt
| | - N. Ibrahim
- Bacteriology, Mycology and Immunology Department; Faculty of Veterinary Medicine; Mansoura University; Mansoura 35516 Egypt
| | - M. Samir
- Zoonoses Department; Faculty of Veterinary Medicine; Zagazig University; Zagazig 44511 Egypt
| | - A. Abd El-Moaty
- Bacteriology, Mycology and Immunology Department; Faculty of Veterinary Medicine; Mansoura University; Mansoura 35516 Egypt
| | - T. Gad
- Food Hygiene and Control Department; Faculty of Veterinary Medicine; Mansoura University; Mansoura 35516 Egypt
| |
Collapse
|
35
|
Hoel S, Vadstein O, Jakobsen AN. Species Distribution and Prevalence of Putative Virulence Factors in Mesophilic Aeromonas spp. Isolated from Fresh Retail Sushi. Front Microbiol 2017; 8:931. [PMID: 28596762 PMCID: PMC5442234 DOI: 10.3389/fmicb.2017.00931] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/08/2017] [Indexed: 12/25/2022] Open
Abstract
Aeromonas spp. are ubiquitous bacteria that have received increasing attention as human pathogens because of their widespread occurrence in food, especially seafood and vegetables. The aim of this work was to assess the species identity and phylogenetic relationship of 118 Aeromonas strains isolated from fresh retail sushi from three producers, and to characterize the isolates with respect to genetic and phenotypic virulence factors. We also evaluate the potential hazard associated with their presence in ready-to-eat seafood not subjected to heat treatment. Mesophilic Aeromonas salmonicida was most prevalent (74%), followed by A. bestiarum (9%), A. dhakensis (5%), A. caviae (5%), A. media (4%), A. hydrophila (2%), and A. piscicola (1%). All isolates were considered potentially pathogenic due to the high prevalence of genes encoding hemolysin (hlyA) (99%), aerolysin (aerA) (98%), cytotoxic enterotoxin (act) (86%), heat-labile cytotonic enterotoxin (alt) (99%), and heat-stable cytotonic enterotoxin (ast) (31%). The shiga-like toxins 1 and 2 (stx-1 and stx-2) were not detected. Moreover, there was heterogeneity in toxin gene distribution among the isolates, and the combination of act/alt/hlyA/aerA was most commonly detected (63%). β-hemolysis was species-dependent and observed in 91% of the isolates. All A. media and A. caviae strains were non-hemolytic. For isolates belonging to this group, lack of hemolysis was possibly related to the absence of the act gene. Swimming motility, linked to adhesion and host invasion, occurred in 65% of the isolates. Partial sequencing of the gyrB gene demonstrated its suitability as a genetic marker for Aeromonas species identification and for assessment of the phylogenetic relationship between the isolates. The gyrB sequence divergence within a given species ranged from 1.3 to 2.9%. A. bestiarum, A. salmonicida, and A. piscicola were the most closely related species; their sequences differed by 2.7-3.4%. The average gyrB sequence similarity between all species was 93%, demonstrating its acceptable taxonomic resolution. The presence of multiple species of potential pathogenic Aeromonas in fresh retail sushi raises new food safety issues related to the increased consumption of ready-to-eat food composed of raw ingredients.
Collapse
Affiliation(s)
- Sunniva Hoel
- Department of Biotechnology and Food Science, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Olav Vadstein
- Department of Biotechnology and Food Science, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Anita N Jakobsen
- Department of Biotechnology and Food Science, Norwegian University of Science and TechnologyTrondheim, Norway
| |
Collapse
|
36
|
Palma-Martínez I, Guerrero-Mandujano A, Ruiz-Ruiz MJ, Hernández-Cortez C, Molina-López J, Bocanegra-García V, Castro-Escarpulli G. Active Shiga-Like Toxin Produced by Some Aeromonas spp., Isolated in Mexico City. Front Microbiol 2016; 7:1552. [PMID: 27757103 PMCID: PMC5048074 DOI: 10.3389/fmicb.2016.01552] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/16/2016] [Indexed: 12/29/2022] Open
Abstract
RNA silencing is a conserved mechanism that utilizes small RNAs (sRNAs) to direct the regulation of gene expression at the transcriptional or post-transcriptional level. Plants utilizing RNA silencing machinery to defend pathogen infection was first identified in plant–virus interaction and later was observed in distinct plant–pathogen interactions. RNA silencing is not only responsible for suppressing RNA accumulation and movement of virus and viroid, but also facilitates plant immune responses against bacterial, oomycete, and fungal infection. Interestingly, even the same plant sRNA can perform different roles when encounters with different pathogens. On the other side, pathogens counteract by generating sRNAs that directly regulate pathogen gene expression to increase virulence or target host genes to facilitate pathogen infection. Here, we summarize the current knowledge of the characterization and biogenesis of host- and pathogen-derived sRNAs, as well as the different RNA silencing machineries that plants utilize to defend against different pathogens. The functions of these sRNAs in defense and counter-defense and their mechanisms for regulation during different plant–pathogen interactions are also discussed.
