1
|
Ijaz R, Ali NM, Ramzan U, Qureshi F, Baloch SR, Khan MA, Mazhar B, chaudhry M. Phylo-geographic analysis of whitefly on the basis of mitochondrial cytochrome oxidase 1 gene. BRAZ J BIOL 2024. [DOI: 10.1590/1519-6984.252910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract Bemisia tabaci is a species complex that causes damage to its broad range of plant hosts through serious feeding. It transmits plant viruses of different groups to important agricultural crops. Some important cash crops of Pakistan are sugar cane, rice, tobacco and seed oil. It shows high genetic variability and is differentiated as races or biotypes. Biotypes are, biotype Q, biotype B, biotype B2, biotype M, biotype L, biotype A, biotype H, biotype C, biotype K, biotype N, biotype R, biotype E, biotype P, biotype J, biotype S, biotype AN. Although the current report based on the Bayesian study of mitochondrial cytohrome oxidase gene1 (CO1) DNA sequences has classified the different populations of whiteflies into twelve genetic groups which are Mediterranean, Sub-Saharan Africa silverleafing, Indian Ocean, Asia II, Asia I, Australia, New World, Italy, China, Sub-Saharan Africa non-silverleafing, Mediterranean/Asia Minor/Africa and Uganda sweet potato. Begomoviruses is largest group of viruses transmitted by B. tabaci and cause major diseases of crops such as tomato and chili leaf curl disease, cassava mosaic disease; yellow mosaic disease of legumes and cotton leaf curl disease. The main objective of current study is to inculpate knowledge regarding genetic diversity of whitefly in cotton fields across Pakistan via analysis of partial DNA sequence of mitochondrial gene Cytochrom Oxidase I (mtCO1).
Collapse
Affiliation(s)
- R. Ijaz
- GC University Lahore, Pakistan
| | | | | | - F. Qureshi
- University of Veterinary and Animal Sciences, Pakistan
| | | | | | | | | |
Collapse
|
2
|
Nalla MK, Schafleitner R, Pappu HR, Barchenger DW. Current status, breeding strategies and future prospects for managing chilli leaf curl virus disease and associated begomoviruses in Chilli ( Capsicum spp.). FRONTIERS IN PLANT SCIENCE 2023; 14:1223982. [PMID: 37936944 PMCID: PMC10626458 DOI: 10.3389/fpls.2023.1223982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
Chilli leaf curl virus disease caused by begomoviruses, has emerged as a major threat to global chilli production, causing severe yield losses and economic harm. Begomoviruses are a highly successful and emerging group of plant viruses that are primarily transmitted by whiteflies belonging to the Bemisia tabaci complex. The most effective method for mitigating chilli leaf curl virus disease losses is breeding for host resistance to Begomovirus. This review highlights the current situation of chilli leaf curl virus disease and associated begomoviruses in chilli production, stressing the significant issues that breeders and growers confront. In addition, the various breeding methods used to generate begomovirus resistant chilli cultivars, and also the complicated connections between the host plant, vector and the virus are discussed. This review highlights the importance of resistance breeding, emphasising the importance of multidisciplinary approaches that combine the best of traditional breeding with cutting-edge genomic technologies. subsequently, the article highlights the challenges that must be overcome in order to effectively deploy begomovirus resistant chilli varieties across diverse agroecological zones and farming systems, as well as understanding the pathogen thus providing the opportunities for improving the sustainability and profitability of chilli production.
Collapse
Affiliation(s)
- Manoj Kumar Nalla
- World Vegetable Center, South and Central Asia Regional Office, Hyderabad, India
| | | | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | | |
Collapse
|
3
|
Venkataravanappa V, Kodandaram MH, Prasanna HC, Reddy MK, Reddy CNL. Unraveling different begomoviruses, DNA satellites and cryptic species of Bemisia tabaci and their endosymbionts in vegetable ecosystem. Microb Pathog 2023; 174:105892. [PMID: 36502993 DOI: 10.1016/j.micpath.2022.105892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/16/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022]
Abstract
Bemisia tabaci species complex contains more than 46 cryptic species. It has emerged as an important pest causing significant yield loss in many cultivated crops. This pest is also a vector for more than 100 species of begomoviruses, that are a major threat for the cultivation of many crops in different regions of the world. The relation between cryptic species of the B. tabaci species complex and associated begomoviruses that infect different crops remains unclear. In the present study, four cryptic species (Asia I, China 3, Asia II 5 and Asia II-1) of B. tabaci and four associated endosymbionts (Arsenophonus, Cardinium, Rickettsia and Wolbachia) were identified in different vegetable crops. The vector-based PCR detection revealed five different begomoviruses such as okra enation leaf curl virus (OELCuV), tomato leaf curl Palampur virus (ToLCPalV), squash leaf curl China virus (SLCCNV), chilli leaf curl virus (ChiLCuV), and tomato leaf curl New Delhi virus (ToLCNDV). Of these begomoviruses, the maximum infection rate was observed (9.1%) for OELCuV, followed by 7.3% for ToLCNDV. The infection rate of the other three viruses (SLCCNV, ChiLCuV, ToLCPalV) ranged from 0.9 to 2.7% in cryptic species of B. tabaci. Further, each cryptic species was infected with multiple virus species and the virus infection rate of Asia I, Asia II-5, China 3 and Asia II-1 was 21.2%, 15.1%, 15.1% and 0.6% respectively. Similarly, in case of betasatellites the highest infection rate was 12% for ToLCBDB, followed by 6% for OLCuB and PaLCB. With regard to alphasatellites, the highest infection rate was 18.2% for AEV and 3% for CLCuMuA. This study demonstrates the distribution of cryptic species of whitefly and their endosymbionts, and associated begomoviruses and DNA satellites in vegetable ecosystem. We believe that the information generated here is useful for evolving an effective pest management strategies for vegetable production.
Collapse
Affiliation(s)
- V Venkataravanappa
- ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bengaluru, 560089, Karnataka, India; ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, Uttar Pradesh, India.
| | - M H Kodandaram
- ICAR- Indian Institute of Pulses Research, Regional Research Center, UAS Campus, Dharwad, 580005, Karnataka, India; ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, Uttar Pradesh, India.
| | - H C Prasanna
- ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bengaluru, 560089, Karnataka, India; ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, Uttar Pradesh, India
| | - M Krishna Reddy
- ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bengaluru, 560089, Karnataka, India
| | - C N Lakshminarayana Reddy
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bengaluru, 560065, Karnataka, India
| |
Collapse
|
4
|
Nekkanti A, Chakraborty P, Ghosh A, Iquebal MA, Jaiswal S, Baranwal VK. Transcriptomic Changes of Bemisia tabaci Asia II 1 Induced by Chilli Leaf Curl Virus Trigger Infection and Circulation in Its Vector. Front Microbiol 2022; 13:890807. [PMID: 35572639 PMCID: PMC9096263 DOI: 10.3389/fmicb.2022.890807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/25/2022] [Indexed: 11/24/2022] Open
Abstract
Bemisia tabaci (Hemiptera: Aleyrodidae) is a highly efficient vector in the spread of chilli leaf curl virus (ChiLCV, Begomovirus) which is a major constraint in the production of chilli in South Asia. Transcriptome analysis of B. tabaci post-6 h acquisition of ChiLCV showed differential expression of 80 (29 upregulated and 51 downregulated) genes. The maximum number of DEGs are categorized under the biological processes category followed by cellular components and molecular functions. KEGG analysis of DEGs showed that the genes are involved in the functions like metabolism, signaling pathways, cellular processes, and organismal systems. The expression of highly expressed 20 genes post-ChiLCV acquisition was validated in RT-qPCR. DEGs such as cytosolic carboxypeptidase 3, dual-specificity protein phosphatase 10, 15, dynein axonemal heavy chain 17, fasciclin 2, inhibin beta chain, replication factor A protein 1, and Tob1 were found enriched and favored the virus infection and circulation in B. tabaci. The present study provides an improved understanding of the networks of molecular interactions between B. tabaci and ChiLCV. The candidate genes of B. tabaci involved in ChiLCV transmission would be novel targets for the management of the B. tabaci-begomovirus complex.
Collapse
Affiliation(s)
- Aarthi Nekkanti
- Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, India.,Division of Entomology, Indian Agricultural Research Institute, New Delhi, India
| | - Prosenjit Chakraborty
- Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, India
| | - Amalendu Ghosh
- Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Virendra Kumar Baranwal
- Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
5
|
Khamis FM, Ombura FLO, Ajene IJ, Akutse KS, Subramanian S, Mohamed SA, Dubois T, Tanga CM, Ekesi S. Mitogenomic analysis of diversity of key whitefly pests in Kenya and its implication to their sustainable management. Sci Rep 2021; 11:6348. [PMID: 33737698 PMCID: PMC7973771 DOI: 10.1038/s41598-021-85902-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/08/2021] [Indexed: 01/31/2023] Open
Abstract
Whiteflies (Hemiptera: Aleyrodidae) are devastating agricultural pests of economic importance vectoring pathogenic plant viruses. Knowledge on their diversity and distribution in Kenya is scanty, limiting development of effective sustainable management strategies. The present study is aimed at identifying whitefly pest species present in Kenya across different agroecological zones and establish predictive models for the most abundant species in Africa. Whiteflies were sampled in Kenya from key crops known to be severely infested and identified using 16S rRNA markers and complete mitochondrial genomes. Four whitefly species were identified: Aleyrodes proletella, Aleurodicus dispersus, Bemisia afer and Trialeurodes vaporariorum, the latter being the most dominant species across all the agroecology. The assembly of complete mitogenomes and comparative analysis of all 13 protein coding genes confirmed the identities of the four species. Furthermore, prediction spatial models indicated high climatic suitability of T. vaporariorum in Africa, Europe, Central America, parts of Southern America, parts of Australia, New Zealand and Asia. Consequently, our findings provide information to guide biosecurity agencies on protocols to be adopted for precise identification of pest whitefly species in Kenya to serve as an early warning tool against T. vaporariorum invasion into unaffected areas and guide appropriate decision-making on their management.
