1
|
Zhang R, Karijolich J. RNA recognition by PKR during DNA virus infection. J Med Virol 2024; 96:e29424. [PMID: 38285432 PMCID: PMC10832991 DOI: 10.1002/jmv.29424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Protein kinase R (PKR) is a double-stranded RNA (dsRNA) binding protein that plays a crucial role in innate immunity during viral infection and can restrict both DNA and RNA viruses. The potency of its antiviral function is further reflected by the large number of viral-encoded PKR antagonists. However, much about the regulation of dsRNA accumulation and PKR activation during viral infection remains unknown. Since DNA viruses do not have an RNA genome or RNA replication intermediates like RNA viruses do, PKR-mediated dsRNA detection in the context of DNA virus infection is particularly intriguing. Here, we review the current state of knowledge regarding the regulation of PKR activation and its antagonism during infection with DNA viruses.
Collapse
Affiliation(s)
- Ruilin Zhang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt Center for Immunobiology, Nashville. Nashville, TN 37232-2363, USA
| | - John Karijolich
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt Center for Immunobiology, Nashville. Nashville, TN 37232-2363, USA
| |
Collapse
|
2
|
Gurzeler LA, Ziegelmüller J, Mühlemann O, Karousis ED. Production of human translation-competent lysates using dual centrifugation. RNA Biol 2022; 19:78-88. [PMID: 34965175 PMCID: PMC8815625 DOI: 10.1080/15476286.2021.2014695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Protein synthesis is a central process in gene expression and the development of efficient in vitro translation systems has been the focus of scientific efforts for decades. The production of translation-competent lysates originating from human cells or tissues remains challenging, mainly due to the variability of cell lysis conditions. Here we present a robust and fast method based on dual centrifugation that allows for detergent-free cell lysis under controlled mechanical forces. We optimized the lysate preparation to yield cytoplasm-enriched extracts from human cells that efficiently translate mRNAs in a cap-dependent as well as in an IRES-mediated way. Reduction of the phosphorylation state of eIF2α using recombinant GADD34 and 2-aminopurine considerably boosts the protein output, reinforcing the potential of this method to produce recombinant proteins from human lysates.
Collapse
Affiliation(s)
- Lukas-Adrian Gurzeler
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Jana Ziegelmüller
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Oliver Mühlemann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Evangelos D. Karousis
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Gilley J, Coleman MP. Endogenous Nmnat2 is an essential survival factor for maintenance of healthy axons. PLoS Biol 2010; 8:e1000300. [PMID: 20126265 PMCID: PMC2811159 DOI: 10.1371/journal.pbio.1000300] [Citation(s) in RCA: 369] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 12/18/2009] [Indexed: 01/17/2023] Open
Abstract
We conclude that endogenous Nmnat2 prevents spontaneous degeneration of healthy axons and propose that, when present, the more long-lived, functionally related WldS protein substitutes for Nmnat2 loss after axon injury. Endogenous Nmnat2 represents an exciting new therapeutic target for axonal disorders. The molecular triggers for axon degeneration remain unknown. We identify endogenous Nmnat2 as a labile axon survival factor whose constant replenishment by anterograde axonal transport is a limiting factor for axon survival. Specific depletion of Nmnat2 is sufficient to induce Wallerian-like degeneration of uninjured axons which endogenous Nmnat1 and Nmnat3 cannot prevent. Nmnat2 is by far the most labile Nmnat isoform and is depleted in distal stumps of injured neurites before Wallerian degeneration begins. Nmnat2 turnover is equally rapid in injured WldS neurites, despite delayed neurite degeneration, showing it is not a consequence of degeneration and also that WldS does not stabilize Nmnat2. Depletion of Nmnat2 below a threshold level is necessary for axon degeneration since exogenous Nmnat2 can protect injured neurites when expressed at high enough levels to overcome its short half-life. Furthermore, proteasome inhibition slows both Nmnat2 turnover and neurite degeneration. We conclude that endogenous Nmnat2 prevents spontaneous degeneration of healthy axons and propose that, when present, the more long-lived, functionally related WldS protein substitutes for Nmnat2 loss after axon injury. Endogenous Nmnat2 represents an exciting new therapeutic target for axonal disorders. In a normally functioning neuron, the cell body supplies the axon with materials needed to keep it healthy. This complex logistical activity breaks down completely after injury and often becomes compromised in neurodegenerative diseases, leading to degeneration of the isolated axon. Whilst there are probably many important cargoes delivered from the cell body that isolated axons cannot exist without indefinitely, proteins that are short-lived will be depleted first, so loss of these proteins is likely to act as a trigger for degeneration. Using clues from a mutant mouse whose axons are protected from such degeneration, we have identified delivery of Nmnat2, a protein with an important enzyme activity, as a limiting factor in axon survival. Importantly, Nmnat2 is very labile and its levels decline rapidly in injured axons before they start to degenerate. Even uninjured axons degenerate in a similar way without it. These properties are consistent with loss of Nmnat2 being a natural stimulus for axon degeneration, and it might therefore be a suitable target for therapeutic intervention.