Collapse
Affiliation(s)
- Ingrid Palma-Martínez
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Mexico City, Mexico
| | - Andrea Guerrero-Mandujano
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Mexico City, Mexico
| | - Manuel J Ruiz-Ruiz
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico City, Mexico; Laboratorio Central de Análisis Clínicos Unidad Médica de Alta Especialidad Hospital de Pediatría "Silvestre Frenk Freund," Centro Médico Nacional Siglo XXIMexico City, Mexico
| | - Cecilia Hernández-Cortez
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico City, Mexico; Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico City, Mexico
| | - José Molina-López
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | | | - Graciela Castro-Escarpulli
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Mexico City, Mexico
| |
Collapse
|
37
|
Palma-Martínez I, Guerrero-Mandujano A, Ruiz-Ruiz MJ, Hernández-Cortez C, Molina-López J, Bocanegra-García V, Castro-Escarpulli G. Active Shiga-Like Toxin Produced by Some Aeromonas spp., Isolated in Mexico City. Front Microbiol 2016; 7:1522. [PMID: 27725813 PMCID: PMC5036386 DOI: 10.3389/fmicb.2016.01522] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/12/2016] [Indexed: 11/13/2022] Open
Abstract
Shiga-like toxins (Stx) represent a group of bacterial toxins involved in human and animal diseases. Stx is produced by enterohemorrhagic Escherichia coli, Shigella dysenteriae type 1, Citrobacter freundii, and Aeromonas spp.; Stx is an important cause of bloody diarrhea and hemolytic uremic syndrome (HUS). The aim of this study was to identify the stx1/stx2 genes in clinical strains and outer membrane vesicles (OMVs) of Aeromonas spp., 66 strains were isolated from children who live in Mexico City, and Stx effects were evaluated in Vero cell cultures. The capacity to express active Stx1 and Stx2 toxins was determined in Vero cell cultures and the concentration of Stx was evaluated by 50% lethal dose (LD50) assays, observing inhibition of damaged cells by specific monoclonal antibodies. The results obtained in this study support the hypothesis that the stx gene is another putative virulence factor of Aeromonas, and since this gene can be transferred horizontally through OMVs this genus should be included as a possible causal agents of gastroenteritis and it should be reported as part of standard health surveillance procedures. Furthermore, these results indicate that the Aeromonas genus might be a potential causative agent of HUS.