Collapse
Affiliation(s)
- Fathiya M. Khamis
- grid.419326.b0000 0004 1794 5158Plant Health Theme, International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Fidelis L. O. Ombura
- grid.419326.b0000 0004 1794 5158Plant Health Theme, International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Inusa J. Ajene
- grid.419326.b0000 0004 1794 5158Plant Health Theme, International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Komivi S. Akutse
- grid.419326.b0000 0004 1794 5158Plant Health Theme, International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Sevgan Subramanian
- grid.419326.b0000 0004 1794 5158Plant Health Theme, International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Samira A. Mohamed
- grid.419326.b0000 0004 1794 5158Plant Health Theme, International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Thomas Dubois
- grid.419326.b0000 0004 1794 5158Plant Health Theme, International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Chrysantus M. Tanga
- grid.419326.b0000 0004 1794 5158Plant Health Theme, International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Sunday Ekesi
- grid.419326.b0000 0004 1794 5158Plant Health Theme, International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
6
|
Hu J, Yang JJ, Liu BM, Cui HY, Zhang YJ, Jiao XG. Feeding behavior explains the different effects of cabbage on MEAM1 and MED cryptic species of Bemisia tabaci. INSECT SCIENCE 2020; 27:1276-1284. [PMID: 31769205 DOI: 10.1111/1744-7917.12739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
MEAM1 (Middle East-Asia Minor 1, "B" biotype) and MED (Mediterranean, "Q" biotype) are the two most destructive cryptic species of the Bemisia tabaci complex on the planet. Our previous studies have shown that MEAM1 outcompetes MED on cabbage; the underlying mechanism is unknown. In the Brassicaceae family, the glucosinolate-myrosinase defense system plays a crucial role in deterring feeding, inhibiting growth, and causing acute toxicity against a wide range of generalist herbivores. In the present study, we first compared the survival of MEAM1 and MED exposed to sinigrin (a glucosinolate) and myrosinase (an enzyme that degrades glucosinolates); we found that survival of both species was high in response to sinigrin alone but was near zero in response to sinigrin + myrosinase. We then used electropenetrography (electrical penetration graphs, EPG) to assess the feeding behaviors of MEAM1 and MED whiteflies on cabbage. The EPG results revealed that the mean duration of each potential drop (pd, indicating an intracellular puncture) was substantially longer for MED than MEAM1 on cabbage, indicating that the exposure to the toxic hydrolysates of glucosinolate and myrosinase is greater for MED than for MEAM1. We therefore conclude that differences in penetrating behaviors may help explain the different effects of cabbage on MEAM1 and MED whitefly species.
Collapse
Affiliation(s)
- Jie Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Center for Behavioral Ecology & Evolution, School of Life Sciences, Hubei University, Wuhan, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jin-Jian Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Center for Behavioral Ecology & Evolution, School of Life Sciences, Hubei University, Wuhan, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bai-Ming Liu
- Tianjin Institute of Plant Protection, Tianjin, China
| | - Hong-Ying Cui
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - You-Jun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiao-Guo Jiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Center for Behavioral Ecology & Evolution, School of Life Sciences, Hubei University, Wuhan, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Chiza Chikoti P, Tembo M, Peter Legg J, Rufini Shirima R, Mugerwa H, Sseruwagi P. Genetic Diversity of Mitochondrial DNA of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Associated with Cassava and the Occurrence of Cassava Mosaic Disease in Zambia. INSECTS 2020; 11:E761. [PMID: 33167394 PMCID: PMC7694332 DOI: 10.3390/insects11110761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 11/30/2022]
Abstract
Bemisia tabaci is an important vector of cassava brown streak viruses and cassava mosaic begomoviruses, the causal agents of cassava brown streak disease and cassava mosaic disease (CMD), respectively. A study was carried out to determine the genetic variability of B. tabaci associated with cassava and the occurrence of CMD in Zambia in 2013 and 2015. Phylogenetic analysis showed the presence of only the sub-Saharan Africa 1 (SSA1) genetic group in Zambia. The SSA1 population had three population subgroups (SGs): SSA1-SG1, SSA1-SG2 and SSA1-SG3. All three SSA1 population subgroups occurred in Western Province. However, only SSA1-SG3 occurred in Eastern Province, while only SSA1-SG1 occurred in North Western and Luapula Provinces. Adult B. tabaci were most abundant in Western Province in 2013 (11.1/plant) and 2015 (10.8/plant), and least abundant (0.2/plant) in Northern Province in both 2013 and 2015. CMD was prevalent in all seven provinces surveyed, with the highest incidence recorded in Lusaka Province in both 2013 (78%) and 2015 (83.6%), and the lowest in Northern Province in both 2013 (26.6%) and 2015 (29.3%). Although SSA1-SG1 occurred at greater abundances than the other subgroups, there was no direct association demonstrated between whitefly subgroup and incidence of CMD. Establishing which B. tabaci genetic groups and populations are associated with CMD and their distribution in the country is a key factor in guiding the development of CMD control strategies for cassava-dependent households.
Collapse
Affiliation(s)
- Patrick Chiza Chikoti
- Zambia Agriculture Research Institute, Mt. Makulu Research Station, Private Bag 7, Chilanga 10101, Zambia;
| | - Mathias Tembo
- Zambia Agriculture Research Institute, Mt. Makulu Research Station, Private Bag 7, Chilanga 10101, Zambia;
| | - James Peter Legg
- International Institute of Tropical Agriculture, P.O. Box 34441 Dar es Salaam, Tanzania; (J.P.L.); (R.R.S.)
| | - Rudolph Rufini Shirima
- International Institute of Tropical Agriculture, P.O. Box 34441 Dar es Salaam, Tanzania; (J.P.L.); (R.R.S.)
| | - Habibu Mugerwa
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA;
| | - Peter Sseruwagi
- Mikocheni Agricultural Research Institute, P.O. Box 6226 Dar es Salaam, Tanzania;
| |
Collapse
|
8
|
Kaur R, Gupta M, Singh S, Joshi N, Sharma A. Enhancing RNAi Efficiency to Decipher the Functional Response of Potential Genes in Bemisia tabaci AsiaII-1 (Gennadius) Through dsRNA Feeding Assays. Front Physiol 2020; 11:123. [PMID: 32194431 PMCID: PMC7061899 DOI: 10.3389/fphys.2020.00123] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/03/2020] [Indexed: 01/09/2023] Open
Abstract
Whitefly Bemisia tabaci is a global invasive pest that causes substantial losses to agricultural crops worldwide either by direct feeding or vectoring numerous plant viruses. Management with insecticides remains a big challenge due to its rapid resistance development potential as well as the impact of these chemicals on non-target organisms. Thus, in search of alternate and novel pest management strategies RNA interference (RNAi) has come up as potential future tool in this direction. The present study targets nine potential genes (Aquaporin (AQP), Calcitonin (CAL), CyclophilinB (CYCP), Knottin-1 (k-1), Heat shock proteins (Hsp20, Hsp40 and Hsp70), SWItch/Sucrose Non-fermentable (SNF7) and inhibitor of apoptosis (IAP) of whitefly that have been implicated to play a role in various vital physiological functions and virus transmission. The RNAi mediated knockdown efficiency of these genes has been improved through the conjugation of respective target gene dsRNA with CQD (carbon quantum dots) nanoparticles or simultaneous knockdown of dsRNA specific gut nucleases. The studies revealed that feeding of dsRNA (40 μg/ml sucrose diet) of the target gene(s) either conjugated with CQD or along with dsRNA against dsRNase (dsdsRNase) (40 μg/ml sucrose diet) enhanced the RNAi efficiency by 24-89% compared to whiteflies fed with naked dsRNA of the same target gene. The studies provide insights about the functional role of various genes in whitefly, which can possibly be exploited for the management of this pest in the future.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
| | - Mridula Gupta
- Regional Research Station, Punjab Agricultural University, Faridkot, India
| | - Satnam Singh
- Regional Research Station, Punjab Agricultural University, Faridkot, India
| | - Neelam Joshi
- Department of Entomology, Punjab Agricultural University, Ludhiana, India
| | - Abhishek Sharma
- Department of Vegetable Sciences, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
9
|
Misaka BC, Wosula EN, Marchelo-d’Ragga PW, Hvoslef-Eide T, Legg JP. Genetic Diversity of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Colonizing Sweet Potato and Cassava in South Sudan. INSECTS 2020; 11:insects11010058. [PMID: 31963536 PMCID: PMC7022610 DOI: 10.3390/insects11010058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/13/2023]
Abstract
Bemisia tabaci (Gennadius) is a polyphagous, highly destructive pest that is capable of vectoring viruses in most agricultural crops. Currently, information regarding the distribution and genetic diversity of B. tabaci in South Sudan is not available. The objectives of this study were to investigate the genetic variability of B. tabaci infesting sweet potato and cassava in South Sudan. Field surveys were conducted between August 2017 and July and August 2018 in 10 locations in Juba County, Central Equatoria State, South Sudan. The sequences of mitochondrial DNA cytochrome oxidase I (mtCOI) were used to determine the phylogenetic relationships between sampled B. tabaci. Six distinct genetic groups of B. tabaci were identified, including three non-cassava haplotypes (Mediterranean (MED), Indian Ocean (IO), and Uganda) and three cassava haplotypes (Sub-Saharan Africa 1 sub-group 1 (SSA1-SG1), SSA1-SG3, and SSA2). MED predominated on sweet potato and SSA2 on cassava in all of the sampled locations. The Uganda haplotype was also widespread, occurring in five of the sampled locations. This study provides important information on the diversity of B. tabaci species in South Sudan. A comprehensive assessment of the genetic diversity, geographical distribution, population dynamics, and host range of B. tabaci species in South Sudan is vital for its effective management.
Collapse
Affiliation(s)
- Beatrice C. Misaka
- Department of Agricultural Science, School of Natural Resources and Environmental Sciences, University of Juba, P.O. Box 82, Juba, South Sudan; (B.C.M.); (P.W.M.-d.)
- Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Everlyne N. Wosula
- International Institute of Tropical Agriculture, P.O. Box 34441, Dar es Salaam, Tanzania; (E.N.W.); (J.P.L.)
| | - Philip W. Marchelo-d’Ragga
- Department of Agricultural Science, School of Natural Resources and Environmental Sciences, University of Juba, P.O. Box 82, Juba, South Sudan; (B.C.M.); (P.W.M.-d.)
| | - Trine Hvoslef-Eide
- Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
- Correspondence: ; Tel.: +47-93433775
| | - James P. Legg
- International Institute of Tropical Agriculture, P.O. Box 34441, Dar es Salaam, Tanzania; (E.N.W.); (J.P.L.)
| |
Collapse
|
10
|
Antwi J, Rondon SI. Molecular and Morphological Identifications Reveal Species Composition of Lygus (Hemiptera: Miridae) Bugs in Potatoes Fields in the Lower Columbia Basin of the United States. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:364-370. [PMID: 30321370 DOI: 10.1093/jee/toy314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Lygus bugs are highly polyphagous insect pests. In recent years, Lygus bugs have become more conspicuous on potato, Solanum tuberosum L., fields in the Pacific Northwest, particularly in the Lower Columbia Basin. There are concerns that direct feeding damage or potential pathogen transmission can reduce yield. Lygus species on potatoes in the region are collectively identified as 'Lygus bugs'. Overlapping physical traits and the fact that the same species exhibit morphological variations across a geographic range makes it difficult to identify Lygus to species level. Thus, in this study we used DNA barcodes in combination with morphological characters to identify Lygus species on potatoes. Three species were identified in the Lower Columbia Basin: Lygus hesperus (Knight) and Lygus elisus L. were the most common, whereas Lygus keltoni L. was the least common. Interspecific genetic distances among Lygus species were relatively low, ranging from 0.013 to 0.004. Neighbor-joining (NJ) tree clustered L. hesperus and L. elisus into two major clades, with L. keltoni forming a subclade within L. hesperus clade. Statistical parsimony analysis corroborated findings from phylogenetic analysis with L. keltoni and L. hesperus sharing one haplotype. Our study demonstrates the utility of integrating morphology and molecular markers in identifying morphologically similar species such as Lygus bugs. The study also serves as a fundamental step in contributing to developing suitable management strategies against Lygus bugs on potato.