Collapse
Affiliation(s)
- Jonathan Gilley
- The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Michael P. Coleman
- The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Morishima H, Kajiwara K, Akiyama K, Yanagihara Y. Ligation of Toll-like receptor 3 differentially regulates M2 and M3 muscarinic receptor expression and function in human airway smooth muscle cells. Int Arch Allergy Immunol 2007; 145:163-74. [PMID: 17851256 DOI: 10.1159/000108141] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 06/05/2007] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Viral infection causes asthma exacerbations and airway hyperreactivity. Toll-like receptor 3 (TLR3) recognizes double-stranded RNA (dsRNA) of viral or synthetic origin in a fashion different from protein kinase R (PKR). The aim of this study was to examine the expression and function of TLR3 in human airway smooth muscle (ASM) cells. METHODS Expression of TLR3 and muscarinic receptor (MR), histamine receptor (HR), and cysteinyl leukotriene receptor (CysLTR) subtypes was analyzed by quantitative real-time PCR, flow cytometry, or Western blotting. It was assessed whether ASM cells respond to polyinosinic-polycytidylic acid (poly I:C), a synthetic analog of dsRNA, with alterations in M2R, M3R, H1R, and CysLT1R expression. The function of these subtypes was evaluated by cholinergic regulation of forskolin-stimulated cyclic AMP accumulation or by mobilization of intracellular calcium upon stimulation. RESULTS ASM cells expressed TLR3 and PKR, and intracellular TLR3 expression was demonstrated. Poly I:C caused decreased M2R and increased M3R expression, without affecting H1R and CysLT1R expression. Poly I:C-treated cells showed decreased cholinergic inhibition of forskolin-stimulated cyclic AMP accumulation and enhanced calcium flux in response to acetylcholine, but not to histamine and LTD4. These modulating effects of poly I:C were reversed by chloroquine, but not by 2-aminopurine. CONCLUSIONS The data indicate that poly I:C internalized by ASM cells differentially regulates M2R and M3R expression and function by interacting with TLR3 rather than with PKR, suggesting that these changes may contribute to airway hyperreactivity.