Collapse
Affiliation(s)
- Ingrid Palma-Martínez
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Mexico City, Mexico
| | - Andrea Guerrero-Mandujano
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Mexico City, Mexico
| | - Manuel J Ruiz-Ruiz
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico City, Mexico; Laboratorio Central de Análisis Clínicos Unidad Médica de Alta Especialidad Hospital de Pediatría "Silvestre Frenk Freund," Centro Médico Nacional Siglo XXIMexico City, Mexico
| | - Cecilia Hernández-Cortez
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico City, Mexico; Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico City, Mexico
| | - José Molina-López
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | | | - Graciela Castro-Escarpulli
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Mexico City, Mexico
| |
Collapse
|
38
|
Antimicrobial resistance of Aeromonas hydrophila isolated from different food sources: A mini-review. J Infect Public Health 2016; 9:535-44. [DOI: 10.1016/j.jiph.2015.10.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/03/2015] [Accepted: 10/07/2015] [Indexed: 11/17/2022] Open
|
39
|
Liu P, Chen Y, Wang D, Tang Y, Tang H, Song H, Sun Q, Zhang Y, Liu Z. Genetic Selection of Peptide Aptamers That Interact and Inhibit Both Small Protein B and Alternative Ribosome-Rescue Factor A of Aeromonas veronii C4. Front Microbiol 2016; 7:1228. [PMID: 27588015 PMCID: PMC4988972 DOI: 10.3389/fmicb.2016.01228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 07/22/2016] [Indexed: 12/29/2022] Open
Abstract
Aeromonas veronii is a pathogenic gram-negative bacterium, which infects a variety of animals and results in mass mortality. The stalled-ribosome rescues are reported to ensure viability and virulence under stress conditions, of which primarily include trans-translation and alternative ribosome-rescue factor A (ArfA) in A. veronii. For identification of specific peptides that interact and inhibit the stalled-ribosome rescues, peptide aptamer library (pTRG-SN-peptides) was constructed using pTRG as vector and Staphylococcus aureus nuclease (SN) as scaffold protein, in which 16 random amino acids were introduced to form an exposed surface loop. In the meantime both Small Protein B (SmpB) which acts as one of the key components in trans-translation, and ArfA were inserted to pBT to constitute pBT-SmpB and pBT-ArfA, respectively. The peptide aptamer PA-2 was selected from pTRG-SN-peptides by bacterial two-hybrid system (B2H) employing pBT-SmpB or pBT-ArfA as baits. The conserved sites G133K134 and D138K139R140 of C-terminal SmpB were identified by interacting with N-terminal SN, and concurrently the residue K62 of ArfA was recognized by interacting with the surface loop of the specific peptide aptamer PA-2. The expression plasmids pN-SN or pN-PA-2, which combined the duplication origin of pRE112 with the neokanamycin promoter expressing SN or PA-2, were created and transformed into A. veronii C4, separately. The engineered A. veronii C4 which endowing SN or PA-2 expression impaired growth capabilities under stress conditions including temperatures, sucrose, glucose, potassium chloride (KCl) and antibiotics, and the stress-related genes rpoS and nhaP were down-regulated significantly by Quantitative Real-time PCR (qRT-PCR) when treating in 2.0% KCl. Thus, the engineered A. veronii C4 conferring PA-2 expression might be potentially attenuated vaccine, and also the peptide aptamer PA-2 could develop as anti-microbial drugs targeted to the ribosome rescued factors in A. veronii.
Collapse
Affiliation(s)
- Peng Liu
- Department of Biology, College of Sciences, Shantou University Shantou, China
| | - Yong Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| | - Dan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| | - Yanqiong Tang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| | - Hongqian Tang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| | - Haichao Song
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| | - Qun Sun
- Department of Biotechnology, College of Life Sciences, Sichuan University Chengdu, China
| | - Yueling Zhang
- Department of Biology, College of Sciences, Shantou University Shantou, China
| | - Zhu Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| |
Collapse
|
40
|
Latif-Eugenín F, Beaz-Hidalgo R, Figueras M. Evaluation of different conditions and culture media for the recovery ofAeromonasspp. from water and shellfish samples. J Appl Microbiol 2016; 121:883-91. [DOI: 10.1111/jam.13210] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/08/2016] [Accepted: 06/20/2016] [Indexed: 12/01/2022]
Affiliation(s)
- F. Latif-Eugenín
- Unidad de Microbiología; Facultad de Medicina y Ciencias de la Salud; IISPV; Universidad Rovira i Virgili; Reus Spain
| | - R. Beaz-Hidalgo
- Unidad de Microbiología; Facultad de Medicina y Ciencias de la Salud; IISPV; Universidad Rovira i Virgili; Reus Spain
| | - M.J. Figueras
- Unidad de Microbiología; Facultad de Medicina y Ciencias de la Salud; IISPV; Universidad Rovira i Virgili; Reus Spain
| |
Collapse
|
41
|