Collapse
Affiliation(s)
- Josephine Antwi
- Crop and Soil Science, Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR
| | - Silvia I Rondon
- Crop and Soil Science, Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR
| |
Collapse
|
11
|
Wosula EN, Chen W, Fei Z, Legg JP. Unravelling the Genetic Diversity among Cassava Bemisia tabaci Whiteflies Using NextRAD Sequencing. Genome Biol Evol 2018; 9:2958-2973. [PMID: 29096025 PMCID: PMC5714214 DOI: 10.1093/gbe/evx219] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2017] [Indexed: 12/27/2022] Open
Abstract
Bemisia tabaci threatens production of cassava in Africa through vectoring viruses that cause cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). B. tabaci sampled from cassava in eight countries in Africa were genotyped using NextRAD sequencing, and their phylogeny and population genetics were investigated using the resultant single nucleotide polymorphism (SNP) markers. SNP marker data and short sequences of mitochondrial DNA cytochrome oxidase I (mtCOI) obtained from the same insect were compared. Eight genetically distinct groups were identified based on mtCOI, whereas phylogenetic analysis using SNPs identified six major groups, which were further confirmed by PCA and multidimensional analyses. STRUCTURE analysis identified four ancestral B. tabaci populations that have contributed alleles to the six SNP-based groups. Significant gene flows were detected between several of the six SNP-based groups. Evidence of gene flow was strongest for SNP-based groups occurring in central Africa. Comparison of the mtCOI and SNP identities of sampled insects provided a strong indication that hybrid populations are emerging in parts of Africa recently affected by the severe CMD pandemic. This study reveals that mtCOI is not an effective marker at distinguishing cassava-colonizing B. tabaci haplogroups, and that more robust SNP-based multilocus markers should be developed. Significant gene flows between populations could lead to the emergence of haplogroups that might alter the dynamics of cassava virus spread and disease severity in Africa. Continuous monitoring of genetic compositions of whitefly populations should be an essential component in efforts to combat cassava viruses in Africa.
Collapse
Affiliation(s)
- Everlyne N Wosula
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| | - Wenbo Chen
- Boyce Thompson Institute, Ithaca, New York
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, New York.,USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, New York
| | - James P Legg
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| |
Collapse
|
12
|
Guo L, Xie W, Liu Y, Yang Z, Yang X, Xia J, Wang S, Wu Q, Zhang Y. Identification and characterization of doublesex in Bemisia tabaci. INSECT MOLECULAR BIOLOGY 2018; 27:620-632. [PMID: 29660189 DOI: 10.1111/imb.12494] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bemisia tabaci (Gennadius) is an important agricultural pest with a worldwide distribution. Although B. tabaci is known to have a unique haplodiploid reproductive strategy, its sex determination mechanism is largely unknown. In this study, we cloned the full-length sequence of B. tabaci doublesex (Btdsx) and found that Btdsx has 28 splicing isoforms. We found two new splicing isoforms of transformer 2 (Bttra2), which encode two proteins. We also confirmed that both genes lack sex-specific splicing isoforms. Real-time quantitative PCR analysis showed that the expression of Btdsx and Bttra2 is higher in males than in females. RNA interference of Bttra2 affected the expression of Btdsx and vice versa. Furthermore, silencing of Bttra2 or Btdsx caused malformation of the male genitalia (anal style). It did not affect the female phenotype, but reduced the expression of vitellogenin gene in females. These results indicate that Btdsx is associated with sex determination in B. tabaci and that Btdsx and Bttra2 affect each other and are important for male genitalia formation. In addition to increasing our understanding of the roles of dsx and tra2 in the sex determination of B. tabaci, the results will be useful for studies of sex determination in other haplodiploid species.
Collapse
Affiliation(s)
- L Guo
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - W Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Y Liu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Z Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - X Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - J Xia
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - S Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Q Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Y Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Jacobson AL, Duffy S, Sseruwagi P. Whitefly-transmitted viruses threatening cassava production in Africa. Curr Opin Virol 2018; 33:167-176. [PMID: 30243102 DOI: 10.1016/j.coviro.2018.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
Abstract
Emerging plant viruses are one of the greatest problems facing crop production worldwide, and have severe consequences in the developing world where subsistence farming is a major source of food production, and knowledge and resources for management are limited. In Africa, evolution of two viral disease complexes, cassava mosaic begomoviruses (CMBs) (Geminiviridae) and cassava brown streak viruses (CBSVs) (Potyviridae), have resulted in severe pandemics that continue to spread and threaten cassava production. Identification of genetically diverse and rapidly evolving CMBs and CBSVs, extensive genetic variation in the vector, Bemisia tabaci (Hemiptera: Aleyrodidae), and numerous secondary endosymbiont profiles that influence vector phenotypes suggest that complex local and regional vector-virus-plant-environment interactions may be driving the evolution and epidemiology of these viruses.
Collapse
Affiliation(s)
- Alana Lynn Jacobson
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849, USA.
| | - Siobain Duffy
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, 14 College Farm Rd, New Brunswick, NJ 08901, USA
| | - Peter Sseruwagi
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Salaam, Tanzania
| |
Collapse
|
14
|
Guo L, Su M, Liang P, Li S, Chu D. Effects of high temperature on insecticide tolerance in whitefly Bemisia tabaci (Gennadius) Q biotype. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 150:97-104. [PMID: 30195394 DOI: 10.1016/j.pestbp.2018.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Bemisia tabaci (Gennadius) Q biotype (BTQ) has spread to many tropical and subtropical regions over the past several decades. This may reflect an advantage biotype Q has over closely related forms in having greater thermal and/or insecticide resistance, although the effects of higher temperatures on insecticide tolerance of BTQ has, to date, been largely ignored. In this study, the effects of elevated temperatures on BTQ's tolerance to the insecticide thiamethoxam were investigated. The effect on the activities of detoxifying enzymes [carboxylesterase (CarE), glutathione S-transferase (GST), and cytochrome P450 monooxygenase (P450)] and expression profiling of eleven genes of detoxifying enzymes were also determined. In addition, RNA interference (RNAi) and bioassay methods were used to further identify the function of CYP6CM1 in tolerance to thiamethoxam following exposure to higher temperatures. The results showed that elevated temperatures were responsible for causing different outcomes in the tolerance of BTQ to thiamethoxam: Temperatures of 35 °C or higher decreased the tolerance of BTQ to thiamethoxam, while a moderately high temperature of 31 °C increased the tolerance. The high temperature influenced the tolerance of BTQ by affecting the activity of P450. Quantitative real-time PCR (qPCR) showed that CYP6CM1 was significantly up-regulated in most treatments at 31 °C, but was suppressed at 35 °C, which was closely associated with the mortality rates. Feeding on double-stranded RNA (dsRNA) of CYP6CM1 significantly reduced the mRNA levels of the target gene in the adults, and dramatically decreased tolerance to thiamethoxam induced by a temperature of 31 °C for 6 h. Our finding provides useful information to better understand the invasion mechanism of BTQ.
Collapse
Affiliation(s)
- Lei Guo
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Mingming Su
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Shuo Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Dong Chu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
15
|
Jiang R, Qi LD, Du YZ, Li YX. Thermotolerance and Heat-Shock Protein Gene Expression Patterns in Bemisia tabaci (Hemiptera: Aleyrodidae) Mediterranean in Relation to Developmental Stage. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:2190-2198. [PMID: 28961720 DOI: 10.1093/jee/tox224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Indexed: 06/07/2023]
Abstract
Temperature plays an important role in the growth, development, and geographic distribution of insects. There is convincing evidence that heat-shock proteins (HSPs) play important roles in helping organisms adapt to thermal stress. To better understand the physiological and ecological influence of thermal stress on the different development stages of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Mediterranean species (MED), nymphs and adults were shocked with temperatures of 35, 38, and 41℃ for 1 and 2 h, respectively, and the survival rate, fecundity, and developmental duration were investigated in the laboratory. The expression levels of the hsp40, hsp70, and hsp90 genes were assessed using real-time PCR. The results indicate that the survival rates of the nymphs and adults decreased with increased temperature. A 2-h heat shock at 41℃ induced a significant reduction in fecundity in adults and an increase in developmental duration in young nymphs. Hsp90 showed higher temperature responses to thermal stress than hsp40 or hsp70. The expression levels of the hsps in the adults were significantly down-regulated by a 2-h heat shock at 41℃ compared with that by a 1-h treatment. A significant decrease in the expression levels of the hsps also occurred in the adults when the temperature increased from 38 to 41℃ for the 2-h treatment, whereas no significant decrease occurred in the nymphs. Compared with previous studies, we provide some evidence indicating that MED has the potential to adapt to a wider temperature range than the Middle East-Asia Minor 1 species.
Collapse
Affiliation(s)
- Rui Jiang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lan-Da Qi
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yu-Zhou Du
- Institute of Applied Entomology, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yuan-Xi Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
16
|
Jiu M, Hu J, Wang LJ, Dong JF, Song YQ, Sun HZ. Cryptic Species Identification and Composition of Bemisia tabaci (Hemiptera: Aleyrodidae) Complex in Henan Province, China. JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:3860170. [PMID: 28973577 PMCID: PMC5538324 DOI: 10.1093/jisesa/iex048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Indexed: 06/07/2023]
Abstract
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a cryptic species complex, causing significant crop losses in China during the last decade. Although knowledge of cryptic species composition and dynamics within B. tabaci complex is critical for developing sustainable pest management strategies, limited information is available on this pest in the Henan province of China. A systematic survey of the cryptic species composition and distribution of B. tabaci complex in different locations of Henan province was conducted in 2012. The results of RAPD-PCR and the gene for the mitochondrial cytochrome oxidase subunit-1 (mtCOI) based phylogenetic relationships established using Bayesian method indicated there were four known cryptic species MEAM1, MED, Asia II 3, Asia II 9 and a new cryptic species named China 6 in Henan province. In the survey, the invasive cryptic species MED and MEAM1 were found to be predominant with wide spread distribution across the surveyed regions. On the contrary, the indigenous B. tabaci cryptic species including Asia II 3, Asia II 9 and China 6 remained with low prevalence in some surveyed regions. Cryptic species MEAM1 and MED have not completely displaced the native B. tabaci in Henan province. This current study for the first time unifies our knowledge of the diversity and distribution of B. tabaci across Henan province of China.