Collapse
MESH Headings
- 2-Aminopurine/pharmacology
- Bronchial Hyperreactivity/physiopathology
- Calcium Signaling/drug effects
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Chloroquine/pharmacology
- Colforsin/pharmacology
- Cyclic AMP/physiology
- Gene Expression Regulation/drug effects
- Histamine/pharmacology
- Humans
- Leukotriene D4/pharmacology
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Muscarinic Antagonists/pharmacology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Poly I-C/pharmacology
- Receptor, Muscarinic M2/antagonists & inhibitors
- Receptor, Muscarinic M2/biosynthesis
- Receptor, Muscarinic M2/genetics
- Receptor, Muscarinic M3/antagonists & inhibitors
- Receptor, Muscarinic M3/biosynthesis
- Receptor, Muscarinic M3/genetics
- Receptors, Histamine H1/biosynthesis
- Receptors, Histamine H1/genetics
- Receptors, Leukotriene/biosynthesis
- Receptors, Leukotriene/genetics
- Signal Transduction/drug effects
- Toll-Like Receptor 3/physiology
- eIF-2 Kinase/physiology
Collapse
Affiliation(s)
- Hirotaka Morishima
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara Hospital, Sagamihara, Japan
| | | | | | | |
Collapse
|
5
|
Zhou R, Wei H, Sun R, Tian Z. Recognition of double-stranded RNA by TLR3 induces severe small intestinal injury in mice. THE JOURNAL OF IMMUNOLOGY 2007; 178:4548-56. [PMID: 17372013 DOI: 10.4049/jimmunol.178.7.4548] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of TLRs on intestinal epithelial cells (IECs) is controversial, and the mechanisms by which TLRs influence mucosal homeostasis are obscure. In this study, we report that genomic dsRNA from rotavirus, and its synthetic analog polyinosinic-polycytidylic acid (poly(I:C)), induce severe mucosal injury in the small intestine. Upon engaging TLR3 on IECs, dsRNA triggers IECs to secrete IL-15, which functions to increase the percentage of CD3+NK1.1+ intestinal intraepithelial lymphocytes (IELs) and enhances the cytotoxicity of IELs. Moreover, The CD3+NK1.1+ IELs are proved as CD8alphaalpha+ IELs. These results provide direct evidence that abnormal TLR3 signaling contributes to breaking down mucosal homeostasis and the first evidence of pathogenic effects mediated by CD8alphaalpha+ IELs. The data also suggest that genomic dsRNA may be involved in the pathogenesis of acute rotavirus gastroenteritis.
Collapse
Affiliation(s)
- Rongbin Zhou
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, 443 Huang-shan Road, Hefei, China
| | | | | | | |
Collapse
|
6
|
Wang HC, Kao YC, Chang TJ, Wong ML. Inhibition of lytic infection of pseudorabies virus by arginine depletion. Biochem Biophys Res Commun 2005; 334:631-7. [PMID: 16009339 DOI: 10.1016/j.bbrc.2005.06.139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 06/22/2005] [Indexed: 11/30/2022]
Abstract
Pseudorabies virus (PRV) is a member of Alphahepesviruses; it is an enveloped virus with a double-stranded DNA genome. Polyamines (such as spermine and spermidine) are ubiquitous in animal cells and participate in cellular proliferation and differentiation. Previous results of our laboratory showed that the PRV can accomplish lytic infection either in the presence of exogenous spermine (or spermidine) or depletion of cellular polyamines. The amino acid arginine is a precursor of polyamine biosynthesis. In this work, we investigated the role of arginine in PRV infection. It was found that the plaque formation of PRV was inhibited by arginase (enzyme catalyzing the conversion of arginine into ornithine and urea) treatment whereas this inhibition can be reversed by exogenous arginine, suggesting that arginine is essential for PRV proliferation. Western blotting was conducted to study the effect of arginine depletion on the levels of structural proteins of PRV in virus-infected cells. Four PRV structural proteins (gB, gE, UL47, and UL48) were chosen for examination, and results revealed that the levels of viral proteins were obviously reduced in long time arginase treatment. However, the overall protein synthesis machinery was apparently not influenced by arginase treatment either in mock or PRV-infected cells. Analyzing with native gel, we found that arginase treatment affected the mobility of PRV structural proteins, suggesting the conformational change of viral proteins by arginine depletion. Heat shock proteins, acting as molecular chaperons, participate in protein folding and translocation. Our results demonstrated that long time arginase treatment could reduce the expression of cellular heat shock proteins 70 (hsc70 and hsp70), and transcriptional suppression of heat shock protein 70 gene promoter was one of the mechanisms involved in this reduced expression.