Igbinosa IH, Igbinosa EO, Okoh AI. Antibiogram characterization and putative virulence genes in Aeromonas species isolated from pig fecal samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:12199-205. [PMID: 26971520 DOI: 10.1007/s11356-016-6421-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/03/2016] [Indexed: 05/12/2023]
Abstract
Aeromonas species are broadly distributed in nature and agricultural environments and have been isolated from feces, bedding, and drinking water of healthy pigs. We assessed the incidence, virulence properties, and antimicrobial resistance profile of Aeromonas spp., isolated from pig feces. Antibiogram was done using the disc diffusion methods, and polymerase chain reaction was used for the detection of putative virulence genes. Identification of isolates revealed three phenotypic species with percentage distribution as follows: Aeromonas hydrophila 23 (45.1 %), Aeromonas caviae 16 (31.4 %), and Aeromonas sobria 12 (23.5 %). All Aeromonas isolates in the study were absolutely susceptible to cefotaxime and resistant to penicillin. A. cavaie and A. sobria demonstrated absolute susceptibility against ciprofloxacin and streptomycin. Aeromonas species showed varied susceptibility to cephalothin as follows: A. hydrophila 78.3 %, A. cavaie 93.7 %, and A. sobria 91.7 %. The percentage distribution of virulence genes among Aeromonas isolates were as follows: Aerolysin (aer) 74.5 %, flagellin gene (fla) 68.6 %, cytotoxin (hly A) 43.1 %, lipase (lip) 39.2 %, enterotoxic activities (ast) 31.3 %, and cytotonic gene (alt) 13.7 %. Reports from this study shows that Aeromonas species isolated from pig fecal samples are multi-drug resistant and possess virulence potential which may result to possible risk of human or animal infection and likely contamination of food and water from this sources.
Collapse
Affiliation(s)
- Isoken H Igbinosa
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.
- Department of Environmental Management and Toxicology, Faculty of Life Science University of Benin, Private Mail Bag 1154, Benin City, 300283, Nigeria.
| | - Etinosa O Igbinosa
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Department of Microbiology, Faculty of life Sciences, University of Benin, Private Mail Bag 1154, Benin City, 300283, Nigeria
| | - Anthony I Okoh
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
42
|
Zhu M, Wang XR, Li J, Li GY, Liu ZP, Mo ZL. Identification and virulence properties of Aeromonas veronii bv. sobria isolates causing an ulcerative syndrome of loach Misgurnus anguillicaudatus. JOURNAL OF FISH DISEASES 2016; 39:777-781. [PMID: 26525163 DOI: 10.1111/jfd.12413] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/21/2015] [Accepted: 07/24/2015] [Indexed: 06/05/2023]
Affiliation(s)
- M Zhu
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, China
- College of Marine Science, Huaihai Institute of Technology, Lianyungang, China
| | - X R Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, The Ministry of Agriculture, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - J Li
- Key Laboratory of Sustainable Development of Marine Fisheries, The Ministry of Agriculture, Qingdao, China
| | - G Y Li
- Key Laboratory of Sustainable Development of Marine Fisheries, The Ministry of Agriculture, Qingdao, China
| | - Z P Liu
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, China
| | - Z L Mo
- Key Laboratory of Sustainable Development of Marine Fisheries, The Ministry of Agriculture, Qingdao, China
| |
Collapse
|
43
|
Meradji S, Barguigua A, Bentakouk MC, Nayme K, Zerouali K, Mazouz D, Chettibi H, Timinouni M. Epidemiology and virulence of VIM-4 metallo-beta-lactamase-producing Pseudomonas aeruginosa isolated from burn patients in eastern Algeria. Burns 2016; 42:906-18. [PMID: 27156788 DOI: 10.1016/j.burns.2016.02.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 10/21/2022]
Abstract
In this study, we investigated the prevalence of carbapenem-resistant Pseudomonas aeruginosa (CRPA) in burn patients from eastern Algeria, CRPA virulence factors and the molecular epidemiology of CRPA. The overall prevalence of CRPA was 48.38%. Seven (46.66%) isolates were metallo-β-lactamases (MBL) producers and contained the MBL genes blaVIM-4 (n=6) and blaVIM-2 (n=1). Risk factors for CRPA infection were urinary catheter use and intubation (p=0.008). A high percentage of virulence factors (86.6% of these isolates were able to produce protease; 73.3% of isolates has DNase; and 66.6% were haemolysin positive) was observed in CRPA isolates. Among the seven MBL-producing isolates, four had the same clonal profile. The class 1 integrons, which contained the aadA7 gene cassette, were detected in six isolates. The 16SrRNA methylase gene, rmtB, was detected in one strain. All CRPA isolates were biofilm formers. A study on the kinetics of biofilm production revealed that biofilm production increased when the concentration of imipenem or ciprofloxacin and the incubation time increased. This is the first study to report the presence of VIM-4-producing P. aeruginosa from North Africa and also of the high prevalence of CRPA isolates. Based on our study of burn unit patients, the high percentage of P. aeruginosa with virulence factors and multi-drug resistance is alarming.