Collapse
Affiliation(s)
- Min Jiu
- College of Food and Bioengineering, Key Laboratory of Microbial Resources Exploitation and Utilization, Henan University of Science and Technology, 471023 Luoyang, China (; )
| | - Jian Hu
- Ministry of Agriculture Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Yunnan Provincial Key Lab of Agricultural Biotechnology, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, 650223 Kunming, China
| | - Lun-Ji Wang
- College of Food and Bioengineering, Key Laboratory of Microbial Resources Exploitation and Utilization, Henan University of Science and Technology, 471023 Luoyang, China (; )
| | - Jun-Feng Dong
- College of Forestry, Henan University of Science and Technology, 471023 Luoyang, China (; )
| | - Yue-Qin Song
- College of Forestry, Henan University of Science and Technology, 471023 Luoyang, China (; )
| | - Hui-Zhong Sun
- College of Agricultural, Henan University of Science and Technology, 471023 Luoyang, China ()
| |
Collapse
|
17
|
Walter S, Ali S, Kemen E, Nazari K, Bahri BA, Enjalbert J, Hansen JG, Brown JK, Sicheritz‐Pontén T, Jones J, de Vallavieille‐Pope C, Hovmøller MS, Justesen AF. Molecular markers for tracking the origin and worldwide distribution of invasive strains of Puccinia striiformis. Ecol Evol 2016; 6:2790-804. [PMID: 27066253 PMCID: PMC4800029 DOI: 10.1002/ece3.2069] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/15/2016] [Accepted: 02/22/2016] [Indexed: 01/07/2023] Open
Abstract
Investigating the origin and dispersal pathways is instrumental to mitigate threats and economic and environmental consequences of invasive crop pathogens. In the case of Puccinia striiformis causing yellow rust on wheat, a number of economically important invasions have been reported, e.g., the spreading of two aggressive and high temperature adapted strains to three continents since 2000. The combination of sequence-characterized amplified region (SCAR) markers, which were developed from two specific AFLP fragments, differentiated the two invasive strains, PstS1 and PstS2 from all other P. striiformis strains investigated at a worldwide level. The application of the SCAR markers on 566 isolates showed that PstS1 was present in East Africa in the early 1980s and then detected in the Americas in 2000 and in Australia in 2002. PstS2 which evolved from PstS1 became widespread in the Middle East and Central Asia. In 2000, PstS2 was detected in Europe, where it never became prevalent. Additional SSR genotyping and virulence phenotyping revealed 10 and six variants, respectively, within PstS1 and PstS2, demonstrating the evolutionary potential of the pathogen. Overall, the results suggested East Africa as the most plausible origin of the two invasive strains. The SCAR markers developed in the present study provide a rapid, inexpensive, and efficient tool to track the distribution of P. striiformis invasive strains, PstS1 and PstS2.
Collapse
Affiliation(s)
- Stephanie Walter
- Department of AgroecologyAarhus UniversityFlakkebjergDK‐4200SlagelseDenmark
| | - Sajid Ali
- Department of AgroecologyAarhus UniversityFlakkebjergDK‐4200SlagelseDenmark
- Institute of Biotechnology & Genetic EngineeringThe University of Agriculture, Peshawar25000PeshawarPakistan
| | - Eric Kemen
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
- Present address: Eric Kemen Max Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 1050829CologneGermany
| | - Kumarse Nazari
- ICARDARegional Cereal Rust Research CentreAegean Agricultural Research Institute P.K. 9Menemen/İZMİRTurkey
| | - Bochra A. Bahri
- National Institute of Agronomy of Tunisia (INAT)Avenue Charles Nicolle43 TN‐1082 El MahrajèneTunisia
| | - Jérôme Enjalbert
- INRA UMR 320 Génétique VégétaleFerme du MoulonF‐91190Gif sur YvetteFrance
| | - Jens G. Hansen
- Department of AgroecologyAarhus UniversityFlakkebjergDK‐4200SlagelseDenmark
| | | | - Thomas Sicheritz‐Pontén
- Center for Biological Sequence AnalysisDepartment of Systems BiologyTechnical University of DenmarkBuilding 208DK‐2800Kongens LyngbyDenmark
| | - Jonathan Jones
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
| | | | | | | |
Collapse
|
18
|
Gautam NK, Kumar K, Prasad M. Leaf crinkle disease in urdbean (Vigna mungo L. Hepper): An overview on causal agent, vector and host. PROTOPLASMA 2016; 253:729-746. [PMID: 26779639 DOI: 10.1007/s00709-015-0933-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/17/2015] [Indexed: 06/05/2023]
Abstract
Urdbean leaf crinkle disease (ULCD) is an economically significant widespread and devastating disease resulting in extreme crinkling, puckering and rugosity of leaves inflicting heavy yield losses annually in major urdbean-producing countries of the world. This disease is caused by urdbean leaf crinkle virus (ULCV). Urdbean (Vigna mungo L. Hepper) is relatively more susceptible than other pulses to leaf crinkle disease. Urdbean is an important and useful crop cultivated in various parts of South-East Asia and well adapted for cultivation under semi-arid and subtropical conditions. Aphids, insects and whiteflies have been reported as vectors of the disease. The virus is also transmitted through sap inoculation, grafting and seed. The loss in seed yield in ULCD-affected urdbean crop ranges from 35 to 81%, which is dependent upon type of genotype location and infection time. The diseased material and favourable climatic conditions contribute for the widespread viral disease. Anatomical and biochemical changes take place in the affected diseased plants. Genetic variations have been reported in the germplasm screening which suggest continuous screening of available varieties and new germplasm to search for new traits (new genes) and identify new sources of disease resistance. There are very few reports on breeding programmes for the development and release of varieties tolerant to ULCD. Mostly random amplified polymorphic DNA (RAPD) as well as inter-simple sequence repeat (ISSR) molecular markers have been utilized for fingerprinting of blackgram, and a few reports are there on sequence-tagged micro-satellite site (STMS) markers. There are so many RNA viruses which have also developed strategies to counteract silencing process by encoding suppressor proteins that create hindrances in the process. But, in the case of ULCV, there is no report available indicating which defence pathway is operating for its resistance in the plants and whether same silencing suppression strategy is also followed by this virus causing leaf crinkle disease in urdbean. The antiviral principles (AVP) present in leaf extracts of several plants are known to inhibit infection by many viruses. Many chemicals have been reported as inhibitors of virus replication in plants. Raising the barrier crops also offers an effective solution to control the spread of virus.
Collapse
Affiliation(s)
| | - Krishna Kumar
- Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
19
|
Su MM, Guo L, Tao YL, Zhang YJ, Wan FH, Chu D. Effects of Host Plant Factors on the Bacterial Communities Associated with Two Whitefly Sibling Species. PLoS One 2016; 11:e0152183. [PMID: 27008327 PMCID: PMC4805303 DOI: 10.1371/journal.pone.0152183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 03/10/2016] [Indexed: 12/13/2022] Open
Abstract
Background Although discrepancy in the specific traits and ecological characteristics of Bemisia tabaci between species are partially attributed to the B. tabaci-associated bacteria, the factors that affect the diversity of B. tabaci-associated bacteria are not well-understood. We used the metagenomic approach to characterize the B. tabaci-associated bacterial community because the approach is an effective tool to identify the bacteria. Methodology and Results To investigate the effects of the host plant and a virus, tomato yellow leaf curl virus (TYLCV), on the bacterial communities of B. tabaci sibling species B and Q, we analyzed the bacterial communities associated with whitefly B and Q collected from healthy cotton, healthy tomato, and TYLCV-infected tomato. The analysis used miseq-based sequencing of a variable region of the bacterial 16S rDNA gene. For the bacteria associated with B. tabaci, we found that the influence of the host plant species was greater than that of the whitefly cryptic species. With further analysis of host plants infected with the TYLCV, the virus had no significant effects on the B. tabaci-associated bacterial community. Conclusions The effects of different plant hosts and TYLCV-infection on the diversity of B. tabaci-associated bacterial communities were successfully analyzed in this study. To explain why B. tabaci sibling species with different host ranges differ in performance, the analysis of the bacterial community may be essential to the explanation.
Collapse
Affiliation(s)
- Ming-Ming Su
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Lei Guo
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Yun-Li Tao
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - You-Jun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Fang-Hao Wan
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, 266109, P. R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, P.R. China
| | - Dong Chu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, 266109, P. R. China
- * E-mail:
| |
Collapse
|
20
|
Barbosa LDF, Marubayashi JM, De Marchi BR, Yuki VA, Pavan MA, Moriones E, Navas-Castillo J, Krause-Sakate R. Indigenous American species of the Bemisia tabaci complex are still widespread in the Americas. PEST MANAGEMENT SCIENCE 2014; 70:1440-1445. [PMID: 24458534 DOI: 10.1002/ps.3731] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/11/2013] [Accepted: 01/16/2014] [Indexed: 06/03/2023]
Abstract
Bemisia tabaci is a complex of at least 36 putative cryptic species. Since the late 1980s, the Middle East-Asia Minor 1 species (MEAM1, formerly known as the B biotype), has emerged in many tropical and subtropical regions of the world and in some areas has displaced the indigenous populations of B. tabaci. Based on analysis of the mtCOI gene, two indigenous species native to America have been reported: New World (NW, formerly the A biotype) and New World 2 (NW2). NW is present at least in Argentina, Brazil, Martinique, Mexico, Texas and Venezuela, and NW2 in Argentina, Bolivia and Brazil. Wild plants (Euphorbia sp. and Ipomoea sp.), as well as important crops such as tomato, bean and cotton, are still hosts for native B. tabaci populations in the Americas. MEAM1 has not completely displaced the native B. tabaci from the Americas.
Collapse
Affiliation(s)
- Leonardo da F Barbosa
- UNESP - Faculdade de Ciências Agronômicas, Botucatu, Brazil; Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Algarrobo-Costa, Málaga, Spain
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ali M, Hameed S, Tahir M. Luteovirus: insights into pathogenicity. Arch Virol 2014; 159:2853-60. [DOI: 10.1007/s00705-014-2172-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/30/2014] [Indexed: 01/29/2023]
|
22
|
Peixoto ML, Boiça Júnior AL. Antibiose e não preferência para oviposição de Bemisia tabaci (Genn.) biótipo B (Hemiptera: Aleyrodidae) em genótipos de feijoeiro comum. ARQUIVOS DO INSTITUTO BIOLÓGICO 2014. [DOI: 10.1590/1808-1657000992012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
O feijoeiro comum, Phaseolus vulgaris L., constitui importante fonte de proteína e renda para muitos países, entre eles, o Brasil. Diferentes fatores contribuem para a redução da produção, como os insetos pragas, destacando-se Bemisia tabaci (Genn.) biótipo B. O presente trabalho teve por objetivo identificar genótipos de feijoeiro comum resistentes à B. tabaci biótipo B e os tipos de resistência envolvidos. Para isso, foram realizados dois experimentos desenvolvidos em laboratório e em casa-de-vegetação, avaliando-se 11 genótipos de feijoeiro comum. Para o teste com chance de escolha, o delineamento utilizado foi o de blocos casualizados, e para os testes sem chance de escolha e antibiose, a escolha foi pelo inteiramente casualizado, totalizando seis repetições para cada teste. As variáveis avaliadas foram: período de incubação dos ovos; período ninfal; período de ovo a adulto; viabilidade de ovo a adulto e longevidade de adultos. O genótipo IAC-Harmonia prolongou os períodos ninfal e de ovo a adulto de B. tabaci biótipo B. Os genótipos testados foram igualmente ovipositados pela mosca-branca, em testes com e sem chance de escolha.