Collapse
Affiliation(s)
- Hsien-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung 402, Taiwan
| | | | | | | |
Collapse
|
7
|
Vijay-Kumar M, Gentsch JR, Kaiser WJ, Borregaard N, Offermann MK, Neish AS, Gewirtz AT. Protein kinase R mediates intestinal epithelial gene remodeling in response to double-stranded RNA and live rotavirus. THE JOURNAL OF IMMUNOLOGY 2005; 174:6322-31. [PMID: 15879132 DOI: 10.4049/jimmunol.174.10.6322] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As sentinels of host defense, intestinal epithelial cells respond to the viral pathogen rotavirus by activating a gene expression that promotes immune cell recruitment and activation. We hypothesized that epithelial sensing of rotavirus might target dsRNA, which can be detected by TLR3 or protein kinase R (PKR). Accordingly, we observed that synthetic dsRNA, polyinosinic acid:cytidylic acid (poly(I:C)), potently induced gene remodeling in model intestinal epithelia with the specific pattern of expressed genes, including both classic proinflammatory genes (e.g., IL-8), as well as genes that are classically activated in virus-infected cells (e.g., IFN-responsive genes). Poly(I:C)-induced IL-8 was concentration dependent (2-100 mug/ml) and displayed slower kinetics compared with IL-8 induced by bacterial flagellin (ET(50) approximately 24 vs 8 h poly(I:C) vs flagellin, respectively). Although model epithelia expressed detectable TLR3 mRNA, neither TLR3-neutralizing Abs nor chloroquine, which blocks activation of intracellular TLR3, attenuated epithelial responses to poly(I:C). Conversely, poly(I:C)-induced phosphorylation of PKR and inhibitors of PKR, 2-aminopurine and adenine, ablated poly(I:C)-induced gene expression but had no effect on gene expression induced by flagellin, thus suggesting that intestinal epithelial cell detection of dsRNA relies on PKR. Consistent with poly(I:C) detection by an intracellular molecule such as PKR, we observed that both uptake of and responses to poly(I:C) were polarized to the basolateral side. Lastly, we observed that the pattern of pharmacologic inhibition of responses to poly(I:C) was identical to that seen in response to infection by live rotavirus, indicating a potentially important role for PKR in activating intestinal epithelial gene expression in rotavirus infection.
Collapse
Affiliation(s)
- Matam Vijay-Kumar
- Department of Pathology and Laboratory Medicine, Epithelial Pathobiology Unit, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Desloges N, Rahaus M, Wolff MH. Role of the protein kinase PKR in the inhibition of varicella-zoster virus replication by beta interferon and gamma interferon. J Gen Virol 2005; 86:1-6. [PMID: 15604425 DOI: 10.1099/vir.0.80466-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Varicella-zoster virus (VZV) is sensitive to type I and type II interferons (IFNs), which mediate antiviral effects. In this study, it was demonstrated that IFN-β and IFN-γ inhibited the replication of VZV in vitro. Although IFN-β was more effective than IFN-γ, the level of inhibition of VZV replication achieved by the combination of both IFNs was more than additive and it was concluded that these two cytokines acted synergistically. Expression of the IFN-induced, double-stranded RNA-activated protein kinase PKR and its phosphorylation level were not modulated strongly during ongoing replication of VZV. However, in the presence of IFN-β, but not IFN-γ, PKR expression and its phosphorylation were increased, explaining in part the inhibition of virus replication by IFNs. The expression of herpes simplex virus Us11, a viral protein with several functions, including prevention of PKR activation, strongly increased the level of VZV replication.
Collapse
Affiliation(s)
- Nathalie Desloges
- University of Witten/Herdecke, Institute of Microbiology and Virology, Stockumer Str. 10, D-58448 Witten, Germany
| | - Markus Rahaus
- University of Witten/Herdecke, Institute of Microbiology and Virology, Stockumer Str. 10, D-58448 Witten, Germany
| | - Manfred H Wolff
- University of Witten/Herdecke, Institute of Microbiology and Virology, Stockumer Str. 10, D-58448 Witten, Germany
| |
Collapse
|
9
|
Boldogköi Z, Sík A, Dénes A, Reichart A, Toldi J, Gerendai I, Kovács KJ, Palkovits M. Novel tracing paradigms--genetically engineered herpesviruses as tools for mapping functional circuits within the CNS: present status and future prospects. Prog Neurobiol 2004; 72:417-45. [PMID: 15177785 DOI: 10.1016/j.pneurobio.2004.03.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2003] [Accepted: 03/29/2004] [Indexed: 11/17/2022]
Abstract
The mammalian CNS is composed of an extremely complex meshwork of highly ordered interconnections among billions of neurons. To understand the diverse functions of this neuronal network we need to differentiate between functionally related and nonrelated elements. A powerful labeling method for defining intricate neural circuits is based on the utilization of neurotropic herpesviruses, including pseudorabies virus and herpes simplex virus type 1. The recent development of genetically engineered tracing viruses can open the way toward the conception of novel tract-tracing paradigms. These new-generation tracing viruses may facilitate the clarification of problems, which were inaccessible to earlier approaches. This article first presents a concise review of the general aspects of neuroanatomical tracing protocols. Subsequently, it discusses the molecular biology of alpha-herpesviruses, and the genetic manipulation and gene expression techniques that are utilized for the construction of virus-based tracers. Finally, it describes the current utilization of genetically modified herpesviruses for circuit analysis, and the future directions in their potential applications.