Collapse
Affiliation(s)
- Samah Meradji
- Biochemistry and Applied Microbiology Laboratory, Badji Mokhtar Faculty of Sciences, Department of Biology, Annaba University, Box 12 Sidi Amar, 23000 Annaba, Algeria
| | - Abouddihaj Barguigua
- Molecular Bacteriology Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, 20360 Casablanca, Morocco; Microbiology Laboratory, Faculty of Medicine and Pharmacy, 1 Street Hospital, 20360 Casablanca, Morocco
| | | | - Kaotar Nayme
- Molecular Bacteriology Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, 20360 Casablanca, Morocco; Microbiology Laboratory, Faculty of Medicine and Pharmacy, 1 Street Hospital, 20360 Casablanca, Morocco
| | - Khalid Zerouali
- Microbiology Laboratory, Faculty of Medicine and Pharmacy, 1 Street Hospital, 20360 Casablanca, Morocco
| | - Dekhil Mazouz
- Microbiology Laboratory, University Hospital Dorban, 23000 Annaba, Algeria
| | - Houria Chettibi
- Biochemistry and Applied Microbiology Laboratory, Badji Mokhtar Faculty of Sciences, Department of Biology, Annaba University, Box 12 Sidi Amar, 23000 Annaba, Algeria
| | - Mohammed Timinouni
- Molecular Bacteriology Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, 20360 Casablanca, Morocco.
| |
Collapse
|
44
|
Albarral V, Sanglas A, Palau M, Miñana-Galbis D, Fusté MC. Potential pathogenicity ofAeromonas hydrophilacomplex strains isolated from clinical, food, and environmental sources. Can J Microbiol 2016; 62:296-306. [DOI: 10.1139/cjm-2015-0466] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aeromonas are autochthonous inhabitants of aquatic environments, including chlorinated and polluted waters, although they can also be isolated from a wide variety of environmental and clinical sources. They cause infections in vertebrates and invertebrates and are considered to be an emerging pathogen in humans, producing intestinal and extra-intestinal diseases. Most of the clinical isolates correspond to A. hydrophila, A. caviae, and A. veronii bv. Sobria, which are described as the causative agents of wound infections, septicaemia, and meningitis in immunocompromised people, and diarrhoea and dysenteric infections in the elderly and children. The pathogenic factors associated with Aeromonas are multifactorial and involve structural components, siderophores, quorum-sensing mechanisms, secretion systems, extracellular enzymes, and exotoxins. In this study, we analysed a representative number of clinical and environmental strains belonging to the A. hydrophila species complex to evaluate their potential pathogenicity. We thereby detected their enzymatic activities and antibiotic susceptibility pattern and the presence of virulence genes (aer, alt, ast, and ascV). The notably high prevalence of these virulence factors, even in environmental strains, indicated a potential pathogenic capacity. Additionally, we determined the adhesion capacity and cytopathic effects of this group of strains in Caco-2 cells. Most of the strains exhibited adherence and caused complete lysis.