Collapse
|
23
|
van Brunschot S, Bergervoet J, Pagendam D, de Weerdt M, Geering A, Drenth A, van der Vlugt R. A bead-based suspension array for the multiplexed detection of begomoviruses and their whitefly vectors. J Virol Methods 2014; 198:86-94. [DOI: 10.1016/j.jviromet.2013.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/13/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
|
24
|
Legg JP, Sseruwagi P, Boniface S, Okao-Okuja G, Shirima R, Bigirimana S, Gashaka G, Herrmann HW, Jeremiah S, Obiero H, Ndyetabula I, Tata-Hangy W, Masembe C, Brown JK. Spatio-temporal patterns of genetic change amongst populations of cassava Bemisia tabaci whiteflies driving virus pandemics in East and Central Africa. Virus Res 2013; 186:61-75. [PMID: 24291251 DOI: 10.1016/j.virusres.2013.11.018] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 11/16/2013] [Accepted: 11/20/2013] [Indexed: 11/26/2022]
Abstract
The greatest current threat to cassava in sub-Saharan Africa, is the continued expansion of plant virus pandemics being driven by super-abundant populations of the whitefly vector, Bemisia tabaci. To track the association of putatively genetically distinct populations of B. tabaci with pandemics of cassava mosaic disease (CMD) and cassava brown streak disease (CBSD), a comprehensive region-wide analysis examined the phylogenetic relationships and population genetics of 642 B. tabaci adults sampled from cassava in six countries of East and Central Africa, between 1997 and 2010, using a mitochondrial DNA cytochrome oxidase I marker (780 bases). Eight phylogenetically distinct groups were identified, including one, designated herein as 'East Africa 1' (EA1), not previously described. The three most frequently occurring groups comprised >95% of all samples. Among these, the Sub-Saharan Africa 2 (SSA2) group diverged by c. 8% from two SSA1 sub-groups (SSA1-SG1 and SSA1-SG2), which themselves were 1.9% divergent. During the 14-year study period, the group associated with the CMD pandemic expansion shifted from SSA2 to SSA1-SG1. Population genetics analyses of SSA1, using Tajima's D, Fu's Fs and Rojas' R2 statistics confirmed a temporal transition in SSA1 populations from neutrally evolving at the outset, to rapidly expanding from 2000 to 2003, then back to populations more at equilibrium after 2004. Based on available evidence, hybrid introgression appears to be the most parsimonious explanation for the switch from SSA2 to SSA1-SG1 in whitefly populations driving cassava virus pandemics in East and Central Africa.
Collapse
Affiliation(s)
- James P Legg
- International Institute of Tropical Agriculture (IITA), PO Box 34441, Dar es Salaam, Tanzania.
| | - Peter Sseruwagi
- Mikocheni Agricultural Research Institute, PO Box 6226, Dar es Salaam, Tanzania
| | - Simon Boniface
- International Institute of Tropical Agriculture (IITA), PO Box 34441, Dar es Salaam, Tanzania
| | - Geoffrey Okao-Okuja
- National Agricultural Crops Resources Research Institute, PO Box 7084, Kampala, Uganda
| | - Rudolph Shirima
- International Institute of Tropical Agriculture (IITA), PO Box 34441, Dar es Salaam, Tanzania
| | - Simon Bigirimana
- Institut des Sciences Agronomiques du Burundi, BP 173, Gitega, Burundi
| | | | | | - Simon Jeremiah
- Lake Zone Agricultural Research and Development Institute, PO Box 1433, Mwanza, Tanzania
| | | | | | - Willy Tata-Hangy
- Institut National Pour l'Etude et la Recherche Agronomique (INERA-DR Congo), BP 327, Cyangugu, Rwanda
| | | | - Judith K Brown
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
25
|
Fang Y, Jiao X, Xie W, Wang S, Wu Q, Shi X, Chen G, Su Q, Yang X, Pan H, Zhang Y. Tomato yellow leaf curl virus alters the host preferences of its vector Bemisia tabaci. Sci Rep 2013; 3:2876. [PMID: 24096821 PMCID: PMC3791452 DOI: 10.1038/srep02876] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/19/2013] [Indexed: 11/23/2022] Open
Abstract
Bemisia tabaci, the whitefly vector of Tomato yellow leaf curl virus (TYLCV), seriously reduces tomato production and quality. Here, we report the first evidence that infection by TYLCV alters the host preferences of invasive B. tabaci B (Middle East-Minor Asia 1) and Q (Mediterranean genetic group), in which TYLCV-free B. tabaci Q preferred to settle on TYLCV-infected tomato plants over healthy ones. TYLCV-free B. tabaci B, however, preferred healthy tomato plants to TYLCV-infected plants. In contrast, TYLCV-infected B. tabaci, either B or Q, did not exhibit a preference between TYLCV-infected and TYLCV-free tomato plants. Based on gas chromatography-mass spectrometry (GCMS)analysis of plant terpene volatiles, significantly more β-myrcene, thymene, β-phellandrene, caryophyllene, (+)-4-carene, and α-humulene were released from the TYLCV-free tomato plants than from the TYLCV-infected ones. The results indicate TYLCV can alter the host preferences of its vector Bemisia tabaci B and Q.
Collapse
Affiliation(s)
- Yong Fang
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan 410128, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoguo Jiao
- College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaobin Shi
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Gong Chen
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qi Su
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huipeng Pan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
26
|
Wang HL, Yang J, Boykin LM, Zhao QY, Li Q, Wang XW, Liu SS. The characteristics and expression profiles of the mitochondrial genome for the Mediterranean species of the Bemisia tabaci complex. BMC Genomics 2013; 14:401. [PMID: 23768425 PMCID: PMC3691742 DOI: 10.1186/1471-2164-14-401] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 06/12/2013] [Indexed: 01/22/2023] Open
Abstract
Background The whiteflies under the name Bemisia tabaci (Gennadius) (Aleyrodidae: Hemiptera) are species complex of at least 31 cryptic species some of which are globally invasive agricultural pests. Previously, the mitochondrial genome (mitogenome) of the indigenous New World B. tabaci species was sequenced and major differences of gene order from the postulated whitefly ancestral gene order were found. However, the sequence and gene order of mitogenomes in other B. tabaci species are unknown. In addition, the sequence divergences and gene expression profiles of mitogenomes in the B. tabaci species complex remain completely unexplored. Results In this study, we obtained the complete mitogenome (15,632 bp) of the invasive Mediterranean (MED), which has been identified as the type species of the B. tabaci complex. It encodes 37 genes, including 13 protein-coding genes (PCGs), 2 ribosomal RNAs and 22 transfer RNAs (tRNA). Comparative analyses of the mitogenomes from MED and New World (previously published) species reveal that there are no gene arrangements. Based on the Illumina sequencing data, the gene expression profile of the MED mitogenome was analyzed. We found that a number of genes were polyadenylated and the partial stop codons in cox1, cox2 and nd5 are completed via polyadenylation that changed T to the TAA stop codon. In addition, combining the transcriptome with the sequence alignment data, the possible termination site of some PCGs were defined. Our analyses also revealed that atp6 and atp8, nd4 and nd4l, nd6 and cytb were found on the same cistronic transcripts, whereas the other mature mitochondrial transcripts were monocistronic. Furthermore, RT-PCR analyses of the mitochondrial PCGs expression in different developmental stages revealed that the expression level of individual mitochondrial genes varied in each developmental stage of nymph, pupa and adult. Interestingly, mRNA levels showed significant differences among genes located in the same transcription unit suggesting that mitochondrial mRNA abundance is heavily modulated by post-transcriptional regulation. Conclusions This work provides novel insights into the mitogenome evolution of B. tabaci species and demonstrates that utilizing RNA-seq data to obtain the mitogenome and analyze mitochondrial gene expression characteristics is practical.
Collapse
Affiliation(s)
- Hua-Ling Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Lee W, Park J, Lee GS, Lee S, Akimoto SI. Taxonomic status of the Bemisia tabaci complex (Hemiptera: Aleyrodidae) and reassessment of the number of its constituent species. PLoS One 2013; 8:e63817. [PMID: 23675507 PMCID: PMC3652838 DOI: 10.1371/journal.pone.0063817] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 04/06/2013] [Indexed: 11/22/2022] Open
Abstract
Bemisia tabaci (Hemiptera: Aleyrodidae) is one of the most important insect pests in the world. In the present study, the taxonomic status of B. tabaci and the number of species composing the B. tabaci complex were determined based on 1059 COI sequences of B. tabaci and 509 COI sequences of 153 hemipteran species. The genetic divergence within B. tabaci was conspicuously higher (on average, 11.1%) than interspecific genetic divergence within the respective genera of the 153 species (on average, 6.5%). This result indicates that B. tabaci is composed of multiple species that may belong to different genera or subfamilies. A phylogenetic tree constructed based on 212 COI sequences without duplications revealed that the B. tabaci complex is composed of a total of 31 putative species, including a new species, JpL. However, genetic divergence within six species (Asia II 1, Asia II 7, Australia, Mediterranean, New World, and Sub Saharan Africa 1) was higher than 3.5%, which has been used as a threshold of species boundaries within the B. tabaci complex. These results suggest that it is necessary to increase the threshold for species boundaries up to 4% to distinguish the constituent species in the B. tabaci complex.
Collapse
Affiliation(s)
- Wonhoon Lee
- Laboratory of Systematic Entomology, Department of Ecology and Systematics, Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Jongsun Park
- Stronghold Innovation Center, Gocheok-dong, Guro-gu, Seoul, Korea
| | - Gwan-Seok Lee
- Crop Protection Division, National Academy of Agricultural Science, RDA, Gyongi-do, Korea
| | - Seunghwan Lee
- Insect Biosystematics Laboratory, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Korea
- * E-mail: (SL); (SA)
| | - Shin-ichi Akimoto
- Laboratory of Systematic Entomology, Department of Ecology and Systematics, Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
- * E-mail: (SL); (SA)
| |
Collapse
|
28
|
Scientific Opinion on the risks to plant health posed by Bemisia tabaci species complex and viruses it transmits for the EU territory. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3162] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
29
|
Su Q, Pan H, Liu B, Chu D, Xie W, Wu Q, Wang S, Xu B, Zhang Y. Insect symbiont facilitates vector acquisition, retention, and transmission of plant virus. Sci Rep 2013; 3:1367. [PMID: 23455639 PMCID: PMC3586701 DOI: 10.1038/srep01367] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/14/2013] [Indexed: 01/21/2023] Open
Abstract
Tomato yellow leaf curl virus (TYLCV) was first detected in China in 2006, following the introduction of Bemisia tabaci Q into China in 2003. Since then, the incidence of TYLCV in tomato fields in China has greatly increased as has the abundance and distribution of Q whiteflies containing the bacterial symbiont Hamiltonella with high frequency. This suggested that the symbiont Hamiltonella might associate with the transmission efficiency of TYLCV by the whitefly vector. Here we report the first evidence that the Hamiltonella is closely associated with the acquisition, retention, and transmission efficiency of TYLCV by the whitefly vector. Our findings combined with the outbreaks of TYLCV following the introduction of Q, provided an explanation for why Hamiltonella is being maintained at a relatively high level in Chinese B. tabaci Q and also have implications for disease and vector management.