Collapse
Affiliation(s)
- Zsolt Boldogköi
- Laboratory of Neuromorphology, Department of Anatomy, Faculty of Medicine, Semmelweis University and Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhou HR, Lau AS, Pestka JJ. Role of double-stranded RNA-activated protein kinase R (PKR) in deoxynivalenol-induced ribotoxic stress response. Toxicol Sci 2003; 74:335-44. [PMID: 12773753 DOI: 10.1093/toxsci/kfg148] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trichothecene mycotoxins and other protein synthesis inhibitors activate mitogen-activated protein kinase (MAPKs) via a mechanism that has been termed the "ribotoxic stress response." MAPKs are believed to mediate the leukocyte apoptosis that is observed following experimental exposure to these chemical agents in vitro and in vivo. The purpose of this research was to test the hypothesis that double-stranded, RNA-activated protein kinase R (PKR) is a critical upstream mediator of the ribotoxic stress response induced by the trichothecene deoxynivalenol (DON) and other translational inhibitors. DON was found to readily induce phosphorylation of JNK 1/2, ERK 1/2, and p38 in the murine macrophage RAW 264.7 cell line, within 5 min of culture addition, in a concentration-dependent fashion. Effects were maximal from 15 to 30 min and lasted up to 6 h. The translational inhibitors anisomycin and emetine also had similar effects when added to cultures at equipotent concentrations to DON. DON rapidly activated PKR within 1 to 5 min, as evidenced by autophosphorylation and by phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha). Interestingly, the latter effect was associated with rapid degradation of eIF2alpha. Pretreatment of RAW 264.7 cells with two inhibitors of PKR, 2-aminopurine (2-AP) or adenine (Ad), markedly impaired MAPK phosphorylation in RAW 264.7 cells according to the following rank order JNK>p38>ERK. The capacity of DON to induce MAPK phosphorylation was also markedly suppressed in a stable transformant of the human promonocytic U-937 cell line containing an antisense PKR expression vector. This suppression followed a rank order of JNK>p38>ERK in this PKR-deficient cell line when compared to control cells transfected with vector only. Apoptosis induction by DON and two other translational inhibitors, anisomycin and emetine, was almost completely abrogated in PKR-deficient cells. Together, the results indicate that PKR plays a critical upstream role in the ribotoxic stress response inducible by translational inhibitors.
Collapse
Affiliation(s)
- Hui-Ren Zhou
- Departments of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824-1224, USA
| | | | | |
Collapse
|
11
|
Wang HC, Wong ML. Lytic infection of pseudorabies virus in the presence of spermine, spermidine, or DFMO. Virus Res 2003; 94:121-7. [PMID: 12902041 DOI: 10.1016/s0168-1702(03)00157-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of polyamines (spermine or spermidine) and DFMO (an ornithine decarboxylase inhibitor) on the infection of LM (tk-) cells by pseudorabies virus (PRV) were investigated. Results from radioactive methionine labeling showed that the synthesis of viral proteins was not affected; however, the expression of a distinctive cellular protein ( approximately 27 kDa) was induced after the treatment of spermine or spermidine. Using plaque assay, we found that the plaque formation of PRV was not affected by these three reagents either. Furthermore, the effects of these drugs on the transcription of PRV immediate-early gene (IE) promoter were examined by CAT assay, and results showed weak stimulation of transcription by these drugs. Taken together, our results demonstrated that lytic infection of PRV was not influenced by addition of exogenous polyamines or depletion of endogenous polyamines; this conclusion was similar to earlier studies by using herpes simplex virus.
Collapse
Affiliation(s)
- Hsien-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, 402, Taiwan
| | | |
Collapse
|