Collapse
Affiliation(s)
- Vicenta Albarral
- Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, Barcelona 08028, Spain
| | - Ariadna Sanglas
- Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, Barcelona 08028, Spain
| | - Montserrat Palau
- Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, Barcelona 08028, Spain
| | - David Miñana-Galbis
- Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, Barcelona 08028, Spain
| | - M. Carmen Fusté
- Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Avinguda Diagonal 643, Barcelona 08028, Spain
| |
Collapse
|
45
|
Virulence properties of Aeromonas spp. from modified-atmosphere- and vacuum-packed milk fish (Chanos chanos Forsskal, 1775). ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
First record of the rare species Aeromonas schubertii from mussels: phenotypic and genetic reevaluation of the species and a review of the literature. Arch Microbiol 2016; 198:333-45. [DOI: 10.1007/s00203-016-1189-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/17/2015] [Accepted: 01/08/2016] [Indexed: 10/22/2022]
|
47
|
Latif-Eugenín F, Beaz-Hidalgo R, María José F. A Culture Independent Method for the Detection of Aeromonas sp. from Water Samples. Ital J Food Saf 2016; 5:5489. [PMID: 27800428 PMCID: PMC5076704 DOI: 10.4081/ijfs.2016.5489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/27/2015] [Accepted: 09/28/2015] [Indexed: 01/09/2023] Open
Abstract
The genus Aeromonas is present in a wide variety of water environments and is recognised as potentially pathogenic to humans and animals. Members of this genus are often confused with Vibrio when using automated, commercial identification systems that are culture-dependent. This study describes a polymerase chain reaction (PCR) detection method for Aeromonas that is culture-independent and that targets the glycerophospholopid-cholesterol acyltransferase (gcat) gene, which is specific for this genus. The GCAT-PCR was 100% specific in artificially inoculated water samples, with a detection limit that ranged from 2.5 to 25 cfu/mL. The success at detecting this pathogen in 86 water samples using the GCAT-PCR method was identical to the conventional culturing method when a pre-enrichment step was carried out, yielding 83.7% positive samples. On the other hand, without a pre-enrichment step, only 77.9% of the samples were positive by culturing and only 15.1% with the GCAT-PCR. However, 83.7% positive samples were obtained for the GCAT-PCR when the water volume for the DNA extraction was increased from 400 µL to 4 mL. The proposed molecular method is much faster (5 or 29 h) than the culturing method (24 or 48 h) whether performed directly or after a pre-enrichment step and it will enable the fast detection of Aeromonas in water samples helping to prevent a possible transmission to humans.
Collapse
Affiliation(s)
- Fadua Latif-Eugenín
- Unit of Microbiology, Medicine and Health Science School, Rovira i Virgili University , Reus, Spain
| | - Roxana Beaz-Hidalgo
- Unit of Microbiology, Medicine and Health Science School, Rovira i Virgili University , Reus, Spain
| | - Figueras María José
- Unit of Microbiology, Medicine and Health Science School, Rovira i Virgili University , Reus, Spain
| |
Collapse
|
48
|
Praveen PK, Debnath C, Shekhar S, Dalai N, Ganguly S. Incidence of Aeromonas spp. infection in fish and chicken meat and its related public health hazards: A review. Vet World 2016; 9:6-11. [PMID: 27051177 PMCID: PMC4819351 DOI: 10.14202/vetworld.2016.6-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/10/2015] [Accepted: 11/14/2015] [Indexed: 11/16/2022] Open
Abstract
Aeromonas is recognized to cause a variety of diseases in man. In humans, they are associated with intestinal and extra-intestinal infections. With the growing importance of Aeromonas as an emerging pathogen, it is important to combat this organism. It is indisputable that Aeromonas strains may produce many different putative virulence factors such as enterotoxins, hemolysins or cytotoxins, and antibiotic resistance against different antibiotics. The ability of these bacteria to grow competitively at 5°C may be indicative of their potential as a public health hazard. Comprehensive enteric disease surveillance strategies, prevention and education are essential for meeting the challenges in the years ahead. It is important for us to promote the value of enteric cultures when patients have a gastrointestinal illness or bloody diarrhea or when multiple cases of enteric disease occur after a common exposure. With the growing importance of Aeromonas as an emerging pathogen, it is important to combat this organism. It is indisputable that Aeromonas strains may produce many different putative virulence factors, such as enterotoxins, hemolysins or cytotoxins. It has been established that aerolysin is a virulence factor contributing to the pathogenesis of Aeromonas hydrophila infection. Fish and chicken play an important role in the transmission of this pathogen to humans. In the present study, the high prevalence of toxin-producing strains was found among the Aeromonas isolates. The ability of these bacteria to grow competitively at 5°C may be indicative of their potential as a public health hazard. The present review was constructed with a view to highlight the zoonotic importance of Aeromonas pathogen in fish and chicken meat.