Collapse
Affiliation(s)
- Qi Su
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
- These authors contributed equally to this work
| | - Huipeng Pan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
- These authors contributed equally to this work
| | - Baiming Liu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Dong Chu
- College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Baoyun Xu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| |
Collapse
|
30
|
Wang XW, Zhao QY, Luan JB, Wang YJ, Yan GH, Liu SS. Analysis of a native whitefly transcriptome and its sequence divergence with two invasive whitefly species. BMC Genomics 2012; 13:529. [PMID: 23036081 PMCID: PMC3478168 DOI: 10.1186/1471-2164-13-529] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 09/28/2012] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Genomic divergence between invasive and native species may provide insight into the molecular basis underlying specific characteristics that drive the invasion and displacement of closely related species. In this study, we sequenced the transcriptome of an indigenous species, Asia II 3, of the Bemisia tabaci complex and compared its genetic divergence with the transcriptomes of two invasive whiteflies species, Middle East Asia Minor 1 (MEAM1) and Mediterranean (MED), respectively. RESULTS More than 16 million reads of 74 base pairs in length were obtained for the Asia II 3 species using the Illumina sequencing platform. These reads were assembled into 52,535 distinct sequences (mean size: 466 bp) and 16,596 sequences were annotated with an E-value above 10-5. Protein family comparisons revealed obvious diversification among the transcriptomes of these species suggesting species-specific adaptations during whitefly evolution. On the contrary, substantial conservation of the whitefly transcriptomes was also evident, despite their differences. The overall divergence of coding sequences between the orthologous gene pairs of Asia II 3 and MEAM1 is 1.73%, which is comparable to the average divergence of Asia II 3 and MED transcriptomes (1.84%) and much higher than that of MEAM1 and MED (0.83%). This is consistent with the previous phylogenetic analyses and crossing experiments suggesting these are distinct species. We also identified hundreds of highly diverged genes and compiled sequence identify data into gene functional groups and found the most divergent gene classes are Cytochrome P450, Glutathione metabolism and Oxidative phosphorylation. These results strongly suggest that the divergence of genes related to metabolism might be the driving force of the MEAM1 and Asia II 3 differentiation. We also analyzed single nucleotide polymorphisms within the orthologous gene pairs of indigenous and invasive whiteflies which are helpful for the investigation of association between allelic and phenotypes. CONCLUSIONS Our data present the most comprehensive sequences for the indigenous whitefly species Asia II 3. The extensive comparisons of Asia II 3, MEAM1 and MED transcriptomes will serve as an invaluable resource for revealing the genetic basis of whitefly invasion and the molecular mechanisms underlying their biological differences.
Collapse
Affiliation(s)
- Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | | | | | | | | | | |
Collapse
|
31
|
Pan H, Chu D, Yan W, Su Q, Liu B, Wang S, Wu Q, Xie W, Jiao X, Li R, Yang N, Yang X, Xu B, Brown JK, Zhou X, Zhang Y. Rapid spread of tomato yellow leaf curl virus in China is aided differentially by two invasive whiteflies. PLoS One 2012; 7:e34817. [PMID: 22514670 PMCID: PMC3325912 DOI: 10.1371/journal.pone.0034817] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/05/2012] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Tomato yellow leaf curl virus (TYLCV) was introduced into China in 2006, approximately 10 years after the introduction of an invasive whitefly, Bemisia tabaci (Genn.) B biotype. Even so the distribution and prevalence of TYLCV remained limited, and the economic damage was minimal. Following the introduction of Q biotype into China in 2003, the prevalence and spread of TYLCV started to accelerate. This has lead to the hypothesis that the two biotypes might not be equally competent vectors of TYLCV. METHODOLOGY/PRINCIPAL FINDINGS The infection frequency of TYLCV in the field-collected B. tabaci populations was investigated, the acquisition and transmission capability of TYLCV by B and Q biotypes were compared under the laboratory conditions. Analysis of B. tabaci populations from 55 field sites revealed the existence of 12 B and 43 Q biotypes across 18 provinces in China. The acquisition and transmission experiments showed that both B and Q biotypes can acquire and transmit the virus, however, Q biotype demonstrated superior acquisition and transmission capability than its B counterparts. Specifically, Q biotype acquired significantly more viral DNA than the B biotype, and reached the maximum viral load in a substantially shorter period of time. Although TYLCV was shown to be transmitted horizontally by both biotypes, Q biotype exhibited significantly higher viral transmission frequency than B biotype. Vertical transmission result, on the other hand, indicated that TYLCV DNA can be detected in eggs and nymphs, but not in pupae and adults of the first generation progeny. CONCLUSIONS/SIGNIFICANCE These combined results suggested that the epidemiology of TYLCV was aided differentially by the two invasive whiteflies (B and Q biotypes) through horizontal but not vertical transmission of the virus. This is consistent with the concomitant eruption of TYLCV in tomato fields following the recent rapid invasion of Q biotype whitefly in China.
Collapse
Affiliation(s)
- Huipeng Pan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Dong Chu
- High-tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, People's Republic of China
| | - Wenqian Yan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Qi Su
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Baiming Liu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiaoguo Jiao
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Rumei Li
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Nina Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xin Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Baoyun Xu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Judith K. Brown
- School of Plant Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
32
|
Yu H, Wan FH, Guo JY. Different thermal tolerance and hsp gene expression in invasive and indigenous sibling species of Bemisia tabaci. Biol Invasions 2012. [DOI: 10.1007/s10530-012-0171-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Singh ST, Priya NG, Kumar J, Rana VS, Ellango R, Joshi A, Priyadarshini G, Asokan R, Rajagopal R. Diversity and phylogenetic analysis of endosymbiotic bacteria from field caught Bemisia tabaci from different locations of North India based on 16S rDNA library screening. INFECTION GENETICS AND EVOLUTION 2012; 12:411-9. [PMID: 22293464 DOI: 10.1016/j.meegid.2012.01.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 01/10/2012] [Accepted: 01/14/2012] [Indexed: 11/26/2022]
Abstract
Bemisia tabaci is the major vector pest of agricultural crops all over the world. In this study we report the different bacterial endosymbionts associated with B. tabaci sampled from 14 different locations in North India. Using 16S rDNA clone library sequences we were able to identify Portiera, the primary endosymbiont of B. tabaci, and other secondary endosymbionts like Cardinium, Wolbachia, Rickettsia and Arsenophonus. Along with these we also detected Bacillus, Enterobacter, Paracoccus and Acinetobacter. These secondary endosymbionts were not uniformly distributed in all the locations. Phylogenetic analysis of 16S rDNA sequences of Cardinium, Wolbachia, Rickettsia and Arsenophonus showed that each of these bacteria form a separate cluster when compared to their respective counterparts from other parts of the world. MtCO1 gene based phylogenetic analysis showed the presence of Asia I and Asia II genetic groups of B. tabaci in N. India. The multiple correspondence analyses showed no correlation between the host genetic group and the endosymbiont diversity. These results suggest that the bacterial endosymbiont diversity of B. tabaci is much larger and complex than previously perceived and probably N. Indian strains of the bacterial symbionts could have evolved from some other ancestor.
Collapse
|
34
|
Two genetically related begomoviruses causing tomato leaf curl disease in Togo and Nigeria differ in virulence and host range but do not require a betasatellite for induction of disease symptoms. Arch Virol 2011; 157:107-20. [DOI: 10.1007/s00705-011-1139-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/03/2011] [Indexed: 11/26/2022]
|
35
|
Gorsane F, Ben Halima A, Ben Khalifa M, Bel-Kadhi MS, Fakhfakh H. Molecular characterization of Bemisia tabaci populations in Tunisia: genetic structure and evidence for multiple acquisition of secondary symbionts. ENVIRONMENTAL ENTOMOLOGY 2011; 40:809-817. [PMID: 22251681 DOI: 10.1603/en10162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A survey was conducted during 2009-2010 seasons to identify the distribution of Bemisia tabaci (Gennadius) biotypes in Tunisia. The genetic affiliation of collected populations was determined by polymerase chain reaction (PCR)-restriction fragment-length polymorphism (TaqI) of the mitochondrial cytochrom oxidase I (mtCOI) gene. Results, validated by sequencing and phylogenetic analysis, allowed the clustering of sampled sweetpotato whiteflies into B and Q biotypes. As B. tabaci harbors the obligatory bacterium Portiera aleyrodidarum, and a diverse array of secondary symbionts including Rickettsia, Hamiltonella, Wolbachia, Cardinium, Arsenophonus, and Fritschea, we report here the infectious status of Tunisian populations by secondary symbionts to find out a correlation between bacterial composition to biotype. The genetic variability and structure of B. tabaci populations in Tunisia was driven by analysis of molecular variance (AMOVA) and the hypothesis of isolation by distance was explored. Selective neutrality and genetic haplotype network tests suggested that Tunisian sweetpotato whiteflies have been undergoing a potential expansion followed by gene flow restriction.
Collapse
Affiliation(s)
- F Gorsane
- Laboratory of Molecular Genetics, Immunology and Biotechnology. Faculty of Sciences of Tunis, 2092 Elmanar Tunis, Tunisia.
| | | | | | | | | |
Collapse
|
36
|
Karkashian J, Ramos-Reynoso ED, Maxwell DP, Ramírez P. Begomoviruses Associated with Bean Golden Mosaic Disease in Nicaragua. PLANT DISEASE 2011; 95:901-906. [PMID: 30732116 DOI: 10.1094/pdis-03-10-0165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Begomovirus spp. cause substantial losses in bean crops in tropical and subtropical regions of the Americas. The predominant Begomovirus sp. in Central America associated with golden mosaic symptoms in bean is Bean golden yellow mosaic virus (BGYMV). However, Calopogonium golden mosaic virus was previously found to infect bean crops in the northern region of Costa Rica. The objective of this research was to identify Begomovirus spp. that infect bean plants in different geographical regions of Nicaragua. In all, 126 samples of young bean leaves with symptoms of golden mosaic were collected from eight different regions of Nicaragua. Using DNA hybridization with specific probes, 120 samples tested positive for BGYMV, 14 samples tested positive for Squash yellow mild mottle virus, and 7 samples tested positive for Calopogonium golden mosaic virus. Sequence analysis of polymerase chain reaction-amplified products from three samples (MA-9 Managua, BE-8 Rivas, and SO-9 Granada) also indicated that the symptoms of golden mosaic in bean are associated with viral sequences from three different Begomovirus spp. Management of bean golden mosaic disease must take into account that BGYMV is the predominant virus (95% of the samples) and that 12% of the samples exhibited possible mixed infections or recombination events in the south and central geographical regions of Nicaragua.
Collapse
Affiliation(s)
- J Karkashian
- Escuela de Biología y Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica
| | | | - D P Maxwell
- Department of Plant Pathology, University of Wisconsin-Madison 53706
| | | |
Collapse
|
37
|
Ng TFF, Duffy S, Polston JE, Bixby E, Vallad GE, Breitbart M. Exploring the diversity of plant DNA viruses and their satellites using vector-enabled metagenomics on whiteflies. PLoS One 2011; 6:e19050. [PMID: 21544196 PMCID: PMC3081322 DOI: 10.1371/journal.pone.0019050] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 03/21/2011] [Indexed: 11/18/2022] Open
Abstract
Current knowledge of plant virus diversity is biased towards agents of visible and economically important diseases. Less is known about viruses that have not caused major diseases in crops, or viruses from native vegetation, which are a reservoir of biodiversity that can contribute to viral emergence. Discovery of these plant viruses is hindered by the traditional approach of sampling individual symptomatic plants. Since many damaging plant viruses are transmitted by insect vectors, we have developed "vector-enabled metagenomics" (VEM) to investigate the diversity of plant viruses. VEM involves sampling of insect vectors (in this case, whiteflies) from plants, followed by purification of viral particles and metagenomic sequencing. The VEM approach exploits the natural ability of highly mobile adult whiteflies to integrate viruses from many plants over time and space, and leverages the capability of metagenomics for discovering novel viruses. This study utilized VEM to describe the DNA viral community from whiteflies (Bemisia tabaci) collected from two important agricultural regions in Florida, USA. VEM successfully characterized the active and abundant viruses that produce disease symptoms in crops, as well as the less abundant viruses infecting adjacent native vegetation. PCR assays designed from the metagenomic sequences enabled the complete sequencing of four novel begomovirus genome components, as well as the first discovery of plant virus satellites in North America. One of the novel begomoviruses was subsequently identified in symptomatic Chenopodium ambrosiodes from the same field site, validating VEM as an effective method for proactive monitoring of plant viruses without a priori knowledge of the pathogens. This study demonstrates the power of VEM for describing the circulating viral community in a given region, which will enhance our understanding of plant viral diversity, and facilitate emerging plant virus surveillance and management of viral diseases.