Collapse
Affiliation(s)
- Praveen Kumar Praveen
- Department of Veterinary Public Health and Epidemiology, Faculty of Veterinary and Animal Sciences, Kolkata - 700037, West Bengal, India
| | - Chanchal Debnath
- Department of Veterinary Public Health and Epidemiology, Faculty of Veterinary and Animal Sciences, Kolkata - 700037, West Bengal, India
| | - Shashank Shekhar
- Department of Animal Genetics and Breeding, Faculty of Veterinary and Animal Sciences, Kolkata - 700037, West Bengal, India
| | - Nirupama Dalai
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary and Animal Sciences, Kolkata - 700037, West Bengal, India
| | - Subha Ganguly
- Department of Fish Processing Technology, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata - 700037, West Bengal, India
| |
Collapse
|
49
|
Igbinosa IH, Igbinosa EO, Okoh AI. Detection of antibiotic resistance, virulence gene determinants and biofilm formation in Aeromonas species isolated from cattle. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:17596-17605. [PMID: 26143545 DOI: 10.1007/s11356-015-4934-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 06/22/2015] [Indexed: 06/04/2023]
Abstract
This study aimed to assess the antibiogram of Aeromonas strains recovered from cattle faeces and the potential pathogenic status of the isolates. The antibiogram of the Aeromonas isolates demonstrated total resistance to clindamycin oxacillin, trimethoprim, novobiocin and ticarcillin. However, Aeromonas strains were sensitive to cefotaxime, oxytetracycline and tobramycin. The Aeromonas strains from Lovedale and Fort Cox farms were found to possess some virulence genes. The percentage distribution was aer 71.4%, ast 35.7%, fla 60.7%, lip 35.7% and hlyA 25% for Lovedale farm and aer 63.1%, alt 10.5%, ast 55.2%, fla 78.9%, lip 21% and hlyA 35.9% for Fort Cox farm. Class 1 integron was present in 27% of Aeromonas isolates; the bla TEM gene was present in 34.8%, while the blaP1 class A β-lactamase gene was detected in 12.1% of the isolates. Approximately 86% of the isolates formed a biofilm on microtitre plates. The presence of multiple antibiotic resistance and virulence genes in Aeromonas isolates from cattle faeces reveals the pathogenic and infectious importance of these isolates and is of great significance to public health. The possession of a biofilm-forming capability by such isolates may lead to difficulty during the management of infection related to Aeromonas species.
Collapse
Affiliation(s)
- Isoken H Igbinosa
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria, 0001, South Africa.
| | - Etinosa O Igbinosa
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Private Mail Bag 1154, Benin, 300001, Nigeria.
| | - Anthony I Okoh
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.
| |
Collapse
|
50
|
Lobova TI, Yemelyanova E, Andreeva IS, Puchkova LI, Repin VY. Antimicrobial Resistance and Plasmid Profile of Bacterial Strains Isolated from the Urbanized Eltsovka-1 River (Russia). Microb Drug Resist 2015; 21:477-90. [DOI: 10.1089/mdr.2014.0203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Tatiana I. Lobova
- Krasnoyarsk Scientific Centre of Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Elena Yemelyanova
- Novosibirsk State Medical University, Novosibirsk, Russia
- State Research Center of Virology and Biotechnology VECTOR of the Federal Service for Surveillance in Consumer Rights Protection and Human Well-Being, Novosibirsk, Russia
| | - Irina S. Andreeva
- State Research Center of Virology and Biotechnology VECTOR of the Federal Service for Surveillance in Consumer Rights Protection and Human Well-Being, Novosibirsk, Russia
| | - Larisa I. Puchkova
- State Research Center of Virology and Biotechnology VECTOR of the Federal Service for Surveillance in Consumer Rights Protection and Human Well-Being, Novosibirsk, Russia
| | - Vladimir Ye Repin
- State Research Center of Virology and Biotechnology VECTOR of the Federal Service for Surveillance in Consumer Rights Protection and Human Well-Being, Novosibirsk, Russia
| |
Collapse
|