Collapse
Affiliation(s)
- Terry Fei Fan Ng
- College of Marine Science, University of South Florida, Tampa, Florida, United States of America
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Jane E. Polston
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Elise Bixby
- College of Marine Science, University of South Florida, Tampa, Florida, United States of America
| | - Gary E. Vallad
- Gulf Coast Research and Education Center, University of Florida, Gainesville, Florida, United States of America
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|
38
|
Ahmed MZ, De Barro PJ, Greeff JM, Ren SX, Naveed M, Qiu BL. Genetic identity of the Bemisia tabaci species complex and association with high cotton leaf curl disease (CLCuD) incidence in Pakistan. PEST MANAGEMENT SCIENCE 2011; 67:307-317. [PMID: 21308956 DOI: 10.1002/ps.2067] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 08/09/2010] [Accepted: 09/14/2010] [Indexed: 05/30/2023]
Abstract
BACKGROUND The cotton whitefly, Bemisia tabaci (Gennadius), is a cryptic species complex, and members of the complex have become serious pests in Pakistan because of their feeding and their ability to transmit cotton leaf curl virus (CLCuV). Here, an analysis was made of the identity of B. tabaci collected from cotton and a range of non-cotton hosts in the cotton-growing zones in Punjab and Sindh, the main cotton-producing provinces of Pakistan, using a portion of the mitochondrial cytochrome oxidase 1 gene. The geographic distribution of the different members of the complex was then compared with the incidence of CLCuD. RESULTS Using the Dinsdale nomenclature, the results revealed three putative species, Asia 1, Asia II 1 and Middle East-Asia Minor 1. Asia II 1 (also referred to in the literature as biotypes K, P, PCG-1, PK1, SY and ZHJ2) was only recorded from Punjab cotton plants, whereas Asia 1 (also referred to in the literature as biotypes H, M, NA and PCG-2) was found in both Sindh and Punjab. Middle East-Asia Minor 1 (commonly known as biotype B and B2) was found only in Sindh. Moreover, Asia II 1 was associated with high incidences of CLCuD, whereas regions where Middle East-Asia Minor 1 was present had a lower incidence. Phylogenetic analysis showed that the Middle East-Asia Minor 1 population in Sindh formed a distinct genetic subgroup within the putative species, suggesting that the Sindh province of Pakistan may form part of its home range. So far, no individuals from the putative species Mediterranean (commonly known as biotypes Q, J and L) have been found in Pakistan. CONCLUSIONS The capacity to manage pests and disease effectively relies on knowledge of the identity of the agents causing the damage. In the case of CLCuD in Pakistan, this knowledge has been obscured to some extent because of the inconsistent approach to identifying and distinguishing the different B. tabaci associated with CLCuD. The situation has now been clarified, and a strong association between disease incidence and vector identity and abundance has been shown. Given this advance, future research can now focus on factors that influence the capacity of different vector species to transmit the viruses that cause CLCuD, the reason for differences in vector abundance and the lack of geographic overlap between the cryptic vector species. This knowledge will contribute to the development of improved methods with which to manage the disease in Pakistan.
Collapse
Affiliation(s)
- Muhammad Z Ahmed
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
39
|
Elbaz M, Lahav N, Morin S. Evidence for pre-zygotic reproductive barrier between the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2010; 100:581-590. [PMID: 20158928 DOI: 10.1017/s0007485309990630] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The degree of reproductive isolation between the B and Q biotypes of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is currently not clear. Laboratory experiments have shown that the two biotypes are capable of producing viable F1 hybrids but that these females are sterile as their F2 generation failed to develop, indicating, most likely, a post-zygotic reproductive barrier. Here, we confirm, by molecular and ecological tools, that the B and Q biotypes of Israel are genetically isolated and provide two independent lines of evidence that support the existence of a pre-zygotic reproductive barrier between them. Firstly, monitoring of mating behaviors in homogeneous and heterogeneous couples indicated no copulation events in heterogeneous couples compared to approximately 50% in homogeneous B and Q couples. Secondly, we could not detect the presence of sperm in the spermathecae of females from heterogeneous couples, compared to 50% detection in intra-B biotype crosses and 15% detection in intra-Q biotype crosses. The existence of pre-zygotic reproductive barriers in Israeli B and Q colonies may indicate a reinforcement process in which mating discrimination is strengthened between sympatric taxa that were formerly allopatric, to avoid maladaptive hybridization. As the two biotypes continued to perform all courtship stages prior to copulation, we also conducted mixed cultures experiments in order to test the reproductive consequences of inter-biotype courtship attempts. In mixed cultures, a significant reduction in female fecundity was observed for the Q biotype but not for the B biotype, suggesting an asymmetric reproductive interference effect in favour of the B biotype. The long-term outcome of this effect is yet to be determined since additional environmental forces may reduce the probability of demographic displacement of one biotype by the other in overlapping niches.
Collapse
Affiliation(s)
- M Elbaz
- Department of Entomology, Faculty of Agriculture, the Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | |
Collapse
|
40
|
Levy A, Tzfira T. Bean dwarf mosaic virus: a model system for the study of viral movement. MOLECULAR PLANT PATHOLOGY 2010; 11:451-461. [PMID: 20618704 PMCID: PMC6640244 DOI: 10.1111/j.1364-3703.2010.00619.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
TAXONOMY Bean dwarf mosaic virus-[Colombia:1987] (BDMV-[CO:87]) is a single-stranded plant DNA virus, a member of the genus Begomovirus of the family Geminiviridae. PHYSICAL PROPERTIES BDMV virions are twinned incomplete isosahedra measuring 18 x 30 nm. The viral particle is composed of 110 subunits of coat protein, organized as 22 pentameric capsomers. Each subunit has a molecular mass of approximately 29 kDa. BDMV possesses two DNA components (designated DNA-A and DNA-B), each approximately 2.6 kb in size. HOST RANGE The natural and most important host of BDMV is the common bean (Phaseolus vulgaris). Nicotiana benthamiana is often used as an experimental host. Common bean germplasm can be divided into two major gene pools: Andean materials, which are mostly susceptible to BDMV, and Middle American materials, which are mostly resistant to BDMV. DISEASE SYMPTOMS The symptom intensity in common bean plants depends on the stage of infection. Early infection of susceptible bean seedlings will result in severe stunting and dwarfing, leaf distortion and mottling or mosaic, as well as chlorotic or yellow spots or blotches. BDMV-infected plants usually abort their flowers or produce severely distorted pods. Late infection of susceptible plants or early infection of moderately resistant genotypes may show a mild mosaic, mottle and crumpling or an irregular distribution of variegated patches. BIOLOGICAL PROPERTIES: As a member of the Begomovirus group, BDMV is transmitted from plant to plant by the whitefly Bemisia tabaci. BDMV is a nonphloem-limited virus and can replicate and move in the epidermal, cortical and phloem cells. As a nonphloem-limited virus, it is sap-transmissible.
Collapse
Affiliation(s)
- Avner Levy
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
41
|
Papayiannis LC, Brown JK, Seraphides NA, Hadjistylli M, Ioannou N, Katis NI. A real-time PCR assay to differentiate the B and Q biotypes of the Bemisia tabaci complex in Cyprus. BULLETIN OF ENTOMOLOGICAL RESEARCH 2009; 99:573-582. [PMID: 19203404 DOI: 10.1017/s0007485308006603] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A real-time PCR assay based on TaqMan technology was developed and evaluated for the rapid detection of the B and Q biotypes of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). A survey was conducted during 2005-2007 in order to identify the distribution and prevalence of B. tabaci biotypes in Cyprus using the real-time PCR assay. More than 700 adult whiteflies collected from 35 cultivated and weed plant species were individually haplotyped using TaqMan PCR, and the results of the assay were validated by restriction fragment length polymorphism analysis and DNA sequencing of the mitochondrial cytochrome oxidase I (mtCOI) gene. Two biotypes, B and Q, were identified in the collected plant species on the island. The real-time PCR and RFLP assay consistently yielded the same results, although the real-time assay was more sensitive and less time consuming. Phylogenetic analysis of the mtCOI DNA sequences corroborated the identity of the B and Q biotypes 100% of the time and by phylogenetic analysis the haplotypes grouped, as expected, in the major North African-Mediterranean-Middle Eastern clade of the B. tabaci complex.
Collapse
Affiliation(s)
- L C Papayiannis
- Agricultural Research Institute, 1516 Nicosia, PO Box 22016 Cyprus.
| | | | | | | | | | | |
Collapse
|
42
|
Fernández E, Grávalos C, Haro PJ, Cifuentes D, Bielza P. Insecticide resistance status of Bemisia tabaci Q-biotype in south-eastern Spain. PEST MANAGEMENT SCIENCE 2009; 65:885-891. [PMID: 19418483 DOI: 10.1002/ps.1769] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND Bemisia tabaci Gennadius Q-biotype has readily developed resistance to numerous insecticide classes. Studies in the Mediterranean area are needed to clarify the resistance status and cross-resistance patterns in this invasive whitefly biotype. The levels of resistance in nymphs of seven strains of B. tabaci Q-biotype from south-eastern Spain to representative insecticides were determined. RESULTS Six populations had low to moderate levels of resistance to azadirachtin (0.2- to 7-fold), buprofezin (11- to 59-fold), imidacloprid (1- to 15-fold), methomyl (3- to 55-fold), pyridaben (0.9- to 9-fold), pyriproxyfen (0.7- to 15-fold) and spiromesifen (1- to 7-fold), when compared with a contemporary Spanish Q-biotype reference population (LC(50) = 2.7, 8.7, 15.2, 19.9, 0.34, 20.9 and 1.1 mg L(-1) respectively). A single population collected from a greenhouse subject to intensive insecticide use exhibited generally higher resistance levels to the same array of compounds (31-, 1164-, 3-, 52-, 9-, 19- and 3-fold respectively). Pyridaben and spiromesifen were extremely effective against nymphs of all strains, with LC(50) values significantly below recommended application rates. CONCLUSION In contrast to previous reports, high rates of efficacy exist for numerous insecticide classes against B. tabaci Q-biotype populations in these intensive agricultural regions of south-eastern Spain. This probably reflects the recent and significant reductions in exposure that have resulted from a wider uptake of IPM technologies and strategies. However, the continued presence of resistance genes also suggests that a reversion to levels of high insecticide exposure could result in a rapid selection for resistance.
Collapse
Affiliation(s)
- Esther Fernández
- Departamento de Producción Vegetal, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain
| | | | | | | | | |
Collapse
|
43
|
Abstract
Immunocapture followed by the detection of viruses using polymerase chain reaction is a versatile, sensitive and robust diagnostic technique. The application of this hybrid method of virus detection in plants is particularly useful in species or tissues containing inhibitory substances. In addition, antibody-mediated virus purification is usually simpler than other methods of isolation.
Collapse
|
44
|
Genetic diversity and distribution of tomato-infecting begomoviruses in Iran. Virus Genes 2008; 38:311-9. [PMID: 19112612 DOI: 10.1007/s11262-008-0310-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 11/25/2008] [Indexed: 10/21/2022]
Abstract
The incidence and severity of tomato leaf curl disease (TLCD) is increasing worldwide. Here we assess the diversity and distribution within tomato producing areas of Iran of begomoviruses that cause this disease. Tomato with typical TLCD symptoms and asymptomatic weeds were collected in 2005 and 2006 and tested for the presence of begomovirus DNA using polymerase chain reaction (PCR). Analysis of cloned and sequenced PCR products revealed that both mono- and bipartite begomoviruses are associated with TLCD in Iran. Furthermore, our results confirmed the symptomless infection with mono- and bipartite begomoviruses of two weed species, Chrozophora hierosolymitana Spreng (Euphobiaceae) and Herniaria sp. (Caryophyllaceae). Eighteen Iranian begomovirus isolates were classified into two major groups and two or three subgroups according to the 5'-proximal 200 nucleotides of the coat protein (CP) gene or the N-terminal 600 nucleotides of the Rep gene. Whereas most of the monopartite isolates showed closest similarity to tomato yellow leaf curl virus-Gezira (TYLCV-Ge), the three bipartite isolates were most similar to Tomato leaf curl New Delhi virus (ToLCNDV). Mixed mono- and a bipartite begomovirus infections were detected in both tomato and C. hierosolymitana. Our results indicate that the tomato producing areas in central, southern, and southeastern Iran are threatened by begomoviruses originating from both the Mediterranean basin and the Indian subcontinent.
Collapse
|
45
|
Delatte H, Duyck PF, Triboire A, David P, Becker N, Bonato O, Reynaud B. Differential invasion success among biotypes: case of Bemisia tabaci. Biol Invasions 2008. [DOI: 10.1007/s10530-008-9328-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Karunker I, Benting J, Lueke B, Ponge T, Nauen R, Roditakis E, Vontas J, Gorman K, Denholm I, Morin S. Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:634-644. [PMID: 18510975 DOI: 10.1016/j.ibmb.2008.03.008] [Citation(s) in RCA: 245] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 03/20/2008] [Accepted: 03/21/2008] [Indexed: 05/26/2023]
Abstract
The two most damaging biotypes of Bemisia tabaci, B and Q, have both evolved strong resistance to the neonicotinoid insecticide imidacloprid. The major mechanism in all samples investigated so far appeared to be enhanced detoxification by cytochrome P450s monooxygenases (P450s). In this study, a polymerase chain reaction (PCR) technology using degenerate primers based on conserved P450 helix I and heme-binding regions was employed to identify P450 cDNA sequences in B. tabaci that might be involved in imidacloprid resistance. Eleven distinct P450 cDNA sequences were isolated and classified as members of the CYP4 or CYP6 families. The mRNA expression levels of all 11 genes were compared by real-time quantitative RT-PCR across nine B and Q field-derived strains of B. tabaci showing strong resistance, moderate resistance or susceptibility to imidacloprid. We found that constitutive over-expression (up to approximately 17-fold) of a single P450 gene, CYP6CM1, was tightly related to imidacloprid resistance in both the B and Q biotypes. Next, we identified three single-nucleotide polymorphic (SNP) markers in the intron region of CYP6CM1 that discriminate between the resistant and susceptible Q-biotype CYP6CM1 alleles (r-Q and s-Q, respectively), and used a heterogeneous strain to test for association between r-Q and resistance. While survivors of a low imidacloprid dose carried both the r-Q and s-Q alleles, approximately 95% of the survivors of a high imidacloprid dose carried only the r-Q allele. Together with previous evidence, the results reported here identify enhanced activity of P450s as the major mechanism of imidacloprid resistance in B. tabaci, and the CYP6CM1 gene as a leading target for DNA-based screening for resistance to imidacloprid and possibly other neonicotinoids in field populations.
Collapse
Affiliation(s)
- Iris Karunker
- Department of Entomology, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Maruthi MN, Rekha AR, Sseruwagi P, Hillocks RJ. Mitochondrial DNA variability and development of a PCR diagnostic test for populations of the whitefly Bemisia afer (Priesner and Hosny). Mol Biotechnol 2007; 35:31-40. [PMID: 17401147 DOI: 10.1385/mb:35:1:31] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
The whitefly, Bemisia afer (Hemiptera; Aleyrodidae), is emerging as a major agricultural pest. The current identification methods based on adult and pupal morphology are laborious and unreliable. A diagnostic polymerase chain reaction (PCR) protocol was developed for the first time in this study to discriminate B. afer from other whitefly species. Primers specific to mitochondrial cytochrome oxidase I gene (mtCOI) were designed to amplify a band of approx 650 bp. The PCR products were sequenced from B. afer samples collected from Malawi, Tanzania, Uganda, Zanzibar, and the United Kingdom. Phylogenetic analyses of mtCOI sequences and those of reference B. afer sequences clustered the African B. afer separately from the UK and Chinese populations and from other whitefly species. The African cluster was divided into two clades by parsimony and neighbor-joining methods. This indicates the existence of at least two genotypic clusters of B. afer, which are diverged by 0.8 to 3.2% nucleotide (nt) identities. Analysis of molecular variance indicated that these differences were the result of within population variation but were insufficient to identify discrete populations. Among the whitefly species used in the analysis, B. afer was equally dissimilar to Bemisia tabaci and Bemisia tuberculata (21.3-26.2% nt identities). As is the case for B. tabaci, these data show that mtCOI sequences are informative also for identifying B. afer variants, which lack distinguishing morphological features.
Collapse
Affiliation(s)
- M N Maruthi
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK.
| | | | | | | |
Collapse
|
48
|
Khan AJ, Idris AM, Al-Saady NA, Al-Mahruki MS, Al-Subhi AM, Brown JK. A divergent isolate of tomato yellow leaf curl virus from Oman with an associated DNA beta satellite: an evolutionary link between Asian and the Middle Eastern virus-satellite complexes. Virus Genes 2007; 36:169-76. [PMID: 17932737 DOI: 10.1007/s11262-007-0163-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 09/18/2007] [Indexed: 10/22/2022]
Abstract
Tomato is cultivated in the coastal region of Al-Batinah, in the Sultanate of Oman, during the winter season, to meet the high demand for fresh produce in the domestic market. In order to identify the causal agent of a widespread disease associated with infestations of the whitefly Bemisia tabaci (Genn.) leaves were collected from tomato plants showing symptoms characteristic of the disease in Al-Batinah during 2004 and 2005. Total nucleic acids were isolated from the tomato leaves and used as the template for Phi29 DNA polymerase amplification of begomoviral circular DNA. Putative full unit length begomoviral DNA multimers were digested with Nco I and cloned into the plasmid vector pGEM7Zf+. The complete nucleotide (nt) sequence was determined as 2,765 bases, indicative of a monopartite begomoviral genome. A comparison of the genome sequence for the seven field isolates examined, indicated that they shared 99% nt identity. The virus from Oman was most closely related to TYLCV-IR at 91% nt identity, a monopartite begomoviral species described previously from Iran. Based on the guidelines of the ICTV the Oman isolate has been designated TYLCV-Om and is considered an isolate of TYLCV-IR. A satellite DNA (satDNA beta), was amplified by polymerase chain reaction using degenerate primers and cloned, and the DNA sequence was determined. Analysis of the complete nt sequence of 1,371 bases indicated that the satDNA shared 88.5% similarity with its closest relatives, which are DNA beta molecules from tomato in Pakistan. This is the first report of a satDNA beta associated with the TYLCV species. The TYLCV-Om and associated satDNA, thus represent a begomovirus-complex at the Asian-Middle East crossroads that quiet uniquely share geographical and genetic hallmarks of both.
Collapse
Affiliation(s)
- Akhtar Jamal Khan
- Department of Crop Sciences, College of Agricultural & Marine Sciences, Sultan Qaboos University, PO Box 34, Al-Khod 123, Muscat, Sultanate of Oman
| | | | | | | | | | | |
Collapse
|
49
|
Shankarappa KS, Rangaswamy KT, Aswatha Narayana DS, Rekha AR, Raghavendra N, Lakshminarayana Reddy CN, Chancellor TCB, Maruthi MN. Development of silverleaf assay, protein and nucleic acid-based diagnostic techniques for the quick and reliable detection and monitoring of biotype B of the whitefly, Bemisia tabaci (Gennadius). BULLETIN OF ENTOMOLOGICAL RESEARCH 2007; 97:503-513. [PMID: 17916268 DOI: 10.1017/s0007485307005251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The aim of this study was to develop and optimize silverleaf bioassay, esterase analysis and PCR-based techniques to distinguish quickly and reliably biotype B of the whitefly, Bemisia tabaci (Gennadius), from Indian indigenous biotypes. Zucchini and squash readily develop silverleaf symptoms upon feeding by the B biotype, but they are not readily available in Indian markets. A local pumpkin variety 'Big' was, therefore, used in silverleaf assay, which developed symptoms similar to those on zucchini and squash and can be used reliably to detect B biotype. Analysis of non-specific esterases of B and the indigenous biotypes indicated both quantitative and qualitative differences in esterase patterns. Two high molecular weight bands were unique to B biotype and they occurred in abundance. These esterases were used to develop quick and field-based novel detection methods for differentiating B from the indigenous biotypes. Development of these simple and cost-effective protocols has wider application as they can be potentially used to identify other agricultural pests. Mitochondrial cytochrome oxidase I gene sequences and randomly amplified polymorphic DNA (RAPD) polymorphisms, generated using the primer OpB11, were also found useful for detecting B. tabaci biotypes. A B biotype-specific RAPD band of 800 bp was sequenced, which was used to a develop sequence characterized amplified region (SCAR) marker. The SCAR marker involved the development of B biotype-specific primers that amplified 550 bp PCR products only from B biotype genomic DNA. Silverleaf assay, esterases, RAPDs or a SCAR marker were used in combination to analyse whitefly samples collected from selected locations in India, and it was found that any of these techniques can be used singly or in combination to detect B biotype reliably. The B biotype was found in southern parts of India but not in the north in 2004-06.
Collapse
Affiliation(s)
- K S Shankarappa
- Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bangalore, India
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Chu D, Jiang T, Liu GX, Jiang DF, Tao YL, Fan ZX, Zhou HX, Bi YP. Biotype status and distribution of Bemisia tabaci (Hemiptera: Aleyrodidae) in Shandong province of China based on mitochondrial DNA markers. ENVIRONMENTAL ENTOMOLOGY 2007; 36:1290-1295. [PMID: 18284755 DOI: 10.1603/0046-225x(2007)36[1290:bsadob]2.0.co;2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Bemisia tabaci has caused significant crop losses in China during the last decade. Recent research has shown that two potentially invasive variants, biotypes B and Q, have been found in several regions of China. Our objective was to determine the biotype status and the distribution of B. tabaci in Shandong province, an important agricultural region of China. Based on mitochondrial DNA markers, both biotypes B and Q were detected, with B being the predominant biotype. The results indicate that the more recently introduced biotype Q has not only been located in China but also has established and spread in some regions.
Collapse
Affiliation(s)
- D Chu
- High-tech Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China.
| | | | | | | | | | | | | | | |
Collapse
|